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A B S T R A C T

Achieving net-zero aviation requires airport energy infrastructure that delivers an efficient, reliable, and 
diversified energy supply to support the parallel operations of emerging battery-electric, hybrid hydrogen- 
electric, and hydrogen-powered aircraft. This study assesses how airport energy systems can support the tran-
sition to zero-carbon aviation. We propose an integrated electricity-thermal-hydrogen microgrid that in-
corporates photovoltaics, hydrogen fuel cells, and multiple energy storage systems to reduce reliance on the 
power grid and external energy sources. Firstly, a refined statistical method utilizing surrogate models is 
developed to estimate aircraft charging and refuelling demands. A stochastic optimization model that exploits 
load shifting potential is then formulated to minimize total economic costs while reducing operational risks and 
enhancing grid support flexibility. The resulting optimal energy dispatch ensures that flight schedules and multi- 
energy demands are met across electricity, thermal, and hydrogen networks. Case studies based on real flight 
schedules from Manchester airport evaluate five energy dispatch scenarios with varying optimization priorities. 
The results demonstrate a 29.4 % increase in grid flexibility and a 63.2 % reduction in operational risks through 
the proposed multi-energy dispatch strategy. Furthermore, sensitivity analyses examine the impacts of electricity 
and hydrogen price fluctuations, as well as different aircraft integration ratios, identifying the optimal electricity- 
to-hydrogen energy demand ratio for efficient airport energy system operation. These findings provide practical 
insights for airport operators and policymakers in developing resilient and sustainable airport energy infra-
structure, and in implementing effective energy strategies for zero-carbon airport operations.

1. Introduction

1.1. Background and motivation

Civil aviation has expanded rapidly, driven by technological ad-
vances and global transport demands. However, this growth has resulted 
in substantial environmental challenges, as aviation remains one of the 
most energy-intensive transportation modes, with emissions increasing 
nearly sevenfold between 1960 and 2018 [1]. Sustainability has there-
fore become the aviation sector’s central challenge, requiring trans-
formative energy solutions [2].

Although recent technological advances have improved efficiency, 
aviation’s expansion continues to outpace these gains through 
increasing air pollution. Achieving significant emissions reductions 
therefore requires an integrated energy strategy that incorporates 
alternative energy sources, operational optimization, and market-based 

measures [3]. The UK Aerospace Technology Institute (ATI) has high-
lighted the importance of developing aircraft technologies capable of 
utilizing novel energy sources, particularly hydrogen fuel and battery 
systems. This is crucial for achieving the UK’s Net Zero target and 
realizing carbon-free airport operations by 2050 [4].

Aviation electrification represents a promising pathway toward 
airport decarbonisation when supported by renewable energy, however, 
its viability is constrained by the insufficient energy density of current 
battery technologies for aircraft propulsion. State-of-the-art lithium-ion 
batteries provide approximately 300 Wh/kg compared to 12,000 Wh/kg 
for jet fuel, highlighting a substantial performance gap [5,6]. 
Battery-powered aircraft also face considerable infrastructure chal-
lenges, particularly the need for megawatt-level ultra-fast charging fa-
cilities to meet short flight turnaround times, far beyond current electric 
vehicle (EV) charging capabilities [7,8]. Furthermore, batteries are 
vulnerable to thermal runaway, which requires advanced multi-layered 

* Corresponding author.
E-mail address: jz388@leicester.ac.uk (J. Zhang). 

Contents lists available at ScienceDirect

eTransportation
journal homepage: www.journals.elsevier.com/etransportation

https://doi.org/10.1016/j.etran.2025.100485
Received 17 April 2025; Received in revised form 25 August 2025; Accepted 15 September 2025  

eTransportation 27 (2026) 100485 

Available online 16 September 2025 
2590-1168/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

mailto:jz388@leicester.ac.uk
www.sciencedirect.com/science/journal/25901168
https://www.journals.elsevier.com/etransportation
https://doi.org/10.1016/j.etran.2025.100485
https://doi.org/10.1016/j.etran.2025.100485
http://creativecommons.org/licenses/by/4.0/


thermal management [9]. Consequently, the applications of battery 
technologies are largely limited to short-range operations, such as 
eVTOLs and regional flights, with significant barriers to adoption in 
larger commercial aircraft [7].

Green hydrogen offers superior gravimetric energy density than jet 
fuel, yet its lower volumetric energy density requires larger fuel storage 
and poses significant aircraft design challenges [10]. Large-scale adop-
tion of hydrogen propulsion also requires extensive renewable capacity 
for green hydrogen production via electrolysis and substantial capital 
investment in distribution infrastructure, whether through gaseous 
pipelines or liquid hydrogen transportation systems [11]. Moreover, 
hydrogen propulsion introduces safety concerns such as flammability 
and explosion risks, also requiring advanced safety measures, including 
leak detection, ventilation control, and impact-resistant storage [12]. 
Despite these challenges, hydrogen is widely recognized as a viable 
medium-to-long-term solution for zero-carbon aviation. For example, 
the ATI’s FlyZero project has identified liquid green hydrogen as the 
most promising option, capable of supporting over 90 % of long-haul 
flights [13].

Hybrid hydrogen-electric propulsion architectures offer a synergistic 
approach that leverages the complementary advantages of both battery 
and hydrogen technologies. Such a hybrid powertrain offers redundancy 
to enhance operational safety and enables continued operation after 
single-point failures [14]. More broadly, certification frameworks for 
electric and hydrogen propulsion have entered an early and 
research-intensive stage, with published roadmaps and established 
working groups dedicated to identifying safety hazards, assessing reg-
ulatory gaps, and guiding the development of future standards [15–17].

In light of current technological limitations, zero-carbon aviation is 
expected to require a dual-pathway approach: battery-powered aircraft 
for short-haul and regional flights, while hybrid hydrogen-electric and 
hydrogen propulsion for medium- and long-haul commercial operations. 
This transition will fundamentally reshape airport energy management 
strategies, necessitating substantial upgrades to the supporting airport 
energy infrastructure.

1.2. Literature review

As future airports are expected to face surging electricity and 
hydrogen demands, accurately quantifying energy requirements will be 
essential for designing low-carbon integrated energy systems and man-
agement strategies. Recent studies have begun to address airport energy 
demand modelling and analysis, focusing primarily on electrified 
ground support equipment (GSE) and EVs. Ref. [18] compared energy 
consumption across electric, hybrid, and zero tow-tractor scenarios 
using Mixed Integer Linear Programming (MILP) optimization, demon-
strating that hybrid towing can effectively reduce energy use under 
stochastic conditions and varying traffic density. Ref. [19] developed a 
more detailed fuel consumption model for aircraft taxiing, incorporating 
aircraft engine characteristics and thrust levels to evaluate e-tractor 
utilization. For EV operations in airports, simulation-based optimization 
model and fuzzy logic approaches have been applied to identify optimal 
battery capacity, charging power, and infrastructure requirements for 
airport shuttle buses [20,21]. Ref. [22] presented a multi-agent simu-
lation model for all-electric airport shuttle transportation networks, 
estimating average power demands of 10 MW with peak demands 
reaching around 12 MW at a regional UK airport. However, such 
modelling and simulation methods are unsuitable for quantifying 
aircraft energy demands, given the fundamentally different operational 
patterns and energy requirements of aircraft compared to ground 
vehicles.

Several studies have examined the potential energy demands of 
electrified aircraft. Existing research has classified domestic flights to 
estimate hybrid electric aircraft energy requirements, analysed simpli-
fied charging scenarios for small electric aircraft, and applied detailed 
energy consumption models for medium-sized all-electric aircraft based 

on existing commercial design models [23–26]. Although research ad-
vances have improved mission and payload specific modelling, most 
existing analyses focus on single aircraft types without comparative 
evaluation. Preliminary assessments of plug-in charging versus 
battery-swapping approaches have been conducted, exploring grid 
flexibility potential but constrained by fixed charging powers and partial 
electrification scenarios [27]. However, comprehensive evaluations of 
energy demands for hybrid hydrogen-electric and purely 
hydrogen-powered aircraft have yet to be thoroughly investigated.

Research on airport energy supply has increasingly emphasizes 
distributed energy resources, including both single-source and inte-
grated multi-energy systems. Recent studies on single-source applica-
tions have demonstrated significant potential for airport-based 
photovoltaic (PV) systems across various scales and geographic loca-
tions. Assessment of 5–20 MW PV installations at airports in India, UK, 
and Malaysia using RETScreen, SISIFO/GSA, SolarGis models, respec-
tively, have shown satisfactory performance and feasibility while 
maintaining safe airport operations [28–30]. Notably, the UK study 
further highlighted seasonal energy transfer, storing or shifting surplus 
summer generation for winter use, can enhance grid flexibility through 
load balancing and peak shaving. On a larger scale, analysis of over 200 
Chinese airports [31] identified a combined PV capacity of 2.50 GW, 
nearly matching annual electricity demands in eight provinces, high-
lighting the immense potential of airports to contribute to regional en-
ergy supply through on-site PV generation systems.

For integrated multi-energy systems, research has explored renew-
able energy integration and management frameworks at airports, 
encompassing both conventional renewables, emerging hydrogen tech-
nologies, and advanced optimization strategies. Several studies have 
developed integrated multi-energy systems combining wind turbines, 
PV, waste-to-energy, geothermal, and biomass resources, validated 
through predictive control and dynamic thermodynamic simulations 
[32,33]. Others have focused on hydrogen integration, exploring 
hydrogen-powered aviation scenarios, airports as regional hydrogen 
hubs, and system resilience through lifecycle-based optimization 
[34–36]. Furthermore, Ref. [37] advanced this work by establishing a 
multi-energy airport microgrid integrating hydrogen supply, electric 
auxiliary power units (APUs), EVs, PV, and both battery and hydrogen 
storage. MILP-based optimization with various energy scenarios 
demonstrated substantial techno-economic benefits. However, compre-
hensive studies that incorporate large-scale adoption of electric and 
hydrogen aircraft demands, as well as the coupling of thermal, electric, 
and hydrogen energy networks, remain limited.

Beyond optimizing airport onsite energy supply, recent research has 
explored interactions between airport electrification facilities and 
external power grids or hydrogen networks, considering their bidirec-
tional flexibility as generation, demands and energy storage. Ref. [21] 
noted that airport surplus PV and WT generation during periods of high 
solar irradiance and wind availability could be sold to the grid, reducing 
operational costs while enhancing sustainability. Ref. [38] assessed EV 
battery flexibility for peak shaving and valley filling, while Ref. [39] 
extended this research to explore interactive capabilities of both EVs and 
electric aircraft batteries, achieving multi-objective optimized sched-
uling that enhances self-consumption. Ref. [22] investigated bidirec-
tional wireless charging for electric buses, highlighting its potential to 
mitigate grid stress and enhance resilience in high-density, high-load 
airport scenarios. Airport electrified facilities can also provide ancillary 
grid services. Ref. [40] demonstrated the profitability of electrified GSE 
participating in frequency regulation markets through V2G technology. 
Ref. [41] introduced the aviation-to-grid (A2G) concept, it shows that 
electric aircraft charging could deliver more than 1 GW of frequency 
response across eight UK airports, enhancing both grid stability and 
economic viability. However, research work on hydrogen networks re-
mains limited, primarily focusing on small-scale procurement due to the 
lack of established pricing mechanisms and market structures [42,43]. 
Overall, comprehensive investigations into airport multi-energy 
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microgrids, their energy interaction and conversion with grid support 
services, are underdeveloped.

In summary, existing literature largely focuses on terminal, electric 
GSE, and aircraft APU energy supplies via distributed microgrids but 
neglects zero-carbon aviation energy needs for electric and hydrogen 
aircraft, leaving significant research gaps. Additionally, current studies 
give limited attention to the flexibility of electric or hydrogen aircraft. 
They also overlook the holistic optimization of aviation operations and 
airport energy systems. Such an integrated approach is needed to fully 
leverage their potential in supporting net-zero aviation.

1.3. Contributions and structure

In this paper, an integrated electricity-thermal-hydrogen energy 
system is proposed to assess the feasibility of operating an airport 
microgrid under significant hydrogen and electricity demands from 
hydrogen- and battery-powered aircraft. To evaluate airport system 
performance, a comprehensive energy dispatch optimization model is 
developed that accounts for the stochastic nature of PV generation and 
actual flight schedules. Finally, a sensitivity analysis of energy prices 
and aircraft integration ratios is thoroughly examined to guide future 
zero-carbon airport energy infrastructure operations.

There are three main contributions outlined as follows: 

• To the best of our knowledge, this study introduces the first refined 
statistical method utilizing a surrogate model to estimate charging 
and refuelling demands for all-electric, hybrid hydrogen-electric, 
and hydrogen-powered aircraft. By capturing differentiated power 
consumption characteristics across aircraft models, energy patterns 
and flight phases, this method enables detailed analysis of zero- 
carbon airport energy requirements and establishes a foundation 
for feasibility assessment of future airport energy systems.

