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Dry and Grease-Lubricated Reciprocating Wear Resistance of Laser-

Clad FeCrMoCB Amorphous Coating on AISI 52100 Steel

1.0 Introduction

The demand for wear-resistant materials is rising rapidly in high-performance sectors like automotive, aerospace, and
industrial machinery. AISI 52100 steel is a high-hardness and fatigue-resistant steel that has been widely used in the
manufacturing of bearings and rolling elements. Despite its interesting properties, AISI 52100 steel is vulnerable to
severe wear and surface damage in high friction and sliding contact environments. Therefore, improving the wear
resistance of AISI 52100 steel is essential in order to enhance the reliability and service life of machine components
exposed to tribological loads [1]. This challenge is a common opportunity for advanced surface engineering
techniques, including laser cladding. Laser cladding is a versatile surface engineering technique enabling protective
coatings to be deposited on various metallic substrates [2]. It offers advantages such as strong metallurgical bonding,
minimal dilution, and precise control over coating thickness and microstructure. Studies have shown that Fe-based
amorphous coatings generally outperform crystalline coatings in high-wear applications, particularly in harsh
conditions where AISI 52100 steel is used [3], [4]. While advanced hard coatings such as WC—Co, CrN, and Ni-based
alloys have been widely applied to improve the wear performance of steels, they are prone to cracking and
delamination due to physical properties mismatch with the substrate. FeCrMoCB amorphous coatings has promising
tribological properties, in addition they exhibit similar composition reducing the possibilities of cracking and
delamination. Moreover, FeCrMoCB coatings on bearing-grade AISI 52100 steel remains largely unexplored. This
study specifically addresses this gap by investigating the unique tribological response of this novel coating—substrate

system under dry and grease-lubricated reciprocating conditions.

The previous studies have reported promising results for Fe-based amorphous coatings applied via laser cladding,
research on their wear performance under different lubrication conditions particularly dry compared to grease-
lubricated, is still limited. Previous studies have been mainly limited to wear resistance in only one lubrication
condition without comparative analysis, which hinders the understanding of underlying wear mechanisms and coating
durability under different lubrication conditions [2], [5]. Since lubrication plays a vital role in wear control and

improving component life, it is important to investigate the influence of different lubrication conditions on Fe-based
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amorphous coatings. It is particularly important in reciprocating wear cases, i.e., where materials come to repetitive
sliding or cyclic contact with one another, as in engines, pumps, and several types of industrial machinery [6], [7].
This study distinguishes itself by integrating laser-clad FeCrMoCB amorphous coatings on fatigue-prone AISI 52100
steel and evaluating their tribological performance under industrial relevant reciprocating wear regimes. Unlike
previous studies focused on single-condition tests, the studies systematically contrasts dry and grease-lubricated
behavior, revealing grease-induced reductions in wear volume exceeding 40%, a finding not reported in prior literature
[8]. This study provides new insights into the tribological behavior of Fe-based amorphous coatings, contributing to
the development of more durable and efficient coating systems for industrial applications requiring superior wear

resistance and reliability under varied operating conditions. [9], [10].

2.0 Materials and Methods

2.1 Materials

AISI 52100 steel with dimensions 15 x 15 x 4 mm for each of the nine sample coatings was used in this research as a
substrate material characterized by high carbon and chromium content, leading to its high hardness and fatigue
resistance. Optical emission spectrometry analysis of the steel show a composition of carbon 1.0% carbon and 1.5%
chromium, with traces of other elements [11]. The Fe-based coating, composed of linear-grooved iron (Fe), chromium
(Cr) and molybdenum (Mo), with trace amounts of carbon (C) and boron (B), was prepared using the powder
metallurgy method [12]. The coating material was a FeCrMoCB amorphous powder from LiquidMetal Coatings®
with a nominal particle size of 20—80 pm. For this purpose, the powder composition (composed of Fe, Cr, Mo, C and
B) was optimized to provide high amorphous content in the final layer of cladding, which greatly increases hardness

and wear resistance [13], [14], [15].

