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Abstract

Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi’s sar-
coma (KS) and several lymphoproliferative diseases. As with all herpesviruses, KSHV
replicates in a biphasic manner, with the establishment of a latent, persistent infection from
which reactivation occurs, resulting in the completion of the temporal lytic replication
cycle and production of infectious virions. Herein, we discuss the impact of KSHV lytic
replication on the host cell nucleus and nuclear-related pathways. We highlight the dra-
matic remodelling of the nuclear architecture driven by the formation of viral replication
and transcription centres (VRTCs), and the implications for sub-nuclear organelles, and
how pathways involved in DNA damage, ribosomal biogenesis and epitranscriptomic
regulation are disrupted or modified during KSHV replication. These changes foster an
environment favourable for KSHYV replication and may provide novel targets and strategies
for therapeutic intervention.
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1. Introduction

Kaposi’s sarcoma-associated herpesvirus (KSHV) is associated with the development
of Kaposi’s sarcoma (KS) and several other lymphoproliferative diseases, including primary
effusion lymphoma (PEL) and some forms of multicentric Castleman’s disease [1]. Like
all herpesviruses, KSHV exhibits a biphasic life cycle consisting of latent persistence and
lytic replication [2]. Latency is established in B cells and in the tumour setting, where
viral gene expression is limited to the latency-associated nuclear antigen (LANA), viral
FLICE inhibitory protein, viral cyclin, kaposins and several virally encoded miRNAs [3-5].
Upon reactivation through certain stimuli such as cellular stress, KSHV enters the lytic
replication phase, leading to the highly orchestrated and temporal expression of more
than 80 viral proteins that are sufficient to produce infectious virions [6,7]. Herein, we
highlight the impact KSHV lytic replication has upon nuclear architecture remodelling
and the utilisation of multiple nuclear-related host pathways and molecular machinery to
enhance virus replication.
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2. What Impact Does KSHV Lytic Replication Have on the
Nuclear Architecture?

2.1. Formation of KSHV Replication Centres

KSHV commandeers the nuclear space for its site of replication by assembling viral
replication and transcription centres (vRTCs), which enable viral transcription, DNA repli-
cation and capsid assembly to all occur in a specialised environment [8]. During the early
stages of KSHYV lytic replication, viral transcription of early genes and viral DNA replica-
tion take place in small RTCs that generally concentrate at the nuclear periphery [9-11].
As infection progresses, the nuclear architecture undergoes a striking re-organisation to
facilitate viral replication (Figure 1A,B). Small RTCs coalesce into single large globular or
kidney-shaped structures that ultimately fill most of the nuclear space, compressing and
marginalising the cellular chromatin to the nuclear periphery [8]. Mass spectrometry of
VRTCs shows an enrichment of processing, splicing and DNA replication proteins from
the host cell, as well as various heatshock proteins [8]. Notably, depletion or inhibition of
heatshock protein 70 results in reduced vRTC formation, suggesting a role for the chaperone
in scaffolding replication centres and prompting the possibility of repurposing heatshock
protein inhibitor compounds as antivirals targeting this process [8].

There are 6 core viral proteins required for lytic DNA replication. These include ORF6
(single-stranded DNA binding protein), ORF9 (DNA polymerase), ORF40/1 (primase-
associated factor), ORF44 (helicase), ORF56 (primase) and ORF59 (DNA processivity fac-
tor) [12]. Surprisingly, even in the absence of a lytic cycle replication origin and any known
initiator or origin binding protein, the protein products of these six KSHV core replication
genes can cooperate when overexpressed in mammalian cells to form large globular pseudo-
replication compartments, pseudo-RCs, which exclude cellular DNA [13]. As mentioned
above, vVRTCs perform multiple distinct roles during the lytic replication cycle, namely
viral transcription, DNA replication, genome packaging and capsid assembly. How these
membraneless virus-induced structures perform these varied tasks is unknown, and it may
be the case that these distinct functions occur in different areas of the vRTCs, leading to
some form of compartmentalisation. However, the mechanism by which this may occur
is unknown. Recent advances in the focus ion beam (FIB) milling in combination with
cryo-electron tomography imaging have yielded a new understanding with regard to the
formation and function of cytosolic replication centres produced by RNA viruses [14,15].
The utilisation of such techniques will prove a challenge given the dense, crowded nature
of the nuclear landscape, yet remains an alluring prospect for pursuit.

