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ABSTRACT

Multimodal artificial intelligence (Al) integrates diverse types of data via machine learning to improve understanding, predic-
tion, and decision-making across disciplines such as healthcare, science, and engineering. However, most multimodal Al
advances focus on models for vision and language data, while their deployability remains a key challenge. We advocate a
deployment-centric workflow that incorporates deployment constraints early to reduce the likelihood of undeployable solutions,
complementing data-centric and model-centric approaches. We also emphasise deeper integration across multiple levels of
multimodality through stakeholder engagement and interdisciplinary collaboration to broaden the research scope beyond vision
and language. To facilitate this approach, we identify common multimodal-Al-specific challenges shared across disciplines and
examine three real-world use cases: pandemic response, self-driving car design, and climate change adaptation, drawing
expertise from healthcare, social science, engineering, science, sustainability, and finance. By fostering interdisciplinary
dialogue and open research practices, our community can accelerate deployment-centric development for broad societal
impact.


https://arxiv.org/abs/2504.03603v2

Introduction

Data drives discovery in the 21st century'. From satellites monitoring climate change to social media capturing human
behaviour, the variety and volume of information have never been greater. Each type of data, or modality, offers unique
insights, but unimodal approaches often fall short of achieving robust or generalisable performance. Autonomous vehicles
relying solely on visual data struggle with object detection in low-light or adverse weather conditions?. During the COVID-19
pandemic, relying solely on RT-PCR data for diagnosing SARS-CoV-2 infection led to frequent false negatives, hindering
timely interventions 3. Instead, integrating information from multiple modalities can reveal patterns and solutions that unimodal

approaches miss®.

Multimodal artificial intelligence (AI) leverages multimodal data for better understanding complex systems through
machine learning 8. Its promise is evident in multidisciplinary applications such as pandemic response. For example,
in healthcare, combining medical imaging, genomic sequencing, and epidemiological data can enhance diagnoses, inform
treatment strategies, and support disease prevention®~'!. In science, fusing genetic and protein structure data holds promise for
advancing vaccine development '%. In engineering, integrating textual specifications with spatial data can improve product design
and manufacturing '®, which could extend to optimising ventilator production. Across other disciplines, such as sustainability,
finance, and social science, multimodal AT offers the potential to provide deeper insights and actionable strategies '4~!7.

While multimodal Al receives increasing attention and holds great promise, research has primarily focused on vision-
language models '®!? (Fig. 1 and Supplementary Fig. 1), leaving other modalities—such as tabular and time-series data—and
related disciplines underexplored® (Fig. 2). Real-world challenges, such as pandemic response, call for Al capable of
integrating diverse types of data through interdisciplinary collaboration, bridging the gap between research and application.

As modality integration broadens, multimodal-Al-specific deployment challenges increase, including missing modality 21?2,
cross-modal alignment®?3, and multimodal privacy risk>*?>. These issues are compounded by broader barriers such as data
limitations, integration complexity, and domain-specific constraints2®. For example, rural healthcare may face limited compute
infrastructure; financial services may face regulatory delays; and real-time applications such as autonomous driving demand
strict latency control. Multimodal setups often amplify these challenges due to increased system complexity. Simply combining
diverse modalities is not enough; real-world success requires proactive alignment with deployment constraints from the outset.

This Perspective outlines a deployment-centric framework for multimodal Al that incorporates deployment constraints
early and addresses challenges specific to multimodal integration across disciplines. We first present a general workflow for
developing deployment-ready multimodal Al systems. We then examine three data-intensive, cross-disciplinary use cases,
pandemic response, self-driving car design, and climate change adaptation, to illustrate common barriers and actionable
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Figure 1. Trends in multimodal AI research (2019-2024) and the dominance of vision and language. a, Yearly growth of
multimodal Al preprints on arXiv by modality, showing a steady increase over time and the dominance of vision and language.
b, Breakdown of modality pairs in multimodal AI preprints on arXiv in 2024, revealing that over half the studies involve vision
and language, followed by vision and others (19.9%), language and others (18.0%), and other modality combinations (11.1%).
This analysis highlights the most common pairwise modality combinations and shows that those involving vision or language
dominate, reaching 88.9%. For clarity and space efficiency, only modality pairs exceeding 1.5% are annotated. See
Supplementary Section S2 for methodology and details of the trend analysis. See Supplementary Fig. 1 for a more detailed
illustration and analysis of the multimodal Al landscape, including statistics on triple and quadruple modality combinations.
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Figure 2. Underexplored modality combinations in multimodal AT (2019-2024). Heatmap of combinations of non-vision,
non-language modalities in multimodal Al preprints by year. Each row represents a modality combination, and each column
corresponds to a publication year. Darker shades indicate higher counts, with rows ordered by their 2024 totals. The coloured
circles on the left identify the modality combinations. For example, in 2023, only two preprints used graph and tabular data
(sixth row, fifth column). Time series and sensor data form the most common combination, likely because sensor data are often
recorded as time series. Time series and spatial data are the second most common, possibly due to the importance of
spatiotemporal modelling. In contrast, combinations involving graph, audio, and tabular data remain sparsely studied. These
gaps highlight untapped potential for multimodal Al beyond vision and language. See Supplementary Section S2 for details on
data processing and modality extraction.

strategies. By exploring underrepresented modalities and fostering open, interdisciplinary collaboration, we aim to broaden the
impact of multimodal Al beyond vision and language.

Deployment-centric multimodal Al system development

Traditionally, multimodal Al research has been model-centric®>~", focusing on developing new models to outperform existing
ones on standardised benchmarks and datasets. The rise of generative AI?® models such as ChatGPT?*" resulted in a shift
towards data-centric approaches®’3!3?, emphasising data resources and quality for better performance. However, the gap
between high expectations and limited real-world impacts 233 indicates a pressing need for deployment-centric approaches
that prioritise real-world applicability, user needs, and ethical considerations, ensuring that Al innovations are both novel and
practical, with a positive impact. We advocate a deployment-centric workflow for advancing multimodal AI from research to
scalable solutions, built on ideas from machine learning operations lifecycle guidelines3* and technology readiness levels for
machine learning systems .