• A comprehensive energy dispatch optimization model is proposed 
for multi-energy airport microgrids, aiming to minimize total 

economic costs while reducing operational risks and improving 
flexibility, subject to flight schedules and aircraft energy demands 
under the stochastic nature of renewable energy generation.

• A detailed sensitivity analysis is performed on electricity and 
hydrogen prices and aircraft integration ratios, offering insights into 
the operational performance and adaptability of the airport energy 
systems in support of net-zero aviation.

The paper is organised as follows: Section 2 describes the structure of 
the proposed airport energy system. Section 3 presents the optimization 
framework for airport microgrid energy dispatch. The optimization 
methodology is illustrated in Section 4. Results and discussion are pro-
vided in Section 5, and conclusions are drawn in Section 6.

2. Airport microgrid energy supply and demand analysis

2.1. Airport microgrid structure and energy supply-demand network

Achieving zero-carbon airport energy systems requires the adoption 
of clean energy aircraft. This paper considers a feasible technical 
pathway from conventional fleets to all-electric, hydrogen-powered, and 
hybrid hydrogen-electric aircraft, as illustrated in Fig. 1. The hybrid 
hydrogen-electric aircraft use batteries and hydrogen fuel cells (HFCs), 
thereby achieving higher energy conversion efficiency and enabling 
longer flight ranges. Hydrogen aircraft rely on combustion for the thrust 
required by larger and long-haul aircraft. This transition introduces 
substantial electricity and hydrogen demands, fundamentally reshaping 
airport energy systems and distinguishing airport microgrids from con-
ventional ones.

Airport demand profiles typically demonstrate significantly lower 
load factors compared to industrial or residential systems. This is largely 
due to the pronounced peak-to-average ratios driven by aircraft arrival 
and departure patterns, resulting in substantial temporal load variability 
that requires flexible and responsive energy management strategies. 

Fig. 1. Integrated electricity-thermal-hydrogen airport microgrid structure.
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Airport energy systems also integrate multiple energy vectors, including 
not only the electric and hydrogen demands from aircraft but also the 
electricity and heating loads of terminal buildings, thus requiring co-
ordinated energy optimization across electricity, hydrogen, and thermal 
networks. Furthermore, airport microgrids are subject to rigid temporal 
constraints imposed by flight schedules. Critical operations such as 
electric aircraft charging and hydrogen refuelling must be completed 
within predefined turnaround windows, resulting in less flexible, time- 
bound demand profiles. These operations often involve megawatt- 
scale instantaneous electric and hydrogen demands, requiring infra-
structure capable of handling intense short-term loads, unlike the more 
gradual and predictable load profiles observed in conventional micro-
grids. To address these unique challenges, this paper proposes a novel 
integrated multi-energy microgrid structure for airports as illustrated in 
Fig. 1. This airport microgrid incorporates electricity-thermal-hydrogen 
energy networks with large-scale renewable power generation, multi- 
energy conversion technologies, and diverse storage capabilities.

Specifically, the airport microgrid comprises PV arrays as the pri-
mary renewable energy source, alongside dispatchable energy conver-
sion equipment including HFC and electrolysers. Energy storage devices 
consist of battery energy storage systems (BESS), hydrogen storage tanks 
(HST), and thermal storage tanks (TST). In addition to aircraft electricity 
and hydrogen demands, the microgrid also needs to satisfy the thermal 
loads of airport terminal buildings, which is typically used for space 
heating and hot water preparation [44]. The primary objective of 
day-ahead optimization is to meet the airport’s flight schedules and 
operational constraints while maximizing overall system performance. 
The multi-energy dispatch is optimized at 20-min intervals to achieve 
the optimal dispatch plan for the next 24 h. As a renewable power 
source, PV generation is inherently variable and non-dispatchable due to 
its direct dependence on weather conditions. Hydrogen produced 
through water electrolysis serves as a supplement to externally pur-
chased hydrogen when economically beneficial. The HFC units utilize 
hydrogen to simultaneously generate electricity and recoverable heat, 
with an adjustable thermoelectric output ratio. Recovered waste heat 
from these processes is collected through a heat recovery system to 
supplement external heat purchases in meeting the thermal loads of 
terminal buildings.

2.2. Aircraft electric and hydrogen demand modelling

Previous research on estimating aircraft energy demands for inte-
grated airport energy systems has typically relied on simplified and 
single-source demand profiles derived directly from flight schedule data. 
For example, several studies utilized average or constant electric aircraft 

charging assumptions, assigned fixed charging durations within turn-
around intervals [37,45,46], or evenly divided conventional aircraft 
missions into multiple electric missions [27]. These simplifications 
generally assume a linear relationship between aircraft energy con-
sumption and flight distance, neglecting significant variations in aircraft 
types, sizes, and operational phases. Such assumptions fail to adequately 
capture the true complexity of real-world airport operations, where 
diverse fleets with heterogeneous energy consumption characteristics 
coexist. Consequently, relying on simplified aircraft energy demand 
profiles can compromise the accuracy and effectiveness of energy 
management strategies, highlighting the necessity for more sophisti-
cated aircraft demand modelling methods. In addition, hybrid 
hydrogen-electric aircraft create multi-source demand profiles beyond 
electricity, while hydrogen also plays an important role in aircraft de-
mand modelling, introducing new coupling points between electricity 
and hydrogen in aircraft propulsion technologies.

To overcome these limitations and enhance the precision of aircraft 
demand modelling, this study adopts a detailed aircraft point-mass 
model coupled with surrogate modelling techniques, as shown in 
Fig. 2. Specifically, typical flight missions are input into a high-fidelity 
aircraft dynamic model to simulate flight trajectories and energy de-
mands across critical operational phases from takeoff to landing. The 
simulation outputs then serve as training datasets to establish surrogate 
models. After deriving aircraft energy demands through the surrogate 
models, electric charging or hydrogen refuelling power requirements are 
subsequently determined based on predefined charging and refuelling 
durations. With charging power and duration established, aircraft de-
mand shifting essentially involves adjusting the timing of charging or 
refuelling within the allowable turnaround windows at the airport. This 
scheduling adjustment is conducted to align with the optimization ob-
jectives of the airport microgrid, ensuring that operational constraints 
are satisfied while maximizing energy dispatch efficiency.

2.2.1. High-fidelity evaluation of aircraft energy consumption
To accurately determine the energy demand of aircraft for surrogate 

model training, representative flight distances corresponding to typical 
operational missions of all aircraft types are initially sampled. These 
sampled data points are subsequently input into a point-mass aircraft 
model to precisely simulate aircraft dynamic trajectories and energy 
consumption. Specifically, the adopted point-mass model accurately 
describes aircraft motion through the following system of equations 
[47]: 

Fig. 2. Flowchart of aircraft energy demand modelling.
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where x, y, h represent aircraft positions in the ground-axis coordinate 
system, v denotes the aircraft velocity relative to the ground, μ, γ, ψ are 
roll bank, flight path, and yaw heading angle respectively, and m in-
dicates the mass of aircraft. Additionally, R, S, F represent the forces of 
lift, drag, and thrust acting on the aircraft, g denotes the gravitational 
acceleration and α indicates the angle of attack. Parameters for each 
flight and its corresponding aircraft propulsion and performance char-
acteristics are sourced from open-access databases.

From Eq. (1), the equilibrium of forces acting on the aircraft at any 
moment is formulated in Eq. (2) and illustrated in Fig. 3: 

m d v→
dt = F→+ S→+ R→+ W→ (2) 

By adopting the velocity magnitude v and flight path angle γ as co-
ordinate variables, and projecting the forces onto both tangential and 
normal directions of the wind-axis system, two scalar equations 
describing longitudinal motion are derived [48]. 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

m d
dt v + mg sin γ = T cos α −

1
2CDρSv2

mv d
dt γ + mg cos γ = T sin α +

1
2CLρSv2

(3) 

where S denotes the wing area, ρ is air density, CD(α) and CL(α) are drag 
and lift coefficients respectively, each dependent on angle of attack α. 
Accordingly, the propulsion drive power at any instant can be obtained 
as: 

Pdrv = T→ ⋅ v→=m d
dt

(1
2v2

)

+
1
2CDρSv3 + mgv sin γ (4) 

For hybrid hydrogen-electric aircraft configured with parallel pro-
pulsion architectures, assuming 100 % drivetrain efficiency, the total 
propulsion power at time t is expressed as: 
Pdrv(t)=PH2 (t) + Pele(t) (5) 

Thus, the overall energy consumption required for each complete 
flight mission is calculated by integrating the propulsion power 
throughout the flight trajectory: 

Etrip =
∫

Pdrv(t)dt =
∫

PH2 (t)dt +
∫

Pele(t)dt (6) 

The precise aircraft energy consumption data derived from this 
rigorous point-mass simulation approach subsequently serve as training 
datasets for constructing surrogate models.

Surrogate models refer to mathematical approximations designed to 
replace computationally expensive simulations while preserving satis-
factory accuracy. Surrogate modelling generally involves two key pha-
ses: training and prediction [49]. During prediction, given input 
parameters a and model parameters k, surrogate models predict output 
variables b: 
b= f(a, k) (7) 

During training, surrogate model parameters k are optimized to 
minimize discrepancies between surrogate predictions and actual ob-
servations across the training dataset [50]: 
bi ≈ f(ai, k), ∀1≤ i ≤ m (8) 

Among various surrogate modelling approaches, Universal Kriging, a 
robust interpolation method capable of accommodating global data 
trends, is selected in this study. It can accurately model aircraft energy 
consumption patterns exhibiting systematic variation across different 
operational phases (take-off, climb, cruise, descent, and landing), thus 
providing superior predictive fidelity over conventional linear regres-
sion models. In Universal Kriging method, the prediction at a given point 
is calculated through polynomial trend and correlation components, 
represented mathematically as [51]: 

f(x,w)=
∑

np

i=1
pi(x)ai +

∑

nt

i=1
ψ i(x)bi (9) 

This is concisely expressed in matrix form as: 
y=Pa + Ψb (10) 

The surrogate models developed using this integrated approach can 
precisely represent aircraft energy demands across typical operational 
scenarios. This enhanced accuracy and computational efficiency will 
enable effective energy dispatch optimization and operational planning 
for future airport microgrids incorporating electric and hydrogen 
aircraft.

2.2.2. Aircraft charging and refuelling strategy exploiting demand shifting 
potential

Once surrogate models accurately predict aircraft energy consump-
tion, it is essential to determine the corresponding electric charging or 
hydrogen refuelling durations to obtain the final power demands. In this 
study, constant charging and refuelling power assumptions are adopted, 
facilitating the implementation of demand shifting strategies. Specif-
ically, based on passenger capacity and flight range, the existing aircraft 
fleet is classified and mapped into three categories of zero-emission 
aircraft, each with tailored charging or refuelling durations Tair, as 
summarised in Table A1. All regional aircraft are replaced by all-electric 
aircraft with a fixed charging duration of 40 min, while single-aisle 
narrow-body aircraft, such as the Boeing 737, are substituted with 
hybrid electric-hydrogen aircraft that retain the same charging/refuel-
ling duration. Twin-aisle wide-body aircraft with approximately 300 
seats are uniformly replaced by hydrogen combustion aircraft, consid-
ering current battery technology limitations and their typically longer 
flight mission profiles. Accordingly, their refuelling duration is set to 1 h. 
In contrast, ultra-large double-deck aircraft, such as the Boeing 747 and 
Airbus A380, are excluded from the scope of zero-emission aircraft 
modelling due to their limited operational frequency at most UK airports Fig. 3. Aircraft equilibrium forces in aircraft motion.
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and greater viability for sustainable aviation fuel (SAF)-based operations 
[4].

Moreover, in practical airport operations, additional reserve fuel 
beyond the necessary trip energy is also typically provided for flight 
safety and operational contingencies [52]. Therefore, as indicated in 
Table A1, this study includes reserve energy margins of 10 % for electric 
and hybrid aircraft, and 15 % for hydrogen aircraft, calculated based on 
the predicted trip energy from the surrogate models. Furthermore, be-
sides the flight duration from the target airport to the destination T3, 
other critical parameters such as the flight duration from the origin 
airport to the target airport T1 and the turnaround time T2 are also 
considered, as shown in Fig. 2. By inputting T1 into the developed sur-
rogate model, the energy consumption from the preceding flight 
segment can be accurately determined, and the corresponding reserve 
energy will then serve as the initial energy state of the aircraft upon 
arrival at the airport, rather than assuming a zero initial state.

