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Abstract

Free oxygen (O>) first began accumulating in Earth’s atmosphere shortly after the Archean-
Proterozoic transition during the ‘Great Oxidation Event’ (GOE). The nature of surface
ocean oxygenation at this time is, however, poorly quantified, limiting our understanding of
planetary oxygenation thresholds. Geochemical records of global ocean redox may
potentially shed light on this critical interval. Here, we show that vanadium (V) isotope ratios
in 2.32-2.26-billion-year-old (Ga) shales from the Transvaal Supergroup, South Africa,
capture a unidirectional transition in global ocean redox conditions shortly above the
stratigraphic level marking the canonical rise of atmospheric O,. Around 2.32 Ga,

sedimentary sinks were dominated by anoxic environments that drove extensive seawater V
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drawdown. A positive shift in seawater V isotopic composition in the overlying stratigraphy
indicates global expansion of marine settings with >10 uM dissolved O- in bottom water,
likely restricted to shallow-water environments and attributable to widespread equilibration

with an oxygenated atmosphere.

Introduction

The rise of atmospheric Oz partial pressure (pOz) during the GOE ca. 2.43-2.22 billion years ago*-
% marks the permanent oxygenation of Earth’s surface. Despite intense study of this time interval,
there is little consensus on the tempo and amplitude of O2 accumulation in the atmosphere?, and
even less consensus on its accumulation in the ocean®. Marine oxygenation in response to the GOE
fundamentally changed the trajectory of biological innovation on Earth, ultimately laying the
groundwork for complex multicellular life, and constituted a critical step in defining the ultimate

nature of Earth’s habitability®’.

The GOE is marked most clearly by loss of sulfur isotope mass-independent fractionation (S-MIF)
signatures, generated by photochemical reactions in an oxygen-free atmosphere, from the
sedimentary record®. After the GOE, there was a sufficient pO2, above a threshold of >107 of the
present atmospheric level (PAL), to prevent preservation of S-MIF signatures®. The disappearance
of S-MIF was initially thought to occur as a unidirectional 1-10 million year transition??,
approximately corresponding to the boundary separating the Rooihoogte and Timeball Hill
formations of the Transvaal Supergroup, South Africa, dated to 2.316 + 0.007 Ga'® (Fig. 1A).
Subsequent work has provided possible evidence for older and younger Paleoproterozoic S-MIF
disappearances''2, The significance of younger S-MIF is still debated (see Supplementary
Information for points of relevance to this study), but multiple possible fluctuations across the
GOE interval suggest that atmospheric pO2 may have oscillated across the 10° PAL threshold

during a transition lasting from ca. 2.43 to 2.22 Gal'> 4,

The ca. 2.43-2.22 Ga time interval encapsulates a knowledge gap in the marine response to the
GOE. A widely recognized signal for marine biogeochemical overhaul is not seen until the ca.
2.22-2.06 Ga Lomagundi carbon isotope excursion (LCIE), the largest positive carbonate carbon

isotope excursion in Earth history, which has been linked to unprecedented organic carbon burial
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that drove ocean oxidation®. Evidence of coupled atmospheric and marine oxygenation was
reported at the ca. 2.32 Ga Rooihoogte-Timeball Hill formation boundary (Fig. 1), with thallium
(TI) isotopic data indicating widespread burial of Mn oxides, requiring oxygenated bottom waters
on shallow marine shelves at almost the same stratigraphic level where persistent, large S-MIF

signals disappear?®.

However, evidence for Mn oxide burial provide only one, qualitative index for rising Oz, so to
provide further texture to our understanding of ocean oxygenation across the GOE, we measured
sedimentary V isotope ratios (reported as 8°'V = (*Y*°Vsampie/>/5°V/ aa specpure — 1) x 1,000) in the
same Rooihoogte and Timeball Hill shale samples previously analyzed for Tl isotope values'®.
Vanadium isotopes track the global marine redox state as Tl isotope values do, but the oxidized
sink for V in the oceans records a threshold dissolved O2 level'’ (>10 uM; outlined in detail below),
rather than the specific burial of Mn oxides!®. As such, combined V and TI isotopic data can
provide more nuance to reconstructions of global ocean oxygenation events and their impacts on
multiple redox-sensitive element cycles'®. In this study we targeted organic-rich shales and
analyzed 8°'V in the authigenic V fraction (5°*Vaun). This fraction represents the V scavenged
from Paleoproterozoic seawater by sinking organic matter, the isotopic composition of which

allows reconstruction of relative changes in the global ocean redox state?.

Vanadium isotope geochemistry provides information on the global ocean redox state because 1)
V is redox sensitive, behaving differently and taking on different isotopic compositions in different
redox environments (Fig. 2); and 2) it has a long (ca. 90 kyr) residence time relative to modern
and ancient ocean mixing timescales on the order of 1 kyr?!, such that the seawater dissolved V
reservoir and its isotopic signature should be globally well-mixed in the open ocean and
unrestricted basins?. This global homogeneity is also expected to hold in the Paleoproterozoic,
because V concentrations in black shales from this time period suggest a comparable order-of-
magnitude size of the marine dissolved V pool to the modern?23, and thus there is no obvious
reason why the oceanic V residence time would be orders of magnitude lower®®. Because of this,
reconstruction of marine V isotope mass balance from sedimentary archives can shed light on the

ancient ocean redox state.