Figure 3a illustrates our deployment-centric workflow in three stages: planning, development, and deployment. Planning
focuses on defining the problem, determining the suitability of multimodal Al over unimodal Al, understanding real-world
constraints, and formulating Al tasks grounded in realistic assumptions. Development builds the multimodal Al system to learn
predictive models from multimodal data, and deployment assesses real-world performance, feeding back insights to improve
earlier steps. Guidance from stakeholder engagement and interdisciplinary collaboration (the top right of Fig. 3a) informs the
entire workflow, ensuring that the perspectives of domain experts, end-users, and decision-makers are integrated for a robust

and socially aligned system %37,
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Figure 3. Deployment-centric multimodal AI: workflow and challenges. a, Deployment-centric multimodal Al workflow
designed to meet real-world needs through a structured three-stage process covering planning, development, and deployment,
with iterative assessments and updates. In particular, the planning stage considers deployment constraints early to ensure
alignment with real-world settings and practical needs. This workflow incorporates stakeholder engagement and
interdisciplinary collaboration at all stages to ensure that real-world needs and discipline-specific knowledge inform and
enhance Al system development. Moreover, we consider multiple levels of data multimodality, from data types and subtypes to
views and fidelities, as illustrated with a healthcare example. This broader definition of multimodality offers new perspectives
and rich options for leveraging the benefits of multimodality. The system development stage has five steps similar to a standard
machine learning pipeline, where the data-centric and model-centric approaches?’ are indicated in the figure to highlight their
differences from the deployment-centric approach. b, Five multimodal-Al-specific challenges shared across multiple
disciplines and real-world applications: modality incompleteness, where one or more modalities are missing at training or
deployment; multimodal heterogeneity, reflecting incompatible formats and data structures; cross-modality alignment, which
requires synchronising data in time or meaning; modality complementarity, where the goal is to maximise synergy without
introducing redundancy; and multimodal privacy risk, where data fusion increases the chance of sensitive re-identification.

Planning for multimodal Al systems

Planning (the three blocks on the top left of Fig. 3a) begins with problem definition, which involves clearly articulating
the problem’s scope and objectives, and preliminarily assessing whether incorporating multimodal data can offer meaningful
advantages, such as improved predictive performance or deeper insights, over unimodal approaches®. Beyond vision (image,
video) and language (text), key modalities include audio, numeric time series (e.g. financial data sequences), sensor signals
(e.g. wearable physiological measurements), and spatial (geolocation), tabular (structured data such as clinical records),
and graph-based (relationships or networks) data. Furthermore, multimodality exists at multiple levels: multiple data types,
subtypes, views, and fidelities3>*" (the middle right of Fig. 3a and Fig. 5). For example, in healthcare, multimodal data can
range from different types, e.g. medical images, electronic health records (EHRs), and omics data*!**?, to subtypes within a
data type, e.g. X-ray, magnetic resonance imaging (MRI), and ultrasound within the imaging modality, multiple views of the
same data (sub)type, e.g. anteroposterior, lateral, and oblique views of X-ray, and multiple fidelities, e.g. high, low, and adaptive
fidelities of anteroposterior X-ray. Under this broad definition, the potential number of modalities can expand substantially as
more levels are considered. Understanding these modalities early helps select those suited to the problem’s complexity and
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capable of offering insights beyond unimodal data.

After establishing the potential benefits of multimodality, we move on to deployment constraints, which involves examining
the AT system’s application context, including user needs, data availability, regulatory compliance*?, ethical considerations,
societal impact, and economic trade-offs between high-cost and low-cost data modalities. This step ensures that the chosen
modalities and the resulting multimodal Al system are not only technically feasible but also viable within the intended
deployment environments. Understanding these constraints early informs task formulation, helping align solutions with
real-world requirements and making it more effective and responsible.

The final step, task formulation, translates the defined problem and constraints into specific Al tasks, specifying the
inputs, outputs, and evaluation metrics required to meet the objectives set during problem definition. This provides a clear
development roadmap, ensuring multimodal Al systems are well-positioned to meet both technical and practical needs. Selecting
modalities requires balancing utility, acquisition cost, complexity, and deployment feasibility. Fewer well-curated modalities
may outperform broader but less practical combinations.

Multimodal Al system development

Developing multimodal Al systems (the lower left of Fig. 3a) parallels standard machine learning system development but
introduces added complexities due to the integration of diverse data modalities. We have identified five multimodal-Al-specific
challenges (Fig. 3b). Modality incompleteness occurs when one or more modalities are missing during training or deployment,
necessitating the development of highly flexible or generative models. Multimodal heterogeneity deals with varying formats,
scales, and data structures, necessitating careful integration strategies to ensure interoperability. Cross-modality alignment
ensures that the timing or meaning of data from different sources is correctly aligned for coherency and consistency, whether
temporal (e.g. matching timestamps) or semantic (e.g. identifying data representing the same concept across modalities).
Modality complementarity ensures that different modalities contribute complementary information to enhance performance,
as more modalities may not improve results, e.g. if they add noise or redundancy. Finally, multimodal privacy risk >+ arises
when independently anonymised datasets become identifiable again (re-identification) through their fusion, thereby revealing
sensitive information and necessitating robust privacy-preserving techniques.

The development process consists of five key steps: data collection, data curation, multimodal learning, evaluation, and
interpretation (the lower right of Fig. 3a). Each step plays a key role in addressing the multimodal-Al-specific challenges
described above.

Data collection and curation build on the modality choices identified during planning, gathering relevant data from multiple
sources and preparing them for AI model training. Diverse and reliable data sources ensure a high-quality, comprehensive
representation of the problem space. Synthetic data and weak supervision provide valuable alternatives when labelled data
is scarce*, such as in rare diseases or time-sensitive crises, where expert annotation may be infeasible. Once collected, the
data undergoes standard curation, such as wrangling, cleaning, annotation, handling missing values, and quality assurance >°,
tailored to multimodal Al For instance, in healthcare, linking multimodal data from EHRs, imaging, and biosignals poses
substantial challenges due to privacy concerns>* and the need for standardisation. The integration and cross-referencing of these
modalities can amplify the risk of re-identification, underscoring the importance of addressing multimodal privacy risk through
robust privacy-preserving techniques 7. Moreover, selected modalities should be interoperable and complementary, with
their alignment and integration resulting in a cohesive, high-quality dataset suited to technical and deployment requirements.