Consequently, the final charging or refuelling power demand for 
each aircraft i at the target airport can be mathematically formulated as 
follows: 

Preq
i =

Ereq
i

Ti
air

=
(1 + λres)⋅Etrip(T3) − Eres(T1)

Ti
air

(11) 

where Etrip(T3) is the predicted trip energy obtained through the surro-
gate model for the subsequent flight departing from the target airport, 
Eres(T1) is the reserve energy determined by the energy consumption of 
the incoming flight, λres represents the reserve energy ratio, and Ti

air 
denotes the predefined constant charging or refuelling duration.

To further realize demand shifting capabilities, it is necessary to 
determine the turnaround time of each aircraft T2 and subsequently 
adjust the timing of charging or refuelling within this available window. 
Specifically, the flight schedule dataset used in this study includes 
comprehensive arrival and departure information, encompassing flight 
numbers and times, aircraft tail numbers, and origin/destination air-
ports [53]. Aircraft tail numbers serve as unique identifiers, enabling 
accurate tracking and pairing of arrival and departure records. For 
instance, as shown in Table A2 and Table A3, aircraft tail number B-LRT 
(Airbus A350-900) arrived at the airport at 07:55 (flight CX219) and 
departed at 10:25 (flight CX216), yielding a turnaround time of 2.5 h. 
This turnaround interval defines the available window during which 
charging or refuelling power demands can be flexibly shifted and 
scheduled according to airport energy system optimization 
requirements.

Specifically, a normalized variable λi,t is introduced to represent the 
proportion of the total required charging or refuelling energy Ereq

i allo-
cated to time step t, for aircraft i. The charging/refuelling load at each 
time step t is then formulated as: 

LAirport
t =

∑

i∈A t

Ereq
i

Δt ⋅λi,t (12) 

subject to the constraints: 

∑

tdep
i

t=tarr
i

λi,t = 1, λi,t = 0 ∀t ∕∈
[

tarr
i , tdep

i
]

(13) 

where LAirport
t is the total aircraft charging/refuelling load at time step t, 

Δt denotes the duration of each time step, tarr
i , tdep

i are the arrival and 
departure times of aircraft i, A t represents the set of aircraft present at 
the airport at time t. The charging/refuelling demand of each aircraft is 
fully met within turnaround time through demand shifting windows, 
which demonstrate temporal flexibility for energy demand scheduling 
within operational constraints.

In summary, the presented methodology integrates detailed point- 
mass aircraft modelling with surrogate model techniques to accurately 
predict aircraft energy consumption. Constant-power charging/ 

refuelling assumptions and reserve energy considerations are then 
applied to transform obtained electric and hydrogen energy demands 
into power requirements. By leveraging precise turnaround time iden-
tification based on the actual flight schedule data, the proposed 
approach effectively enables flexible demand shifting, enhancing oper-
ational flexibility and efficiency for the energy management of future 
airport microgrids.

3. Problem formulation

3.1. Multi-energy microgrid model

3.1.1. Electrical energy network modelling

(1) Airport PV system

At airports, PV systems can be installed not only on suitable ground 
areas around the airport but also on the rooftops of airport buildings, 
including terminals and car parks, thereby maximizing the use of 
available space and minimizing the land footprint required for renew-
able energy generation [41].

The PV output power exhibits a strong dependence on solar irradi-
ance intensity and ambient temperature conditions. Based on statistical 
analysis, the solar irradiance intensity over a given time interval can be 
effectively approximated using a Beta distribution. The corresponding 
probability density function is formulated as [54]: 
( G

Gmax

)

=
Γ(α + β)

Γ(α)Γ(β)

( G
Gmax

)α−1(
1 −

G
Gmax

)β−1
(14) 

where Γ represents the Gamma function; G and Gmax denote the actual 
and maximum solar irradiance intensity during the given period, 
respectively; α and β are shape parameters of the Beta distribution, 
which are derived from the standard deviation σ and mean value μ of the 
solar irradiance intensity during this time period.

The PV output power can be estimated by comparing the solar 
irradiance intensity at standardized testing parameters with the actual 
operating conditions, in considering ambient temperature [54], as 
expressed in Eq. (15): 

PPV
(G,Tpv

)

=PSTP
G

GSTP

[1+ k(Tpv −TSTP
)] (15) 

where STP represent PV operation at standardized test condition; GSTP 
denotes the solar irradiance intensity under STP, set at 1000 W/m2; TSTP 
represents the standard reference temperature, defined as 25 ◦C; G is the 
actual solar irradiance intensity; k represents the power temperature 
coefficient; and Tpv denotes the surface operating temperature of the PV 
array.

(2) Battery energy storage system

The BESS is a critical component in the integrated energy system, per-
forming multiple essential functions, such as alleviating renewable en-
ergy volatility, improving power quality, and facilitating peak shaving 
and valley filling [55]. In this airport microgrid, Li-ion batteries are 
selected for the BESS on account of their superior technical features, 
including rapid charging capabilities, minimal self-discharge rates, high 
energy density, and excellent safety features.

Unlike conventional models that assume constant efficiency values, 
this study incorporates part-load efficiency characteristics to accurately 
capture the BESS performance under varying operating conditions. The 
state of charge (SoC) of the BESS at a given time t can be described as: 

SOCBESS(t)= SOCBESS(t−1) ⋅ (1− σBESS)+
(

ηch
BESS ⋅ Pch

BESS(t)−
Pdis

BESS(t)
ηdis

BESS

)

⋅
Δt

Emax
BESS

(16) 
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where SOCBESS(t) denotes the charging state of the BESS at time t, 
PchBESS(t) and PdisBESS(t) are the power charged to and discharged from the 
BESS at time t, respectively. The coefficient σBESS is the self-discharge 
rate, which is treated as a constant value in this study, as its variation 
becomes significant only in long-duration simulations on the scale of 
weeks or months, consistent with common practice in short-term 
dispatch studies [56]. Notably, ηchBESS and ηdisBESS are power-dependent 
efficiency functions rather than constant values, reflecting the 
part-load characteristics of the BESS. EmaxBESS represents the maximum 
capacity of the BESS.

Battery degradation represents a significant economic consideration 
in BESS operation. Based on the cumulative damage model developed by 
the U.S. National Renewable Energy Laboratory (NREL), each discharge 
cycle contributes to irreversible battery degradation [54]. The total 
useable energy throughput before end-of-life is expressed as: 
Elife = LR⋅DR⋅CR (17) 

where CR represents the rated capacity at the rated discharge current, DR 
represents the rated depth of discharge (DoD) used to define the rated 
cycle life, and LR represents the rated cycle life under standard operating 
conditions.

The effective throughput per discharge cycle is influenced by both 
the DoD and discharge rate. The relationship between DoD and cycle life 
follows: 

L(DA)= LR ⋅

(DA
DR

)−u0
⋅exp

(

− u1 ⋅

(DA
DR

− 1
))

(18) 

where L(DA) is the actual cycle life, DA is actual depth of discharge, and 
u0, u1 are empirical fitting parameters.

The discharge rate effect on battery capacity is captured through: 
CA =CR⋅k0 − IA (19) 

where CA is the actual discharge capacity, k0 denotes an empirical co-
efficient, and IA is the discharge current calculated from the battery cell 
power as: 
IA =Pdis

BESS(t)⋅106 / (ηdis
BESS ⋅ UESS

) (20) 

where UESS represents the battery system voltage.
Combining both effects of discharge depth and rate, the effective 

ampere-hour consumption per discharge cycle is defined as: 
deff (t) = kDOD(t)⋅krate(t)⋅dact(t)

where

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

kDOD(t) =
(DA(t)

DR

)u0
⋅exp

(

u1⋅

(DA(t)
DR

− 1
))

krate(t) = CR
CA(t)

dact(t) = IA(t)⋅Δt

(21) 

where deff (t) is the effective ampere-hour consumption at time t. kDOD(t)
is the DoD impact factor. krate(t) represents the discharge rate impact 
factor, dact(t) is the actual discharge in ampere-hours.

And the depth of discharge at time t is: 
DA(t)=1 − SOCBESS(t) (22) 

After obtaining the effective ampere-hour consumption per 
discharge cycle, the remaining battery life can be expressed as: 

Ylife(t)= Elife
∑

t

i=1
deff (i)

(23) 

where ∑t
i=1 deff (i) represents the accumulated effective ampere-hour 

consumption up to time t.
The comprehensive consideration of both DoD and discharge rate 

effects, along with part-load efficiency characteristics, ensures accurate 
assessment of the complex degradation mechanisms and operational 
economics inherent in BESS.

(3) Electrolysers

Currently, two types of electrolyser technologies are widely used for 
hydrogen production: alkaline electrolysers and proton exchange 
membrane (PEM) electrolysers. Among these technologies, PEM elec-
trolysers offer several advantages including rapid response capabilities, 
wide operating range and high current density. Furthermore, PEM 
electrolysers demonstrate excellent dynamic performance with fast 
startup time and the ability to operate efficiently under partial load 
conditions, making them particularly suitable for coupling with inter-
mittent renewable energy sources and responding to fluctuating 
hydrogen demand in airport microgrid systems [57]. Therefore, this 
study adopts PEM electrolysis as the hydrogen production method in the 
proposed airport microgrid model. The electrolyser model captures 
realistic operational characteristics by incorporating multiple operating 
states and part-load characteristics, reflecting the actual technical con-
straints and efficiency variations of commercial electrolysers. It should 
be noted that pressure ramping dynamics are not considered in this 
model, as the optimization time intervals (20 min) exceed typical 
pressure ramping periods of PEM electrolysers, and the hydrogen stor-
age system is assumed to maintain constant pressure through dedicated 
regulation equipment [58].

The electrolyser operates in four distinct states: production, standby, 
startup, and shutdown. During production state, the hydrogen genera-
tion rate exhibits a non-linear relationship with power consumption due 
to varying efficiency across different operating loads: 

mt
H2 = f

(

Pt
el,prod, ηel

(

Pt
el,prod

))

∀t ∈ T (24) 

where mtH2 is the amount of hydrogen generated at time t; ηel represents 
the load-dependent efficiency and the electrical power input to the 
electrolyse is denoted as Pt

el,prod.
The total power consumption of PEM electrolysers comprises three 

components: 
Pt

el =Pt
el,prod + Pt

el,startup + Pel,standby⋅ut
standby ∀t ∈ T (25) 

where Pt
el,startup denotes startup power consumption, Pel,standby is the 

constant standby power requirement, and ut
standby is the binary standby 

state indicator.

3.1.2. Hydrogen energy network modelling

(1) Hydrogen storage tank

The HST serves as a reservoir for hydrogen produced through water 
electrolysis, providing hydrogen supply for both hydrogen-powered 
aircraft and hydrogen fuel cells. The hydrogen level in the HST at time 
t can be described as [59]: 

SOCHST(t)= SOCHST(t−1)+
(

Pch
HST(t) ⋅ ηch

HST −
Pdis

HST(t)
ηdis

HST

)

⋅
Δt

Emax
HST

(26) 

where SOCHST(t) represents the state of charge of the HST at time t, 
Pch

HST(t) and Pdis
HST(t) are the hydrogen charging and discharging rates at 

time t. The self-discharge factor σHST = 0, as self-discharge effects are 
typically negligible for hydrogen storage. ηchHST and ηdisHST represent the 
HST charging and discharging efficiency factors, while Emax

HST represents 
the maximum capacity of the HST.
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(2) Hydrogen fuel cell

Hydrogen fuel cells can reverse the energy conversion process of elec-
trolysers, transforming stored hydrogen into electrical energy. The HFC 
model captures power and thermal outputs in relation to energy con-
version efficiency and hydrogen consumption under varying load 
conditions.

The electrical power output of the fuel cell system is expressed as 
[59]: 

Pt
fc = ηt

fc,ele⋅ṁt
fc,H2 ⋅LHVH2

/

Δt (27) 

where Pt
fc is the electrical power output of fuel cell at time t, ηt

fc,ele rep-
resents the electrical efficiency, ṁt

fc,H2 denotes the hydrogen consump-
tion rate (kg/ Δt), LHVH2 is the lower heating value of hydrogen, and Δt 
is the time interval.

The thermal power generation from the fuel cell is characterized by: 

Qt
fc = ṁt

fc,H2 ⋅LHVH2 ⋅
ηt

fc,th
Δt (28) 

where Qt
fc represents the thermal power output and ηt

fc,th denotes the 
thermal efficiency of the fuel cell system.

3.1.3. Thermal energy network modelling
The TST serves dual functions in the airport microgrid: absorbing 

excess waste heat recovered from HFC operations, while providing 
thermal energy during periods of high heating load for the terminal 
building. The thermal energy level in the TST at time t can be expressed 
as [54]: 

SOCTST(t)= SOCTST(t−1)+
(

Pch
TST(t) ⋅ ηch

TST −
Pdis

TST(t)
ηdis

TST

)

⋅
Δt

Emax
TST

(29) 

where SOCTST(t) represents the state of charge of the TST at time t, 
Pch

TST(t) and Pdis
TST(t) are the thermal energy charging and discharging rates 

at time t. Similar to the HST, the self-discharge factor σTST = 0, as self- 
discharge effects are also typically negligible for thermal storage in 
well-insulated systems. ηchTST and ηdisTST represent the TST charging and 
discharging efficiency factors, while EmaxTST represents the maximum ca-
pacity of the TST.

