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lectron configuration-based
universal metal fingerprint for transition metal
compounds

Markus Orsi *a and Angelo Frei *ab

Machine learning has experienced a drastic rise in interest and applications in all fields of chemistry, enabling

researchers to leverage large chemical datasets to gain novel insights. The success of machine learning-

driven projects in chemistry hinges on three key factors: access to robust and comprehensive datasets,

a well-defined objective, and effective molecular representations that convert chemical structures into

machine-readable formats. Transition metal complexes have lagged behind their organic counterparts

on all three of these avenues. The large diversity of structures, coordination numbers and modes have

made its translation to a machine-readable format an ongoing challenge. Here we introduce ELECTRUM,

an electron configuration-based universal metal fingerprint for transition metal compounds. Its

lightweight implementation enables the straightforward conversion of any transition metal complex into

a simple fingerprint. Utilising a novel dataset generated from the Cambridge Structural Database (CSD),

we demonstrate that ELECTRUM effectively captures the structural diversity of transition metal

complexes. By plotting nearest-neighbor relationships in ELECTRUM space, we reveal meaningful

clustering in two-dimensional representations. Furthermore, we use the ELECTRUM encoding to train

machine learning models on the prediction of metal complex coordination numbers from ligand

structures and metal identity alone. We show that on a subset of this data, we can train models to

predict the oxidation state of metal complexes. These case studies showcase the potential of ELECTRUM

as an easy-to-implement fingerprint for metal complexes. We rely on the community to further test,

validate, and improve it.
Introduction

The emergence of automated high-throughput synthesis and
testing in the chemical sciences has led to data-driven
approaches gaining signicant traction, taking advantage of
the increased availability of data. Consequently, a wide array of
machine learning (ML) techniques has been developed to
extract insights from this data and tackle various bottlenecks in
materials and drug discovery processes. Many of these tech-
niques aim to identify potential new candidate compounds by
predicting critical physical, chemical, and/or biological
properties.1–18 However, for ML approaches in chemistry to be
effective, a few criteria need to be fullled: (1) high-quality data
in the relevant domain must be available, (2) the objective
function must be clearly dened, and (3) molecules must be
translated to a machine-readable format that contains all
necessary molecular information for the model to learn the
objective function. Each of these criteria presents its own set of
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challenges. Although high-quality datasets of organometallic
compounds are becoming more accessible, they remain rela-
tively rare and are oen smaller than those available for
medicinal chemistry. Moreover, dening clear objective func-
tions is challenging in areas like materials and drug develop-
ment where multiple properties need to be optimized
simultaneously.19,20 Finally, the translation of molecules to
machine-readable formats has been addressed in many
different ways, including pharmacophore descriptors (CATS,21

MXFP22,23), substructure and atom-pair descriptors (ECFP,24

Atom-Pair,25 MAP4C26) as well as graph-based approaches.27–31

However, this progress has mostly been restricted to organic
molecules, which aremainly carbon-based and generally adhere
to covalency rules. In contrast, transition metal compounds
have largely been excluded from these methods due to their
diverse binding modes, oxidation states, and geometries, which
current approaches cannot comprehensively encode. Given the
widespread application of transition metal complexes in catal-
ysis, luminophores, materials, medicine, and more, a suitable
molecular representation that encompasses all these possible
compounds would be highly desirable.

In recent years, several notable efforts have been made in
this direction, primarily within the area of catalyst
Digital Discovery
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development.32–34 Although in some cases a single scalar
descriptor may suffice to correlate with the desired outcome,
higher-dimensional descriptors that incorporate experimentally
determinable or computationally derived properties of metal
complexes oen yield better predictive performance.35 For
instance, MCDL-25 descriptors used in conjunction with arti-
cial neural networks (ANNs) have been used to predict
quantum-mechanically derived properties of metal
complexes.36 Since then, the eld has seen a broad expansion of
various encodings and machine learning models designed to
accelerate the discovery of inorganic materials and catalysts.37–45