Multimodal learning integrates diverse data modalities to leverage their unique strengths for improved predictive perfor-
mance”. Traditional fusion strategies, early fusion (combining raw features), intermediate fusion (merging processed features),
and late fusion (integrating outputs from independently processed modalities), offer trade-offs between model complexity
and when modalities interact. Recent advances, hybrid fusion* and knowledge distillation*®, provide greater flexibility,
enabling the combination of multiple strategies or the transfer of knowledge from complex to simpler models. Techniques
such as co-attention mechanisms*® can further enhance integration and performance by dynamically adapting to cross-modal
interactions. The choice of strategy depends on the specific problem and data characteristics, balancing integration benefits
with the added complexity of managing multiple modalities.

Evaluation and interpretation support the reliability, effectiveness, and fairness of multimodal Al systems, especially
in complex, high-stakes environments. Beyond standard performance metrics such as accuracy, evaluation should assess the
contribution of individual modalities, the alignment and synergy between them, and the system’s robustness to noise and
variability. For example, evaluating safety in multimodal models>" is key for understanding how biases across modalities may
interact or amplify one another>!, potentially undermining system reliability. Interpretation >3 ensures that model decisions
are understandable and transparent. Techniques such as heat maps, -SNE, and decision trees help visualise and explain how
different modalities interact and contribute to outcomes, fostering user trust and supporting error analysis and model refinement.
Uncertainty estimation*, via ensembling, calibration, or Bayesian approaches, supports more reliable decisions in high-stakes
applications.
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Real-world deployment of multimodal Al systems
Deploying multimodal AI systems (the bottom of Fig. 3a) requires infrastructure for hosting, scaling, and ongoing management,
with continuous monitoring to ensure the system remains effective and relevant?°. Infrastructural and regulatory conditions,
including compute availability, connectivity, and legal safeguards, can determine what is practically feasible and where
deployment may succeed or fail. Unlike unimodal Al these systems face unique challenges, such as integrating diverse data
modalities in real-time environments and maintaining performance despite modality-specific issues, such as sensor failures
or data stream interruptions. Robust monitoring mechanisms enable the system to detect and compensate for failures in one
modality by leveraging information from others. Additionally, real-time multimodal data fusion, where multimodal data may
arrive asynchronously, requires careful infrastructure design and adaptive algorithms.

The following sections examine three cross-disciplinary use cases that demonstrate the value and applicability of the
deployment-centric multimodal Al workflow: pandemic response, self-driving car design, and climate change adaptation.

Use case 1: Pandemic response

Pandemic response (Fig. 4a) presents a complex challenge requiring coordinated efforts across healthcare and other disciplines .

Defining the problem involves assessing early how multimodal Al can offer advantages over unimodal approaches by integrating
diverse data sources for deeper insights and more accurate predictions. For example, in social science, combining textual
content from surveys or social networks with tabular demographic data can help understand mental health impacts and detect
changes in online behaviour>®’. In sustainability, analysing time-series environmental data, satellite imagery, and sustainability
reports can reveal the environmental effects of pandemics%°?. In finance, integrating economic indicators, transaction patterns,
and market response data with health data can predict socio-economic impacts and inform public health strategies%%°!. A
well-defined problem ensures clear constraints and tasks can be established.

The deployment of multimodal Al in pandemic response faces privacy, technical, and economic constraints. Privacy
concerns arise from integrating diverse data sources such as EHRs, social media, and genomic information, which increases the
risk of re-identification and amplifies the potential impact of data breaches. Maintaining public trust requires robust privacy-
preserving techniques*~*’ and compliance with regulatory frameworks. Technical challenges include real-time monitoring,
where multimodal Al systems must integrate and process data streams rapidly for timely interventions. The heterogeneity of
health and social data complicates alignment and standardisation, particularly in international or multi-centre collaborations.
Achieving minimum predictive accuracy thresholds for outbreak detection and public health decision-making helps build trust
in Al-driven systems. Economic constraints, including computational costs and budget limitations, restrict accessibility and
scalability. High-cost modalities (e.g. MRI) may be impractical in low-resource settings, so multimodal Al systems should
flexibly support lower-cost alternatives (e.g. wearables) to promote equitable deployment.

Task formulation translates the defined problem into specific Al objectives, detailing inputs, outputs, and evaluation metrics
for pandemic-related challenges. A primary task is predicting disease outbreaks by integrating multimodal data such as
epidemiological records, EHRs, and environmental factors to inform early interventions and resource allocation. Another task
is monitoring public adherence to health guidelines using social media data, geospatial information, and biosignals, providing
actionable insights to refine policies. Additionally, multimodal Al can support real-time decision-making in healthcare by
combining patient data streams, including wearable biosignals, medical images, and clinical notes, for managing patient surges
effectively ©>%, Task formulation ensures that multimodal AT systems align with technical and practical needs, strengthening
pandemic response through actionable insights and tailored interventions.

Developing multimodal Al systems for pandemic response follows the standard workflow of the five key steps outlined
above. Data collection assembles diverse sources, such as EHRs, genomic data, and biosignals, to create comprehensive
datasets for outbreak prediction and patient management. During curation, standardisation and alignment address challenges
such as integrating time-sensitive data streams from biosignals and geospatial sources. Multimodal learning can employ
self-supervised ® and cross-domain® techniques to capture cross-modal relationships effectively and integrate domain-specific
knowledge. Evaluation requires multi-metric, multi-centre validation®®%7, ensuring robustness for tasks such as outbreak
prediction and public adherence monitoring. Interpretability and explainability enable healthcare professionals and policymakers
to trust and act on multimodal Al insights in high-stakes scenarios®®. Tailoring these development steps to pandemic-specific
needs ensures adaptability, reliability, and ethical compliance in rapidly changing contexts.