Dissolved V is deposited in sediments with isotopic differences relative to open-ocean seawater
(ASV = 8°'WVsed — 8°Vsw) that are controlled by local redox conditions'’?° (Fig. 2). These
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differences commonly result in the enrichment of sediments in isotopically light V relative to
seawater, and they decrease in magnitude in more reducing environments?®. On continental
margins and abyssal plains where bottom-water dissolved Oz concentrations exceed 10 uM,
hydrogenous Fe-Mn oxyhydroxides and pelagic clay sediments exhibit an isotopic difference
AW oo-100m from seawater of ca. —1.1 + 0.1 %o that can be explained by isotopic equilibrium
between vanadate [V (V)] dissolved in seawater and adsorbed onto a range of Fe-Mn oxyhydroxide
surfaces?®?*, Under reducing conditions, vanadate is reduced to vanadyl [V(IV)], which has a
strong affinity for organic carbon particles. In reducing open-ocean settings, sediments commonly
have a A%V of ca. —0.7 %o'’. The driver of this isotope fractionation is almost certainly °V-rich
vanadyl incorporation into sinking organic matter?>27, although whether this represents an
equilibrium or kinetic fractionation is yet to be determined. In sediments from reducing, restricted,
and typically euxinic (anoxic and H2S-rich) basins like the Cariaco Trench, AV is ca. —0.4 %o
relative to seawater'”?®, This smaller difference is unrelated to further reduction of V, which is
kinetically inhibited?®, or V-sulfide formation, which requires extreme H2S concentrations®.
Rather, the same instantaneous isotopic difference between seawater and organic particles of —0.7
%0 can explain the offset of Cariaco sediments from global seawater by considering the 65 %
drawdown of seawater V in the basin in the context of a Rayleigh distillation model’. Full
drawdown of V could quantitatively sequester seawater V, so A%V values between reducing
sediment and global seawater over the course of Earth history likely ranged from —0.7 to 0.0 %0%°.
Lastly, the co-precipitation of vanadate with Fe**-oxyhydroxides formed during hydrothermal
venting is associated with an isotopic difference AS*Vhr of ca. —0.4 %0°2, but O2 at mid-ocean ridge
depths is not expected to have been present during the GOE to support rapid hydrothermal Fe
oxidation and V coprecipitation®23, Hydrothermal fluid V input to the oceans is also expected to

have negligible effect on the seawater isotope mass balance®.

Most V enters the ocean via rivers, with 8>V = -0.6 + 0.1 %o, matching that of upper continental
crust (UCC) igneous rocks?%%:3 (Fig. 2). The early Paleoproterozoic UCC, and thus likely also
the riverine V input, was isotopically lighter by at least 0.1 %o due a difference in the magmatic
character of primary igneous rocks®’. Modern open marine §°Vsw is globally homogeneous at
around 0.20 + 0.07 %0°¢*% and is significantly more positive than the riverine input because the
dominant sink of V is oxidized sediments with their large negative A*Vo2-10.m2%%8 (Fig. 2). In a

more reducing global ocean, §°'Vsw should decrease as the V output flux shifts towards reduced
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sinks with comparatively smaller A5V values'®204%4L Inferring changes in §°*Vsw on ancient Earth
is hindered by the lack of unfractionated sedimentary archives, so targeting sediments with well-
characterized depositional redox conditions is thus necessary to correct for offsets between

sediment and coeval 6°*Vsw.

We analyzed samples from 850 to 1,346 m depth in well-preserved drill core EBA-2 drilled near
Carltonville, South Africa (Fig. 1; see Methods for further information). These samples document
the Rooihoogte and Timeball Hill formations, which were deposited in a pro-deltaic environment
interpreted to have been connected to the open ocean'?#2. The canonical disappearance of S-MIF
occurs in the upper Rooihoogte Formation at ~1,340 m drill core depth?, with a depositional age
of 2.316 + 0.007 Ga®. Further age constraints come from U—Pb dating of two tuff beds in the
nearby drill core EBA-1, which gave ages of 2.256 + 0.006 Ga and 2.266 + 0.004 Ga for the upper
Timeball Hill Formation, representing the top of our studied section**. Geochemical indicators
from the EBA-2 drill core show that local redox conditions fluctuated between oxic and anoxic

throughout deposition of the Rooihoogte and Timeball Hill formations*?!® (Fig. 1).

Almost all samples we targeted have highly reactive Fe to total Fe ratios higher than those expected
for oxic conditions (Fexr"/Fet > 0.22, where Fenr™ includes a correction for highly reactive Fe
incorporated into clay minerals during diagenesis; Fig. 1B), and most have Fexr”"/Fer > 0.38, which
is above the calibrated threshold for anoxic deposition'2#4, A handful of samples in the Rooihoogte
Formation have pyrite to total reactive iron (Fepy/Fenr”) values that place them in the possibly
euxinic (Fepy/Fenr” = 0.6-0.8) or euxinic (Fepy/Fenr™ > 0.8) fields*. Additionally, bulk samples
generally feature elevated enrichment factors (X EF) relative to the UCC (X EF =
(XIAsampie/ (X/Al)ucc) for the redox-sensitive elements V, Mo and U*®, which requires reducing
(and in the case of Mo, euxinic) conditions*®~*°. Two samples in the lower part of the section with
Fenr /Fer < 0.22, which potentially indicates deposition under oxic conditions, have V, Mo and U
EFs much higher than 1, suggesting deposition under reducing conditions, where Fe** was
remobilized back to the water column from anoxic non-sulfidic porewaters at the sediment-water

interface®.