All these approaches represent promising strides forward;
however, their implementation at scale and by non-experts is
not trivial. Graph-based encodings, although detailed, may
suffer from scalability and complexity issues, while string-based
representations oen lack the ability to fully capture the
multifaceted chemistry of metal complexes. Other representa-
tions depend heavily on descriptors derived either experimen-
tally or through computationally intensive methods. Generally,
however, these representations all require a structure of the
compound available as a .mol or .xyz le to generate the
respective descriptors. Molecular ngerprints, in contrast,
provide an efficient and easily interpretable way to encode
essential structural features, offering excellent scalability and
versatility. They are widely employed in cheminformatics tasks
such as virtual screening and compound database searches due
to their simplicity and efficiency.

Based on this quandary and our own needs to have a suitable
descriptor for the prediction of the biological properties of
metal complexes3 we have developed our own approach. Herein
we present the Electron Conguration-based Universal Metal
Fingerprint for transition metal compounds (ELECTRUM).
ELECTRUM takes into account the nature of any ligands coor-
dinated to the metal complex as well as the electronic properties
of the specic metal to generate a 598-bit ngerprint. Impor-
tantly, ELECTRUM ngerprints can be generated from simple
concatenated strings of the involved metal center and ligand
SMILES. We show that this ngerprint can be applied to a series
of classication tasks and provide a new CCSD dataset for the
prediction of transition metal complex coordination numbers.
Our hope is that ELECTRUM will be taken up, applied and
improved by the community going forward to provide
researchers with an easy to implement ngerprint for transition
metal-based ML projects.

Results and discussion
Fingerprint design

The effectiveness of molecular representations for metal
complexes can be signicantly improved by explicitly incorpo-
rating ligand-specic information along with electronic prop-
erties of the central metal.36 Previously, we demonstrated that
bitwise summation of ECFP-like ngerprints for ligands
(Ligands ngerprint) within a metal complex effectively
captures ligand combinations; however, this approach was
limited because it only allowed comparisons among complexes
containing the same central metal.3 To overcome this
Digital Discovery
limitation, we now extend this method by appending explicit
information about the electron conguration of the metal
center (Fig. 1). Consequently, generating ELECTRUM nger-
prints only requires the SMILES strings of individual ligands
along with the identity of the coordinating metal.

ELECTRUM ngerprints are calculated starting from the
metal and ligands, which are represented in SMILES format,
concatenated and separated by dots (“SMILES1.SMI-
LES2.SMILES3”). For each ligand, circular substructures are
extracted up to a radius of 2 bonds from each atom, capturing
the local chemical environments. The substructures are then
hashed to generate integer identiers, which are folded using
a modulo operation to obtain a xed-size vector representing
the ligand. In this study, we have opted for a bit size of 512,
which is lower than the typical bit sizes used for drug discovery.
We chose this size because ligand structures are typically small,
and a lower bit size is sufficient to encode metal complexes.
Additionally, we hypothesize that a lower feature number may
benet machine learning models by reducing dimensionality.
Once the folded ngerprints for all ligands are obtained, they
are combined through bitwise summation. This procedure
retains information about both the complex and the individual
ligands, including instances where the same ligand appears
multiple times, as the bitwise summation reects the cumula-
tive presence of substructures. Hence, there is no information
loss linked to repeated ligand appearance. Additionally,
compared to concatenation methods, bitwise summation
produces a permutation-invariant descriptor, better reecting
the structural characteristics of metal complexes. Finally, we
append an 86-bit binary representation of the coordinating
metal's electron conguration to the ligand ngerprint, result-
ing in the nal 598-bit ELECTRUM ngerprint.