Deploying multimodal AI systems in pandemic response translates research into actionable solutions for high-stakes
environments. For instance, patient surge management can integrate biosignals, medical images, and clinical notes to optimise
intensive care unit bed allocation and staff deployment. Public health decision-making can benefit from multimodal analyses
of epidemiological data, EHRs, and social media trends to guide interventions such as lockdowns or resource distribution.
Real-time deployment requires robust infrastructure to process asynchronous data streams and address modality-specific
interruptions, such as gaps in biosignal or social media data. Adaptive algorithms and reliable systems ensure timely and
accurate outbreak prediction and monitoring. Assessment through multi-centre trials and multi-disciplinary benchmarks %
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Figure 4. Deployment-centric multimodal AI workflow for three use cases. These examples demonstrate the versatility of
the proposed workflow, showing how deployment-centric considerations can be applied across various disciplines to solve
complex challenges. a, This example illustrates how the proposed deployment-centric multimodal Al workflow can better
address real-world challenges in pandemic response, drawing on stakeholder engagement and interdisciplinary collaboration, as
indicated by the different colours across stages. The process begins with defining the problem of interest properly and carefully
considering the space of various deployment constraints in order to formulate specific tasks. Two tasks are shown in the figure:
one with a focus on healthcare and the other on social science. Next, we develop multimodal Al systems using diverse data
sources. Finally, we proceed to real-world deployment and assessment, exemplified by the application of patient surge
management. b, In self-driving car design, the workflow incorporates deployment constraints from social science, engineering,
sustainability, and finance disciplines. Two key tasks focus on engineering and science considerations, respectively.
Multimodal Al development uses multiple data sources, including remote sensing, weather, and materials data, aiming for
real-world deployment exemplified by automated intersection turning. ¢, In climate change adaptation, the workflow considers
constraints such as mass deployment cost barriers, minimum data sampling density, and prioritisation of vulnerable regions.
Task formulation and multimodal AI development focus on environmental sustainability and financial considerations, reflecting
how task and model development are shaped by discipline-specific needs. Early flood warning serves as an example of
real-world deployment and assessment.

can validate the added value of multimodal AI over unimodal systems. Measuring the accuracy of outbreak prediction or the
effectiveness of intervention informed by multimodal Al can ensure trust and accountability. Further addressing scalability and
privacy compliance can support sustainable and ethical deployment.
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Use case 2: Self-driving car design

Self-driving car design (Fig. 4b) exemplifies a transformative application of multimodal Al, addressing challenges in safety,
efficiency, and sustainability ’>’!. Defining the problem involves determining how multimodal AI can substantially outperform
unimodal approaches for navigating complex environments safely and efficiently. For instance, fusing sensors such as LiDAR
(light detection and ranging), radar and cameras can enhance perception and decision-making in dynamic settings, especially
where a single sensor may fail’>. Beyond perception, multimodal AI can support physical simulations, such as combining text,
images, and videos, to model vehicle dynamics and road interactions’3. In materials design, integrating structural and chemical
data aids in developing lightweight, sustainable materials for vehicle construction ’*. Clearly defining these challenges ensures
multimodal Al solutions are effectively tailored to the demands of autonomous driving.

The deployment of multimodal Al in self-driving car design faces safety, privacy, technical, and economic constraints that
must be addressed for safe and scalable adoption. Privacy concerns arise from integrating multimodal data, such as LiDAR,
cameras and passenger-related information, which increases the potential for data misuse or unauthorised tracking 7. Mitigating
these risks requires robust data anonymisation and adherence to privacy regulations’®. Technical challenges include real-time
data processing in dynamic environments, such as urban intersections or adverse weather. Modality-specific failures, such as
LiDAR disruptions in heavy rain, require fallback mechanisms, such as radar to maintain reliability. Self-driving systems must
achieve high predictive accuracy for collision avoidance and route planning, and operate reliably across regions with varying
regulations and infrastructure. Economic constraints involve balancing the cost of high-resolution sensors with scalability
needs. Meeting sustainability goals requires energy-efficient operation, with trade-offs between sensor performance and power
consumption. Addressing these constraints holistically enables robust and accessible deployment of self-driving technologies.

In self-driving car design, task formulation maps problems and constraints to concrete Al objectives for perception,
navigation, and safety. A key task is developing Al driving systems that integrate multimodal data streams, including LiDAR,
radar, GPS, and cameras, for real-time navigation. These systems must dynamically process inputs to handle traffic, obstacles,
and weather variability. For example, integrating road and weather data can enhance route planning and safety in adverse
conditions””. Another task is predicting material properties and performance to support vehicle design. By fusing structural,
experimental, and supply chain data, multimodal AI can optimise materials for lightweight, durable, and cost-effective vehicles,
aligning with sustainability goals’®. Additional tasks include passenger-focused objectives, such as integrating biosignals and
cabin sensors to enhance comfort and safety. Ensuring privacy compliance remains integral across all tasks.

Developing multimodal Al systems for self-driving cars follows the five-step workflow above, adapted to the demands of
autonomous systems. Data collection involves assembling sensor inputs (e.g. LiDAR, radar, cameras) and materials data to build
comprehensive datasets. Data curation addresses challenges such as synchronising asynchronous sensor inputs and standardising
materials information. Learning can employ fusion strategies to enhance system reliability, while physics-informed neural
networks %% can integrate scientific laws to improve realistic simulations of driving scenarios and materials development.
Evaluation ensures robustness through multi-metric validation across diverse scenarios, including urban environments and
extreme weather conditions. Finally, interpretation in autonomous systems supports real-time explainability and transparency,
enabling stakeholders to trust and audit system decisions. By aligning these steps with the unique requirements of autonomous
systems, multimodal Al can ensure adaptability, safety, and performance.

Real-world deployment of multimodal Al systems for self-driving cars requires live sensor integration, infrastructure
readiness, and operational resilience across diverse environments. Robust in-vehicle computing and inter-vehicle communication
enable reliable and coordinated performance at scale. Assessment validates multimodal AI’s added value through simulations
and multi-centre trials. Testing performance under extreme conditions, such as adverse weather or high-traffic intersections,
ensures reliability. Addressing scalability and privacy compliance further supports ethical, sustainable deployment, advancing

societal trust in self-driving technologies®!.

Use case 3: Climate change adaptation

Climate change adaptation (Fig. 4c) involves forecasting extreme weather, assessing climate risks, and managing resources to
minimise environmental and socio-economic impacts3>~%3. Defining the problem involves assessing whether multimodal Al
can surpass unimodal approaches by integrating diverse data sources for deeper insights and actionable strategies. For example,
multimodal Al can combine satellite imagery, historical climate records, and geospatial data to model weather patterns and
predict extreme events, supporting proactive disaster management°. Integrating socio-economic data with environmental
observations can enable more comprehensive climate risk assessments 3.