3.2. Objective function

The objective functions are defined by the unique operational char-
acteristics of zero-carbon airport microgrids, where aircraft electric 
charging and hydrogen refuelling dominate the airport energy demand. 
These demands vary across airports of different scales and operational 
intensities, often reaching hundreds of megawatts even with only 
regional aircraft [46]. To accommodate such electric and hydrogen 
demands, airport microgrids typically incorporate large-scale PV in-
stallations, which introduce inherent output fluctuations. For 
hydrogen-powered aircraft, airport energy infrastructure is further 
expanded with on-site electrolysers for local hydrogen production, and 
fuel cells for hydrogen-to-electricity conversion. Waste heat from fuel 
cell is recovered via thermal energy storage for subsequent utilization. 
Such airport microgrids create complex energy conversion processes and 
tight coupling across electricity, hydrogen, and thermal networks. The 
complexity of multi-energy interactions in airport microgrids presents 
significant challenges for long-term stable energy dispatch. To address 
this, this study incorporates operational risk metrics for each energy 
network (electrical, thermal, and hydrogen) as optimization objectives, 
thereby enhancing the system’s ability to maintain continuous energy 
balance. Furthermore, an innovative demand shifting strategy for 
aircraft electric charging and hydrogen refuelling is also introduced, 
enabling redistribution of these large, time-bound loads within 

allowable time windows. Given the considerable magnitude of aircraft 
energy demands, such shifting can significantly impact power exchange 
with the external grid, motivating a flexibility objective to optimize 
power exchange and support grid services.

The proposed multi-objective optimization framework integrates 
three objectives: minimizing economic energy dispatch cost, reducing 
operational risk across multi-energy networks, and enhancing grid 
flexibility. The economic objective ensures cost-effective operation by 
minimizing daily operational expenses, the risk objective mitigates po-
tential instabilities across electrical, thermal, and hydrogen networks, 
and the flexibility objective, defined as reducing grid purchase, 
strengthens grid auxiliary service capability. A weighted optimization 
framework balances trade-offs among these objectives, allowing system 
operators to adapt priorities to operational needs, seasonal variations, or 
emergency scenarios, thereby enhancing the airport microgrid’s adapt-
ability, resilience and cost effectiveness.

The inherent variability of solar irradiance introduces certain fluc-
tuations into PV power output, necessitating a robust probabilistic 
modelling framework for stable system operation. To effectively capture 
these variations, a scenario-based modelling approach is adopted. Let ξ 

denote the random variable representing variations in the system, pri-
marily the variable PV output. A set of representative scenarios 
{ξs, s= 1, ..., S} is generated using Latin Hypercube Sampling (LHS). 
Specifically, for each scenario ξs, sampling process is first performed 
using its Cumulative Distribution Function (CDF), which indicates the 
likelihood of the variable falling at or below a certain value [54]. The 
cumulative distribution function F(G) is divided into N equal probability 
intervals, where 

P(Gk <G<Gk+1)=
1
N (30) 

The corresponding CDF value is calculated as 

F(Gk)=
1
Nrn +

k − 1
N (31) 

where rn follows a uniform distribution N (0,1). The actual sample 
values for scenario ξs are then obtained through inverse transform 
sampling, expressed as 

Gk = F−1
(1

Nrn +
k − 1

N
)

(32) 

The generated scenarios {ξs} are organized into an N × P matrix, 
where P represents the number of time periods under consideration. 
While LHS provides good space-filling properties in the sample space, to 
improve numerical conditioning and reduce computational burden, a 
two-stage reduction process is implemented.

First, the Gram-Schmidt (GS) orthogonalization process is applied to 
minimize linear dependencies between scenarios and enhance the nu-
merical stability of the scenario matrix. Given the smooth and unimodal 
nature of daily PV output profiles, this orthogonalization preserves the 
essential temporal patterns while improving computational tractability.

Subsequently, a Synchronous Backward Reduction (SBR) technique 
is also employed to obtain a representative subset while preserving the 
statistical properties of the original set. The distance between scenarios 
ξi and ξj is quantified using the Euclidean norm [54]: 

d(i, j)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑

T

t=1

(

ξit − ξjt
)2

√

√

√

√ (33) 

where ξit and ξjt represents the value of scenario i and j at time t, 
respectively.

This distance-based reduction approach ensures that extreme sce-
narios (e.g., days with exceptionally high irradiance or heavily overcast 
conditions) are preserved, as they typically lie at the boundary of the 
scenario set in Euclidean space and maintain large distances from other 
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scenarios. The algorithm preferentially eliminates scenarios in dense 
regions of the sample space, thereby maintaining scenario diversity and 
capturing the full range of PV variability critical for robust system 
operation.

Each scenario ξs is assigned a corresponding probability weight ωs, 
where 
∑

S

s=1
ωs = 1 (34) 

The objective function is then formulated to minimize the expected 
value across all scenarios, expressed as: 

min E[f(x, ξ)]=
∑

S

s=1
ωs[TC(x, ξs)+OPR(x, ξs)−GF(x, ξs)] (35) 

where TC(x, ξs) represents the system operation cost under scenario ξs; 
OPR(x, ξs) denotes the operational risk of the electricity-thermal- 
hydrogen energy networks under scenario ξs; and GF(x, ξs) indicates 
the grid flexibility assessment under scenario ξs.

The proposed probability-based modelling approach effectively 
captures the stochastic characteristics of PV output while maintaining 
computational efficiency. This optimization framework is particularly 
suitable for the multi-objective optimization of airport microgrid sys-
tems, as it enables the simultaneous balancing of system economics, 
operational security, and flexibility under variable renewable energy 
generation in multi-energy networks.

3.2.1. Operational cost
The economic objective function for the day-ahead optimal problem 

is expressed as follows, where TC represents the total cost of operating 
the microgrid over T time periods, the objective function is represented 
in Eq. (36), The specific formula for each part of objective function is 
shown in Eq. (37)–(45). 

min TC(x, ξs)=
∑

T

t=1

∑

N1

n=1
COM

(Pt,ξsn
)

+
∑

T

t=1

×
∑

N2

n=1
Ceav

(Pt,ξsn
)

+
∑

T

t=1

[

Ct,ξs
aging +Ct,ξs

grid +Ct,ξs
el +Ct,ξsH2 +Ct,ξsHeat

]

+ Cξs
demand

(36) 

COM
(Pt,ξSn

)

=Komn Pt,ξSn + Cazn r(1 + r)Ln * Pt,ξSn
26280(1 + r)Ln − 1 (37) 

where cost of equipment maintenance and operation for the n th unit is 
denoted by COM(), Pt,ξSn represents the power generate by the equipment, 
and N1 is the number of equipment in the microgrid; Komn denotes the 
maintenance cost factor of unit power output for equipment n, Cazn is the 
unit capacity investment costs for equipment n, Ln denotes the expected 
lifetime, r is the annual growth rate of depreciation, the list of equipment 
is included as n = PV; HFC; EL; TST; HST. 

Ceav
(

Pt,ξs
grid

)

=(KecCO2 +KecSO2 +KecNOX ) × Pt,ξs
grid (38) 

The emissions cost of the unit is shown in Eq. (38), where Ceav
(

Pt,ξs
grid

)

denotes the cost of emissions associated with the operation of the 
equipment. The hydrogen fuel cell in the system only uses green 
hydrogen and do not emit polluting gases, while other local generation 
equipment including PV panel, electrolyser and energy storage equip-
ment are also considered operating without pollution, therefore the 
emissions cost is only induced by the external grid in this study. Pt,ξs

grid 
represents the power purchased from the external grid at time t. KecCO2 ; 
KecSO2 ; KecNOX are the unit cost coefficients for emissions associated with 
grid power generation.

The battery aging cost represents a significant component of the total 

system operation cost. For each time interval, the degradation cost is 
calculated based on the effective discharge throughput [54]: 

Ct,ξs
aging =

Cunit
BESS⋅Emax

BESS⋅dt,ξs
eff

Elife
(39) 

where Cunit
BESS represents the unit investment cost of the BESS, dt,ξs

eff is the 
effective ampere-hour consumption considering both DoD and discharge 
rate effects, and Elife is the total baseline throughput in ampere-hours.

The total battery degradation cost over the optimization horizon T is: 

Ctotal,ξs
aging =

∑

T

t=1
Ct,ξs

aging (40) 

This degradation cost is incorporated into the overall system oper-
ation cost objective, incentivizing operational strategies that balance 
immediate energy arbitrage benefits against long-term battery life 
preservation.

The electrolyser contributes to the total system operation cost 
through startup-related expenses, which reflect the operational wear 
and efficiency losses during transient states: 
Ct,ξs

el =Cstartup,cold⋅ut,ξs
startup,cold + Cstartup,hot ⋅ut,ξs

startup,hot (41) 

where ut,ξs
startup,cold and ut,ξs

startup,hot are binary variables indicating cold and 
hot startup events at time t, Cstartup,cold and Cstartup,hot represent cold and 
hot startup costs respectively.

Cold startup costs are significantly higher due to extended power 
consumption during the startup sequence and increased thermal stress 
on system components. Hot startup costs are relatively lower as the 
system maintains residual thermal energy, enabling faster transition to 
production state with minimal auxiliary power requirements.

Eq. (42) denotes the cost or revenue associated with buying and 
selling electricity, where Ct

pbuy and Ct
psell denote the purchase price and 

sale price of the grid at time t, respectively. Pt,ξs
gridbuy and Pt,ξs

gridsell represent 
the interactive power exchange of the grid at time t. 
Ct,ξs

grid =Ct
pbuyPt,ξs

gridbuy − Ct
psellPt,ξs

gridsell (42) 
Eq. (43) shows the cost for buying hydrogen through external 

hydrogen pipeline, CH2 denotes the price of hydrogen, Pt,ξs
H2buy is the 

quantity of hydrogen purchased at time t. 
Ct,ξs

H2 =CH2 Pt,ξs
H2buy (43) 

Eq. (44) represents the cost for purchasing heat from the external 
district heating network. CHeat denotes the unit price of thermal energy, 
Pt,ξs

Heatbuy is the quantity of heat purchased at time t. 

Ct,ξs
Heat =CHeat⋅Pt,ξs

Heatbuy (44) 
Apart from the typical cost elements associated with conventional 

multi-energy microgrids, airports featuring large-scale aircraft electri-
fication are characterized by exceptionally high electricity consumption, 
which can impose significant stress on the upstream power grid during 
peak demand periods. To mitigate peak airport demand and reduce grid 
stress, demand charges are implemented as an economic incentive 
mechanism that encourages demand shifting and peak shaving behav-
iours. The demand charges are calculated based on the peak power 
demand during the optimization period, as expressed in Eq. (45): 
Cξs

demand =Ppeak⋅τdemand (45) 

where Ppeak represents the maximum power demand over the selected 
day, and τdemand denotes the demand tariff rate. The demand tariff is 
determined according to data regularly published by the National En-
ergy System Operator (NESO) for Great Britain [60]. While several 
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European countries implement explicit demand-based tariffs, the UK 
employs a triad-based scheme where demand charges are determined 
based on the average peak power over the three highest half-hour pe-
riods of grid demand on specific days in winter. In this study, demand 
charges are simplified and defined as the peak demand of the selected 
day multiplied by the demand tariff for computational tractability.

3.2.2. Multi-energy network operational risk
Operational risk in power systems is typically defined as a compre-

hensive assessment of both the probability and severity of uncertainties 
during system operation. In this paper, we select three primary risk in-
dicators for the airport multi-energy microgrid: electrical power 
imbalance, thermal power imbalance, and hydrogen power imbalance. 
Each of these imbalance indicators encompasses both positive and 
negative deviations. The final risk assessment is quantified by multi-
plying the power imbalances with their corresponding severity factors. 
The overall system operational risk is expressed in Eq. (46): 

minOPR(x, ξs)=
∑

T

i=1

(Pi,ξsout × Sev
(Pi,ξsout

)

+Qi,ξsout × Sev
(Qi,ξsout

)

+Hi,ξsout × Sev
(Hi,ξsout

))

(46) 

where OPR represents the total system operational risk and T is the 
system operation period. Pi,ξsout , Qi,ξsout , and Hi,ξsout represent the electrical, 
thermal, and hydrogen power imbalances at time i, respectively. 
Sev

(

Pi,ξsout
)

, Sev
(

Qi,ξsout
)

, and Sev
(

Hi,ξsout
)

denote the severity factors for the 
power imbalances in these energy networks, respectively.