One of ELECTRUM's key advantages is its low computational
cost relative to geometry-based descriptors and quantum-
derived features. Fingerprint generation scales linearly with
the number of atoms in the ligand set, O(N), as it involves
circular substructure enumeration and hashing, plus
a constant-time 86-bit electron conguration encoding for the
metal center. By contrast, many geometry-dependent methods
require full coordinate sets and, in some cases, geometry opti-
mization, which can scale superlinearly with system size. Even
3D descriptors derived directly from crystallographic coordi-
nates typically involve distance matrix computations with O(N2)
scaling. This difference in complexity makes ELECTRUM
particularly interesting for larger metal complexes or tasks
where high throughput is a priority. In more practical terms,
generation of 217 517 ngerprints (ligand radius = 2, ligand
ngerprint size = 512, full 86-bit electron-conguration
appended) on a single Apple M1 Pro chip (10-core CPU, 16 GB
RAM.) required 265 s (z4.4 min), corresponding to z0.0012 s
(1.2 ms) per complex. Timings correspond to a single process
run and include SMILES parsing, substructure enumeration,
hashing/folding and metal vector concatenation. Although not
directly comparable, many metal complexes descriptors require
the generation of high-quality 3D conformers. State-of-the-art
tools such as Architector46 can require z1 h per complex on
a single CPU core, highlighting that ELECTRUM can achieve
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Concept of ELECTRUM. The metal complex is divided into its ligands and the central metal. Each ligand is encoded using an ECFP-like
hashing and folding method, resulting in fingerprints that are combined bitwise to produce a 512-bit ligand fingerprint. This fingerprint is then
augmented with an 86-bit representation of the electron configuration of the coordinating metal, creating the final 598-bit ELECTRUM
fingerprint.
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speedups of 103–106 per complex compared to conventional 3D/
QM pipelines, making it better suited for early screening and
big data-driven discovery.

Next, we aimed to validate the usefulness of ELECTRUM
through a series of test cases. In each of these test cases, we
benchmarked ELECTRUM against two alternatives, (i) the
ligands ngerprint (Ligands) without metal encoding as
a negative control or (ii) the ligands ngerprint + a single scalar
metal identier (Atomic). Additionally, for each ngerprint we
tested different ligand ngerprint bit-sizes of 256, 512 and 1024
bits.
Model selection

We chose a Multilayer Perceptron (MLP) neural network as our
model for this study.47 Given the demonstrated effectiveness of
articial neural networks (ANNs) in predicting quantum-
mechanical properties36 and our successful use of MLPs in
prior research,3 we chose this architecture to evaluate the
performance of the ELECTRUM ngerprint. Additionally, MLPs
are particularly well-suited for processing high-dimensional
input data, such as the 598-bit ELECTRUM ngerprints. The
model was implemented in Python using the scikit-learn
library. We congured the MLP with 5 hidden layers, with the
© 2025 The Author(s). Published by the Royal Society of Chemistry
number of neurons per layer decreasing from 512 to 256, 128,
64, and nally 32. For each task, we evaluated the model using
5-fold cross-validation, comparing performance on both true
and randomly scrambled labels. Using scrambled labels as
a negative control helps verify that the model's performance is
not due to chance or overtting, ensuring it learns meaningful
patterns related to the target variable. For classication tasks,
we report the area under the receiver operating characteristic
curve (AUROC), area under the precision–recall curve (AUPRC),
accuracy, precision, recall, and F1 score, calculated as macro-
averaged metrics.

Test case 1: coordination number prediction. As a rst test
case, we extracted a novel dataset from the CSD to evaluate the
ability of ELECTRUM to predict the coordination number of
transition metal complexes. For this, we ltered the CSD for
mononuclear metal complexes containing any of the following
elements: Bi, Cd, Ce, Cr, Co, Cu, Dy, Er, Eu, Gd, Ga, Ge, Au, Hf,
Ho, In, Ir, Fe, La, Pb, Lu, Mn, Hg, Mo, Nd, Ni, Nb, Os, Pa, Pt, Pr,
Re, Rh, Ru, Sm, Sc, Ta, Tc, Tb, Tl, Tm, Sn, Ti, W, V, Y, Zn, Zr.
Counterions were removed, and utilizing RDKit's Mol-
FromSmiles function without sanitization, we generated work-
able molecule objects from the deposited SMILES. From these,
we created adjacency matrices using the networx library. We
Digital Discovery

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00145e


Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

1/
4/

20
25

 1
1:

35
:3

5 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
then removed the metal ion from the adjacency matrix and
converted the resulting network back to a molecule object and
then to SMILES format. This process resulted in concatenated
SMILES strings of all the ligands in each transition metal
complex. During this process, we also extracted and stored the
number and types of bonds between the metal and the ligands.
For the dataset, we chose to keep only the coordination
numbers for which at least 1000 examples were present to
ensure that each class had enough data for training the model
effectively. Through this, we obtained a dataset of 217 518
transition metal complexes with their respective coordination
number.