2.2 Laser cladding process

The AISI 52100 steel substrates were polished to a mirror-like surface with silicon carbide papers, ranging from 400
to 1200 grit, prior to the application of the coating. The substrates were then cleaned in an ultrasonic bath containing
acetone to remove any surface contaminants, followed by drying with compressed air [16]. The samples were
manufactured in a fiber laser system (ROFIN StarFiber 300, Germany), working at a maximum power of 300 W and
a wavelength of 1070 = 10 nm. Figure 1(a), (b), and (c) shows the laser cladding (LC) setup with pre-applied powder,

laser scanning direction and overlap areas, and images of samples before and after cladding, respectively. A 15 L/min
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argon flow [17] was used as a protective gas, with a fixed 358 mm distance between the laser tip and substrate for
single-layer, single-pass cladding. However, laser power (P), scanning speed (v), and overlap percentage (OL%) are
considered the main parameters in this study. To better characterize the cladding process, specific energy (Es) is
calculated using equation (1), where Es is in J/mm?, P in W, d in mm?, and v in mm/s as it provides a more detailed
index of process efficiency. Given the fixed spot size area of the laser beam approximately around 16 mm?, variations
in Es directly influence the microstructure and amorphous content of the FeCrMoCB metallic glass (MG) coating
layer. Table 1 shows the LC parameters, where laser power was limited to 250-300 W, and scanning speed was set at
50-70 mm/s, achieving uniform coatings with strong metallurgical bonding. The Taguchi method was employed to

design the parameter combinations and reduce the total number of experimental runs.

E = (Equation 1)

substrate

(b)

Coating layer

Figure 1: (a) LC configuration, (b) laser scanning orientation and (c) post-coating visual representation
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Table 1: The experimental parameters of LC

Sample  Laser power, W Scanning speed, OL % E, J/mm3
mm/s
S1 250 50 30 0.3125
S2 250 60 40 0.2604
S3 250 70 50 0.2232
S4 280 50 40 0.3500
S5 280 60 50 0.2917
S6 280 70 30 0.2500
S7 300 50 50 0.3750
S8 300 60 30 0.3125
S9 300 70 40 0.2679

2.3 Wear Testing setup

Wear resistance was evaluated under dry and grease conditions utilizing a High-Frequency Reciprocating Rig (HFRR)
wear tester, as depicted in Figure 2. These testing conditions were selected to simulate the diverse operating
environments encountered by tribological components in real-world applications, such as those found in automotive
and industrial machinery. In such systems, components often experience both unlubricated and lubricated regimes due
to intermittent lubrication, contamination, or varying operating conditions [18], [19]. Before conducting the tests, all
nine coating samples were polished until a mirror quality was achieved, and the roughness of all coating specimens
was similar to that of uncoated polished steel. The wear tests were performed in lubricated as well as dry configurations
as mentioned in Table 2. The counterbody material and testing conditions were selected to mimic operational loads
and sliding interactions found in reciprocating tribological systems. This enables direct analysis of coating durability
and wear mechanisms under practical conditions. The lubricant used was about 0.2 grams of mineral oil-based
automotive grease (NLGI 3) applied to the samples. NLGI 3 grease is thicker, therefore it won’t run out and provides

lasting lubrication even in high pressure and movement.

Wear and friction coefficient results were collected to assess performance. The wear rate of the fabricated samples and
bare substrate was calculated by using equation (2), where Wr represent the wear rate (mm3/N.m), Viess depicts the
volume loss in mm? (Vioss = (Mbefore —Mafier)/p), D demonstrates the total sliding distance (m), and F signifies the applied
normal load (N). This approach mirrors the conditions used in recent studies to compare wear performance across
different environments [20]. Testing of dry and grease-lubricated conditions was carried out. The specific parameters

for the wear tests are shown in Table 2. To ensure reliability and repeatability, each tribological test (both COF and
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wear rate) was conducted in triplicate (n = 3) for all coated and uncoated samples. The average values and standard
error (SE) were calculated and are summarized in Table 3 and 4. These values were used to generate the corresponding
plots in Figures 8, 9, 12, and 13, with error bars representing + one standard deviation (SE). After the wear tests, the
wear tracks on all coated samples were examined using Optical Microscopy (OM) to evaluate surface wear
morphology. A Motic Panthera digital optical microscope was used to capture images at a calibrated magnification

with a scale of 200 pm, ensuring consistent comparison across all samples.