Deploying multimodal Al for climate change adaptation must navigate privacy, technical, and economic constraints. Privacy
concerns arise from integrating sensitive data, such as socio-economic records and proprietary satellite imagery. Ensuring
compliance with global and regional privacy regulations and the ethical use of data supports responsible deployment. Technical
challenges include the heterogeneity and sparsity of environmental and socio-economic data. Economic constraints, such as
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the high cost of advanced sensors, necessitate balancing low-cost and low-fidelity data sources with high-cost, high-fidelity
alternatives to maintain accessibility and scalability. By addressing these constraints, multimodal Al can deliver equitable and
sustainable climate solutions in diverse global contexts.

For climate change adaptation, task formulation aligns complex environmental challenges with actionable Al tasks. A
primary task is forecasting extreme weather events by integrating multimodal data such as satellite imagery, historical climate
records, and real-time observations. These forecasts can enable timely interventions to mitigate human and economic losses 88
including early warning systems for floods that integrate geospatial, hydrological, and social data streams3’. Another task
is predicting the socio-economic impacts of severe weather by combining spatial, market, and socio-economic data, guiding
resource allocation and policy decisions®. These tasks align multimodal AI with both technical requirements and societal
priorities, advancing climate resilience and equitable adaptation strategies.

Developing multimodal Al systems for climate change adaptation follows a similar five-step workflow. Data collection
gathers remote sensing data, near-real-time sensor network outputs, historical climate records, and socio-economic metrics,
creating comprehensive datasets for tasks such as extreme weather forecasting and early warning systems. Data curation
addresses challenges such as temporal misalignment and data sparsity by standardising inputs and enriching sparse data through
interpolation or integration of auxiliary sources. Multimodal learning can benefit from advanced models such as Aurora®!,
which fuse satellite imagery and meteorological data to improve atmospheric predictions. Evaluation uses multi-metric
benchmarks to test system performance in diverse scenarios. For example, WeatherBench 2 provides a standard platform for
assessing atmospheric prediction models®?. Interpretation ensures outputs are transparent and actionable for stakeholders,
supporting evidence-based decision-making. By aligning these steps with climate-specific challenges, multimodal Al can
deliver reliable, scalable, and adaptable solutions.

Real-world deployment of multimodal Al for climate change adaptation translates research insights into scalable, operational
systems. Early warning platforms and impact forecasting models must synchronise diverse data streams, deliver real-time
outputs, and integrate with decision-making infrastructures across sectors and regions°>**. Real-time monitoring requires
robust infrastructure to synchronise and process diverse modalities. Deployment challenges include latency, data coverage
gaps, and variable infrastructure capacity across geographies. Assessment involves stress testing and multi-centre validation to
ensure reliability across environmental and socio-economic scenarios. Ethical considerations, such as prioritising vulnerable
communities and ensuring equitable access to data and Al tools, help enable sustainable deployment. By overcoming
deployment challenges, multimodal Al systems can empower policymakers, industries, and communities to respond proactively
to climate challenges, advancing global sustainability efforts.

Outlook

Most existing research on multimodal Al has focused on model-centric development. While attention to data-centric develop-
ment is increasing, unlocking the full potential of multimodal Al and addressing real-world challenges will ultimately require a
shift towards deployment-centric development. This shift will require strategic advancements in data, model, and deployment
methods, as well as concerted efforts to address multimodal-Al-specific challenges, namely modality incompleteness, multi-
modal heterogeneity, cross-modality alignment, modality complementarity, and multimodal privacy risk, through stakeholder
engagement, interdisciplinary collaborations, and community-building. Box 1 presents strategic recommendations to advance
multimodal Al across disciplines under a deployment-centric perspective. These recommendations draw on insights from the
three use cases and the broader cross-disciplinary analysis in the Supplementary Information on multimodal Al beyond these
three use cases, providing actionable guidance for future developments.

Deployment-centric development brings challenges around safety, reliability, interpretability, scalability, and ethics,
particularly as multimodal AI expands in high-stakes applications such as healthcare and sustainability. Addressing these
challenges requires implementing robust human-in-the-loop systems, developing clear standards for safety and transparency,
and prioritising scalable, resource-efficient infrastructure to support increasing demands for data integration, processing, and
storage.

Robust data-centric development underpins deployment-centric progress by ensuring data availability, diversity, and quality.
High-quality multimodal data is often limited, and existing datasets often lack the diversity needed to ensure fairness in
Al systems. Clear benchmarks®>® and globally accessible datasets (Fig. 5) are needed to enhance trust, consistency, and
adaptability across disciplines, facilitating reproducible research. Promoting secure data-sharing frameworks®’, open initiatives
such as the European Life Science Infrastructure for Biological Information®®, and globally accessible multimodal data
platforms will further strengthen AI’s capacity to address diverse global challenges. Knowledge graphs®’ also offer promise for
organising varied data formats to unify and contextualise multimodal inputs across disciplines.

Model-centric development for multimodal Al faces unique challenges in effectively and efficiently fusing diverse modalities.
While foundation models have proven effective for vision and language tasks, expanding them to other modalities and
disciplines ' could substantially lower development barriers. Guidelines and frameworks for selecting relevant modalities,
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comparing multimodal versus unimodal performance, and evaluating the benefits of using many versus few modalities will help
maximise model efficiency and utility. As large language models, multimodal foundation models, and generative Al systems
grow in prominence '%'-1%4, deployment-centric design plays an increasingly important role in guiding architectural choices,
managing inference-time costs, and aligning with data and domain-specific constraints '°>1%_ These models also increasingly
rely on synthetic or weakly labelled data, or cross-modal supervision to reduce annotation costs **!7-111 ' reinforcing the need
for deployment-aware data strategies.

Stakeholder engagement and interdisciplinary collaboration are both crucial for progress, as illustrated across the three
use cases. Integrating stakeholder input ensures contextual relevance and trust. Standardising data practices, fostering cross-
disciplinary knowledge exchange, and developing shared platforms help bridge disciplinary gaps and enable multimodal Al to
address complex societal challenges more effectively and holistically 3637,

Building a dynamic and inclusive multimodal Al community fosters innovation and drives solutions to complex real-world
challenges. Collaborative efforts, through regular workshops, forums, and interdisciplinary research initiatives, facilitate
knowledge exchange and inspire collective problem-solving across disciplines. Engaging researchers, practitioners, and
stakeholders from diverse backgrounds, particularly early-career researchers and underrepresented groups, will not only enrich
the Al ecosystem but also broaden the perspectives and expertise shaping it, making it more ‘multimodal’. Community-driven
initiatives ''>!13 including comprehensive surveys or perspective papers, provide insights that guide future developments,
ensuring multimodal Al advances in responsible, impactful directions.