The dataset contained 35 metals and 11 distinct coordina-
tion numbers, providing sufficient chemical diversity despite
large data imbalances. The metal counts are dominated by Cu,
Ru, Fe, Ni, and Pd (88 657 entries, 40.8%, Fig. S1a), and the
coordination numbers by 6, 4, and 5 (164 496 entries, 75.6%,
Fig. S1b). These patterns likely reect constraints in crystal-
lography and synthetic chemistry: certain metals and geome-
tries are both more synthetically accessible and more amenable
to single-crystal diffraction, leading to their over-representation
in the CSD. For instance, Pt(II) and Pd(II) complexes frequently
adopt square-planar (CN 4) geometries, while Ru(II), Re(I) and
Ir(III) complexes oen occur in octahedral coordination. At the
same time, the dataset includes a wide range of less common
metal-coordination number combinations (Fig. S1c), ensuring
that ELECTRUM is evaluated across a structurally varied space
that also mirrors real-world data availability rather than an
articially uniform distribution. The dataset and code is avail-
able on our GitHub repository.48

We encoded all complexes in the dataset using ELECTRUM
and computed nearest neighbor relationships based on the 598-
dimensional ngerprints. To visualize these relationships in
two dimensions, we employed TMAP visualization (Fig. 2).
TMAP is a visualization method that builds a minimum span-
ning tree from the k-nearest neighbor graph of input vectors,
which can be based on a user-dened distance metric. It acts as
a dimensionality reduction technique that preserves both local
and global relationships of high-dimensional data. This allows
the structure of the original space to be reected in two-
dimensional layouts, where spatial proximity implies simi-
larity. In this study, we computed the k-nearest neighbor graph
of the ELECTRUM ngerprints using the Manhattan distance,
which guided how compounds were arranged in the nal TMAP
plot. The TMAP visualization revealed clear clustering of
compounds according to their coordination numbers, indi-
cating that the ELECTRUM ngerprint effectively captures
structural similarities relevant to coordination. In earlier
studies, greater distances in low-dimensional visualizations
corresponded to difficulties in predicting specic properties.42

Consequently, a clear, structured clustering in such visualiza-
tions suggests that the high-dimensional ngerprint space
suitably captures relevant structural information. The clear
clustering observed in our TMAP visualization indicates that the
MLP model is likely capable of effectively learning to predict
coordination numbers from structural data encoded by ELEC-
TRUM ngerprints, as complexes with the same coordination
Digital Discovery
number cluster closely together. The closer inspection of the
coordination number TMAP reveals that complexes are clus-
tered generally by ligand type rst and by metal type second,
which makes sense when one considers that the ligand-part of
the ngerprint is clearly longer. An example is highlighted in
Fig. 2, with the core structure an iron cyclooctatetraene tri-
carbonyl complex (GABYEP). The highlighted examples show
that the surrounding structures feature quite similar iron tri-
carbonyl compounds with different types of ligands that
generally bond via p-orbitals. The reader is encouraged to
explore the interactive version of the TMAP which is accessible
on our GitHub repository.48