Wi = 055 el (Equation 2)

Figure 2: Schematic presentation of High-Frequency Reciprocating Rig (HFRR) wear tester setup

Table 2: Wear test conditions

Sliding condition Dry Lubricated
Load (N) 5 10
Room temperature (°c) Room temp. Room temp.
Sliding speed (m/s) 0.2 0.2
Stroke length (mm) 8 8
Sliding distance (m) 576 576
Friction time (minutes) 60 60

2.4 Characterization Methods

Full characterization of the microstructure, compositions, and mechanical properties, as linked to the wear resistance
of laser-clad Fe-based amorphous coatings, was carried out. For Optical Microscope (OM), Scanning Electron
Microscopy (SEM) [21] and X-ray Diffraction (XRD) [22], an analysis of the surface morphology and microstructure
of the laser-clad Fe-based coatings was performed. Metallographic preparation of fabricated samples for cross-
sectional examination involved polishing with sandpaper and diamond powder until a scratch-free mirror-like surface
was obtained. Afterwards, it was chemically etched in Linsenitzmittel solution (70 mL HCI, 1000 mL ethanol, 40 g
FeCls, and 30 g CuCly) for 1 minute. The microstructure of the coating layer (CL) was investigated through the use of

5
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SEM analysis. In contrast, the coating crystallinity was analyzed by X-ray diffraction (Japan, Rigaku, Miniflex, XRD)
with Cu Ka radiation (A = 0.1541 nm). Amorphous materials scatter into diffuse rather than distinct diffraction peaks
without long-range atomic order. The phases and microstructures of the laser-clad Fe-based alloy coatings were
analysed using Energy Dispersive X-ray spectroscopy (EDS) attached to a scanning electron microscope (SEM,
Phenom XL Desktop). In addition, the Vickers microhardness tester (HV-1000, FALCON450G2) was employed to
measure microhardness on cross-sections and afterwards coated surfaces with a 10 kgf force with a 10-second dwell
time. Microhardness was analyzed at three points on each CL surface, and the average was computed. Such methods
allow for extensive examination of the coating's microstructural features and mechanical stability, known as critical

parameters which affect their performance in reciprocating wear applications [23], [24].

3.0 Results

3.1 Coating Microstructure and Composition

The microstructure and phase composition of laser-clad Fe-based amorphous coatings were analyzed to assess their
characteristics and the quality of the laser-cladding process. Figure 3 presents SEM images of the cross-section,
showing a uniform microstructure with minimal porosity and a high degree of amorphous phase content. Figure 4
illustrates the clear EDS-mapping of Fe, Cr, Mo,C and B distributions enhances understanding of phase separation, as
also observed in recent coating studies [25]. Since all coatings exhibited similar elemental distribution patterns, only
the mapping result for coating S6 is shown as a representative example. Microstructural analysis revealed dendritic
and equiaxed grain formations, particularly in regions where the amorphous phase partially crystallized. These
microstructural changes may influence the coating’s mechanical properties, particularly hardness and wear resistance.
Zhang et al. demonstrated that laser cladding could produce high-quality Fe-based coating for industry applications in
terms of microstructural properties [26].

The X-ray Diffraction (XRD) showed the presence of both amorphous and crystalline phases, with Fe, Cr, and Mo as
primary elements. XRD patterns in Figure 5 confirm the phase composition and reveal the presence of C, Fe-Cr,
Fe»3Bs, Fe, and FesC phases, showing characteristic amorphous peaks alongside crystalline features. The amorphous
structure is essential for enhancing wear resistance due to its high hardness and uniformity, as noted in recent studies
[27]. The presence of a distinct XRD peak around 30° in samples S3, S5, S6, S8, and S9 suggests the formation of
carbon-related phases, which are commonly observed in Fe-C-based alloys due to phase transformations influenced

by alloy composition, heat treatment, and carbide precipitation. Additionally, the presence of carbon or iron-chromium
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carbide phases in these samples can be attributed to the diffusion of carbon and chromium during thermal processing,
leading to carbide stabilization and peak intensity variations in XRD patterns [28]. Similar findings have been reported
in Fe-based alloys, where the precipitation of cementite and chromium carbides significantly alters the microstructural
properties and diffraction behavior [29]. The presence of amorphous regions was inferred from the broad halo peaks
in XRD spectra, consistent with findings in similar Fe-based systems [30]. Further analysis via Raman or XPS could

enhance phase resolution and will be explored in future work.