The severity factor represents the degree of severity when power 
imbalances occur in the system. In this paper, the severity of electrical, 
thermal, and hydrogen power imbalances is characterized by the func-
tion shown in Eq. (47): 
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Sev
(Pi,ξsout

)

=
exp(Ai*

(Pi,ξsout
)

+ Bi
)

− 1
Ci

Sev
(Qi,ξsout

)

=
exp(αi*

(Qi,ξsout
)

+ βi
)

− 1
δi

Sev
(Hi,ξsout

)

=
exp(εi*

(Hi,ξsout
)

+ θi
)

− 1
μi

(47) 

where Ai, Bi, Ci are the fitting parameters for the electrical power 
imbalance severity function; αi, βi, δi are the fitting parameters for the 
thermal power imbalance severity function; and εi, θi , μi are the fitting 
parameters for the hydrogen power imbalance severity function. The 
term exp() represents the exponential function with base e.

Based on Eq. (47), it can be observed that the severity factor exhibits 
exponential growth with the increase in power imbalance, which 
significantly impacts the objective function. This exponential relation-
ship effectively serves as a penalty term, naturally constraining the 
further escalation of operational risks in the airport multi-energy 
microgrid. Such a mechanism is particularly crucial for maintaining 
the stable operation of the integrated electricity-thermal-hydrogen 
network.

3.2.3. Flexibility potential of airport microgrid
The system flexibility is quantified by comparing the grid interaction 

patterns between two optimization scenarios. Let Pb,ξs
grid denote the total 

daily grid power exchange between the airport microgrid and the utility 
grid when the objective function only include operational costs and 
risks; Pflex,ξs

grid represents the aggregate grid power exchange over the 
scheduling period when all three objectives are optimized. The flexi-
bility is quantified as: 

max GF(x, ξs)=
⃒

⃒

⃒Pb,ξs
grid −Pflex,ξs

grid
⃒

⃒

⃒ (48) 

The flexibility can be classified into two types: positive flexibility and 
negative flexibility. Positive flexibility represents a reduction in grid 
power purchases compared with baseline scenario, while negative 
flexibility indicates an increase in grid power purchases. In this study, 
positive flexibility is adopted as the primary flexibility indicator, 
reflecting microgrid’s capability to reduce dependency on external grid 
power. The mathematical formulations for positive and negative flexi-
bility are expressed as follows: 
max GFpos(x, ξs)=Pb,ξs

grid − Pflex,ξs
grid (49) 

max GFneg(x, ξs)=Pflex,ξs
grid − Pb,ξs

grid (50) 

3.3. Constraints

3.3.1. Multi-energy network balance and external interaction constraints
The operation of the airport microgrid is constrained by energy 

balances across electricity, thermal, and hydrogen networks. The elec-
trical balance constraint is expressed as: 
Pt,ξs

eleload +Pt,ξs
el + Pt,ξs

gridsell + Pt,ξs
BESS,cha = Pt,ξsPV + Pt,ξs

fc + Pt,ξs
BESS,dis + Pt,ξs

gridbuy (51) 

where Pt,ξs
el represents power consumed by electrolyser, and the power 

output of HFC is indicated by Pt,ξs
fc . Pt,ξs

BESS,cha and Pt,ξs
BESS,dis are the charging 

and discharging power of the BESS at time t, while Pt,ξs
gridbuy and Pt,ξs

gridsell 
denotes the power purchase from and sale to the utility grid, respec-
tively.

The thermal network balance constraint is given by: 
Pt,ξS

Hload =Pt,ξS
TST + Qt,ξS

fc + Pt,ξs
Heatbuy (52) 

The power balance constraint of the thermal network is described by 
Eq. (52), including the waste heat recovered through heat exchanger 
Qt,ξS

fc , external thermal power purchase Pt,ξs
Heatbuy, the thermal load of the 

terminal building Pt,ξS
Hload, and the thermal power output or input of the 

TST Pt,ξS
TST.

The hydrogen network balance follows: 
Pt,ξS

H2Load +Pt,ξS
fc,H2 = Pt,ξS

H2 + Pt,ξS
HST + Pt,ξS

H2buy (53) 

The power output or input of the HST is denoted as Pt,ξS
HST, and the 

hydrogen demand at time t is Pt,ξS
H2Load. Pt,ξS

fc,H2 represents the hydrogen 
consumption power of the HFC, while Pt,ξS

H2buy is the hydrogen consump-
tion power of the electrolyser. Pt,ξS

H2buy is the hydrogen power purchased 
from the pipeline at time t.

In this study, the airport microgrid is modelled using a single-bus 
structure without considering detailed internal network physics. Spe-
cifically, electrical network constraints such as voltage limits and line 
capacity, thermal network characteristics including heat losses and 
temperature gradients, and hydrogen network dynamics such as pres-
sure variations and flow limitations are not explicitly modelled. This 
simplification is justified by the compact spatial scale of the airport 
microgrid, the short distribution distances involved, and the support 
from external utility networks that ensure stable operating conditions. 
The energy balance equations (Eq. (51)–(53)) therefore represent 
aggregated power flows at the system level rather than detailed network 
power flow calculations.

The interactions with external energy networks are further con-
strained by upper and lower bounds on power, hydrogen, and heat ex-
changes: 
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Pmin
gridbuy ≤ Pt,ξs

gridbuy ≤ Pmax
gridbuy

Pmin
gridsell ≤ Pt,ξs

gridsell ≤ Pmax
gridsell

Pmin
H2buy ≤ Pt,ξS

H2buy ≤ Pmax
H2buy

Pmin
Heatbuy ≤ Pt,ξs

Heatbuy ≤ Pmax
Heatbuy

(54) 

3.3.2. Dispatchable equipment power output constraints
Dispatchable equipment such as fuel cells and electrolysers are 

constrained within minimum and maximum output ranges, expressed 
as: 
Pmin

n ≤Pt,ξsn ≤ Pmax
n , n = HFC,EL (55) 

where Pminn and Pmaxn denote the minimum and maximum power output 
of equipment n, respectively.

Beyond these limits, electrolyser operation is also governed by the 
following technical and operational constraints to ensure realistic sys-
tem behaviour [57]. Startup dynamics are modelled to capture both cold 
and hot processes, requiring proper durations and corresponding elec-
trical consumption, which is formulated as: 
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⎪
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ut
on +

∑

t

τ=t−Tcold+1
uτ

startup,cold ≤ 1 ∀t ∈ T

ut
standby +

∑

t

τ=t−Tcold+1
uτ

startup,cold ≤ 1 ∀t ∈ T

ut
on − ut−1

on ≤ ut
startup,hot + ut

startup,cold +
∑

t−1

τ=t−Tcold

uτ
startup,cold ∀t ∈ T

Pt
el,startup =

Pstartup,cold
Tcold

∑

t

τ=t−Tcold+1

uτ
startup,cold + Pstartup,hot⋅ut

startup,hot ∀t ∈ T

(56) 

where Tcold represents the cold startup duration, ensuring that cold 
startup requires sustained operation for Tcold periods. These constraints 
ensures that the electrolyser can achieve proper cold and hot startup 
processes while consuming the corresponding power.

Electrolyser operating states are mutually exclusive, preventing 
simultaneous operation in production and standby modes, which is 
expressed as: 
ut

on + ut
standby ≤ 1 ∀t ∈ T (57) 

To ensure durability, a minimum load constraint is imposed since 
industrial electrolysers cannot maintain stable electrochemical reactions 
at very low current densities, leading to efficiency degradation: 
Pel,min ⋅ ut

on ≤ Pt
el,prod ∀t ∈ T (58) 

where Pel,min represents the minimum stable operating load.

Hydrogen production is coupled to the active state of the electro-
lyser, formulated as: 
mt

H2 ≤M⋅ut
on ∀t ∈ T (59) 

where M is a sufficiently large constant, ensuring that hydrogen is only 
produced during the active operating state. Finally, the electrolyser 
thermal state is preserved to allow hot startup within Tcooldown, a defined 
cooldown duration after shutdown, which is represented by: 

ut
startup,hot ≤

∑

t−1

τ=t−Tcooldown

uτ
on ∀t ∈ T (60) 

3.3.3. Constraints on energy storage systems
Eq. (61) constrains the remaining energy capacity at any given time t 

to ensure operational feasibility within the system’s physical limitations. 
Smin

n ≤ St,ξsn ≤ Smax
n (61) 

where Sminn and Smaxn represent the minimum and maximum allowable 
capacity of the multi-energy storage systems, respectively.

During the energy dispatch process, the charging and discharging 
power of storage systems is constrained by both their permissible 
remaining capacity range and inherent technical limitations. The 
maximum charging and discharging power can be expressed as:  

where Pchn,max and Pdisn,max are the maximum charging and discharging 
power of the multi-energy storage systems, respectively.

To enhance the participation of multi-energy storage systems in the 
dispatch of subsequent days, it is essential that their final capacity at the 
end of the current dispatch St=Tn aligns with the initial capacity St=0n . 
However, considering the large capacity of the storage tank and the 
flexibility of the energy system, a threshold value ψn is set in this study to 
reduce the computational complexity of optimization problem, the 
remaining capacity at the end of a day and initial capacity of the day are 
subject to the following constraints: 
⃒

⃒St=0
n − St=T

n
⃒

⃒

St=0n
≤ ψn (63) 

3.3.4. Aircraft charging and refuelling constraints
Based on the predefined charging or refuelling power and duration 

for each aircraft described in Section 2.2.2, the following constraints 
must be satisfied in the charging and refuelling schedule optimization:

First, to ensure continuous charging or refuelling process, each 
aircraft can only be charged or refuelled once without interruption. The 
charging or refuelling status of aircraft i at time t is defined by a binary 
variable xi,t. When the aircraft is being charged or refuelled, xi,t equals 1, 
otherwise, it equals 0. This continuous charging or refuelling require-
ment can be described as: 

xi,t =

{

1, if si ≤ t < si + Ti
air

0, otherwise ∀i∈N, ∀t ∈ T (64) 

where si represents the charging or refuelling start time of aircraft i, and 

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0⩽Pt,ξs
n,ch⩽Pt,ξs

n,ch max =min
{

Pch
n,max,

[Smax
n −St−1

n (1−σn)
]

ηchn Δt
}

n=BESS,HST,TST

0⩽Pt,ξs
n,dis⩽Pt,ξs

n,dismax =min
{

Pdis
n,max,

[St−1
n (1−σn)−Smin

n
]

ηdis
n

Δt
}

(62) 
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Ti
air denotes its required charging or refuelling duration.

Although Eq. (64) defines the charging status, the start time si is an 
implicit decision variable that requires additional constraints to define 
its feasible range, tarr

i ≤ si ≤ tdep
i − Ti

air. Excessive computational 
complexity is caused by formulating si as a continuous variable with 
nonlinear constraints linked to binary variables xi,t, or by modelling 
each xi,t as an independent binary decision variable. In the latter 
approach, 200 aircraft over 72 time intervals at 20-min resolution would 
require up to 14,400 binary variables along with numerous logical 
constraints for continuity and exclusivity. To overcome this issue, the 
problem is reformulated by explicitly optimizing charging start time 
through discrete binary variables.

Binary decision variables are introduced to indicate when charging 
begins: 

wi,s =
{1, if aircraft i starts charging at time s

0, otherwise ∀i∈N, ∀s ∈ T (65) 

The charging and refuelling scheduling problem is then expressed as: 

∑

tdep
i −Ti

air

s=tarr
i

wi,s = 1,∀i ∈ N

where wi,s = 0, ∀i ∈ N, ∀s < tarr
i or s > tdep

i − Ti
air

(66) 

This constraint ensures that each aircraft has exactly one charging or 
refuelling start time within its feasible window.

In addition, to guarantee a continuous and complete charging or 
refuelling process, it is necessary to ensure that once charging or refu-
elling begins at time s, it proceeds without interruption for the full 
duration Ti

air required by the aircraft type. Therefore, the charging or 
refuelling status xi,t is determined by the selected start time and only 
remain active throughout the charging or refuelling period, as expressed 
in Eq. (67): 
xi,t =

∑

s∈S i(t)
wi,s, ∀i ∈ N, ∀t ∈ T (67) 

where S i(t) =
{

s : s≤ t< s+Ti
air, tarr

i ≤ s≤ tdep
i −Ti

air
}

represents the set 
of start time that would result in charging or refuelling at time t.

Meanwhile, to prevent system overload, the total power demand 
from all aircraft at any time must not exceed the system capacity: 
∑

i

(Piairxi,t
)

≤Pair
max,∀t ∈ T (68) 

where Piair is the power demand of aircraft i and Pairmax represents the 
maximum system power capacity.

These constraints collectively ensure that each aircraft receives one 
continuous charging or refuelling session while maintaining the system 
power demand within its capacity limit throughout the optimization 
period.