Despite capturing an important interval of Earth history in the immediate aftermath of the first S-
MIF disappearance, we did not analyze authigenic V isotopes in the stratigraphic interval between

~1,100 and 1,300 m depth. All available samples from this interval were likely deposited under
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oxic conditions based on Fexr'/Fer ratios that are lower than 0.22 (Fig. 1B). This sedimentary
redox condition requires different leaching procedures due to a different dominant host phase for
authigenic V (vanadate adsorbed to Fe oxyhydroxides), and this leaching procedure has yet to be
applied to or calibrated for ancient sedimentary rocks, having only been tested in modern marine

sediments?’.

Results and Discussion

The 8°*Vautn values range from —1.50 to —0.68 %o in the Rooihoogte and Timeball Hill formations
(Fig. 1G; Supplementary Data S1). Much of this variability comes from a few outliers low in the
stratigraphy; the drivers of which are discussed below and in Fig. S1. The samples define two
populations based on their stratigraphic position. In the samples deposited deeper than 1,300 m
drill-core depth (hereafter referred to as the ‘lower section’), the average value of §°*Vaun is -1.07
+ 0.07 %o (2SE). In the samples from above 1,100 m drill-core depth (hereafter referred to as the
‘upper section’), the average value of 5>'Vauth is -0.80 = 0.05 %o (2SE). There is therefore an

increase in the average §°'Vauh value of 0.27 + 0.12 %o between the lower and upper sections.

Reconstructing paleoseawater 8°'V evolution during the GOE

As discussed above, the targeted samples were deposited under reducing conditions. These local
conditions make it appropriate to first consider an effective A®V between paleoseawater and
sediments in a spectrum of values between —0.7 and 0.0 %o, depending on the extent of local V
drawdown (Fig. 3)%°. The §°'Vauth values show no correlation with Fenr"/Fer, Fepy/Fenr”, or total
organic carbon (TOC) (Fig. S1). A possible negative co-variation with of §°Vaun V EF, and
apparent positive correlation of TOC with V EF, occur in the lower section, which may indicate
water column V depletion that plausibly could be driven by organic matter (Fig. S1). However,
this relationship is weak relative to that commonly seen in younger Precambrian shales*’, making
it difficult to select a specific value for AS'V (within the range of —0.7 to 0.0 %) to reconstruct
5°Vsw, or to apply a variable sample-by-sample correction. Related to this, much of the scatter in
8°Wauth in the lower section may reflect variability in the local A%V expressed during V drawdown

to sediments under reducing conditions, relative to a potentially less variable §°Vsw at the time of
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deposition. The approximate minimum reconstructed value of §°'Vsw allowable by mass balance
should be defined by the syn-GOE riverine value, as no known sinks decrease 5°*Vsw relative to
inputs. Based on the ~0.1 %o lighter composition of the UCC at this time, we assume the riverine
value and thus the minimum allowable paleo-5°*Vsw was around —0.7 %027 (Fig. 3). Meanwhile,
the maximum paleo-6°*Vsw during deposition of the lower section is defined by a 0.7 %o offset to
the 8°'Vaun data, giving a maximum value of -0.37%o on average, with the range allowed within

analytical error on individual data points extending to higher values (Fig. 3).

In the upper section, low V EF values appear to be related to low TOC contents (Fig. S1), rather
than water column V drawdown, with Fe speciation and redox-sensitive element data generally
indicating conditions that were reducing, but not as reducing as in the lower section. Most upper
section samples feature ‘equivocal’ Fe speciation values 0.22 < Ferr /Fer < 0.38 (Fig. 1B), similar
to those seen on the Peruvian margin?’ in environments with bottom seawater O2 content straddling
10 uM. Therefore, we can consider the effect of applying a maximum magnitude of correction
equal to A*Vo2-10um = —1.1 %o to these samples (Fig. 3). We assume the smallest possible value
for A1V to be —0.7 %o for the upper section, as seawater V drawdown was likely not extensive
under those conditions. When applying this range of fractionation factors, the average paleo-8°Vsw

for the upper section would be -0.1 to +0.3 %o (Fig. 3).

Due to the large range of absolute 5°*Vsw values that can be reconstructed for the Rooihoogte and
Timeball Hill formations (Fig. 3), below we focus on the implication of stratigraphic changes
rather than these absolute values. A uniform application of the same local A%V correction (e.g.,
the reducing open-ocean value AV = —0.7 %o) results in an average increase in the §°*Vsw value
0f 0.27 £ 0.12 %o going from the lower to upper section. However, as shown in Figure 3, a larger
positive shift in §°'Vsw from the lower to upper section is conceivable. While local redox conditions
in the sections are variable, the lower section generally indicates more reducing conditions than
the upper section, with higher Fenr"/Fer ratios and V and U EFs, as well as higher Fepy/Fenr” ratios
indicative of potentially euxinic conditions. Were a variable, local-redox-dependent AV
correction to be applied to sediments, larger corrections would be required for the less reducing
upper section. This would result in a substantially larger up-section increase in the inferred 8°'Vsuw.
Furthermore, despite deposition in an environment that was well-connected to the open ocean, the

pro-delta setting may conceivably have allowed some degree of mixing between global seawater
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and UCC-like river water inputs, which could bias reconstructed §°*Vsw towards slightly more
negative values than the real seawater value®. This bias, if present, would have more significantly
impacted the samples from the top of the section that were deposited closest to shore under the
shallowest paleodepths (Fig. 1), so any correction to account for this would again only increase

the magnitude of the positive shift in reconstructed §°*Vsw up-section.