. unmelted
coating

Figure 3: SEM morphology microstructure with scale 200 um of fabricated samples.
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3.2 Mechanical Properties

The wear-resistant mechanical properties of the coating, specifically hardness was evaluated. The hardness profile
across the coating thickness, shown in Figure 6 (a), demonstrates consistently high hardness values around 1100 HV,
significantly exceeding that of the AISI 52100 steel substrate. Figure 6(b) compares the microhardness at different
levels on the coating surface, confirming that the Fe-based amorphous phase is the primary contributor to mechanical
strength. The coating exhibits exceptionally high hardness, attributed to the deformation resistance of the Fe-based
amorphous phase and its superior wear resistance compared to conventional crystalline structures [31]. Fine equiaxed
grains in the amorphous regions further enhance hardness by minimizing grain boundary defects, thereby improving
mechanical performance. Studies widely confirm that these microstructural features enhance hardness and wear

resistance, making laser-clad coatings well-suited for high-load applications in demanding environments[32].
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Figure 6: Microhardness values of fabricated samples (a) Cross section and (b) Profile surface.
33 Wear Resistance under Dry Conditions

Wear tests in dry conditions were performed to provide a baseline wear resistance value for the laser-clad coatings
without the effect of lubricants. Figure 7 presents OM images of the wear tracks, showing a smooth surface with
minimal abrasive wear marks, indicating lower material loss. In Figure 7, even though the HFRR stroke length was
kept constant at 8 mm, the wear track widths and lengths vary significantly. This variation is attributed to differences

in coating hardness, surface microstructure, and frictional interaction factors known to influence wear scar geometry
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in dry sliding conditions [33]. As shown in Table 3, the tribological performance of the coated samples exhibits
consistent results across all three test runs. The inclusion of standard error quantifies the variability, supporting the
trends shown in the subsequent graphs where error bars are used. Figure 8 plots the friction coefficient over time under
dry sliding conditions, demonstrating stable frictional behavior. This stability further supports the coating’s high wear
resistance, even in the absence of lubrication. Among all tested samples, S6 and S7 demonstrated the best wear
resistance. As shown in Figure 8(a), they exhibited the lowest average coefficients of friction (COF), with S6 at
approximately 0.138 and S7 at 0.167. Figure 8(b) further illustrates their stable COF profiles across different sliding
distances. This low friction performance is complemented by their minimal wear volume loss in Figure 9, with S6 at

wear rates of 2.222 x 107® mm?*/N-m and 3.334 x 10~® mm3/N-m for S7.

. e — S
o rat dares 5}
3 Ry ) wear track
“weartrack & wear track
/ e
S1 - S4 Ll S7 10 mm

=
N wear track ;
——
10
mm S8 10 mm_
—— T p =
- = 3 -;f?,:‘: ~ - -
E wear track
v wear track
wear track
S3 10 mm S9
Sé6 s 10 mm

Figure 7: Microscopic images of wear tracks (50x magnification) of fabricated samples under dry conditions.
Samples S6 and S7 demonstrated the lowest mean COF and wear rates with minimal variation, confirming their
superior performance. The inclusion of standard error quantifies the variability, supporting the trends shown in the
subsequent graphs where error bars are used. These results indicate that S6 and S7 are the most effective in minimizing

wear and friction, making them promising candidates for applications that require high durability and reduced friction
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in dry environments. Figure 10 illustrates the wear damage mechanisms in sample S6, which was identified as the
optimized sample due to its superior performance under dry conditions with load 5 N. The figure 10(a) schematic
highlights the formation of cracks and debris, with S6 demonstrating enhanced resistance attributed to its protective
crystalline layers. In comparison, the laser-clad coatings exhibited significantly lower wear rates than uncoated AISI
52100 steel, which showed severe wear and surface damage under identical conditions. This enhanced performance
aligns with findings from recent studies, which report that Fe-based amorphous coatings produced by laser cladding
possess excellent wear resistance in dry conditions due to their hardness and uniform microstructure [10].

Table 3: Average Coefficient of Friction (COF) under dry condition and Wear Rate of Uncoated and Coated
Steel Samples with Standard Error (SE).

Samples Average COF Wear Rate (mm*/N.m)

Test 1 Test 2 Test3 Mean £+ SE Test 1 Test 2 Test 3 Mean + SE
ppcoated - oon1s 02118 02100 2E 107 Lorxio7  porxier  LEXI0TE
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Figure 10: Schematic diagram showing the wear damage mechanism with different condition in fabricated samples

S6: (a) dry (with load 5N) and (b) grease lubricated condition (with load 10N).