4. Solution methodology

4.1. Model linearization

The optimization model for airport energy management involves two 
types of nonlinear terms that need to be addressed: the absolute value 
terms and the part-load efficiency curves of energy storage and con-
version equipment. We propose systematic linearization approaches for 
each type of nonlinearity to transform the model into a MILP 
formulation.

It should be emphasized that in the aircraft charging and refuelling 
constraints, the relationship between wi,s and xi,t in Eq. (65) represents a 
logical constraint rather than a bilinear term. Since the charging power 
for each aircraft is predetermined as a constant (as shown in Eq. (11)), 

the constraint states that if charging starts at time s when wi,s = 1, the 
aircraft must maintain its charging status during the interval [s, s +

Ti
air − 1].

This logical relationship is expressed as: 
wi,s =1⇒xi,t = 1,∀t ∈ [s, s+Ti

air −1] (69) 
Given that xi,t ∈ {0,1} represents a binary charging status and the 

charging power is a predetermined constant, this constraint can be 
implemented without introducing bilinear terms through: 
xi,t ≥wi,s t ∈ [s, s+Ti

air −1],∀i, s (70) 
Additionally, to prevent charging activity outside the selected 

charging period, the following constraint is imposed: 
xi,t ≤

∑

s∈S i(t)
wi,s,∀i, t ∈ T (71) 

This constraint serves as an upper bound: when no charging start 
time covers time slot t, the summation equals 0, forcing xi,t = 0; when 
exactly one start time covers time slot t, the summation equals 1, 
allowing xi,t = 1.

Together, Eqs. (70) and (71) ensure that xi,t = 1 if and only if time t 
falls within a selected charging period. With predetermined constant 
charging powers, the formulation remains a standard MILP problem 
without requiring Big-M linearization, thus preserving numerical sta-
bility and avoiding relaxation gaps typically associated with Big-M 
methods.

The energy conversion devices in the multi-energy microgrid exhibit 
nonlinear efficiency characteristics that vary significantly with oper-
ating load levels. To maintain the linearity of the optimization model 
while accurately capturing these nonlinear behaviours, we employ 
piecewise linear (PWL) approximation based on convex combinations 
with Special Ordered Set of Type 2 (SOS2) constraints.

The core principle of our linearization approach is to represent any 
operating point as a convex combination of predefined breakpoints. For 
a nonlinear efficiency function η(P /Pmax), we select Nbp breakpoints at 
load levels 

{

ρ1, ρ2, ..., ρNbp

}

with corresponding efficiencies 
{

η1, η2, ...,

ηNbp

}

. The efficiency at any operating point is then approximated as: 

ηt =
∑

Nbp

k=1
λk,t⋅ηk (72) 

where the weight variables λk,t form a convex combination satisfying: 
∑

Nbp

k=1
λk,t =1, λk,t ≥ 0, ∀k, t (73) 

These constraints ensure that the weights are non-negative and sum 
to unity, defining a valid convex combination. However, allowing all λk,t 
to be simultaneously non-zero would result in arbitrary weighted av-
erages rather than piecewise linear interpolation. To enforce proper 
PWL behaviour, we impose the SOS2 constraint: 

sos2
(

λ1,t , λ2,t , ..., λNbp ,t
)

(74) 

This constraint restricts at most two adjacent λ variables to be non- 
zero, ensuring that the operating point is represented as a convex 
combination of only two consecutive breakpoints. Mathematically, if the 
operating load falls between breakpoints k and k+ 1, then: 
λk,t + λk+1,t = 1, λj,t = 0 ∀j ∕∈ {k, k+ 1} (75) 

This formulation achieves linear interpolation between adjacent 
breakpoints while maintaining the convexity properties of the approxi-
mation. The operating power is expressed as convex combinations: 

B. Li et al.                                                                                                                                                                                                                                        eTransportation 27 (2026) 100485 

12 



Pt =
∑

Nbp

k=1
λk,t⋅Pk (76) 

This convex combination approach transforms the nonlinear effi-
ciency curves into a set of linear constraints, while the SOS2 constraints 
ensure that the approximation follows the piecewise linear segments 
rather than arbitrary convex hull relaxations. The method preserves the 
computational advantages of linear programming while maintaining 

high fidelity to the original nonlinear characteristics, particularly in the 
typical operating regions where breakpoints are strategically 
concentrated.

Another source of nonlinearity comes from the absolute value terms. 
Due to the scale of the model and the number of variables involved, the 
absolute value terms in our airport energy management model present 
significant non-linear challenges. For any absolute value term |x|, we 
introduce an auxiliary variable k to represent the absolute value. The 

Fig. 4. Optimization framework for airport microgrid energy dispatch.
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relationship |x| = k can be equivalently transformed into a set of linear 
constraints: 
{ k ≥ x

k ≥ −x (77) 

where k is a non-negative variable representing |x|. This transformation 
is exact because in the objective minimization, k will always take the 
value |x| at optimality due to the minimization pressure.

The proposed linearization approaches introduce additional vari-
ables and constraints. In absolute value linearization, continuous vari-
ables k and paired inequality constraints are added, while in the SOS2- 
based piecewise linearization, weight variable λk,t and SOS2 constraints 
are introduced. Although these transformations increase the problem 
dimension, the resulting MILP formulation is typically more computa-
tionally tractable for commercial optimization solvers such as Gurobi or 
CPLEX than original nonlinear formulation, and it preserves the logical 
structure of the formulation while improving computational efficiency.

4.2. Solution process

The proposed optimization framework for airport microgrid energy 
dispatch comprises three primary phases, as depicted in Fig. 4. The 
initial phase analyzes source-load characterization, where scenario- 
based techniques capture PV generation variability, surrogate models 
analyse aircraft energy requirements during charging/refuelling opera-
tions, and statistical methods establish electric and thermal demand 
patterns for the terminal building.

Subsequently in the second phase, the energy dispatch optimization 
model is formulated with multiple objectives: minimizing overall 
operational expenditure, enhancing power grid flexibility, and reducing 
system-wide operational risks. This model integrates aircraft demand 
shifting capabilities alongside comprehensive operational constraints 
for microgrid equipment. The resulting nonlinear formulation is trans-
formed into a computationally efficient MILP formulation through 
piecewise linearization, binary variable introduction, and convex 
reformulation techniques.

In the optimization solving phase, key Gurobi solver parameters are 
configured to balance computational efficiency with solution quality. 
The embedded MILP solver iteratively computes both primal and dual 
bounds until the relative optimality gap satisfies the prescribed toler-
ance, thereby guaranteeing convergence to a high-quality solution 
within acceptable computational time.

5. Results and analysis

The proposed methodology is demonstrated through a case study 
based on Manchester Airport, UK. The system comprises various energy 
supply equipment sized to meet the airport’s electrical, thermal, and 
hydrogen demands. A large-scale PV installation with 50 MW capacity 
serves as the primary renewable energy source. The energy conversion 
equipment includes a 100 MW hydrogen fuel cell system with a load- 
dependent thermoelectric ratio and a 100 MW hydrogen electrolysis 
plant to facilitate bidirectional energy conversion between the hydrogen 
and electrical networks. Notably, the electrolyser employs a multi-state 
transition model to more accurately evaluate the performance and 
economics of on-site hydrogen production.

The multi-energy storage systems are designed with coordinated 
capacity to ensure reliable energy supply. A BESS with 150 MWh ca-
pacity is implemented alongside a TST rated at 50 MWh and a HST with 
150-ton capacity. The BESS incorporates battery degradation costs to 
reflect the economic impact of cycling-induced aging. For all storage 
systems, the initial SoC is set at 0.5 and ψ is fixed at 0.01, with opera-
tional constraints limiting the SoC between 0.2 and 0.9 to ensure system 
longevity and operational stability.

The airport terminal energy demand is estimated using the modelling 

and analysis method presented in Ref. [61], which provides statistically 
analysed daily energy consumption patterns for a representative sample 
of administrative offices, including key end-use facilities such as light-
ing, heating, ventilation, and air conditioning (HVAC), and plug loads, 
which represent the primary electrical and thermal energy-consuming 
equipment servicing airport terminals [62]. The demand profiles are 
subsequently scaled by the airport’s annual passenger volume to reflect 
airport-specific energy demand, enabling a data-driven approximation 
that captures both operational characteristics and system scale. To 
accommodate varying energy costs throughout the day, the system 
operates under a time-of-use electricity purchase pricing structure. 
Specifically, rates are set at 0.07 £/kWh during off-peak hours from 
00:00–07:00. The rate increases to 0.15 £/kWh during mid-peak periods 
from 10:30 to 16:00 and from 21:00 to midnight. The highest rate of 
0.20 £/kWh applies during peak periods from 7:00–10:30 and from 
16:00–21:00. The electricity sale price to the external grid is set at 0.09 
£/kWh based on the current electricity market rates. Heat purchase from 
external sources is priced at 0.08 £/kWh, accounting for clean heat re-
quirements in district heating via heat pumps and other renewable 
technologies.

Despite the lack of a standardized hydrogen market mechanism, 
considering the potential correlation between hydrogen production 
costs and electricity prices due to the electricity-intensive nature of 
electrolysis, we adopt a hydrogen pricing strategy aligned with the peak- 
valley structure of time-of-use electricity tariffs. This approach is 
consistent with current green hydrogen production practices, which 
predominantly rely on large-scale electrolysis [63]. To reflect practical 
market dynamics and pricing delays, hydrogen prices are modelled with 
a 1-h lag relative to electricity prices. Other economic parameters are 
provided in the Appendix.

The stochastic nature of PV generation is modelled using beta dis-
tribution parameters derived from historical illumination intensity data, 
with mean and variance values given in Ref. [64]. 10 representative PV 
generation scenarios, obtained using scenario generation and reduction 
methods, are illustrated in Fig. 5(a), with their corresponding proba-
bility distributions shown in Fig. 5(b).

The developed multi-energy microgrid optimization framework, 
which coordinates the energy dispatch between future airport in-
frastructures and zero-emission aircraft, is implemented in MATLAB 
2024b. The resulting MILP problem is solved using the Gurobi optimi-
zation solver. All computations are performed on a MacBook equipped 
with an M4 Pro chip and 48 GB RAM.

5.1. Statistical analysis of electric and hydrogen-powered aircraft energy 
demands at airport

To comprehensively understand the flight operations and energy 
demand variations at the selected airport, flight data throughout the 
year 2023 are collected and analysed. The dataset includes flight dura-
tion and aircraft type information for each flight. Different aircraft 
models are assigned specific weighting factors to account for their 
varying energy demands. The equivalent flight duration for each flight 
operation is calculated using Eq. (78), and the total equivalent flight 
hours for each time period is determined by Eq. (79): 
teq,i = tactual,i × Wtype,i (78) 

Teq,p =
∑

i∈Fp

teq,i (79) 

where teq,i is the equivalent flight duration of flight i, tactual,i represents 
the actual flight duration of flight i, Wtype,i is the weighting factor cor-
responding to the aircraft type of flight i, Teq,p is the total equivalent 
flight hours during time period p , and Fp denotes the set of flights 
operating during time p.

Using Eq. (78) and Eq. (79), the daily cumulative equivalent flight 
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Fig. 5. (a) Representative daily PV generation scenarios; (b) Probability of each scenario.

Fig. 6. Daily cumulative flight hours and distribution of clustered typical days in 2023.

Fig. 7. Electric and hydrogen power demands of aircraft at representative days.

B. Li et al.                                                                                                                                                                                                                                        eTransportation 27 (2026) 100485 

15 



hours are calculated. The k-medoids clustering method is then applied to 
identify representative daily demand patterns, resulting in six typical 
clusters. As shown in Fig. 6, these representative days are well- 
distributed throughout the dataset, with a particularly higher concen-
tration around September aligning with the airport’s busiest operations. 
The temporal distribution of the clustered typical days effectively cap-
tures both seasonal variations and peak operation periods, validating the 
effectiveness of the clustering approach.

In the proposed energy dispatch optimization strategy, aircraft de-
mands are shifted in real-time based on airport microgrid needs during 
the optimization process. This means the aircraft’s total demand profile 
is not fixed beforehand. To facilitate analysis of aircraft demand pattern 
variations, we considered a scenario where aircraft do not perform de-
mand shifting. Instead, each aircraft begins charging or refuelling 
immediately upon landing. (If an aircraft arrived prior to the selected 
day, charging or refuelling is completed at the corresponding time 
before its scheduled departure). The duration for charging or refuelling 
is determined by the settings for each aircraft type as specified in 
Table A1. By fixing the charging or refuelling start time, the electric and 
hydrogen power demands for aircraft operations on six representative 
days (February 28, April 5, August 12, September 10, September 22, and 
December 18) are obtained, as shown in Fig. 7.