Although the coordination number can be directly extracted
from structural data, we use its prediction as a proxy to assess
whether ELECTRUM captures chemically meaningful features
of the coordination environment which are not explicitly
encoded in the ngerprint. In the prediction task, ELECTRUM
outperforms both baseline ngerprints (Ligands, Atomic)
across all evaluated metrics for coordination number prediction
(Table 1). The ROC AUC improves from 79.7% with the Ligands
ngerprint baseline to 85.7%; the PRC AUC rises from 44.3% to
58.9%; the precision increases from 64.7% (Ligands) and 67.3%
(Atomic) to 75.9% and recall improves from 62.3% and 64.9% to
73.4%. For all tested metrics, the performance gain from the
Ligand ngerprint to the Atomic ngerprint is modest, but the
improvement achieved by ELECTRUM is much larger, indi-
cating that inclusion of the full binary electron conguration of
the metal center provides signicant additional predictive
signal beyond ligand identity alone. Overall, the good perfor-
mance metrics achieved in the predictive task, combined with
the well-structured CN-based clusters in the TMAP visualiza-
tion, indicate that ELECTRUM encodes relevant information
about metal–ligand connectivity even without explicitly repre-
senting the coordination bonds.

Test case 2: oxidation state prediction. Utilising a subset of
the Cambridge Structural Database (CSD) provided by Jensen
and co-workers49 we generated a dataset of 38 778 monometal
complexes together with the oxidation state of the metal.50

Briey, we took the intersection of the set provided by Jensen
and our own to ensure that all included compounds would
correspond to the criteria set out in the rst test-case and have
a workable SMILES string for processing. Predicting the oxida-
tion state of transition metal complexes is a fundamental task
in inorganic chemistry and is essential for understanding
reactivity and other chemical properties. The dataset comprised
29metals (Mn, Ag, Cu, Au, Re, Rh, Ir, Co, Tc, Y, Nb, Sc, V, Ta, Ru,
Cr, Pd, Pt, Mo, Ni, Fe, Ti, Os, Zn, Hg, Cd, Zr, W, Hf) spanning
seven oxidation states (0, +1, +2, +3, +4, +5, +6), providing broad
chemical coverage despite data imbalances. The metal distri-
bution is concentrated on a few elements, with Pd, Ni, Pt, Zn,
and Ru accounting for 18 803 complexes (48.0%, Fig. S2a).
Similarly, oxidation states +2, +1, and +4 constitute the majority
of the dataset, together covering 30 542 entries (78.0%,
Fig. S2b). These patterns reect well-known chemical prefer-
ences, for example, Pd(II), Pt(II), and Ni(II) complexes are ubiq-
uitous in organometallic chemistry. The cross-tabulation of
metals and oxidation states (Fig. S2c) reveals strong
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (Top) TMAP of 22 000 compound subset of coordination number dataset, showing clustering of compounds based on ELECTRUM
fingerprint similarities and coordination numbers. (Bottom) Example dendritic structure with selected metal complex-structures shown.
Interactive version available on GitHub.48
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associations, with certain metals occurring almost exclusively in
a single oxidation state.

We encoded all complexes in the dataset using ELECTRUM
and computed nearest neighbor relationships based on the 598-
dimensional ngerprints. To visualize these relationships in
two dimensions, we employed TMAP visualization (Fig. 3).
Similar to the rst test case, the TMAP revealed clear clustering
© 2025 The Author(s). Published by the Royal Society of Chemistry
of compounds according to their oxidation states. This indi-
cates that ELECTRUM effectively captures structural features
relevant to oxidation state, as compounds with the same
oxidation state are positioned close to each other in ELECTRUM
space. An example is highlighted in Fig. 3. The core structure is
a square planar palladium(II) pincer complex. Highlighted
examples around the core show that compounds that are
Digital Discovery
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Table 1 Performancemetrics for coordination number classification using theMLPmodel and ELECTRUM fingerprint (598 bits) compared to the
ligands fingerprint without metal encoding (Ligands) as a negative control and the ligands fingerprint + a single scalar metal identifier (Atomic).
Metrics for shorter and longer fingerprints can be found in the SI

