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ABSTRACT

Achieving net-zero aviation requires airport energy infrastructure that delivers an efficient, reliable, and
diversified energy supply to support the parallel operations of emerging battery-electric, hybrid hydrogen-
electric, and hydrogen-powered aircraft. This study assesses how airport energy systems can support the tran-
sition to zero-carbon aviation. We propose an integrated electricity-thermal-hydrogen microgrid that in-
corporates photovoltaics, hydrogen fuel cells, and multiple energy storage systems to reduce reliance on the
power grid and external energy sources. Firstly, a refined statistical method utilizing surrogate models is
developed to estimate aircraft charging and refuelling demands. A stochastic optimization model that exploits
load shifting potential is then formulated to minimize total economic costs while reducing operational risks and
enhancing grid support flexibility. The resulting optimal energy dispatch ensures that flight schedules and multi-
energy demands are met across electricity, thermal, and hydrogen networks. Case studies based on real flight
schedules from Manchester airport evaluate five energy dispatch scenarios with varying optimization priorities.
The results demonstrate a 29.4 % increase in grid flexibility and a 63.2 % reduction in operational risks through
the proposed multi-energy dispatch strategy. Furthermore, sensitivity analyses examine the impacts of electricity
and hydrogen price fluctuations, as well as different aircraft integration ratios, identifying the optimal electricity-
to-hydrogen energy demand ratio for efficient airport energy system operation. These findings provide practical
insights for airport operators and policymakers in developing resilient and sustainable airport energy infra-
structure, and in implementing effective energy strategies for zero-carbon airport operations.

1. Introduction

1.1. Background and motivation

measures [3]. The UK Aerospace Technology Institute (ATI) has high-
lighted the importance of developing aircraft technologies capable of
utilizing novel energy sources, particularly hydrogen fuel and battery
systems. This is crucial for achieving the UK’s Net Zero target and

Civil aviation has expanded rapidly, driven by technological ad-
vances and global transport demands. However, this growth has resulted
in substantial environmental challenges, as aviation remains one of the
most energy-intensive transportation modes, with emissions increasing
nearly sevenfold between 1960 and 2018 [1]. Sustainability has there-
fore become the aviation sector’s central challenge, requiring trans-
formative energy solutions [2].

Although recent technological advances have improved efficiency,
aviation’s expansion continues to outpace these gains through
increasing air pollution. Achieving significant emissions reductions
therefore requires an integrated energy strategy that incorporates
alternative energy sources, operational optimization, and market-based
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realizing carbon-free airport operations by 2050 [4].

Aviation electrification represents a promising pathway toward
airport decarbonisation when supported by renewable energy, however,
its viability is constrained by the insufficient energy density of current
battery technologies for aircraft propulsion. State-of-the-art lithium-ion
batteries provide approximately 300 Wh/kg compared to 12,000 Wh/kg
for jet fuel, highlighting a substantial performance gap [5,6].
Battery-powered aircraft also face considerable infrastructure chal-
lenges, particularly the need for megawatt-level ultra-fast charging fa-
cilities to meet short flight turnaround times, far beyond current electric
vehicle (EV) charging capabilities [7,8]. Furthermore, batteries are
vulnerable to thermal runaway, which requires advanced multi-layered
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thermal management [9]. Consequently, the applications of battery
technologies are largely limited to short-range operations, such as
eVTOLs and regional flights, with significant barriers to adoption in
larger commercial aircraft [7].

Green hydrogen offers superior gravimetric energy density than jet
fuel, yet its lower volumetric energy density requires larger fuel storage
and poses significant aircraft design challenges [10]. Large-scale adop-
tion of hydrogen propulsion also requires extensive renewable capacity
for green hydrogen production via electrolysis and substantial capital
investment in distribution infrastructure, whether through gaseous
pipelines or liquid hydrogen transportation systems [11]. Moreover,
hydrogen propulsion introduces safety concerns such as flammability
and explosion risks, also requiring advanced safety measures, including
leak detection, ventilation control, and impact-resistant storage [12].
Despite these challenges, hydrogen is widely recognized as a viable
medium-to-long-term solution for zero-carbon aviation. For example,
the ATI’s FlyZero project has identified liquid green hydrogen as the
most promising option, capable of supporting over 90 % of long-haul
flights [13].