2.2. How Does vRTC Formation Affect Sub-Nuclear Organelles?

There is emerging evidence that, alongside the dramatic compression of host chro-
matin, KSHV manipulates an array of other structures present within the nucleus. As such,
KSHYV provides a model of how membrane-less sub-nuclear organelles can be manipu-
lated through the targeting of multiple structures during replication. These sub-nuclear
organelles can be enlarged in size and redistributed as the vRTCs develop, presumably
supporting or suppressing viral replication. Although their manipulation and potential
roles, whether pro- or antiviral, remain to be fully understood. This therefore provides an
intriguing model to understand the endogenous function of sub-nuclear organelles and
how viruses can manipulate their function during infection.
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Figure 1. Dramatic effect on nuclear structure induced by KSHYV lytic replication. (A) Schematic
representation of the establishment of viral replication transcription centres (vRTCs) during lytic
replication and how these dominate the nuclear space, compressing host chromatin to the periphery.
Various sub-nuclear organelles such as nuclear speckles (NS) and virally modified paraspeckles
(v-mPS) enlarge and closely associate with vRTCs during replication, while others, such as the
nucleolus, are disrupted entirely. vRTCs contain both viral and host proteins to perform the three
functions required: transcription of viral genes, DNA replication of the viral genome and assembly of
virion cores. Proteins associated with or within vRTCs are annotated and split across these distinct
processes and drawn from multiple mass-spectrometry-based analyses [8]. (B) Immunofluorescence
of TREx-BCBL1-RTA cells during both latent and lytic (24 h post reactivation) lifecycles. vRTCs
are highlighted with RNA pol II (green), and the compressed chromatin is highlighted by DAPI
(blue), with methods performed as previously described, with KSHV reactivation was induced via
the addition of doxycycline [16]. The schematic was created in BioRender. Whitehouse, A. (2025)
https:/ /BioRender.com/7yzgdlo (accessed on 1 October 2025).

2.2.1. Nuclear Speckles and Paraspeckles

The terms nuclear speckles (NS) and paraspeckles refer to distinct sub-nuclear struc-
tures found within the nucleus of eukaryotic cells, with different compositions and biologi-
cal roles. Nuclear speckles are rich in pre-mRNA splicing factors such as serine-/argine-rich
proteins and serve as storage and modification sites for splicing factors, as well as regulat-
ing gene expression by modulating the availability of splicing machinery [17]. In contrast,
paraspeckles are built around the architectural RNA (ArcRNA), NEAT1, and contain var-
ious core paraspeckles proteins such as NONO and SFPQ [18]. Their role is yet to be
fully determined, but they are thought to regulate gene expression under stress, retaining
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certain RNAs and preventing their translation. Other roles in viral defence, regulating
differentiation and miRNA processing have also been suggested [19].

Recent findings suggest that nearly one-third of KSHV genes express spliced tran-
scripts, of which many undergo alternative splicing [20]. It would therefore appear nec-
essary for KSHV to manipulate multiple sub-nuclear organelles to potentially support
the production and modification of these transcripts. During lytic replication, NS have
a dynamic relationship with vRTCs, increasing in size during viral replication, peaking
to a maximum of 27 um? in volume compared to 4 um? in control untreated cells, while
maintaining a peripheral location around the site of viral DNA replication (Figure 2A) [21].
During KSHYV lytic replication, the components of NS are modified, splicing factors such
as SRSF2 are maintained, whilst other components, such as the IncRNA MALAT1, are
excluded, both of which are classical markers of canonical NS [21]. Recent evidence has
suggested a role for the viral kaposin transcript in the remodelling and seeding of NS. Upon
transcription, NS components are recruited to the viral transcript, suggesting that kaposin
may act as an Architectural RNA (ArcRNA), seeding NS proximal to viral DNA, helping to
optimise KSHV gene expression across all phases of infection [22]. This is a novel function
of a viral RNA, which likely warrants further exploration to identify if other transcripts
provide similar functions for other condensate structures during infection.

Nuclear speckles:

A DAPI

h .

Lytic

Virally-modified paraspeckles:

DAPI Merge

Latent

Lytic

Figure 2. Immunofluorescence of latent and lytic TREx-BCBL1-RTA cells highlighting (A) nuclear
speckles (SRSF2, green) and (B) virally modified paraspeckles (SFPQ, red). DAPI is stained blue.
Cells were reactivated via doxycycline as previously described [16]. Similar results have also been
observed in iSLK cells during KSHYV lytic replication [22].

Induction of lytic replication results in a dramatic modification of paraspeckles; these
sub-nuclear organelles relocalise to the periphery of vRTCs. Notably, the numbers of
paraspeckles decrease but significantly increases in size from an average of ~700nm to
~1800 nm, with the largest up to 3000 nm in diameter, which is 10x larger than canonical
paraspeckles [16] (Figure 2B). These virus-modified structures retain condensate charac-
teristics; however, virally modified PS (v-mPS) contain both viral proteins and transcripts,
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as well as an altered set of host factors compared to canonical paraspeckles [16]. Recent
findings suggest that v-mPS may function as hubs for both viral RNA processing and
host circRNA biogenesis, which in turn may regulate ncRNA regulatory networks during
infection [16,23]. This is supported by depletion of core paraspeckle proteins, such as
SFPQ and NONO. These proteins are required for v-mPS formation, and their depletion
had a corresponding effect on inhibiting virus RNA processing and ultimately KSHV lytic
replication and infectious virion production [16].

Therefore, manipulation of host cell splicing hubs appears to be an important require-
ment for KSHYV replication, as many spliced transcripts from its genome were found to
be localised to NS and v-mPS during infection [16,21]. In addition to the contribution to
alternative splicing of viral genes, a secondary effect of manipulating these structures is a
resulting increase in the genetic instability of host genes. KSHV lytic replication leads to
an increase in R-loop formation and the relocalisation of SFPQ and other factors involved
in DNA damage responses may be a factor in R-loop formation or a reduction in their
resolution, indirectly playing a role in gamma herpesvirus-mediated oncogenesis [16,24].