Ultimately, the success of multimodal Al lies in its deployment. By embracing a deployment-centric mindset, the community
can turn research breakthroughs into real-world impact across disciplines.
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Box 1 Strategic recommendations for advancing multimodal AI across disciplines

Deployment-centric development

o Safety, reliability, and interpretability
Challenge: Ensuring reliable, safe deployment across varied
conditions and building user trust to facilitate understanding
and broader adoption.

Recommendation: Translate complex data and outputs into ac-
cessible formats (images, text, or speech); incorporate domain-
specific knowledge; implement human-in-the-loop systems for
verification and validation; conduct rigorous usability testing;
develop standards for safety, reliability, and interpretability cri-

teria; and enforce such criteria in research and peer review 2.

Scalability and resource efficiency

Challenge: Scaling multimodal Al to handle vast data vol-
umes while optimising resource consumption, maintaining
system availability, and ensuring uninterrupted communication
between system components.

Recommendation: Innovate scalable and resource-efficient
multimodal Al solutions; promote collaboration between Al
developers and hardware providers for sustainable resource use;
ensure stable system availability and seamless inter-component
communication; and develop cloud-based solutions and edge
computing to power scalability.

e Ethical compliance and user preparedness

Challenge: Addressing privacy, consent, and bias in applica-
tions with profound societal impacts.

Recommendation: Develop clear ethical guidelines; include
end-users in the design; involve human oversight and create
user feedback loops for continuous solution refinement; and
provide comprehensive training for reliable deployment.

Data-centric development

e Data scarcity and access
Challenge: Limited availability of high-quality multimodal
datasets spanning a comprehensive range of modalities, compli-
cated further by privacy and ethical constraints and additional
heterogeneity when data sharing spans secure data environ-
ments, organisations, and regions.
Recommendation: Promote open data initiatives, such
as anonymised data-sharing programmes; invest in cross-
discipline efforts for data collection and curation to improve
availability; build data infrastructures that ensure secure,
privacy-compliant, and ethics-compliant access across domains
and regions; establish guidelines to standardise formats and
annotations; and develop advanced tools such as knowledge
graphs to integrate structured and unstructured data sources for
improved contextual understanding, reasoning, and interoper-
ability.

* Balanced data representation
Challenge: Bias due to the limited availability of data repre-
senting underrepresented or less-studied categories (e.g. popu-
lations and regions).
Recommendation: Diversity dataset development to enhance
model generalisability and reduce bias; and build and enhance
multimodal data platforms (e.g. UK Biobank !4, MIMIC 115,
Materials Project!'®, ERA5 ') to improve global data acces-
sibility and quality.

Stakeholder engagement and interdisciplinary collaboration

e Stakeholder inclusion and alignment

Challenge: Limited involvement of stakeholders (e.g. domain
experts, end-users, and regulators) during early-stage planning
can result in solutions that are technically sound but poorly
aligned with deployment contexts.

Recommendation: Integrate stakeholder input across the Al
lifecycle through co-design, participatory planning, and regu-
latory consultation to ensure contextual relevance, trust, and
successful real-world adoption.

* Cross-disciplinary standards and communication
Challenge: Discrepancies in multimodal data standards and
communication barriers across disciplines.
Recommendation: Promote cross-disciplinary standards for
multimodal data integration; and organise interdisciplinary
exchange events to align goals, foster collaboration, and build
a thriving ecosystem.

e [Intellectual property (IP) and workflow adaptation

Challenge: IP concerns and resistance to change established
workflows.

Recommendation: Develop adaptive strategies and open col-
laborative platforms to facilitate cross-disciplinary projects.

Model-centric development

* Multimodal fusion and modality selection

Challenge: Managing diverse properties and patterns across
modalities, including avoiding unnecessary modality redun-
dancy, to maintain integrity and utility while enhancing inte-
gration.

Recommendation: Assess the value of additional modali-
ties by comparing unimodal, few-modality, and full-modality
models; enhance semantic modality alignment, e.g. via large
language models; develop guidelines for optimal modality se-
lection aligned with deployment context and cost-performance
constraints; and address other multimodal-Al-specific mod-
elling challenges (Fig. 3b).

e Foundation models (FMs)

Challenge: Developing FMs beyond vision and language re-
quires substantial resources, limiting accessibility across disci-
plines.

Recommendation: Develop and expand multimodal FMs be-
yond vision and language as critical reusable infrastructure to
lower barriers; invest in downstream research and advance
methods to reduce resource costs, e.g. using synthetic or
weakly labelled data to ease training demands**; and pair
underrepresented modalities (e.g. graphs) with more inter-
pretable ones (e.g. language) to improve usability and broaden
accessibility for non-expert stakeholders.
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Datasets Year of release  Data origin Primary data modalities Access Scale Example applications

TCGA 2008 us images, texts, omics (o) ~11,000 individuals Discovery of cancer genes and mutations
MIMIC-IV 2023 us texts, numerical data, time series (o] ~231,000 individuals Prediction of mortality in lung cancer patients
Trafficking-10k 2017 uUs, CA images, texts (3] ~10,000 advertisements Human trafficking detection
*IGDD 2022 us texts (chat histories, surveys) (M ~26,700 conversations Detection of adolescent online risks
nuScenes 2019 us, SG images, radar data, LIDAR data (@] ~1,400,000 images Prediction of vehicle traffic trajectories
DAIR-V2X 2021 CN images, LiDAR data (@) ~71,300 LiDAR and camera frames 3D object detection

Materials project 2013 Worldwide images, texts, graphs (o) ~160,000 materials Discovery of new inorganic crystals
MathVista 2024 Worldwide images, texts, symbolic data ~6,000 mathematical problems Mathematical problem-solving

. . . images, timestamps, coordinates, - . . "

iNaturalist 2017 Worldwide species data (o] 118,000,000 observations Species recognition

5 spatiotemporal data " a 5 . - "