Ocean redox response to rising pO2

What are the implications of a >0.27 %o positive shift in §°*Vsw in the stratigraphy above the
canonical disappearance of S-MIF? The largest isotopic lever that operates in marine V cycling is
the oxidized vanadate sink, with A>*Vo2-10.m = —1.1 %o. Under increasingly reducing conditions,
which favor vanadyl drawdown by sinking organic matter, the isotopic difference between
sediments and seawater would decrease!’. By mass balance, as global marine V sinks become
more oxidizing and thus isotopically lighter, §°*Vsw should shift to more positive values. There are
two end-member scenarios for how ocean oxidation could have driven a positive shift in §°*Vsw:
one where there was no oxic V sink, and the positive shift resulted from more fractionated, non-
quantitative vanadyl drawdown in reducing environments that became slightly more oxidized after
ca. 2.32 Ga; and one where true oxic (O2 > 10 uM) V sinks appeared or expanded in the oceans
after ca. 2.32 Ga.

To explain the full magnitude of the §°*Vsw shift solely with changes to the reducing sink would
require a >19 % decrease in the fraction of vanadyl drawdown with sinking organic matter,
according to a Rayleigh distillation model (see Methods; Fig. S2). With no other changes to the V
cycle, this drawdown might be expected to scale with organic particle burial, requiring a concurrent
>19 % drop in the fraction of organic carbon burial in the global oceans. Using a simple, two-
component carbon isotope mass balance, such a change in the Corg burial fraction could have
induced a >4 %o drop in seawater 5'°C (Fig. S2) that is not present in syn-GOE carbonate records.
Even allowing for some degree of nonlinearity between carbon burial and V drawdown,
modifications to the reducing V sink alone appear incapable of explaining the shift in §°*Vsw during

the GOE, without creating greater problems for interpretation of traditional geochemical proxies.
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Alternatively, an expansion of oxygenated (>10 uM Oz) environments, driving greater stabilization
of vanadate and its removal alongside various Fe-Mn oxyhydroxide-bearing sediments, would
have established a highly fractionating sink with A>*Vo2-10.m around —1.1 %o. This could have had
a large impact on marine V isotope mass balance without requiring an overhaul of the global ocean
carbon cycle, with a 0.27 %o positive shift in §>'Vsw being accommodated with burial of a modest
25 % of marine V in oxidized sediments (see Methods). For comparison, modern oxidized V burial
on continental shelves and abyssal plains accounts for ~72 % of the global sedimentary V sink?.
A combination of the two end-member processes described above would provide the most
parsimonious explanation for post-ca. 2.32 Ga increase in 8°'Vsw, because oxidation of the ocean
interior to drive a decrease in organic carbon burial would likely require a top-down influence
from shallow waters in communication with the newly oxygenated atmosphere. Critically,
anything except the no-oxic-sink end-member model would require that oxygenated ocean

environments were globally established after ca. 2.32 Ga.

The development of any globally detectable oxidized V sink requires widespread marine
environments with dissolved Oz of >10 uM in bottom waters’. These oxygenated environments
would most likely have been located at shallow water depths, assuming equilibration with rising
atmospheric pO2 alongside independent evidence for pervasive deep-ocean anoxia®®. If the
atmosphere provided this Oz source in the aftermath of S-MIF disappearance, a Henry’s Law
calculation for O2 solubility at 25°C in seawater points to pO2 > 8 x 107 atm or 4 x 102 PAL,
although intrinsic generation of some Oz by cyanobacteria may also have contributed to this overall
concentration. Box modeling studies indicate that a large volume of the ocean interior could have
remained functionally anoxic (O2 < 1 nM) beneath the atmospheric pOz2 calculated above, provided
that the biological pump operated at > 20 % of its modern capacity®. A configuration of substantial
top-down oxygenation, mostly restricted to the surface ocean, with oxidized V burial mostly
developed on continental shelves bathed in these shallow waters, would also explain a small

fractional oxidized V sink compared to the modern oceans.

A complementary constraint on the marine response to the GOE is provided by the appearance of
light authigenic thallium (TI) isotopic compositions (¢2%®Tlaun) in the oldest samples lacking S-
MIF (A%S = 0.0 + 0.3%o) at the Rooihoogte-Timeball Hill formation boundary (Figs. 1F, 4A)*.

These data provide evidence for geologically rapid shallow-ocean equilibration with an
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oxygenated atmosphere and burial of high-¢2®TI Mn oxides, producing a complementary low
seawater £2%°TI (e2®Tlsw) value®. Younger Timeball Hill Formation strata lack such low g2 T lauth,
despite evidence for an at least intermittently oxygenated atmosphere on the basis of the S-MIF
record (Fig. 1)'°. Because Tl isotope fractionation is driven specifically by Mn oxide burial®®,
rather than a particular abundance of dissolved Oz, it is unclear from Tl isotopic data alone whether
post-ca. 2.32 Ga, near-crustal 2% Tlaun values necessitate a period of relative ocean deoxygenation.
This is because globally significant Mn oxide burial requires a sufficiently high combined product
of dissolved Mn?* and Oz, such that an attenuation of post-ca. 2.32 Ga Mn oxide burial could be
explained by either a decline in the availability of Oz or the significant drawdown of an originally

large pre-GOE dissolved marine Mn?* reservoir.