2.2.2. PML Nuclear Bodies

Promyelocytic leukaemia-nuclear bodies (PML-NBs) are a sub-nuclear organelle which
restricts replication across a wide range of viral families [25]. The intrinsic and innate im-
mune functions of PML-NBs and their core proteins are well defined for nuclear replicating
viruses such as herpesviruses, papilloviruses, polyomaviruses, and adenoviruses [26], but
they also play roles in the suppression of RNA virus replication, such as Zika, Dengue and
Hepatitis C viruses [27]. PML-NBs function by multiple mechanisms, sequestering viral
proteins, sumoylating proteins to alter stability and function, promoting apoptosis and
autophagy and enhancing interferon signalling. Not surprisingly, both DNA and RNA
viruses have evolved strategies to counteract these defences [28]. Intriguingly, PML-NBs
appear to have the ability to inhibit herpesvirus replication across multiple phases of the
viral lifecycle from initial infection to regulating gene expression and ultimately nuclear
egress [29-31]. Concurrently, herpesviruses have evolved a multifaceted response to com-
bat PML-NB restriction through the disruption and degradation of these structures. For
example, KSHV protein vIRF3 has been shown to target PML itself for degradation through
sumoylation [30]. Moreover, the KSHV ORF75 protein specifically leads to a redistribution
of the canonical PML-NB component, ATRX, enhancing virus replication [32]. A novel
antiviral role for PML-bodies recently observed during human cytomegalovirus (HCMV
infection), using correlative light and transmission electron microscopy (CLEM), is the
restriction of viral capsids by cage structures formed by PML-NBs [31]. While entrapment
of viral capsids has been observed for other herpesviruses, Herpes Simplex Virus-1 (HSV-1)
and Varicella Zoster Virus (VZV), whether or not this is a mechanical function enacted by
the cellular defences against KSHV infection remains to be seen. However, this example
serves to highlight the wide array of functions that a nuclear body can perform in an
attempt to limit viral replication [31,33].

2.2.3. Stress Granule Modulation

Modulation of condensate structures by KSHV, while predominantly nuclear-focused,
also extends into the cytoplasm. Stress granules (SG) function as part of the host innate
immune response to viral infection, acting as dynamic storage facilities for nRNA during
times of cellular stress [34]. KSHV ORF57 and SOX proteins inhibit the formation of SGs
during KSHYV infection. ORF57 is a multifunctional protein, capable of nucleocytoplasmic
shuttling and regulating multiple aspects of viral RNA processing. It also disrupts the
interaction between protein kinase R (PKR) and PKR-activating protein, preventing the
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induction of SG formation through phosphorylation of elongation initiation factor (elF)
20 [35,36]. Moreover, SOX-mediated endonuclease activity also inhibits the formation of
SGs through the degradation of RNA in a blunt force manner [36]. This dual attack on
the induction of SGs during replication highlights the redundancy often seen with KSHV-
mediated dismantling of the cellular antiviral immune response. Interestingly, emerging
evidence suggests the formation of PS is related to that of SGs, suggesting a link between
the regulation of nuclear and cytosolic condensate structures [37]. The modulation of both
SG and PS by KSHV may therefore be a more interrelated process than previously imagined
and points to a relationship which likely requires further investigation to fully establish.

2.2.4. Nucleolus

KSHV-mediated changes in nuclear architecture also lead to the disruption of the
largest sub-nuclear organelle, the nucleolus [38]. Ordinarily, nucleolar structure is defined
in three compartments, the fibrillar centre (FC), dense fibrillar component (DFC) and
granular component (GC), with each having different concentrations of specific proteins
and other components aiding in the sequential formation of ribosomes [39]. Importantly,
the correct localisation of nucleolar factors is essential for healthy cell homeostasis, whereas
nucleolar stress leads to the redistribution of factors, such as nucleoplasmic B23 [40].
Notably, maintained nucleolus stress leads to nucleolar shut-off, inhibited rRNA processing
and eventually p53-mediated apoptosis [41].

During KSHYV lytic replication, the nucleolus undergoes drastic morphological
changes, with redistribution of many core nucleolar proteins to the nucleoplasm
(Figure 3) [42]. Whilst this is a hallmark of nucleolar stress, nucleolus shutdown fails
to occur, with little difference in rRNA processing and levels observed [42]. This is probably
due to KSHV-mediated manipulation of ribosomal biogenesis, producing specialised ribo-
somes that preferentially translate KSHV encoded transcripts (An area further discussed
below) [43,44]. Therefore, it is likely beneficial to KSHV to maintain nucleoli functionality,
although how it circumvents the stress pathways is unknown. Notably, several KSHV-
encoded proteins can localise to the nucleolus, encoded by ORF57, ORF11 and ORF20,
which may play a role in regulating nucleolar stress [42,45,46].

Nucleolus:

DAPI Merge

Figure 3. Immunofluorescence of latent and lytic TREx-BCBL1-RTA cells, highlighting the nucleolus
utilising B23 (red) and DAPI (blue), with IF performed as previously described, cells were reactivated
with doxycycline [47]. Similar dysregulation is also observed in iSLK cells during KSHV lytic
replication [42].
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3. What Impact Does KSHV Lytic Replication Have on Nuclear-
Related Pathways?