From Fig. 7, it can be observed that each of the six representative 
days exhibits unique characteristics in both electric and hydrogen power 
demands. In particular, aircraft energy demands in August and 
September are significantly higher than those on other days, aligning 
with the increased air traffic during the UK’s summer travel peak. 
Specifically, September 10 exhibits the highest peak electric demand; 
however, its demand profile fluctuated more significantly compared to 
August 12. The latter maintained a relatively stable high-level demand 
throughout the day, peaking at around 300 MW. The hydrogen demand 
profile presents a different pattern, with September 10 showing both the 
highest peak value and average value. Since medium and large aircraft 
primarily rely on hydrogen-powered propulsion, these trends suggest 
that while both days experience high airport traffic, August 12 accom-
modates more small aircraft, whereas September 10 generally hosts 
more large aircraft.

February 28 presents the lowest aircraft energy demands among the 
selected days. Notably, the electric and hydrogen demand profiles for 
this day follow relatively similar trends, generally showing a gradual 
decrease from a morning peak, with no flight operations during the 
night. These demand patterns reflect a significantly lower proportion of 
hydrogen-powered aircraft on this day, with operations mainly domi-
nated by hybrid hydrogen -electric aircraft, resulting in a noticeable 
correlation between electric and hydrogen demands. In contrast, 
December 18 displays an almost opposite demand pattern. Aside from 
the early morning period with few flights, electric and hydrogen de-
mands often changed inversely throughout the day, possibly indicating a 
limited presence of medium-sized hybrid hydrogen-electric aircraft. 
With fewer total flight operations, an increase in battery-powered 
aircraft likely results in a decrease in hydrogen-powered aircraft, 
contributing to this inverse relationship between these two types of 
energy demands.

The analysis reveals significant variations in demand patterns and 
magnitudes across these representative days, reflecting the dynamic 
nature of aircraft energy requirements at airport throughout the year. 
Overall, given that the electric charging demands are comparable in 
scale between all-electric aircraft and the battery-supplied portion of 
hybrid hydrogen-electric aircraft, the electric demand variations across 
different days show complex trends with no significant regular patterns, 
primarily influenced by the actual flight schedules of each day. 
Hydrogen demands, however, exhibit a very clear peak from morning to 
midday. While the peak magnitudes vary across days, the timing of these 
peaks remains relatively consistent, indicating that large hydrogen- 
powered aircraft, which constitute the majority of hydrogen demand 
at the selected airport, mainly operate during arrival and departure in 

this period.
Among these typical days, April 5 is selected as the representative 

day for detailed energy dispatch analysis of the airport microgrid in the 
following chapter. This is due to its distinctive demand characteristics, 
with a relatively balanced distribution of all three aircraft types, making 
it an ideal case for demonstrating the airport microgrid’s capability in 
managing sharp demand variations and coordinating multiple energy 
sources. Additionally, its moderate flight volume and peak demand 
levels represent a balanced scenario that can effectively illustrate the 
typical operation patterns of the proposed energy management 
strategies.

5.2. Analysis of airport energy dispatch results

To comprehensively evaluate the impact of different optimization 
objectives on the energy dispatch results, five cases are designed to 
progressively incorporate various system features and objectives:

Case 1: Only operational cost minimization; aircraft demand shifting 
and PV variability are not considered.

Case 2: Only operational cost minimization; aircraft demand shifting 
allowed, PV variability not considered.

Case 3: Operational cost and risk minimization; aircraft demand 
shifting and PV variability considered.

Case 4: Operational cost minimization and power grid flexibility 
maximization; aircraft demand shifting and PV variability considered.

Case 5: Comprehensive optimization: operational cost minimization, 
operational risk minimization, and power grid flexibility maximization; 
aircraft demand shifting and PV variability considered.

The energy dispatch results for the electrical, thermal, and hydrogen 
networks are presented in Figs. 8–12, while Table 1 illustrates the 
relative changes in the three optimization objectives compared to Case 
1.

In Case 1, where aircraft demand shifting strategy is not adopted, the 
electric demand exhibits a significant peak of approximately 350 MW 
shortly after 5 a.m., as shown in Fig. 8(a). The magnitude of the demand 
exceeds the capacity of the originally designed grid power exchange 
capacity for the airport microgrid, necessitating a specific increase in the 
maximum allowable power purchase limit for this case. Despite the off- 
peak electricity tariff during early morning hours, the hydrogen demand 
within the system is still met through external hydrogen purchase due to 
the coinciding low hydrogen prices and minimal hydrogen aircraft 
refuelling demand during this period, making hydrogen purchase more 
economically favourable than on-site production. Similar to aircraft 
electric demands, the hydrogen demand of the aircraft also cannot be 
optimized based on system characteristics, resulting in significant peak 
hydrogen demands. To accommodate these large peaks, the hydrogen 
import capacity are assumed to be adequately sized in Case 1. As shown 
in Fig. 8(c), this adaptation of system constraints leads to a dispatch 
pattern that heavily relies on external hydrogen purchase rather than 
utilizing the integrated hydrogen storage system, reflecting the 
hydrogen network’s preference for direct energy supply when facing 
inflexible high demands. The fuel cell output varies in response to 
electricity and hydrogen price differentials. Notably, during 7–8 AM, 
electricity prices have risen to peak tariff levels while hydrogen prices 
remain at their daily minimum due to the 1-h lag, resulting in near- 
maximum fuel cell output to capitalize on this price arbitrage, as 
evident in Fig. 8(a) and (b).

With the adoption of demand shifting strategy in Case 2, the peak 
demand significantly decreased to approximately 150 MW, while de-
mand levels increased during periods that has low charging demand in 
Case 1, effectively achieving peak shaving and valley filling potential, as 
depicted in Fig. 9(a). Specifically, the system maximizes power pur-
chases during the 0–7 AM low-price period to meet both aircraft 
charging and battery storage charging demands. Beyond the morning 
peak, demand shifting results in increased aircraft energy demands 
during midday low-price periods and reduced demands during high- 
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price time. Battery storage provides additional support during peak 
electricity price periods and high aircraft demand intervals, reducing 
high-price power purchases from upper grid. As shown in Table 1, this 
demand shifting strategy can reduce total costs by over 340,000 £. Un-
expectedly, the electrolyser operates briefly between 7 and 8 a.m. 
despite unfavourable costs, as hydrogen prices are still at their lowest 
while electricity costs have risen to peak levels. This unusual operation 
is actually driven by peak hydrogen demand from aircraft refuelling 
requirements, necessitating on-site production to supplement insuffi-
cient external supply and ensure service reliability. According to Fig. 9
(b), thermal storage operation becomes less intensive due to the more 
stable fuel cell thermal output. Notably, hydrogen storage is utilized 
more frequently, absorbing excess hydrogen during off-peak pricing 

periods and releasing it during peak demand and high-price periods, 
with nighttime recharging to meet storage operational constraints, as 
demonstrated in Fig. 9(c).

In Case 3, where operational risks are constrained, the power 
network demonstrates a more pronounced risk reduction compared to 
the hydrogen and thermal networks. Specifically, as shown in Fig. 10, 
fuel cell operation becomes more frequent and intensive compared to 
the cost-minimization scenario in Case 2. Notably, in power network 
energy dispatch, fuel cells generate power even during periods when 
both electricity and hydrogen prices are high, indicating that the system 
starts to compromise economic efficiency to achieve risk mitigation, as 
shown in Fig. 10(a), while changes in thermal and hydrogen networks 
remain relatively modest. This differential response can be attributed to 

Fig. 8. Energy dispatch results under Case 1: (a) power network, (b) thermal network, and (c) hydrogen network.

Fig. 9. Energy dispatch results under Case 2: (a) power network, (b) thermal network, and (c) hydrogen network.

B. Li et al.                                                                                                                                                                                                                                        eTransportation 27 (2026) 100485 

17 



the greater variety and quantity of dispatchable power equipment in the 
electrical network, combined with the demand shifting capability of 
electrical aircraft demands, which collectively enhance its risk man-
agement flexibility.

In contrast, the thermal network primarily serves terminal building’s 
heating loads, which are fixed loads and therefore lack shifting flexi-
bility. Additionally, despite the availability of external heat purchase 
from district heating networks, due to the inherent coupling between 
fuel cell heat recovery and thermal storage, the thermal network’s dis-
patchable energy supply equipment often responds passively to varia-
tions in thermal supply. Similarly, the hydrogen network encounters 
limitations in risk reduction due to minimal active utilization of 
hydrogen storage, as discussed in the previous chapter. Moreover, 

according to the proposed aircraft recategorization strategy, hydrogen- 
powered aircraft are typically larger models with correspondingly 
higher energy demands, resulting in greater impact on the airport 
microgrid. Consequently, to maintain stable system operation while 
preserving economic efficiency, the optimization solution always tends 
to retain higher operational risks in both the hydrogen and thermal 
networks when feasible.

To enhance positive grid flexibility in Case 4, the electrical network 
significantly reduces morning low-price power purchases, as illustrated 
in Fig. 11(a), with high-output fuel cell generation covering the 
remaining electrical load. Hydrogen demand is primarily met through 
external purchase, with minor contributions from hydrogen storage 
during high-price periods. Compared to Case 2, midday electrical power 

Fig. 10. Energy dispatch results under Case 3: (a) power network, (b) thermal network, and (c) hydrogen network.

Fig. 11. Energy dispatch results under Case 4: (a) power network, (b) thermal network, and (c) hydrogen network.
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purchase reductions are compensated by battery storage discharge and 
fuel cell generation, particularly during peak solar irradiance periods 
with low electric demand when the system achieves complete energy 
self-sufficiency. However, frequent high-load fuel cell operation sub-
stantially increases external hydrogen purchase, thereby elevating 
overall system operating costs. The absence of power sales to the 
external grid indicates that, under current pricing and objective weights, 
the revenue potential does not offset the overall cost impact.

Case 5 represents a comprehensive balance of all optimization ob-
jectives. To achieve better economic performance, the system retains 
large-scale power purchases during off-peak morning periods, while 
midday loads are entirely supplied by fuel cells and PV generation, 

significantly enhancing system flexibility, though remaining below Case 
4 levels. Operational risk shows significant reduction (38.28 %) but also 
remains higher than the comparison scenario Case 3 where grid flexi-
bility is not considered, as shown in Fig. 12(a) and Table 1. Total system 
costs reach their maximum across all cases, reflecting the trade-offs 
required to simultaneously satisfy risk constraints and provide grid 
flexibility while maintaining cost efficiency. More precisely, this sub-
stantial cost increase results from the diminished weight of the economic 
objective in the objective function, as the system simultaneously ac-
commodates network operational risk constraints while maintaining 
considerable grid flexibility.

5.3. Sensitivity analysis of energy prices on system performance

To comprehensively investigate the relationship between the three 
optimization objectives proposed in this study, a sensitivity analysis is 
conducted to examine how energy prices affect the airport microgrid’s 
total operating cost, network operational risks, and power grid flexi-
bility. All other parameters remain consistent with those in Case 5 of the 
previous section, with the energy dispatch optimization considering all 
three objectives simultaneously, as illustrated in Figs. 13–14 and 16.

Fig. 12. Energy dispatch results under Case 5: (a) power network, (b) thermal network, and (c) hydrogen network.

Table 1 
Variation of optimization objectives across different cases.

Case 2 Case 3 Case 4 Case 5
Overall cost increment £ 

−346425.83
£ 
14375.22

£ 
83941.95

£ 
97734.76

Operation risk 
reduced by

/ 63.21 % / 38.28 %

Grid flexibility 
increased by

/ / 29.4 % 16.5 %

Fig. 13. Sensitivity analysis of energy prices on system total cost.
Fig. 14. Sensitivity analysis of energy prices on operation risk of 
power network.
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The airport microgrid’s total operating cost exhibits a clear trend of 
monotonic increase with rising electricity and hydrogen prices, as 
shown in Fig. 13. Notably, the cost increase rate is substantially higher 
with respect to hydrogen price variations compared to electricity price 
changes, indicating a significantly higher hydrogen utilization in the 
system. This observation aligns with the scales of electric and hydrogen 
demands shown in Fig. 7, where hydrogen demands constitute a larger 
portion of the total energy consumption. When hydrogen prices rise 
across all periods, local hydrogen production from electrolyser becomes 
more economical than external purchase even during off-peak hours, 
significantly increasing grid electricity purchases. However, the mar-
ginal increase in total cost gradually diminishes with rising electricity 
prices, suggesting that the grid power purchase has already approached 
its upper limit at moderate electricity prices.