The new V isotopic data presented here, combined with existing Tl isotopic data, provide more
clarity on the post-ca. 2.32 Ga oxygenation of the oceans, due to nuances in how the oxic sinks for
each of these elements operates. Unlike the oxic Tl sink that is Mn oxide specific, the operation of
a highly fractionated oxic V sink is dependent on the stabilization of vanadate at dissolved O2
levels > 10 uM, which is then adsorbed onto a diffuse global flux of various Mn and (dominantly)
Fe oxyhydroxides'”°. This makes §°Vsw less sensitive to lower dissolved O2 levels that may still
have promoted major Mn oxide burial, and £2®Tlsw perturbations, in the Mn?*-rich pre/syn GOE
oceans®’. However, 5°'Vsw responses to ocean oxygenation above 10 uM O2 should have been less
impacted by the specifics of the marine Mn cycle in the aftermath of atmospheric oxygenation®°1,
Therefore, the combination of 2°°TI records, which have more expansive seawater archives, but
more specific redox drivers, and §°V records, which may respond directly to marine Oz, but have
more complex, only qualitative seawater archives and a higher oxygenation threshold, provides

more texture to the history of early ocean oxygenation than either proxy can alone.

Vanadium isotope data suggest that post-ca. 2.32 Ga, shallow marine, bottom water O2 levels may
have exceeded 10 uM by the time of deposition of the upper section, so it is unlikely that Mn oxide
burial would have been limited by O availability. Therefore, the more likely interpretation of the
Tl isotope record at this time is that extensive earlier Mn oxide burial had drawn down a large pre-
GOE seawater Mn?* reservoir to such a degree that Mn oxide burial became limited by Mn2*
availability®. Indeed, a possible negative correlation developed by small §*Vautn and £2°°Tlautn

variations within the upper section may reflect the diminished ‘response signal’ of £2%®Tlsw to small
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fluctuations in marine Oz in the face of a diminished Mn?* pool from which to form Mn oxides
(Fig. 4). An alternative scenario of rapid, post-ca. 2.32 Ga deoxygenation, driven by oxidative
weathering and eutrophication, has been suggested based on a multiparameter local redox dataset
covering the upper Rooihoogte and lower Timeball Hill formations®2. The lower Timeball Hill
Formation documents oxic local redox conditions in the EBA-2 drill-core that were unsuitable for
®1Vauth measurements, leaving the door open for that alternative scenario to have operated on a
short geological timescale. Regardless, within the upper Timeball Hill Formation, deoxygenation
does not seem to remain a viable explanation for near-crustal €2%Tlau values, because this is the

interval where we infer the positive shift in §*'Vsw.

Multiproxy evidence now allows unprecedented reconstruction of the marine response to
atmospheric oxygenation after ca. 2.32 Ga (Fig. 5). Coincident with S-MIF disappearance at ca.
2.32 Ga across the Rooihoogte-Timeball Hill formation boundary, atmospheric Oz established
shallow-marine Oz concentrations sufficient to drive Mn oxide burial in Mn?*-rich oceans,
producing fractionated £2%Tlsw values alongside S-MIF disappearance!®. Global §*'Vsw remained
initially unaffected throughout this interval, suggesting dissolved bottom water O2 remained <10
uM in most of the shallow ocean (Fig. 5). Loss of fractionated £2%®Tlsw values after ca. 2.32 Ga
suggests some attenuation of a large marine Mn reservoir (Figs. 4, 5). Subsequently, the surface
ocean equilibrated with atmospheric Oz, maintaining the shallow water column at levels >10 uM
and establishing a globally impactful oxidized V sink for the first time. While numerous
geochemical proxy records agree that extensive deep-ocean anoxia existed at this time, and
persisted for at least another 1.5 Gyr*®3, empirical evidence now suggests that Earth’s first rise of
atmospheric oxygen was globally propagated into the underlying shallow oceans on a timescale

that was short compared to its planetary lifetime.

Methods

Geological setting of samples

Samples were obtained from the EBA-2 diamond drill-core (26.4700° S, 27.5883° E) drilled near
Carltonville, South Africa (Kloof Goldfields Property, Eastern Boundary Area). This drill-core
intersected a well-preserved interval of the Paleoproterozoic Transvaal Supergroup and the
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specific depth intervals analyzed in this study have been sampled and analyzed in several previous
studies?>>'216, The interval of the EBA-2 drill-core we studied comprises the Rooihoogte and
Timeball Hill formations. The succession has undergone regional metamorphism to only lower
greenschist facies grade®,

The Rooihoogte Formation has upper and lower members in the drill-core EBA-2, and only the
upper Rooihoogte Formation was analyzed, and is thus described, in this study. It dominantly
consists of mudstones and black shales that coarsen upwards into siltstone and are capped by a
thin chert breccia®. The Timeball Hill Formation contains two upward-coarsening sequences. In
each sequence, the lower part is highly carbonaceous black mudstone, and these mudstones
become less carbonaceous up-section, where they are interbedded with dark-grey to grey
siltstones*?. The mudstones and black shales of the upper Rooihoogte and Timeball Hill formations
are interpreted to have been deposited in a pro-delta setting within the basin, with a connection to
the open ocean towards the southwest>>*®. Diamictite and conglomerate of the Rietfontein Member
form a cap for the upper Timeball Hill Formation®2. The Rietfontein diamictite has been interpreted
to be a glacial deposit based on the presence of faceted and striated pebbles®’, and was not sampled

for authigenic V isotopic analysis in our study.