Hybrid hydrogen-electric propulsion architectures offer a synergistic
approach that leverages the complementary advantages of both battery
and hydrogen technologies. Such a hybrid powertrain offers redundancy
to enhance operational safety and enables continued operation after
single-point failures [14]. More broadly, certification frameworks for
electric and hydrogen propulsion have entered an early and
research-intensive stage, with published roadmaps and established
working groups dedicated to identifying safety hazards, assessing reg-
ulatory gaps, and guiding the development of future standards [15-17].

In light of current technological limitations, zero-carbon aviation is
expected to require a dual-pathway approach: battery-powered aircraft
for short-haul and regional flights, while hybrid hydrogen-electric and
hydrogen propulsion for medium- and long-haul commercial operations.
This transition will fundamentally reshape airport energy management
strategies, necessitating substantial upgrades to the supporting airport
energy infrastructure.

1.2. Literature review

As future airports are expected to face surging electricity and
hydrogen demands, accurately quantifying energy requirements will be
essential for designing low-carbon integrated energy systems and man-
agement strategies. Recent studies have begun to address airport energy
demand modelling and analysis, focusing primarily on electrified
ground support equipment (GSE) and EVs. Ref. [18] compared energy
consumption across electric, hybrid, and zero tow-tractor scenarios
using Mixed Integer Linear Programming (MILP) optimization, demon-
strating that hybrid towing can effectively reduce energy use under
stochastic conditions and varying traffic density. Ref. [19] developed a
more detailed fuel consumption model for aircraft taxiing, incorporating
aircraft engine characteristics and thrust levels to evaluate e-tractor
utilization. For EV operations in airports, simulation-based optimization
model and fuzzy logic approaches have been applied to identify optimal
battery capacity, charging power, and infrastructure requirements for
airport shuttle buses [20,21]. Ref. [22] presented a multi-agent simu-
lation model for all-electric airport shuttle transportation networks,
estimating average power demands of 10 MW with peak demands
reaching around 12 MW at a regional UK airport. However, such
modelling and simulation methods are unsuitable for quantifying
aircraft energy demands, given the fundamentally different operational
patterns and energy requirements of aircraft compared to ground
vehicles.

Several studies have examined the potential energy demands of
electrified aircraft. Existing research has classified domestic flights to
estimate hybrid electric aircraft energy requirements, analysed simpli-
fied charging scenarios for small electric aircraft, and applied detailed
energy consumption models for medium-sized all-electric aircraft based
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on existing commercial design models [23-26]. Although research ad-
vances have improved mission and payload specific modelling, most
existing analyses focus on single aircraft types without comparative
evaluation. Preliminary assessments of plug-in charging versus
battery-swapping approaches have been conducted, exploring grid
flexibility potential but constrained by fixed charging powers and partial
electrification scenarios [27]. However, comprehensive evaluations of
energy demands for hybrid hydrogen-electric and purely
hydrogen-powered aircraft have yet to be thoroughly investigated.

Research on airport energy supply has increasingly emphasizes
distributed energy resources, including both single-source and inte-
grated multi-energy systems. Recent studies on single-source applica-
tions have demonstrated significant potential for airport-based
photovoltaic (PV) systems across various scales and geographic loca-
tions. Assessment of 5-20 MW PV installations at airports in India, UK,
and Malaysia using RETScreen, SISIFO/GSA, SolarGis models, respec-
tively, have shown satisfactory performance and feasibility while
maintaining safe airport operations [28-30]. Notably, the UK study
further highlighted seasonal energy transfer, storing or shifting surplus
summer generation for winter use, can enhance grid flexibility through
load balancing and peak shaving. On a larger scale, analysis of over 200
Chinese airports [31] identified a combined PV capacity of 2.50 GW,
nearly matching annual electricity demands in eight provinces, high-
lighting the immense potential of airports to contribute to regional en-
ergy supply through on-site PV generation systems.