Fingerprint ROC AUC PRC AUC Precision Recall F1

Ligands 79.7 � 0.45 44.3 � 0.10 64.7 � 1.33 62.3 � 0.90 63.3 � 0.08
Atomic 81.1 � 0.34 47.5 � 0.36 67.3 � 0.68 64.9 � 0.66 65.9 � 0.32
ELECTRUM 85.7 � 0.63 58.9 � 0.55 75.9 � 0.48 73.4 � 1.26 74.5 � 0.55
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proximal in this space show both similar ligand structures as
well generally the same or similar oxidation states. The reader is
encouraged to explore the interactive version of the TMAP
which is accessible on our GitHub repository.48

Overall, the oxidation state classication task demonstrated
very strong performance for ELECTRUM, with the ROC AUC
reaching 95.1%, PRC AUC 85.2%, and precision, recall, and F1
scores all exceeding 91% for true labels (Table 2). These results
represent a marked improvement over both Ligand and Atomic
ngerprints, indicating that explicit electron conguration
encoding provides substantial predictive value. The high recall
(91.2%) shows that the correct oxidation state is recovered for
the vast majority of cases, while the equally high precision
(92.5%) conrms that false positives are rare. The balanced F1
score (91.8%) highlights robust classication performance
across all oxidation state classes, despite class imbalance in the
dataset.

For context, while direct numerical comparison is not
possible due to different datasets and evaluation setups, our
results are in the same general performance range as other
state-of-the-art approaches. For example, Jablonka et al.51 report
oxidation state classication precision and recall above 95%
using models that incorporate also the local coordination
geometry. Similarly, the cell2mol framework of Vela et al.52

achieves comparable overall classication performance,
although their reported accuracy metric is not directly trans-
ferable to our reported metrics. In contrast to these methods,
ELECTRUM requires only 2D ligand SMILES strings and
a simple binary encoding of the metal's electron conguration,
and we performed no hyperparameter tuning in these experi-
ments. That ELECTRUM can approach the performance of
geometry-aware, fully optimised models under these
constraints suggests that it is able to capture chemically rele-
vant information about the coordination environment from
minimal input. Ultimately, the focus here is not on developing
a new state-of-the-art oxidation state predictor, but on using
these predictive tasks as proxies to demonstrate that ELEC-
TRUM encodes chemically meaningful features that can
support a broad range of downstream applications.

Test case 3: prediction of quantum mechanical properties.
As a nal test case we downloaded the tmQMg dataset53 which
contains 74 555 transition metal complexes annotated with 20
quantum mechanical properties. We matched the ligand
SMILES to our coordination number dataset and obtained
a nal dataset of 63 466 annotated transition metals. On this
dataset, we tested the ngerprints using 1024-bit sizes for the
ligand ngerprint, which was the best performing in the
Digital Discovery
previous tasks. For all regression tasks we evaluated the R2 in
a three-fold cross-validation.

Table 3 summarises the results for ELECTRUM alongside the
two baseline encodings: Ligands and Atomic ngerprints.
Across most properties, ELECTRUM outperforms both base-
lines, conrming the previous ndings that the explicit metal
electron conguration encoding provides additional predictive
signal beyond ligand structure alone. The strongest perfor-
mance (R2 > 0.80) is achieved for thermodynamic corrections
and extensive additive properties such as enthalpy and Gibbs
energy corrections, polarizability, and zero-point energy (ZPE)
corrections. These quantities are largely determined by the
overall atomic composition and bonding environment, features
that are captured by the combined ligand–metal representation.

Moderate performance is observed for orbital energy gaps
(R2 z 0.58 for the HOMO–LUMO gap delta) while vibrational
frequencies, dipole moments, and frontier orbital energies
individually show lower R2 values (0.28–0.45), likely reecting
their dependence on 3D geometrical effects and higher-order
electronic structure not explicitly represented in ELECTRUM.
The moderate but non-zero predictive power in these cases
suggests that some geometric and electronic effects are indi-
rectly reected in the ligand and metal features, but without the
resolution achievable from 3D descriptors or quantum-derived
inputs.