1 = o

ERA5 2018 Worldwide (temperature, humidity, wind) (0] 745,000 latitude-longitude grids Reconstruction of historical climate extremes
Monetary ) . . . . - .
o 2022 Worldwide videos, texts, time series (o} ~340 video conference calls Prediction of gold price movements
il;i::(z;’-\-shares 2022 CN texts, time series, graphs (@] ~5,130,000 news articles Forecasting of stock price movements

Healthcare Social science Engineering Science Sustainability Finance O Open access © Restricted access

46,47

*Subtypes of texts are considered as multiple modalities.  'Different 'views' of spatiotemporal data are considered as different modalities

Figure 5. Examples of multimodal benchmark datasets. We selected two illustrative examples for each of the six
disciplines to showcase diverse multimodal data and provide a starting point for multimodal AI exploration. For each dataset,
we report six key attributes: year of release, data origin, data modalities, accessibility, scale of the primary modalities, and
example applications. In each discipline, datasets are listed in ascending order by year of release. For the healthcare, science,
and finance disciplines, we selected one small-scale dataset for quick experimentation and one larger-scale dataset for
comprehensive exploration. The datasets include: TCGA (The Cancer Genome Atlas)''8; MIMIC-IV (The Medical
Information Mart for Intensive Care IV database) ''”; Trafficking-10k (human trafficking advertisement dataset) '*°; IGDD
project (Instagram data donation project) '?!; nuScenes (autonomous driving scene dataset) '>?; DAIR-V2X (real-scenarios
vehicle to everything dataset) '>3; Materials project (material property dataset) ' '°; MathVista (mathematical reasoning
dataset) '?%; iNaturalist (citizen science platform for biodiversity data) !>3; ERAS5 (European Centre for Medium-Range Weather
Forecasts Reanalysis v5) ''7; Monetary policy calls (monetary policy call dataset) '2°; China A-shares market (dataset of public
companies listed in China A-shares market) '>’. Modality definitions can vary. IGDD and ERAS are not strictly multimodal in
the traditional sense, but we treat them as such under the broader definition presented in this Perspective. The IGDD dataset
contains only text data, but we consider its subtypes (chat histories and surveys) as distinct text modalities. Similarly, ERAS
comprises spatiotemporal variables such as temperature, humidity, and wind, which we treat as complementary ‘views’ offering
distinct information streams for climate modelling, as adopted in prior work 128:129,

Data availability

Source data for Fig. 1, Fig. 2, and Supplementary Fig. 1 are available with this paper and at https://github.com/
multimodalAI/multimodal-ai-landscape, where they will be updated annually.
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Supplementary information
Towards deployment-centric multimodal Al beyond vision and language

S1. Multimodal Al beyond the three use cases

This section highlights discipline-specific advancements and challenges in multimodal Al that extend beyond the three primary
use cases of pandemic response, self-driving car design, and climate change adaptation. By exploring advancements and
challenges in healthcare, social science, engineering, science, sustainability, and finance, we showcase the versatility of
multimodal Al across diverse domains. These insights underline the importance of interdisciplinary collaboration in addressing
complex global challenges while paving the way for future advancements.

Healthcare

Beyond its critical role in pandemic response, multimodal AI holds transformative potential in healthcare by advancing
diagnostics, personalising treatment, and improving patient care. By integrating diverse data sources such as electronic health
records (EHRs), imaging, biosignals, and multiomics, multimodal Al systems can provide comprehensive insights into patient
health!. For example, integrating wearable biosignals with EHRs can enable continuous monitoring, supporting the early
detection of chronic conditions such as arrhythmias and heart failure?. In oncology, the fusion of imaging modalities and
multiomics data can enhance cancer diagnosis and treatment planning?, offering a more nuanced understanding of disease
progression. Similarly, in neurology, combining imaging, sensor data, and clinical observations can facilitate the early detection
of neurodegenerative diseases*.

Wider adoption of multimodal Al is hindered by challenges such as privacy concerns, the heterogeneity of healthcare
data, and the scarcity of high-quality datasets. Addressing these challenges requires standardised methodologies, privacy-
preserving techniques, and interdisciplinary collaborations. Building datasets that reflect the complexities of patient pathways
and addressing bottlenecks in data integration are crucial steps towards integrating multimodal Al into routine clinical
practice. Techniques such as federated learning, differential privacy, and privacy-preserving generative Al for synthetic
multimodal data generation can help mitigate privacy risks, enabling the development of robust and trustworthy Al systems.
Integrating multimodal data, such as multiomics>, into routine clinical workflows will require rigorous validation and improved
standardisation. The limited use of randomised controlled trials (RCTs) to validate Al in clinical settings® has prompted the
development of community-based guidelines’ to improve reliability and transparency.

Social science

In social science, multimodal Al can drive innovations in behavioural analysis, public policy decision-making, and societal
impact assessments. Beyond its applications in pandemic response, multimodal Al can help monitor societal behaviours and
safeguard vulnerable populations, such as protecting children online, by integrating text, image and metadata from social
media®. Multimodal AI systems can also help detect online criminal activity® and analyse societal trends to inform public
policy '°. Additionally, acoustic data can add depth to communication analysis by capturing emotional nuances''. Combining
economic transaction data with geospatial information can reveal trends in societal decision-making '>.

Persistent challenges include restricted access to sensitive data such as social media or mental health records, privacy
concerns, and the complexity of annotating subjective human behaviours that differ across cultures. Moreover, specialised
evaluation metrics are needed to assess the effectiveness of these systems in capturing nuanced social trends. To advance
multimodal Al in social science, efforts should focus on expanding data diversity, addressing privacy challenges, developing
robust annotation and evaluation methods, and fostering robust ethical frameworks and cross-disciplinary expertise. These
efforts will ensure that the insights generated are fair, transparent, and aligned with societal goals.

Engineering

Beyond self-driving cars, multimodal Al supports advanced autonomous systems, including robotics, precision manufacturing,
and medical applications. Robots equipped with multimodal Al can integrate vision, haptic feedback, and sensor data to
perform delicate tasks, such as in surgical procedures '* or complex manipulation '#, where precision is paramount. Additionally,
multimodal AT can enable seamless human-robot interaction by integrating speech, vision, and environmental understanding '°.
Speech technology and natural language processing can enhance user interfaces, improving interaction while minimising
distractions for operators in robotic applications.