For integrated multi-energy systems, research has explored renew-
able energy integration and management frameworks at airports,
encompassing both conventional renewables, emerging hydrogen tech-
nologies, and advanced optimization strategies. Several studies have
developed integrated multi-energy systems combining wind turbines,
PV, waste-to-energy, geothermal, and biomass resources, validated
through predictive control and dynamic thermodynamic simulations
[32,33]. Others have focused on hydrogen integration, exploring
hydrogen-powered aviation scenarios, airports as regional hydrogen
hubs, and system resilience through lifecycle-based optimization
[34-36]. Furthermore, Ref. [37] advanced this work by establishing a
multi-energy airport microgrid integrating hydrogen supply, electric
auxiliary power units (APUs), EVs, PV, and both battery and hydrogen
storage. MILP-based optimization with various energy scenarios
demonstrated substantial techno-economic benefits. However, compre-
hensive studies that incorporate large-scale adoption of electric and
hydrogen aircraft demands, as well as the coupling of thermal, electric,
and hydrogen energy networks, remain limited.

Beyond optimizing airport onsite energy supply, recent research has
explored interactions between airport electrification facilities and
external power grids or hydrogen networks, considering their bidirec-
tional flexibility as generation, demands and energy storage. Ref. [21]
noted that airport surplus PV and WT generation during periods of high
solar irradiance and wind availability could be sold to the grid, reducing
operational costs while enhancing sustainability. Ref. [38] assessed EV
battery flexibility for peak shaving and valley filling, while Ref. [39]
extended this research to explore interactive capabilities of both EVs and
electric aircraft batteries, achieving multi-objective optimized sched-
uling that enhances self-consumption. Ref. [22] investigated bidirec-
tional wireless charging for electric buses, highlighting its potential to
mitigate grid stress and enhance resilience in high-density, high-load
airport scenarios. Airport electrified facilities can also provide ancillary
grid services. Ref. [40] demonstrated the profitability of electrified GSE
participating in frequency regulation markets through V2G technology.
Ref. [41] introduced the aviation-to-grid (A2G) concept, it shows that
electric aircraft charging could deliver more than 1 GW of frequency
response across eight UK airports, enhancing both grid stability and
economic viability. However, research work on hydrogen networks re-
mains limited, primarily focusing on small-scale procurement due to the
lack of established pricing mechanisms and market structures [42,43].
Overall, comprehensive investigations into airport multi-energy
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Fig. 1. Integrated electricity-thermal-hydrogen airport microgrid structure.

microgrids, their energy interaction and conversion with grid support
services, are underdeveloped.

In summary, existing literature largely focuses on terminal, electric
GSE, and aircraft APU energy supplies via distributed microgrids but
neglects zero-carbon aviation energy needs for electric and hydrogen
aircraft, leaving significant research gaps. Additionally, current studies
give limited attention to the flexibility of electric or hydrogen aircraft.
They also overlook the holistic optimization of aviation operations and
airport energy systems. Such an integrated approach is needed to fully
leverage their potential in supporting net-zero aviation.

1.3. Contributions and structure

In this paper, an integrated electricity-thermal-hydrogen energy
system is proposed to assess the feasibility of operating an airport
microgrid under significant hydrogen and electricity demands from
hydrogen- and battery-powered aircraft. To evaluate airport system
performance, a comprehensive energy dispatch optimization model is
developed that accounts for the stochastic nature of PV generation and
actual flight schedules. Finally, a sensitivity analysis of energy prices
and aircraft integration ratios is thoroughly examined to guide future
zero-carbon airport energy infrastructure operations.