34 Wear Resistance under Grease-Lubricated Conditions

Wear performance under lubricated conditions was evaluated using lithium-based grease as a lubricant. Grease
lubrication significantly reduced the coefficient of friction (COF), leading to lower material loss and a smoother wear
track [26]. This enhancement in wear performance was evident across all samples, with further improvements in
surface quality and friction stability. Figure 11 presents optical microscopic images of the wear track, revealing a
smoother surface compared to dry conditions, with minimal abrasive features and reduced surface roughness. From
the figure 11, the grease-lubricated wear tracks also display non-uniform lengths and widths, which can be attributed
to localized formation of protective tribofilms and variation in contact stress distribution, factors known to influence
wear scar geometry under boundary-lubricated regimes [34]. As shown in Table 4, the tribological performance of the
coated samples under grease-lubricated condition exhibits consistent results across all three test runs. The inclusion
of standard error quantifies the variability, supporting the trends shown in the subsequent graphs where error bars are
used. Additionally, the friction coefficient 7000 lower values and reduced fluctuation, indicating the beneficial impact
of lubrication on wear resistance. Therefore, under grease-lubricated conditions, samples S6 and S7 demonstrated
superior wear resistance, as indicated by their low coefficients of friction (COF) and narrower wear tracks.
Specifically, S6 and S7 achieved COF values of 0.104 and 0.107, respectively, ranking among the lowest across all

samples (Figure 12a).
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Figure 11: Microscopic images of wear tracks (50x magnification) of fabricated samples under lubricated

conditions.

Figure 13 illustrates that S6 recorded the lowest wear volume loss at 0.000012 mm?® and a wear rate of 2.22 x 107®
mm?*/N-m, followed closely by S7 with a wear volume loss of 0.000019 mm?, including a wear rate of 3.33 x 10°®
mm?*N-m. These values are significantly lower than other samples, making S6 and S7 the most effective in reducing
material loss under lubricated conditions. This combination of low COF, minimal wear volume loss, and low wear
rate highlights their suitability for applications requiring enhanced wear resistance. Surface analysis of the wear track
revealed minimal abrasive wear patterns and the absence of adhesive wear. This suggests that grease lubrication
effectively reduced direct metal-to-metal contact, thereby improving the coating’s resistance to sliding wear. These
findings align with previous studies, which report that lubrication substantially reduces wear rates in Fe-based

amorphous coatings by minimizing friction and wear debris formation[35], [36].
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Table 4: Average Coefficient of Friction (COF) under lubricated condition and Wear Rate of Uncoated and
Coated Steel Samples with Standard Error (SE).

Average COF Wear Rate (mm3/N.m)
Samples
Test 1 Test 2 Test 3 Mg}; * Test 1 Test 2 Test 3 Mean = SE
Uncoated 013173 0.13099  0.12999 1309+  1.56x107 1.57x107 1.59x107 | 57x107<
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Figure 12: Tribological results for polished steel and fabricated samples under lubricated sliding conditions: (a)

Average COF; (b) the change of COF with sliding distance for the coatings.
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Figure 13: Tribological results (wear rate) for polished steel and fabricated samples under lubricated sliding
conditions.
Thus, the schematic diagram in Figure 10(b) illustrates the wear damage mechanisms for samples S6 under grease-
lubricated conditions with load 10 N, emphasizing the interaction between the ball and the surface coatings. For
Sample S6, the wear track is characterized by pronounced cracks and debris formation, indicating abrasive wear and
coating delamination as dominant mechanisms. This highlight the critical role of coating microstructure and
composition in mitigating wear under lubricated sliding conditions, corroborating findings in recent studies that

underline the importance of optimized coatings for durability in high-stress applications [37].