Despite the potential of multimodal Al, challenges remain in achieving effective data fusion, system interoperability, and
robust model generalisation. Furthermore, the lack of diverse datasets, particularly for edge cases or atypical deployment
environments, limits the scalability of these systems. Establishing open platforms for sharing data and toolkits can accelerate
innovation and ensure interoperability across engineering applications. Integrating insights from legal studies and social
sciences can enhance compliance with evolving regulations and improve user-centred design, boosting societal acceptance of
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autonomous systems. Environmental science can contribute to the development of energy-efficient and sustainable designs,
particularly for robotics and manufacturing processes. Addressing these challenges requires interdisciplinary collaborations to
improve data diversity and develop scalable, interoperable systems.

Science

Multimodal Al is transforming scientific discovery by integrating diverse data sources to model complex phenomena. Beyond
its role in vehicle dynamics simulation, as seen in self-driving car design, multimodal Al is accelerating advancements in
materials science. For instance, integrating experimental and computational data enables the development of improved batteries,
fuel cells and supercapacitors'®. We can incorporate domain knowledge via techniques such as physics-informed neural
networks '7!® and neurosymbolic AI'® to improve the accuracy of scientific simulations and enhance model trustworthiness
and predictive power across applications 2-%!.

Remaining challenges of multimodal Al for scientific discovery lie in integrating heterogeneous data, ranging from atomic-
level properties to macroscopic observations, incorporating synthetic data, and addressing the scarcity of high-fidelity datasets
amidst an abundance of low-fidelity data. Advancing scientific discovery with multimodal Al requires comprehensive datasets,
rigorous data standards, and interdisciplinary research environments. These efforts will ensure that models are aligned with
real-world dynamics, unlocking new possibilities in materials science, physics, and beyond >%%3.

Sustainability

Multimodal Al can help address sustainability challenges, such as biodiversity conservation and environmental monitoring
Beyond its applications in climate change adaptation, multimodal Al can combine geospatial data, bioacoustic recordings, and
environmental DNA to track species and ecosystems?®, supporting conservation planning and enhancing understanding of
ecosystem dynamics. In terrestrial environments, ecoacoustic and LiDAR data can be combined to model biodiversity variation
across complex landscapes?’. In marine settings, integrating remote sensing with in situ sensors enables long-term monitoring
of ecosystem health and debris pathways 8.

Geographic imbalances in data availability, particularly in underrepresented regions, limit model fairness and accuracy.
Marine environments pose unique sensing challenges>’, including high turbidity and limited optical visibility, which limit
the effectiveness of conventional imaging approaches. This necessitates innovative solutions such as autonomous underwater
vehicles and acoustic sensors to access deeper waters, remote habitats, and ecologically sensitive regions>". Future advancements
will depend on building diverse, scalable datasets, de-biasing models, and leveraging digital twins>! for real-time monitoring and
actionable insights. By addressing these challenges, multimodal Al can make meaningful contributions to global sustainability
efforts 32,

24,25

Finance

Multimodal Al can advance finance by integrating financial, environmental, and social data to improve risk assessments, market
forecasting, and sustainable investment strategies. In particular, it can enhance ESG (environmental, social, and governance)
investing by helping stakeholders make more responsible financial decisions 3. Integrating financial data and environmental
data, such as satellite imagery, can enable a more comprehensive approach to risk management and resilience>*. Additionally,
graph-based multimodal models can monitor systemic risks by capturing complex relationships within financial ecosystems >3,
supporting the early detection of market disruptions. Traditional financial models often struggle to respond to economic shocks
such as natural disasters. Integrating real-time, multimodal data can improve model adaptability and accuracy under volatile
conditions, ultimately enhancing financial stability 3.

Challenges such as data privacy, regulatory complexity, and the need for explainability continue to be substantial barriers.
Addressing these issues requires comprehensive multimodal datasets and transparent evaluation frameworks to build trust and
ensure compliance with regulations. Interdisciplinary collaborations can help refine multimodal Al systems in the finance
sector. Environmental science informs environmental risk assessments, enabling more resilient investment strategies and credit
evaluations in the face of severe adverse events. Social sciences provide socio-political insights that promote transparency,
equity, and ethical compliance, ensuring that financial practices align with societal goals. These collaborations align financial
systems with ethical and sustainable practices while equipping stakeholders to make resilient decisions in an evolving financial
landscape.

S2. Methods and extended analysis of the multimodal Al landscape

All arXiv preprints3® from 2019 to 2024 were analysed to examine the latest trends in multimodal Al research. ArXiv was
chosen for its open access, broad adoption within the AI community, and ability to reflect emerging developments more rapidly
than peer-reviewed platforms. Raw data were extracted from the publicly available arXiv metadata dump?’ hosted on Kaggle

CEINT3 9% ¢

and filtered using queries for six general Al terms “AI”, “A.1.”, “artificial intelligence”, “machine learning”, “deep learning”,
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Supplementary Figure 1. Landscape of multimodal AI research (2019-2024). a, Yearly growth in the number of
multimodal Al preprints on arXiv (bars) and their proportion among all Al preprints (line), both showing an accelerating
upward trend since 2022, reflecting the field’s rapid expansion, likely driven by the large language model (LLM) revolution.
b, Distribution of multimodal Al preprints by the number of combined modalities. The inset line plot shows the growth rate of
each combination. While pairwise combinations remain the most prevalent, combinations involving more modalities are
steadily gaining attention, reflecting increasing interest in richer data fusion for tasks requiring diverse information sources.
¢, Detailed breakdown of pairwise, triple, and quadruple modality combinations, highlighting trends across four modality
clusters: vision and language, vision and other(s), language and other(s), and others. Combinations involving vision and
language remain dominant. In particular, the number of pairwise combinations involving language has increased substantially
from 2023 to 2024, likely due to the LLM-driven surge in multimodal research.

and “neural network™ appearing in either the title or the abstract to identify relevant preprints. The list was further refined to
identify multimodal Al preprints by searching for “multimodal” and “multi-modal”, and specific modalities were identified
through targeted queries: “vision”, “image”, “video”, and “visual” for vision; “text”, “language”, and “textual” for language;
and similar sets of terms for the other six modalities: time series, graph, audio, spatial, sensor, and tabular data (see Data
availability). As these queries are inherently approximate, conclusions are confined to overall trends supported by strong
evidence rather than specific numerical details.

Supplementary Figure 1 provides more detailed analyses of the multimodal Al landscape, including statistics on triple and

quadruple modality combinations.
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