Vanadium isotope analysis

Samples were prepared for V isotope analysis in a Class 100 clean laboratory at Woods Hole
Oceanographic Institution (WHOI). All reagents used were double distilled in the laboratory or
purchased at trace-metal grade or higher. Approximately 200 mg of powdered sample material
was weighed into acid cleaned Savillex Teflon vials and leached overnight in 2 M HNOs at 130°C,
following a protocol that is shown in numerous previous studies to isolate authigenic V4%, The
leached fraction was then separated by centrifugation and pipetting of the supernatant into cleaned
Teflon vials for multiple further acid digestion steps. Acid digestion steps included use of
concentrated HCI + HNOs (aqua regia), and concentrated HNOs + H202, which destroy organics,
but avoid digesting any detrital silicate material. Aliquots of these exact same leach solutions were
utilized for previous Tl isotope analyses®®. Aliquots of the samples were then brought into solution
in 2 mL of 0.8 M HNOs processed through a four-step ion-exchange column chromatography
procedure to purify V from matrix elements, particularly Ti and Cr, which have isobaric

interferences with V3%, Load and matrix fractions collected for each column were analyzed using
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a Thermo Fisher iCAP quadrupole inductively-coupled plasma mass-spectrometer (Q-ICPMS) at
WHOI to determine that no V was lost during column purification.

Vanadium isotope ratios were measured on a Thermo Neptune multi-collector ICP-MS (MC-
ICP-MS) at WHOI following established methods®®. Both samples and standards were prepared to
matched concentrations of 800 ng/ml in 0.1 M HNOs. Sample introduction was conducted using a
Cetac Aridus II desolvating nebulizer, and in the Neptune, nickel ‘Jet’ type sampler and ‘X’ type
skimmer cones. Analyses were conducted in medium resolution mode to resolve flat-topped V
(and Cr, Ti) peak shoulders away from various ArC* and ArN* (plus hydride) interferences. In this
configuration, we typically achieved 150-250 V/800 ppb V sensitivities on V. To correct for
isobaric interference from minor contaminant °Cr and °'Ti on the V isotope signals, Cr and Ti
isotopes were analyzed simultaneously with *°V and °'V and isobar contributions were corrected
for using a mass bias coefficient that was determined at the end of the analytical session by analysis
of a pure Cr plasma tuning solution. All isotopes of interest were measured on faraday cups fitted
with 10" Q resistors, except °*V which was measured used a 10'° Q resistor. Analysis used
standard-sample bracketing with the Alfa Aesar (AA) V specpure standard solution to correct for
instrumental mass fractionation, with V isotopic ratios reported in delta notation: (§°*V (%o) =
1000X{[CC*V/PV)sample — (CTV/POV) aa]/(PTV/*PV)an}). Each sample was bracketed with analysis of
the BDH Chemicals V solution internal standard with known §°'V173%% that was analyzed
identically to samples to monitor instrument performance, giving values in agreement with the
published §°'V value of -1.19 %o over each full analytical session (5°*V = -1.18 + 0.08 %o (2SD)
in session 1; 8°V = -1.21 £ 0.15 %o (2SD) in session 2). Samples were analyzed in duplicate, or
triplicate, according to the amount of available material, and uncertainties are presented as the
larger of either the 2SD uncertainty of BDH analyses run in the same sequences or the 2SD of
replicate analyses of the samples. Bulk digests of the BHVO-2 and AGV-2 USGS igneous rock
geostandards, and an authigenic leach of the SCo-1 USGS shale geostandard, were processed
through the column chromatography and mass spectrometry protocols alongside drill-core EBA-2
sedimentary rock samples and vyielded values in agreement with those previously
published?7:18:59.61.62,

Our V isotope dataset was generated by analysis of two separate batches of samples over separate
analytical sessions (Supplementary Data File). We saw no evidence for systematic differences in

5°V values measured in each session. Of the geostandards measured in both sessions (SCo-1
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leach, BHVO-2), one was lighter (but within error) and another was equal to or heavier (but within
error) than the recommended value for each session, and the BDH values were almost identical
(second session slightly lighter), and always within error of the recommended value. For the EBA-
2 drill-core shale samples, no upper section samples (<1300 m depth) were analyzed in the first
session. However, the average value of the lower section (>1300 m) samples was identical in each
session (first session: 8°'Vauh = -1.07 * 0.08 2SE, second session: §°Vaun = -1.07 + 0.11 2SE).
Therefore the positive 8>V shift (averaging 0.27%o) observed from the lower to upper section

appears not to be an artifact of different analytical sessions.