4.0 Discussion

Under dry sliding, the wear tracks display prominent abrasive grooves and wear debris, indicating that abrasive wear
is dominant, likely combined with localized brittle fracture of the amorphous matrix. This is consistent with the known
behavior of Fe-based amorphous coatings, which often fail by micro-cracking and spalling due to their high hardness
but limited ductility [38]. Detached particles from these micro-fractures can act as abrasives, intensifying material
removal. Moreover, mild adhesive wear may occur at asperity contacts under insufficient lubrication, which can
explain the slightly higher COF observed for some coated samples compared to the uncoated steel [39]. Overall, the

coating’s resistance to oxidation minimizes any significant oxidative wear under the test conditions, aligning with
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previous studies of Fe-based amorphous coatings in dry sliding environments consistent with earlier findings on Fe-
based coatings under unlubricated loads [40], [41]. In contrast, grease lubrication provided a boundary layer that
significantly reduced asperity interactions, minimizing adhesive wear and resulting in smoother tracks [42]. This
lubrication effect explains the 30-40% reduction in wear rate observed in samples S6 and S7. For example, when
tested under grease-lubricated conditions, the COF values for these samples were further reduced, with S6 achieving
a COF 0f0.1043 and S7 a COF of 0.1078, representing approximately a 24.5% reduction for S6 and a 35.6% reduction
for S7 compared to their dry condition COF values. This comparison highlights that grease lubrication substantially
enhances wear resistance by further lowering the friction in already high-performing samples under dry conditions.
Grease lubrication significantly reduced wear and friction across all samples, lowering average COF values by
approximately 30—40% compared to dry conditions. Under grease-lubricated conditions, COF values were further
reduced, with S6 achieving 0.1043 and S7 0.1078. This corresponds to reductions of approximately 24.5% for S6 and
35.6% for S7 compared to their dry-condition values. This comparison highlights the significant role of lubrication in

enhancing wear resistance, particularly for high-performing samples in dry conditions.

Furthermore, the wear performance and hardness of the coated samples are strongly linked to their unique
microstructural characteristics. The laser-clad FeCrMoCB coatings primarily consist of an amorphous matrix,
confirmed by XRD and cross-sectional micrographs, which provides high hardness due to its grain-boundary-free
structure. However, this amorphous phase is inherently brittle and can fracture under repeated sliding, releasing small
particles that may act as third-body abrasives and locally increase wear if not stabilized [38]. The embedded crystalline
phases, including hard intermetallic carbides such as FesC and Fe2sBs, further enhance hardness but can also contribute
to brittleness and micro-crack initiation under dry conditions. At the same time, the presence of limited soft and ductile
phases or localized residual matrix regions can help absorb deformation energy and reduce superficial fracture, which
may explain the improved wear resistance observed in optimized samples like S6 and S7. This balance between hard—
brittle and soft—ductile phases has been shown to be critical for controlling both hardness and wear stability in Fe-
based amorphous coatings [41], [43], [44]. Therefore, the improved tribological behavior can be attributed not just to
high hardness but to a microstructure that combines hard phases for load support with localized ductility that limits

crack propagation and particle spalling.
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Wear volume loss and wear rate were significantly lower under grease lubrication, highlighting the protective role of
grease in minimizing material degradation and enhancing overall wear resistance. These findings align with existing
literature, which highlights the superior performance of Fe-based amorphous coatings in both dry and lubricated
conditions due to their strong adhesion, high hardness, and resistance to abrasive and adhesive wear mechanisms [45].
Under dry sliding conditions, the COF behavior (Figure 14) of several coated samples in this study follows trends
observed by Li et al. (2022). Their study reported an initial rise in COF due to direct asperity contact, followed by a
steady-state phase [46]. Notably, the coatings developed in this study achieved significantly lower COF values (0.138

for S6 and 0.167 for S7) compared to the 0.404—0.542 range reported by Li et al. (2022).
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Figure 14: The COF result of the coatings from investigation by Li et al (2022) with fabricated samples under dry

sliding condition: (a) the sliding time with change of COF, (b) the average friction coefficient [46].

Figure 7 reveals distinct differences in material wear track loss among the tested samples. This trend aligns with Zhang
et al. (2021), who observed reduced wear track lengths in high-hardness coatings under similar test conditions [47].
Conversely, when grease lubrication was used, the wear rate of the coating was further decreased, suggesting that
lubrication creates a barrier film that limits frictional contact. The application of NLGI 3 grease provided a thicker
lubricating film, preventing direct asperity contact and reducing abrasive wear. Figure 13 highlights this performance
enhancement, particularly for S6, which exhibited the lowest wear rate. It can successfully prevent direct metal-to-
metal friction/interaction, thus minimizing wear volume and surface roughness in the wear track. This outcome is
consistent with studies by Chen et al. (2022), who emphasized the role of lubrication in minimizing adhesive wear