Overall, these results conrm that ELECTRUM provides
a chemically meaningful representation capable of supporting
both classication and regression tasks. The variation in
performance across properties reects the balance between
chemical information captured by the ngerprint and the
intrinsic complexity of the target. While state-of-the-art graph
neural networks and 3D descriptor-based approaches oen
achieve higher accuracy for these properties (R2 z 0.7–0.9 on
comparable datasets), these methods require substantially
more input information (e.g., optimized 3D geometries) and
computational effort. In contrast, ELECTRUM predictions are
obtained from 2D ligand SMILES and a simple metal electron
conguration encoding, with no geometry optimization or
quantum chemical preprocessing. Moreover, we did not
perform any hyperparameter tuning or model optimization for
these tasks, as the aim here is not to compete directly with
specialised prediction frameworks, but to demonstrate that
ELECTRUM encodes chemically meaningful information that
supports reasonable predictive performance across a range of
properties.

While this test case demonstrates that ELECTRUM captures
predictive signal for certain quantummechanical properties, we
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (Top) TMAP of oxidation state dataset (39 166 compounds), showing clustering of complexes based on ELECTRUM fingerprint similarities
and oxidation states. Interactive version available on GitHub. (Bottom) Example dendritic structure with selected metal complex-structures
shown. Interactive version available on GitHub.48
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think a more interesting validation involves its application to
data-driven exploration of organometallic compounds with
experimentally relevant properties, such as catalytic or biolog-
ical activity. By generating chemically informative ngerprints
for large datasets, ELECTRUM can support high-throughput
virtual screening and the prioritization of candidates for
© 2025 The Author(s). Published by the Royal Society of Chemistry
synthesis and experimental evaluation. In this context, it is an
important next step to assess the value of ELECTRUM through
its ability to guide discovery workows, where it is used to build
models in low-data regimes and to identify promising
compounds for experimental testing.
Digital Discovery
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Table 2 Performancemetrics for coordination number classification using theMLPmodel and ELECTRUM fingerprint (598 bits) compared to the
ligands fingerprint without metal encoding (Ligands) as a negative control and the ligands fingerprint + a single scalar metal identifier (Atomic).
Metrics for shorter and longer fingerprints can be found in the SI

Fingerprint ROC AUC PRC AUC Precision Recall F1

Ligands 79.8 � 0.2 48.2 � 0.8 66.8 � 0.9 64.9 � 0.3 65.7 � 0.6
Atomic 82.2 � 0.5 54.0 � 0.4 72.4 � 0.2 69.2 � 0.7 70.6 � 0.4
ELECTRUM 95.1 � 0.3 85.2 � 0.6 92.5 � 1.2 91.2 � 0.5 91.8 � 0.4

Table 3 R2 value on the prediction of quantum chemical properties of the tmQMg dataset using the MLPmodel and ELECTRUM fingerprint (598
bits) compared to the ligands fingerprint without metal encoding (Ligands) as a negative control and the ligands fingerprint + a single scalar metal
identifier (Atomic). Metrics for shorter and longer fingerprints can be found in the SI

Target Ligands Atomic ELECTRUM

Dipole moment delta 0.325 � 0.001 0.298 � 0.016 0.454 � 0.009
Dispersion energy delta 0.678 � 0.017 −1.624 � 1.657 0.288 � 0.062
Electronic energy delta 0.762 � 0.002 0.778 � 0.002 0.806 � 0.002
Enthalpy energy 0.300 � 0.008 0.495 � 0.009 0.521 � 0.026
Enthalpy energy correction 0.844 � 0.003 0.822 � 0.005 0.845 � 0.006
Entropy 0.794 � 0.005 0.798 � 0.012 0.801 � 0.004
Gibbs energy 0.317 � 0.011 0.510 � 0.018 0.519 � 0.015
Gibbs energy correction 0.843 � 0.006 0.783 � 0.049 0.844 � 0.002
Heat capacity 0.820 � 0.006 0.819 � 0.003 0.824 � 0.006
Highest vibrational frequency 0.281 � 0.057 0.294 � 0.052 0.396 � 0.023
HOMO–LUMO gap delta 0.345 � 0.003 0.154 � 0.039 0.582 � 0.026
Lowest vibrational frequency 0.408 � 0.015 0.396 � 0.003 0.451 � 0.012
Polarisability 0.812 � 0.004 0.808 � 0.005 0.827 � 0.004
TZVP dipole moment 0.398 � 0.009 0.394 � 0.009 0.434 � 0.015
TZVP dispersion energy 0.798 � 0.007 0.733 � 0.051 0.782 � 0.014
TZVP electronic energy 0.299 � 0.019 0.487 � 0.021 0.520 � 0.023
TZVP HOMO energy 0.230 � 0.015 0.121 � 0.124 0.288 � 0.015
TZVP HOMO–LUMO gap 0.515 � 0.005 0.470 � 0.065 0.583 � 0.020
TZVP LUMO energy 0.320 � 0.003 0.240 � 0.058 0.344 � 0.024
ZPE correction 0.846 � 0.002 0.800 � 0.034 0.849 � 0.004
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Conclusion