3.1. Ribosomal Biogenesis and Translation Control

Ribosomes are large macromolecular machines, comprising rRNA and over 80 com-
plexed ribosomal proteins, tasked with the translation of mRNA transcripts into polypep-
tide chains for downstream folding and production of mature proteins. Like all viruses,
KSHYV lacks its own translational machinery and therefore co-opts cellular ribosomes for
viral protein production. During latency, KSHV is predominantly translationally dormant,
only expressing a few latency-associated proteins; however, upon induction of the lytic
replication phase, rapid viral ORF translation places a high demand on host cell ribosomes.
Quantitative proteomic analysis during KSHYV lytic replication showed a broad reduction in
host protein levels [48], which may be linked to host shut-off-related mechanisms, although
this has not been specifically shown. Host cell shutoff-related mechanisms are thought to
allow the virus to redirect cellular machinery to prioritise viral gene expression and protein
synthesis. For example, the KSHV-encoded host cell shut-off protein, SOX, degrades ~80%
of host mRNA transcripts [49] and the KSHV ORF57 protein sequesters cellular RNA
processing factors to viral mRNAs, enhancing their stability and nuclear export [50].

KSHYV also modifies aspects of the translational pathway to selectively upregulate
viral protein production. Translation is split into four main stages: initiation, elongation,
termination and recycling. Like many viruses, current research indicates that KSHV pre-
dominantly targets translation initiation to regulate cellular and viral protein output to
favour virus replication through multiple mechanisms (summarised in Figure 4). The
translation initiation factor eIF4E binds to the 5" cap structure of mRNA transcripts as part
of the elF4F complex, which recruits the 40S ribosomal subunit for translation initiation.
4E-BP1 is a translational repressor sequestering elF4E, preventing elF4F complex forma-
tion [51]. KSHYV lytic replication mediates the inactivation of 4E-BP1, freeing up elF4E to
increase translational output (Figure 4) [52]. The immediate-early viral protein encoded
by ORF45 alters several cellular processes, including translation initiation, through the
activation of signalling pathways. Specifically, ORF45 activates the ERK/RSK pathway by
interacting directly with p90 ribosomal s6 kinase (RSK) and stimulating its kinetic activ-
ity [53]. Phosphorylation of elF4B via the ORF45/RSK axis leads to enhanced formation
of the pre-initiation complex and increased translation [54]. Moreover, RSK1 is sumoy-
lated by ORF45 at Lys'!?, Lys®® and Lys*?!, required for the recruitment and subsequent
phosphorylation of elF4B, leading to enhanced translation initiation and thus an increased
translation of viral mRNA (Figure 4) [54,55]. The nucleocytoplasmic shuttling protein
ORF57 interacts with both the 40S ribosomal subunit and the translation enhancement
factor PYM. ORF57 directly associates with viral intronless mRNAs mediating the recruit-
ment of the preinitiation complex via PYM, to enhance translation [46]. Moreover, ORF57
co-sediments with actively translating polysomes enriched with poly(A)binding protein
1 (PAPB1) and a decreased association of Ago2, a core component of the RNA-induced
silencing complex (RISC). It is likely that Ago2 reduces translational output by degrading
the mRNA associated with polysomes; therefore, by preventing this association, ORF57 is
enhancing protein translation and stability (Figure 4) [56]. Additionally, an intriguing mech-
anism of translational control has been linked to KSHV-upregulation and relocalisation of
HIF2«x to the endoplasmic reticulum, which enables access to the alternative translation
machinery eIF4F. This so-called “translation initiation plasticity” allows translation of
viral and host proteins via mTOR-dependent or -independent mechanisms during KSHV
lytic replication [57].
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Figure 4. KSHV manipulation of translation initiation. Translation initiation is a highly regulated
mechanism in which translation initiation factors (elFs) bind to the 40S ribosomal subunit to form
the pre-initiation complex. This scans along mRNA until a start codon is recognised and the 60S
ribosomal subunit is recruited, thus triggering dissociation of elFs and assembly of the 80S ribosome
for the next stage of translation. During lytic KSHV infection, the virus co-opts several aspects of
translation initiation to promote translation of viral transcripts. (1) Viral protein ORF45 induces
SUMOylation of p90 ribosomal s6 kinase (RSK), resulting in the direct recruitment and phospho-
rylation of the initiation factor eIF4B. This enhances the formation of pre-initiation complexes and
leads to increased translation initiation. (2) The viral protein ORF57 has enhanced binding with
polyA binding protein (PABP) to enhance translational output whilst preventing Ago2 binding to
polysomes and causing mRNA degradation. Moreover, ORF57 also binds to PYM, which is able
to recruit spliced KSHV mRNA transcripts to ribosomes for translation. (3) KSHV lytic replication
causes phosphorylation of the translational repressor 4E-BP1, which in turn frees the initiation factor
elF4E to bind to the other components of the eIF4F complex and increase translation initiation. (4) The
viral protein ORF11 mediates the formation of specialised ribosomes by recruiting methyltransferase
BUD23 to the pre-40S subunit. Subsequent methylation enhances accuracy in pre-ribosomal subunit
scanning, preventing the recognition of non-cognate start codons and translation of uORFs. Created
in BioRender. Whitehouse, A. (2025) https:/ /BioRender.com/33iefg8 (accessed on 1 October 2025).