and friction [48]. The exact control of the laser parameters during the process, like the power of the laser and the
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scanning velocity, made it possible to obtain an amorphous phase that was dense and homogeneous with few defects.
Unlike crystalline arrangements of atoms, where defects like grain boundaries and dislocation sites lead to weak points
in the material that can allow deformation and wear, amorphous structures are entirely safe from these flaws, making
them extremely resistant to deformation and wear [49]. The optimized samples S6 and S7 demonstrate excellent wear
resistance due to the precise control of laser cladding parameters, including laser power and scanning velocity. As
illustrated in the figure 15 [50], SEM micrographs of worn surfaces show that slower scanning speeds produce light
grooves and fewer oxide patches, contributing to smoother, less damaged surfaces, whereas faster speeds result in

deeper grooves and visible oxide particles that can degrade wear performance investigated by Hou et al. (2019).

Oxide particles

Light groove

50.0pm

oy

Substrate Coating at v=6mm/s

% Oxide patch

7

50.0pm

50.0pm Coating at v=10mm/s

Coating at v=8mm/s

Figure 15: SEM micrographs of the worn surfaces of the substrate and the claddings obtained with different
scanning speeds by Hou et al. [50]
This result support previous work on Fe-based amorphous coatings, in particular those produced by laser cladding.
For example, Zhang et al. (2022) achieved similar improvements in wear resistance and microhardness for Fe-based
coatings manufactured by high-speed laser cladding, attributing these two properties mainly to the absence of grain
boundaries in their amorphous structure [51]. Compared to conventional crystalline coatings such as WC—Co and CrN,
which typically exhibit wear rates in the range of 3.0 X 107 to 6.0 X 10> mm?3/N-m under dry reciprocating conditions
[52],[53], the FeCrMoCB amorphous coating in this study achieved a lower average wear rate of about
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1.5 x 10"7 mm?*/N-m. This superior performance is mainly due to its fully amorphous matrix, which eliminates grain
boundaries that often act as crack initiation sites under cyclic stress. Furthermore, the presence of Cr and Mo enhances
corrosion resistance, while laser cladding ensures excellent metallurgical bonding, enabling higher load-bearing
capabilities [54]. These advantages make FeCrMoCB coatings suitable for demanding tribological applications where
traditional coatings may fail due to grain boundary oxidation or delamination [55]. In line with the exploration of
wear-resistant coatings, Ahmad et al. (2022) demonstrated that optimizing the powder feed rate in plasma-sprayed Fe-
Cr-Mo-B-C coatings significantly enhances their microstructural integrity, wear resistance, and corrosion properties,
complementing the findings on the performance of laser-clad FeCrMoCB coatings under various lubrication
conditions [56]. Further development is needed to tackle these challenges, including the optimization of the coating
thickness, the addition of gradient layers, or even hybrid cladding technologies to improve toughness instead of
hardness [57]. In conclusion, the current investigation supports the feasibility of utilizing Fe-based amorphous
coatings manufactured by laser cladding in high-performance wear applications.

5.0 Conclusion

This study uniquely demonstrates the effectiveness of laser-clad FeCrMoCB amorphous coatings on AISI 52100 steel
under both dry and grease-lubricated reciprocating wear conditions, revealing performance improvements not
previously reported for this coating—substrate combination. In particular, in Sample S6 and S7, it was found that
lubrication resulted in reductions in the coefficient of friction (COF) values of around 24.5% and 35.6%, respectively,
which represent general improvements. Furthermore, wear volume loss decreased significantly when lubricated, with
both samples showing 30—40% improved wear resistance compared to dry conditions. The considerable improvement
with regard to performance can be attributed to the enhanced mechanical properties of the samples, such as the high
hardness and structural stability that prevent deformation and mass loss induced and facilitated by friction. Here, the
lubrication is either intermittent or can change based on the demand placed on components, specifically in the
automotive, aerospace and heavy machinery industries (bearings, gears, etc. Laser cladding of Fe-based semi-
amorphous coatings has great potential for lowering the maintenance cost of parts suffering wear, as well as increasing
the service life of mission-critical components where the failure implications could justify the cost of laser cladding.
Future research could explore multi-layer cladding techniques to further enhance toughness, as well as hybrid coatings

that combine amorphous and crystalline phases for improved impact resistance. In summary, this research highlights
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the potential of laser-clad Fe-based coatings to improve component performance in wear-intensive environments. It

lays the groundwork for advancing durable, wear-resistant materials for industrial use.
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