Given that the operational risk in power network demonstrates the 
highest parameter sensitivity among the three network risks, as evi-
denced by the preceding energy dispatch analysis, this section focuses 
specifically on investigating the dynamic characteristics of power 
network operational risks under varying energy prices. As shown in 
Fig. 14, when electricity prices are low (0.4–0.6 times the baseline 
price), the power network maintains nearly risk-free operation regard-
less of hydrogen price fluctuations. This occurs because the cost incre-
ment from increasing grid power purchase is lower than the penalty 
imposed by additional risk in the objective function at low electricity 
prices. In other words, flexible adjustment of grid power purchase alone 
can sufficiently manage potential operational risks when electricity 
prices are low. As electricity prices rise, operational risks begin to 
emerge when external hydrogen prices are also high. When electricity 
prices increase further (up to 1.6 times the baseline), power network 
operational risks rise significantly across all hydrogen price ranges, 
indicating that the cost impact of increased power purchase becomes 
more dominant in the objective function, leading the system to tolerate 
higher operational risks. Specifically, when hydrogen prices reach 
1.6–1.8 times the baseline, risks increase dramatically due to electro-
lyser operating near its maximum capacity for extended periods, as 
shown in Fig. 15, substantially reducing their risk regulation capability. 
This situation is further intensified by higher electricity prices limiting 
grid power purchases, resulting in fewer flexible energy resources for 
adjustment. Notably, at intermediate hydrogen price levels, risks 
decrease slightly compared to lower hydrogen price scenarios. This 
unusual behaviour most likely results from specific combinations of 
multi-source power outputs rather than indicating a systematic trend.

The relationship between power grid flexibility and energy prices 
exhibits more complex patterns, as demonstrated in Fig. 16. To better 
understand how flexibility potential varies with energy prices, further 
analysis of daily power purchase patterns is required, comparing sce-
narios with and without flexibility objectives, as shown in Figs. 17–18. 
This analysis is essential since positive grid flexibility is defined as the 
difference in total power exchange with the main grid between scenarios 

with and without flexibility parameters in the objective function.
In the baseline scenario without flexibility constraints, grid power 

purchase is substantial at low electricity prices and decreases with rising 
prices. As hydrogen prices increase, the cost advantage of hydrogen 
production from electrolyser becomes more prominent, leading to 
increased power purchases. In contrast, the scenario prioritizing grid 
flexibility (Fig. 18) moderates power purchases even during low-price 

Fig. 15. Electrolyser energy consumption variations with energy prices.

Fig. 16. Sensitivity analysis of energy prices on positive grid flexibility.

Fig. 17. Grid power purchase variations with energy prices without consid-
ering grid flexibility.

Fig. 18. Grid power purchase variations with energy prices considering 
grid flexibility.
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periods, with significant increases only at high hydrogen prices. This 
creates distinct differences in power purchase patterns between sce-
narios despite similar overall trends.

For instance, at the lowest electricity price (0.4 scaling factor of the 
baseline), baseline scenario power purchases reach peak levels when 
hydrogen prices are only 0.8 scaling factor of the baseline, significantly 
exceeding purchases at lower hydrogen prices. Meanwhile, the 
flexibility-oriented scenario does not reach similar levels until hydrogen 
prices increase to 1.2 scaling factor of the baseline, resulting in the 
substantial positive flexibility observed in this price range, as shown in 
Fig. 16. At low hydrogen prices, positive flexibility remains minimal 
because hydrogen production from electrolyser lacks cost advantages 
over external purchase, while fuel cells fully utilize low-cost hydrogen 
for maximum power generation, greatly reducing grid purchases in both 
scenarios and eliminating flexibility potential.

As hydrogen prices gradually increase, another critical characteristic 
emerges above moderate electricity price levels. At moderate electricity 
prices, cost considerations lead the airport microgrid to significantly 
increase power purchases only when hydrogen prices approach 
maximum levels. This leads to comparable power purchase levels be-
tween scenarios at moderate electricity and hydrogen prices, thereby 
limiting flexibility potential. Conversely, at high electricity prices, the 
incentive to avoid large-scale power purchases prevents significant in-
creases in the baseline scenario even with high hydrogen prices, 
resulting in similar purchase levels between scenarios and limited flex-
ibility provision. These findings emphasize the importance of optimal 
electricity and hydrogen price selection when aiming to maximize grid 
flexibility potential.

5.4. Impact assessment of electric and hydrogen aircraft integration ratio 
on system performance

To thoroughly investigate the impact of significant transition in en-
ergy demands from zero-emission aircraft on airport microgrid opera-
tions, the aircraft integration ratio of battery-electric, hydrogen- 
powered, and hybrid hydrogen-electric aircraft is systematically 
adjusted while adhering to actual flight scheduling requirements. Spe-
cifically, battery-powered regional aircraft are initially replaced by 
hydrogen fuel-cell models, while hybrid aircraft are converted to 
hydrogen-powered aircraft, thereby establishing an entirely hydrogen 
fleet. Subsequently, the transition toward increased electric demand 
begins with regional aircraft gradually being converted back to all- 
electric models. After fully reinstating all-electric regional aircraft, the 
hybridization ratio of hybrid aircraft is progressively increased until the 
overall electricity-to-hydrogen energy demand ratio across the entire 
fleet reaches approximately 3:7 [57].

To more accurately characterize the impact of aircraft energy de-
mand changes on the operation of the airport microgrid, two indicators 
are defined as follows: 

λele =
Etotal

ele
Etotal

ele + Etotal
hyd

, λhyd =
Etotal

hyd
Etotal

ele + Etotal
hyd

(80) 

where Etotal
ele and Etotal

hyd represent the total electric and hydrogen energy 
demands of all aircraft, respectively. λele and λhyd reflect the relative 
share of each energy type in the overall aircraft energy consumption.

As shown in Fig. 19(a), the total operating cost of the airport 
microgrid significantly declines as the proportion of electric demand 
increases. This trend is primarily attributed to the substantial hydrogen 
energy requirements of aircraft when electric demand is minimal. Under 
current pricing parameters, on-site electrolyser remains economically 
unviable except during peak demand periods. With most hydrogen 
sourced by external purchase at prices significantly exceeding electricity 
costs, high hydrogen demand results in substantial operating costs. 
Furthermore, when the aircraft integration ratio λele is very low (less 
than 0.05), only regional aircraft undergo gradual electrification, 
resulting in minimal influence on energy dispatch and system operation 
in power network. This limited impact can be consistently observed in 
Fig. 19(a)–(c).

Fig. 19(b) illustrates that with the rapid increase in electric demand, 
aircraft demand shifting capabilities become fully leveraged, signifi-
cantly enhancing the operational flexibility of the airport microgrid. 
Local energy generation operates actively and aligns closely with de-
mand profiles, enabling the airport microgrid to provide considerable 
flexibility to the external grid. At an aircraft integration ratio λele of 
0.225, positive flexibility reaches its peak before rapidly declining. 
When λele increases to 0.3, flexibility falls back to levels comparable to 
airport operations without any electric aircraft integration. This occurs 
because once electric demand exceeds the maximum output capability 
of local generation equipment, the system quickly shifts to relying on 
externally purchased electricity to maintain operational stability.

The impact of varying electricity-to-hydrogen energy demand ratio 
on airport microgrid energy dispatch is also manifest in the system’s 
operational stability, as depicted in Fig. 19(c). When λele exceeds 0.075, 
significant operational risks emerge in the power network, escalating 
rapidly while maintaining considerable margin from the allowable risk 
threshold. This indicates that airport microgrid equipment approach 
their maximum capability to collaboratively optimize energy dispatch 
during complex operational intervals. These intervals include high 
electricity price periods (07:00–10:00 and 16:00–21:00) and intensive 
aviation demand between 10:00–16:00. Efforts to enhance operational 
flexibility while controlling system costs have led to progressive insta-
bility in airport microgrid operations.

After λele exceeds 0.15, following rapid growth, operational risk 
stabilizes at a relatively constant level. During this phase, operational 
risks also begin to emerge during low electricity-price intervals, but the 
lower purchasing cost brings reduced economic penalties. This allows 
the airport microgrid to utilize more grid power to balance operational 

Fig. 19. Impact of electric aircraft integration ratio on system operation (a) Total cost; (b) Positive flexibility; (c) Operation risk of power network.
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risks and costs, resulting in slower risk growth. However, it is foresee-
able that if future technology trends enable further growth in aircraft 
electric demand, operational risks will soon approach critical thresh-
olds, potentially constraining further aviation electrification without 
sufficient airport energy infrastructure.

6. Conclusions

This paper proposes a comprehensive energy dispatch optimization 
framework for electricity-thermal-hydrogen airport microgrid that 
explicitly incorporates aviation energy demands of electric, hydrogen, 
and hybrid hydrogen-electric aircraft. A multi-objective optimization 
model is developed to ensure that multi-energy supply dynamically re-
sponds to aviation demand, while optimizing overall system perfor-
mance across economic, operational, and flexibility dimensions. 
Comparative scenario analysis under real-world operational re-
quirements demonstrates that the proposed high-fidelity aircraft energy 
demand model effectively captures the flexibility potential of zero- 
emission aircraft powered by electricity and hydrogen while ensuring 
the current flight schedules are maintained. The results show that co-
ordinated dispatch of energy generation, demand, and storage units can 
substantially improve both economic efficiency and grid support flexi-
bility, with airport microgrid flexibility increased by 29.4 % and oper-
ational risk reduced by 63.2 %. Sensitivity analysis further highlights 
that under current energy prices and system parameters, an aircraft 
integration ratio λele of approximately 0.225 delivers optimal overall 
system performance, balancing cost, stability, and flexibility, while 
maximizing grid services and keeping operational risks within accept-
able thresholds.

Beyond these quantitative findings, this work also underscores the 
transformative impact of emerging aircraft technologies. The adoption 
of electric and hydrogen propulsion is expected not only to decarbonise 

aviation but also to fundamentally reshape air traffic patterns, 
increasing flight frequency across both regional and international 
routes. Such changes will intensify operational interdependencies 
among airports, highlighting the need for integrated, network-level 
studies. Therefore, future research will develop from single-airport 
analysis to multi-airport operations that examine inter-airport dy-
namics and the coupling between aviation electrification and energy 
networks.
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Appendix 

Table A1 
Zero-emission aircraft mapping and energy supply duration assumptions

Origin aircraft type Charging or refuelling duration
ATR 42 family Battery-powered only
ATR 72 family 50-100 seats
Bombardier Dash 8 Charging duration: 40 min [65]
Embraer E170 family ​
Embraer E190 family ​
Embraer ERJ family ​
SAAB 340/2000 family ​

Airbus A220 family Hybrid hydrogen-electric configuration:
Airbus A300 family 160-230 seats [46]
Airbus A310 family Charging/refuelling duration: 40 min
Airbus A320 family ​
Boeing 737 family ​
Boeing 757 family ​
Boeing 767 family ​

Airbus A330 family Hydrogen-powered only
Airbus A340 family 280-340 seats
Airbus A350 family Refuelling duration: 60 min [4]
Boeing 787 family ​
Boeing 777 family ​
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Table A2 
Flight schedule arrivals [53].

Time Flight Origin Airline Aircraft
07:40 FR2071 Alicante (ALC) Ryanair B38M (EI-IKO)
07:45 FR1862 Cork (ORK) Ryanair B738 (EI-DWV)
07:48 EI631 Belfast (BHD) Aer Lingus AT76 (EI-FSL)
07:50 LM693 Isle of Man (IOM) Loganair AT76 (G-LMTE)
07:55 CX219 Hong Kong (HKG) Cathay Pacific A359 (B-LRT)
07:55 FR552 Dublin (DUB) Ryanair B738 (EI-DLW)
08:00 BA1370 London (LHR) British Airways A319 (G-EUPJ)

Table A3 
Flight schedule departures [53].

Time Flight Destination Airline Aircraft
10:00 U22185 Geneva (GVA) easyJet A320 (G-EZTL)
10:05 FR2242 Bologna (BLQ) Ryanair B738 (9H-QCW)
10:05 VS73 Orlando (MCO) Virgin Atlantic A333 (G-VKSS)
10:05 SQ52 Houston (IAH) Singapore Airlines A359 (9V-SMS)
10:25 CX216 Hong Kong (HKG) Cathay Pacific A359 (B-LRT)
10:25 FR4007 Alicante (ALC) Ryanair B738 (EI-DCR)
10:25 GF4 Bahrain (BAH) Gulf Air B789 (A9C-FE)

Table A4 
Key economic parameters of devices [7,27,37,54].

Devices Installation cost Maintenance cost (per year)
PV 850 £/kW 12.7 £/kW
Fuel Cell 403 £/kW 10.6 £/kW
Hydrogen tank 1260 £/kg 13.7 £/kW
Thermal tank 50 £/kWh 5.3 £/kWh
Battery storage 82 £/kWh 5.1 £/kWh
Electrolyser 546 £/kW 50.2 £/kW

Table A5 
Other parameters of airport energy system 
[27,54,57].

Para Value
KecCO2 19.28 £/MWh
KecSO2 2.67 £/MWh
KecNOx 10.74 £/MWh
LBSS,HFC 10 years
LOther 20 years
σBESS 0.01
Pel,min 0.1Pel,rated
Pel,stamdby 0.03Pel,rated

Data availability

Data will be made available on request.
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