Alongside enhancing traditional ribosomal functioning, KSHV can generate modified
ribosomes, supporting the specialised ribosome hypothesis [43]. Increasing reports have
identified that modifications to ribosomal proteins, rRNA, or the structure and stoichiom-
etry of ribosome-associated proteins can regulate translation of specific transcripts [58].
The previously uncharacterised KSHV ORF11 protein associates with cellular ribosomes
during lytic replication and mediates the increased association of several ribosomal bio-
genesis factors with the pre-40S subunit during the early stages of biogenesis, namely the
BUD23/TRMT112 and NOC4L/NOP14/EMGI1 complexes [43]. Interestingly, both these
complexes contain methyltransferases, which increase methylation of specific residues
on the 185 rRNA during KSHV lytic replication. BUD23 mediates the N7-methylation of
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G1639, whereas EMG1 catalyses the N1-methylation of 1248Y [59,60]. Depletion of BUD23
leads to an increase in viral uORF translation over the main coding sequence (CDS) and has
led to the hypothesis that m7G1639 enhances scanning of the pre-initiation complex along
mRNA, thus preventing ‘leaky’ scanning of non-cognate start codons (Figure 4) [43]. EMG1
association with pre-40S ribosomal subunits also increases during KSHV lytic replication
in a phenotype similar to that observed for BUD23 [44]. The methylation activity of EMG1
was demonstrated to be required for the proper translation of KSHV CDSs, with the loss of
EMGT1 resulting in decreased translation of viral genes and concomitant reduction in viral
replication [44].

3.2. RNA Modification Pathways

The epitranscriptome is defined by a broad family of over 100 different chemical
modifications on RNA molecules that have critical roles in regulating the fate of every
RNA species [61]. As viruses have evolved to maximise their coding capacity and to utilise
host—cell machinery, they also target many of these RNA modifications as another layer of
host—cell virus manipulation.

N°-methyladenosine (m°A) is a highly abundant RNA modification in eukaryotic
RNAs found in almost all RNA species, including circular RNAs (circRNAs), long non-
coding RNAs (IncRNAs), ribosomal RNAs (185 and 285 RNA), microRNAs (miRNAs),
small nuclear RNAs (snRNAs) and is the most prevalent internal modification of eukary-
otic mRNAs. The modification is thought to be dynamic, characterised by the addition,
reading or removal of m®A by the so-called writers, readers or erasers, respectively [62]
(Figure 5). The addition of m®A methylation occurs co-transcriptionally in the nucleus and
is canonically catalysed by the METTL3-METTL14 methyltransferase complex, methylating
the central adenosine residue at the consensus DRACH sequence (D=A/G/U, R=A/G
and H=A/C/U) [63-65]. Additional components, such as WTAP, RBM15, VIRMA and
ZC3H13, are responsible for selectivity, localisation and structural integrity of the writer
complex [64,66,67]. These interactions localise METTL3-METTL14 complex into nuclear
speckles, allowing co-transcriptional deposition of m®A on DRACH motifs [68]. When
deposited, the m®A modification is then recognised by reader proteins, primarily of the
YTH domain-containing family. The YTH domain contains a conserved aromatic cage that
recognises and binds to m®A in a sequence-independent manner [69]. In contrast, a second
group of m6A readers, including several hnRNPs, preferentially bind m6A-modified RNAs
through an m6A switch mechanism, an event in which m6A modification remodels local
RNA structure [70]. A myriad of m6A readers may therefore exist, which enable widespread
regulatory control over gene expression, affecting many biological pathways [71]. Two
RNA demethylases act as m6A erasers, x-ketoglutarate-dependent dioxygenase alkB ho-
mologue 5 (ALKBH5) and fat mass obesity protein (FTO) revert mP®A back to adenosine
residues [71-73]. Although the impact and extent of demethylation carried out by the m6A
‘erasers” ALKBH5 and FTO is debated, it is widely accepted that at least some m6A residues
can be reversed back to adenosine [74].

KSHYV has been shown to directly influence the m®A landscape within the infected cell.
During lytic reactivation, there is a marked global decrease in m®A deposition on cellular
RNAs and a significant increase in the deposition of m®A on KSHV RNA species [75,76].
This global decrease is hypothesised to be potentially driven by SOX-mediated RNA decay
of cellular transcripts; therefore, fewer transcripts are present overall. Alternatively, this
global change could be driven by specific manipulation of m®A machinery to influence
preferential m® A deposition on KSHV transcripts. These changes could be due to alterations
in m®A machinery expression, localisation or changes to the machinery’s interactome. This
marked reduction in m®A deposition on cellular transcripts could influence the stability
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Writing m®A modifications

or translation ability of mRNAs encoded by genes involved in innate immunity, thus
generating a more favourable replication environment for the virus. In contrast, a subset
of cellular mMRNAs has been shown to be heavily increased in both m®A content and
abundance during KSHYV lytic replication, such as GPCRS5, to enhance virus replication [77].
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transcripts, resulting in a global shift of mPA from cellular to KSHV transcripts. Readers such
as YTHDC1, SND1, YTHDC2 and YTHDE2 are co-opted by KSHYV to influence essential post-
transcriptional functions of mRNA, such as pre-mRNA splicing, RNA stability, RNA accumulation
and nuclear export. Created in BioRender. Whitehouse, A. (2025) https://BioRender.com /raafwte
(accessed on 1 October 2025).