With ELECTRUM, we introduce a ngerprint designed to over-
come the challenges of representing transitionmetal complexes
for machine learning applications. ELECTRUM can be gener-
ated using only the identity of the metal centre and the struc-
tures of the coordinating ligands. Despite this simplicity we
show that ELECTRUM can be used to predict both coordination
numbers and oxidation states of transition metal complexes
from real datasets derived from the CSD.

While the datasets, evaluation protocols, and property de-
nitions used in the literature vary substantially, making direct
metric-to-metric comparison inappropriate, ELECTRUM's
performance sits within the range of state-of-the-art approaches
reported for related tasks. In oxidation state classication,
Jablonka et al.51 report precision and recall above 95% using
models that explicitly incorporate 3D geometric features of the
local coordination environment, and Vela et al.'s52 cell2mol
framework achieves comparable overall classication accuracy
on crystallographic data. Earlier descriptor-based approaches
such as the MCDL-25 representation have also been used
successfully to predict quantum–mechanical properties of
metal complexes with articial neural networks, but they
Digital Discovery
require either experimentally measured or computationally
derived descriptors for each complex, which can be costly to
obtain at scale. In our study, ELECTRUM achieves precision and
recall above 91% for oxidation state prediction without 3D
inputs or quantum-calculated descriptors, relying solely on 2D
ligand SMILES and a binary encoding of the metal's electron
conguration. Coordination number prediction likewise
exceeds 85% ROC AUC and 74% F1 score, despite being evalu-
ated on a much larger andmore chemically diverse dataset than
those typically used for geometry-aware descriptors. These
comparisons suggest that ELECTRUM can approach the
predictive power of more computationally intensive, geometry-
or QM-dependent representations while requiring only minimal
structural information.

Because ELECTRUM ngerprints are computed directly from
ligand SMILES and a pre-tabulated electron conguration
vector, their generation cost scales linearly with the number of
ligands and does not require graph traversal of full 3D geome-
tries or descriptor lookups from expensive calculations. This
makes ELECTRUM particularly well-suited for large-scale “big
data” applications, such as screening millions of hypothetical
complexes or processing entire crystallographic databases,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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where the simplicity of the encoding translates directly into
lower computational cost and shorter end-to-end ML pipelines.

Looking ahead, our goal is to further validate ELECTRUM
across additional datasets. In particular, we aim to use ELEC-
TRUM to train machine learning models aimed at predicting
the biological properties of transition metal complexes.3 One
key limitation of ELECTRUM in its current form is its inability
to capture stereochemistry. For instance, the encoding for both
cisplatin and transplatin would result in the exact same
ngerprint in the current implementation. A promising avenue
to address this, without substantially compromising computa-
tional efficiency, would be to incorporate chiral tags on selected
ligand atoms involved in the metal coordination prior to
hashing. This approach would allow stereoisomers to produce
distinct ngerprints while preserving overall similarity and the
rapid performance that enables ELECTRUM to scale to large
datasets.

We hope to be able to expand ELECTRUM in the future to
encode the complex stereochemistry of metal complexes. We
surmise that the electron-conguration encoding of elements
could also be a useful starting point for message passing graph-
based approaches.
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