Trace element concentrations

Bulk and authigenic V and a suite of other trace-element concentrations were determined from a
separate bulk rock digest, and an aliquot of the authigenic leachate produced for V isotope analysis,
respectively. These concentration measurements were made during the previous Tl isotopic study
and the methods used for these analyses are briefly outlined below for ease of reference. Bulk
digestion of ~20 mg of rock powder was performed using concentrated acid steps including HF +
HNOs, HCL + HNOs, and HNOs + H202. For both bulk and leachate material, elemental
concentrations were generated using a Q-1CP-MS analyses at WHOI with reference to a five-point
calibration curve based on dilutions of a gravimetrically prepared, multi-element standard. Prior
to analysis, samples were diluted in 2% HNOs3 and doped with indium (In) to act as an internal
standard for monitoring matrix effects and instrumental drift. Trace-element concentration
measurements performed this way at WHOI have been shown to be accurate, and have a precision
of 5-10 % depending on individual elements, based on comparison to replicate analyses of USGS
reference materials AGV-1, AGV-2, BHVO-1, BHVO-2, BIR-1, and BCR-25364,

Vanadium isotope fractionation calculations

We do not attempt to pinpoint the exact values of §°'Vsw, or the globally averaged effective ASV
that prevailed during deposition of the Rooihoogte and Timeball Hill formations due limited
constraints in the local fractionation of V into sediments. Two end-member scenarios are suggested
to explain the relative change in §°*Vsw of a +0.27 %o between the average values inferred for the
lower and upper sections. We considered two scenarios: one where there was no oxic V sink, and

a positive shift in §°'Vsw resulted from a shift to non-quantitative, fractionated vanadyl drawdown
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in reducing environments that became slightly more oxidized after 2.32 Ga and one where an oxic
(02> 10 uM) V sink appeared or expanded.
In the scenario that the increase in §°'Vsw solely reflects a decrease in the extent of vanadyl

drawdown within a single global reducing sink:

851Vrivers,in = 851Vsediments,out (1)
and
5 WV sediments,out = 8 Vsw + AV eff (2

where ASVerr is the effective isotopic difference between seawater and sediment. In the extreme
case that initially in the lower section, A Vet = 0 %o (full drawdown of vanadyl)?, an increase of
5°WVsw by +0.27 %o would need to be offset by a decrease of A>Verr to -0.27 %o during deposition
of the upper section. If we treat this sink as the cumulative product of Rayleigh distillation with an
instantaneous isotopic difference A>Vinst = -0.7 %o (as seen during V drawdown to the Cariaco
Trench sediments)®’, then:

AWV ett = 55V cumulative - 8°V/initial,dissotved = (f — 1)X (AP Vinstx In[(f — 1)/f] (3)

The smallest change in f associated with a 0.27 %o decrease in A3V is found when f goes from
1 to 0.81, giving a minimum 19 % decrease in organic particle-associated V burial (Fig. S2). We
note that this endmember scenario poses an unrealistic initial (lower section) condition of total,
quantitative drawdown of vanadyl from seawater, but use this endmember as it sets the minimum
relative change in V drawdown burial that could have occurred going from the lower to upper
section.

For the oxic sink scenario, we can again determine the minimum relative change in the size of the
oxic sink using the endmember scenario that the whole shift in §°'Vsw reflects a global change in
AW ett from 0 %o in the lower section, and -0.27 %o in the upper section. If we assume, in this case,
that the entire 0.27 %o increase in 5°'Vsw solely reflects new V removal to an oxidized vanadate
sink with AS*Vo2-100m = —1.1 %o,1" while the remainder of V is still removed to highly reducing
sink with A>Vred = 0 %o, then the increase in fraction of oxidized V burial can be found by solving:
AW efr = fox X ASWoo=10um + (1 - fox) X A WVred = -0.27 %o, 4)

setting A>Vred = 0, and rearranging to find that fox = 0.27/1.1 = 25 %, which is approximately 1/3
of the modern ocean oxidized V sink fraction?.

Data Availability Statement
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Figures

Fig. 1: Geochemistry of the EBA-2 drill core, South Africa, deposited during the GOE. (A)
Fluctuating sulfur isotope mass-independent fractionation (S-MIF) (A%3S) signature tracks possible
oscillations in atmospheric Oz levels, potentially up until ca. 2.22 Ga?3!2, (B) Elevated Ferr*/Fer
indicating oxic (‘O.’; <0.22), equivocal (‘Eq.’; >0.22 to <0.38) or anoxic (‘A.”; >0.38) water-
column redox conditions'?, in addition to (C) Vanadium, (D) Molybdenum, and (E) Uranium
enrichment factors (EF), all of which designate that a subset of shales was deposited under anoxic
(ferruginous or euxinic) conditions. (F) Authigenic Tl isotope ratios (g2®Tlaun) provide
information about ocean redox conditions, specifically Mn-oxide burial*®. The grey-shaded region
shows the estimated average for upper continental crust'®. (G) Authigenic V isotope ratios
(8°*Vautn) that can be used to infer paleo-5°'Vsw values using known isotopic differences between
seawater and sediments in anoxic environments. (H-N) show the same data as for (A-G), with the
narrow stratigraphic range at the base of the section from 1,315 to 1,350 m drill core depth
expanded for clarity. Black-filled datapoints highlight samples analyzed in this study that have
Fepy/Ferr* ratios >0.6, indicating possibly euxinic conditions. Error bars for §°'Vaun are 2 SD of
reproducibility on either the individual sample or the BDH chemicals V solution standard,
whichever is larger. The orange and blue vertical lines show the average °'Vaun values for the
upper Timeball Hill Formation (<1300 m drill core depth) and the upper Rooihoogte and lower
Timeball Hill formations (>1300 m drill core depth), respectively. R. Fm. — Rooihoogte Formation

and R. D. — Rietfontein Diamictite.