The influence of m®A on KSHV RNA transcripts is determined by the binding of
specific reader proteins. The m®A reader YTHDC1, in complex with SRF3 and SRS10, recog-
nises a single m°A site on the pre-mRNA of KSHV latent-lytic switch protein Replication
and transcription activator (RTA) transcript [76]. This site was shown to be essential for its
splicing into a mature functional mRNA. Moreover, SND1, a protein from the class of m®A
readers known as the “Royal” family (named after the presence of a “Tudor” m®A binding
domain), was shown to affect the stability of unspliced RTA RNA [78].

Another key m®A reader, YTHDF2, has both pro-viral and anti-viral roles within
KSHYV replication, depending on cell type [79]. Upon YTHDEF2 depletion in TREx-BCBL1
cells, increased expression of RTA was observed. In a contrasting study, however, YTHDF2
depletion in iSLKSs resulted in decreased RTA expression and thus a decrease in overall
viral replication [79]. The discrepancy between these two findings highlights the dynamic
nature of m®A, indicating that KSHV-mediated manipulation of m®A pathways may shift
depending on cell type.

Interestingly, it has also been shown that m°A plays an intrinsic role in the protection
of Interleukin-6 (IL-6) against SOX-mediated decay [80]. IL-6 gains its SOX resistance
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through the binding of YTHDC2 on m®A-modified IL-6 transcripts. Furthermore, the
deposition of m®A and subsequent resistance to SOX-mediated decay only occur during
KSHYV lytic infection, defining an essential mechanism of how KSHV manipulates the méA
pathway to regulate both viral and cellular gene expression [80]. Despite this, m®A is not
the sole contributor to SOX resistance, as many SOX-resistant mRNAs had no change in
their m®A status during lytic reactivation. Therefore, it is hypothesised that the specific
deposition of m®A must be contextual to recruit a specific set of protective reader proteins
to be active [80].

KSHV not only manipulates the m®A pathway but also a range of other
epitranscriptome-related factors. Adenosine-to-Inosine (A-to-I) editing utilises adeno-
sine deaminases (ADARs) to hydrolytically deaminate adenosine, resulting in inosine [81].
Inosine preferentially base-pairs with cytosine, allowing for significant effects on gene ex-
pression. This modification can affect pre-mRNA splicing, transcript stability and recoding
of protein sequences. A-to-I editing can affect viral replication through the suppression of
the IFN response to endogenous RNA [81,82]. Alternatively, A-to-I editing can have anti-
viral or pro-viral effects depending on alterations in certain RNA expression dynamics [83].
During reactivation, KSHV increases adenosine deaminase activity, resulting in not only a
large increase in the number of sites edited but also the editing frequency of previously
edited sites. This increase in activity is not due to increased expression of ADAR1/2 but
hypothesised to be a result of ADARI relocalisation to the cytoplasm and KSHYV activation
of p38-MSK1&2 MAP kinases [84]. Furthermore, ADAR1 was shown to be responsible for
preventing innate immune activation during reactivation and depletion of ADAR1 resulted
in enhanced IFNB production [85]. While the mechanisms and networks regulating A-to-I
editing are understudied in KSHYV, it is clear that the virus can manipulate specific editing
for pro-viral functions.

Recent research has revealed the presence of the N4-acetylcytidine (ac*C) modification
in the KSHV transcriptome [86]. ac*C consists of acetylation at cytidine N* position on
RNAs that can be catalysed by N-acetyltransferase 10 (NAT10). Modification by NAT10
is essential for the upregulation of KSHYV viral lytic gene expression and virion produc-
tion, through stabilisation of KSHV polyadenylated nuclear RNA (PAN). Interestingly,
through interactions with NAT10, PAN was shown to assist in the ac*C modification of
the nuclear pathogen sensor IFI16 RNA, resulting in increased stability and expression
of IFI16 and activation of the inflammasome. Interestingly, the modification landscape of
PAN has been further elucidated through the identification of pseudouridine (¥), an RNA
modification characterised as a C5-glycoside isomer of uridine. ¥ is proposed to confer
similar phenotypes to PAN as ac*C, affecting KSHV viral replication and PAN transcript
expression [87]. This highlights the extraordinary depth of the RNA modification landscape
in DNA viruses.

3.3. Epigenetic Control Mechanisms

The KSHV episome is heavily interlinked with the epigenetic control mechanisms of
the host cell through the deposition and removal of histone marks, chromatin remodelling
and post-transcriptional processing in a complex balance of gene regulation (Reviewed
extensively in [88,89]. During latency, transcription of most viral genes is suppressed, partly
thanks to the deposition of suppressive histone marks, such as H3K27me3, at promoters
and transcriptional start sites as well as spatial regulation by chromatin looping [90,91].
Suppression of the vast majority of viral transcripts avoids immune detection and the
resulting clearance of latently infected cells [92]. There is, however, a small subset of viral
genes which remain actively transcribed during latency to maintain the viral episome and
promote latently infected cell survival. LANA, a multifunctional protein responsible for
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tethering viral episomes to host chromatin, is one such transcript expressed during latency
and displays enrichment of pro-transcriptional histone markers such as H3K4me3 [90,93].
Upon viral reactivation, a lytic cascade of gene expression ensues, beginning with tran-
scripts which do not require de novo expression of viral genes prior to their transcription.
These immediate early genes are marked with bivalent chromatin modifications, which
remain suppressed during latency and yet are primed for transcription upon triggering of
lytic replication [93]. Subsequent early and late gene expression is then under the control
of the preceding viral genes to continue the cascade. Disruption of epigenetic control can
trigger lytic replication through the removal or inhibition of methylation of suppressive hi-
stone modifications on the viral episome [94]. This mechanism of inducing lytic replication
is used across many KSHV cell models, where the addition of chemicals such as sodium
butyrate and tetradecanoyl-phorbol-13-acetate results in the inhibition of suppressive his-
tone marks and promotes chromatin remodelling in the immediate early genes, including
RTA, the protein driver of lytic reactivation [95].

3.4. DNA Damage-Related Pathways

One of the key cellular mechanisms occurring within the nucleus is the DNA damage
response (DDR) mediated through multiple different pathways, including but not limited to
non-homologous end joining (NHE]) and homologous recombination (HR), both of which
are involved with repairing double-stranded breaks (DSBs), with NHE] being the primary
pathway [96,97]. Throughout its lytic replicative cycle, KSHV interacts and dysregulates
multiple aspects of the DNA damage response pathways, with these interactions between
the virus and the host aiding in viral maintenance and replication while also contributing
to KSHV-mediated oncogenesis.

During KSHV lytic infection, there is a well-documented increase in DSBs, with
increases in classical markers such as phosphorylated ATM (a DDR sensor protein), DNA-
PKcs and phosphorylated H2AX (Figure 6) [98,99]. This induction of DNA damage is
not just an indirect consequence of KSHV replication, but instead a potential pro-viral
strategy. This is highlighted by the inhibition of ATM, which leads to a reduction in KSHV
replication [98], whereas inhibition of DNA-PK results in increased ATM phosphorylation
and a corresponding increase in KSHV virion production, with a similar phenotype noted
in EBV-infected cells [98,100]. Not only is phosphorylation of ATM itself important for
replication, its downstream interactors are also targeted by KSHV. For example, the viral
protein vIRF1 can directly bind to ATM, preventing the phosphorylation of p53 at Ser51,
leading to a reduction in p53 protein levels and subsequent effects therein [101]. The
DNA processivity factor, ORF59, binds to the NHE] proteins Ku70 and Ku80, reducing the
recruitment of DNA-PKcs, leading to an increase in DSBs due to a reduction in the speed
and efficiency of the DDR (Figure 6) [99].

KSHYV also redistributes host-encoded DNA damage proteins, such as RPA32 and
MRE], to sites of viral replication located in the viral replication centres, and while their
exact role in KSHYV replication remains unclear, these DDR factors are essential for DNA
replication in other herpesviruses (Figure 6) [98,102,103]. KSHV has also been shown to
sequester host proteins within novel structures, such a v-mPS, during lytic replication [16].
During this process, the splicing factor proline and glutamine-rich (SFPQ) is relocalised and
concentrated away from its canonical environment [16]. As a result, SFPQ has a reduced
interaction with Ku70, leading to a reduction in NHE] efficiency and an accumulation of
dsDNA breaks [16,104-106].
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Figure 6. KSHV dysregulation of DNA repair machinery. (1) During KSHV infection, markers of DSBs
increase in a pro-viral response, including phosphorylated H2AX and ATM. The viral protein vIRF1
binds to phosphorylated ATM and blocks its phosphorylation of p53 serine 51, leading to reduced
levels of p53. Whilst another viral protein ORF59 binds to the Ku70/80 heterodimer, reducing its
recruitment of DNA-PKcs, contributing to an accumulation of DSBs during lytic replication. (2) Other
proteins involved in the DDR, including RPA32 and MREL11, are recruited during lytic replication to
virus replication and transcription compartments (vVRTCs). (3) ORF57 hijacks the hTREX complex
to aid in the export of intronless KSHV transcripts. This subversion prevents individual hTREX
components from stabilising mRNA during transcription, increasing the prevalence of DNA-RNA
hybrids, termed R loops. Created in BioRender. Whitehouse, A. (2025) https://BioRender.com/
randqnr (accessed on 1 October 2025).

DSBs can also be induced through the aberrant hybridisation of newly transcribed
mRNAs with the genomic template, forming DNA-RNA hybrids, known as R-loops [107].
A dramatic increase in R-loop formation is observed during KSHV replication, leading
to an increase in DNA damage [24]. The viral protein, ORF57, is suggested to play a con-
tributing role in this increase in R-loops through its recruitment of the human transcription
and export complex (hTREX) onto viral RNAs, sequestering hTREX away from cellular
mRNAs [24,108]. This series of interactions and recruitment of hTREX facilitates the nuclear
export of viral intronless transcripts, which would otherwise fail to be trafficked efficiently
to the cytoplasm for translation [46,108]. However, a consequence of hTREX complex
sequestration to viral mRNAs is a reduction in the availability of the complex to prevent
RNA /DNA hybrids from being formed from newly transcribed cellular mRNA, increasing
R-loop formation (Figure 6) [24].