Fig. 2: Modern V isotope mass balance in the oceans. (A) Schematic diagram. Rivers are the
dominant input to the ocean (blue arrow). Red arrows show sedimentary removal pathways from
seawater, and the associated isotopic difference (A%V) of each sink relative to seawater. The
modern ocean residence time for V is ca. 90,000 yr. (B) Vanadium fluxes in Mmol/yr and isotopic
compositions in §°*V (vertical position) corresponding to sources and sinks represented in panel
A. The 8°'V of modern seawater is highly positive today relative to riverine inputs because of the
dominant sedimentary V removal flux to oxic sediments with strongly negative §°V. Figure

featuring compiled data from ref. 2,
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Fig. 3: Estimated seawater vanadium isotopic compositions for the Rooihoogte and Timeball
Hill formation shales. Authigenic §°!V data are as shown in Fig. 1. Orange and blue vertical lines
show the average §°'Vautn values for the upper Timeball Hill Formation (<1300 m drill core depth)
and the upper Rooihoogte and lower Timeball Hill formations (>1300 m drill core depth). Darker
orange- and blue-shaded boxes indicate estimated allowable ranges of average §°'Vsw in each
section, within local redox constraints and a minimum value imposed by a syn-Great Oxidation
Event (GOE) riverine input of -0.7 %o based on the average composition of the UCC at this time®'.
Lighter shaded regions show the range of §°Vsw permitted by the analytical uncertainty of
individual sample analyses. For the upper section, A%V values between -1.1 and -0.7 %o are
permitted by local redox indicators consistent with Oz around a 10 uM threshold value!’. For the
lower section, persistently anoxic (and sometimes euxinic) conditions define a range of AV
extending no lower than -0.7 %o'’. An increase in average §°Vsw of 0.27 + 0.12 %o would be
defined if the same local AV were applied to the upper and lower sections. Because the upper
section was deposited under locally more oxidizing conditions (that permit a larger A>V), this
inferred increase in 8°Vsw can be robustly considered as a minimum. Error bars for §°*Vauth are 2
SD of reproducibility on either the individual sample or the BDH chemicals V solution standard,

whichever is larger.

Fig. 4: Cross-plot of V and Tl isotopic data for the Rooihoogte and Timeball Hill formation
shales and expected global redox trends. (A) Cross-plot of $**Vauth and 2% Tlaun data for shales
from the lower section (white symbols, euxinic/possibly euxinic samples in black symbols) and
upper section (orange) symbols. The upper section features a negative correlation, with a small
overall range in €2%Tlaun, while the lower section features greater scatter that may reflect variations
in the value of AV during deposition. (B) Expected qualitative trends for §°*Vsw and €?®Tlsw
during different modes of ocean oxygenation. Global oxygenation that sees a broad expansion of
both environments with Oz > 10 uM and Mn-oxide burial should result in increased °'Vsw and
decreased £2%Tlsw. Negative trends in (A) suggest some degree of global coupling of the V and T
cycles. Significant Mn-oxide burial in environments with Oz < 10 uM, likely under high Mn?*
seawater conditions, should see a decrease in €2®Tlsw with little impact on §°Vsw, as seen

immediately after the first S-MIF disappearance in the lower section. Expansion of environments
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with dissolved Oz > 10 uM, unaccompanied by an increase in Mn-oxide burial due to a limited
seawater Mn2*-reservoir, should see an increase in 5°*Vsw with little impact on £2%Tlsw, as seen in
the shift from the lower to upper section. Error bars for §°*Vauth are 2 SD of reproducibility on
either the individual sample or the BDH chemicals V solution standard, whichever is larger. Error
bars on previously published £2®TI data®® are 2 SD of reproducibility on either the individual

sample or the SCo-1 geostandard run alongside samples, whichever is larger.

Fig. 5: Schematic illustration of inferred atmosphere-ocean oxygenation state before and
after ca. 2.32 Ga informed by V isotope composition. Prior to ca. 2.32 Ga, during deposition of
the upper Rooihoogte and lower Timeball Hill formations, atmospheric pO2 < 10 PAL facilitated
sulfur isotope mass-independent fractionation (S-MIF) signatures and a global ocean was
dominated by anoxic conditions and strong anoxic V drawdown. Any O2 oases that were present
did not strongly impact V isotope mass balance. At ca. 2.32 Ga, atmospheric pO2 rose above 10°
PAL, driving a disappearance of S-MIF and extensive Mn-oxide burial, while bottom-water
dissolved Oz initially remained below 10 uM in shallow marine environments. Subsequently, by
the time of deposition of the upper Timeball Hill Formation, surface ocean redox conditions
reached O2 > 10 uM, reflecting equilibration with pO2 > ca. 4 x 102 PAL, established a persistent,
oxidized V sink on continental shelves. While most of the seafloor remained functionally anoxic
with strong V drawdown, the new oxic sink increased the seawater V isotope composition by >0.27
%o. In the bottom panel, the blue and green lines indicate marine dissolved Oz in the deep and
shallow oceans, respectively, while the black arrow marks the onset of major Mn oxide burial in

response to rising O2 recorded by Tl isotopes®®.
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