3.5. Tumourigenesis-Related Pathways

With such drastic nuclear remodelling, disruption to DNA damage repair functions
and manipulation of the epitranscriptome, it is unsurprising that oncogenic outcomes occur
with KSHV infection. Oncogenesis is further increased by the expression of multiple virally
encoded oncoproteins during both the latent and lytic replication phases [1]. Although
latency-associated KSHV proteins have been well characterised in persistence, transforma-
tion and tumourigenesis pathways [109], it is now evident that the KSHV lytic cycle also
contributes to oncogenesis, which could provide important targets in the development of
anti-cancer therapeutics [1]. This is supported by the treatment of KS patients with drugs
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that prevent lytic replication and, in certain cases, lead to regression of KS lesions; attesting
to the importance of lytic gene expression in tumourigenesis [110,111]. However, how
latent persistence and the lytic phase, which ultimately leads to host cell lysis, co-exist and
interact to induce the transformation programme is yet to be fully elucidated.

Although only a small percentage of cells within the KS tumour undergo lytic replica-
tion, they are thought to have multiple roles in tumourigenesis. This includes enhancing
the spread of the virus from latent B cells to endothelial cells, where tumours arise [112];
sustaining the latently infected tumour cell population that would otherwise be reduced
due to the poor persistence of the KSHV episome during tumour cell division [113]; and
lytic KSHV-induced paracrine secretion of pro-inflammatory and angiogenic factors es-
sential for tumour development, modulating the behaviour of latently infected cells, and
potentially the tumour microenvironment [114,115].

Lytic oncoproteins, including vGPCR and K1, induce pro-proliferation signalling
pathways [115]. vGPCR induces many of the same pathways as its cellular homologue,
including ERK and PI3K/AKT/mTOR [116-118]. The induction of this myriad of signalling
pathways activates Sp1/3 transcription factors, which are crucial for the maintenance of
RTA expression, committing the cell to productive lytic replication [119,120]. Whilst K1 ac-
tivates pro-proliferation signalling pathway activity, including PI3K/Akt activity [121,122].
Viral interleukin 6 (vIL-6), a homologue of human IL-6, is another lytically expressed gene
which plays a multifaceted role in tumourigenesis (extensively reviewed in [123]). vIL-6
is highly expressed in KSHYV lytically replicating cells and is also expressed in a small
population of latently infected cells at low concentrations. It plays a significant role in
tumorigenesis by promoting cell proliferation, angiogenesis, and cell migration, as well
as inhibiting the immune response. Mechanistically, it activates key signalling pathways
similar to those of human cytokines, namely JAK/STAT, Ras/MAPK, PI3K/Akt, leading
to the suppression of tumour suppressors such as caveolin-1. Additionally, vIL-6 helps
regulate viral gene expression and contributes to a pro-inflammatory environment that sup-
ports tumour development. The KSHV genome also possesses three lytically encoded viral
interferon regulatory factors (vIRFs), which disrupt the antiviral IFN response by inhibiting
transcription of IFN and inflammatory signals, in turn leading to the dysregulation of the
IFN antiviral response, apoptosis and cell cycle arrest, ultimately increasing the oncogenic
potential of KSHV-infected cells [124,125].

An alternative role of the lytic phase in tumourigenesis has also been postulated,
where a dysregulated viral transcription programme occurs, distinct from either latent
or lytic phases, termed the abortive lytic phase [118]. Here, sporadic expression of lytic
genes is observed without infectious virion production and cell lysis [126], driven by
epigenetic regulation of the KSHV and host epigenome, leading to upregulation of viral
oncogenes and downregulation of tumour suppression and innate immune genes, which
would curtail growth [126,127]. Therefore, the overall combination of both latent and lytic
lifecycles drives KSHV-mediated tumorigenesis, and understanding host cell manipulation
throughout these cycles will aid in novel therapeutics.

4. Summary

KSHV manipulation of the nuclear space during lytic replication fosters an environ-
ment favourable for production of viral transcripts, genomes and progeny. Establishing
multifunctional vRTC structures results in dramatic morphological changes in the nu-
clear architecture and provides a hub for viral lifecycle progression. Manipulation of
multiple sub-nuclear organelles by the virus enables the modulation of a multitude of
cellular processes, from innate immune sensing, for example, disrupting PML-NBs, to the
modification of paraspeckles, to supporting complex RNA processing events required for
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viral replication. KSHV also manipulates multiple nuclear-related pathways, such as the
epitranscriptome and translational initiation machinery, modifying transcript methylation,
base incorporation and specialised ribosomal biogenesis to facilitate efficient replication.
The DNA damage machinery, induction and response are also affected by KSHV due to the
manipulation of host proteins and disruption of their canonical interaction partners and
processes, which can facilitate tumorigenesis. Therefore, the lack of effective treatments or
anti-viral regimes requires the continual study and understanding of the processes KSHV
uses to manipulate the host cell environment to identify new therapeutic strategies.
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