There are three main contributions outlined as follows:

e To the best of our knowledge, this study introduces the first refined
statistical method utilizing a surrogate model to estimate charging
and refuelling demands for all-electric, hybrid hydrogen-electric,
and hydrogen-powered aircraft. By capturing differentiated power
consumption characteristics across aircraft models, energy patterns
and flight phases, this method enables detailed analysis of zero-
carbon airport energy requirements and establishes a foundation
for feasibility assessment of future airport energy systems.

e A comprehensive energy dispatch optimization model is proposed
for multi-energy airport microgrids, aiming to minimize total

economic costs while reducing operational risks and improving
flexibility, subject to flight schedules and aircraft energy demands
under the stochastic nature of renewable energy generation.

e A detailed sensitivity analysis is performed on electricity and
hydrogen prices and aircraft integration ratios, offering insights into
the operational performance and adaptability of the airport energy
systems in support of net-zero aviation.

The paper is organised as follows: Section 2 describes the structure of
the proposed airport energy system. Section 3 presents the optimization
framework for airport microgrid energy dispatch. The optimization
methodology is illustrated in Section 4. Results and discussion are pro-
vided in Section 5, and conclusions are drawn in Section 6.

2. Airport microgrid energy supply and demand analysis
2.1. Airport microgrid structure and energy supply-demand network

Achieving zero-carbon airport energy systems requires the adoption
of clean energy aircraft. This paper considers a feasible technical
pathway from conventional fleets to all-electric, hydrogen-powered, and
hybrid hydrogen-electric aircraft, as illustrated in Fig. 1. The hybrid
hydrogen-electric aircraft use batteries and hydrogen fuel cells (HFCs),
thereby achieving higher energy conversion efficiency and enabling
longer flight ranges. Hydrogen aircraft rely on combustion for the thrust
required by larger and long-haul aircraft. This transition introduces
substantial electricity and hydrogen demands, fundamentally reshaping
airport energy systems and distinguishing airport microgrids from con-
ventional ones.

Airport demand profiles typically demonstrate significantly lower
load factors compared to industrial or residential systems. This is largely
due to the pronounced peak-to-average ratios driven by aircraft arrival
and departure patterns, resulting in substantial temporal load variability
that requires flexible and responsive energy management strategies.
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Airport energy systems also integrate multiple energy vectors, including
not only the electric and hydrogen demands from aircraft but also the
electricity and heating loads of terminal buildings, thus requiring co-
ordinated energy optimization across electricity, hydrogen, and thermal
networks. Furthermore, airport microgrids are subject to rigid temporal
constraints imposed by flight schedules. Critical operations such as
electric aircraft charging and hydrogen refuelling must be completed
within predefined turnaround windows, resulting in less flexible, time-
bound demand profiles. These operations often involve megawatt-
scale instantaneous electric and hydrogen demands, requiring infra-
structure capable of handling intense short-term loads, unlike the more
gradual and predictable load profiles observed in conventional micro-
grids. To address these unique challenges, this paper proposes a novel
integrated multi-energy microgrid structure for airports as illustrated in
Fig. 1. This airport microgrid incorporates electricity-thermal-hydrogen
energy networks with large-scale renewable power generation, multi-
energy conversion technologies, and diverse storage capabilities.

Specifically, the airport microgrid comprises PV arrays as the pri-
mary renewable energy source, alongside dispatchable energy conver-
sion equipment including HFC and electrolysers. Energy storage devices
consist of battery energy storage systems (BESS), hydrogen storage tanks
(HST), and thermal storage tanks (TST). In addition to aircraft electricity
and hydrogen demands, the microgrid also needs to satisfy the thermal
loads of airport terminal buildings, which is typically used for space
heating and hot water preparation [44]. The primary objective of
day-ahead optimization is to meet the airport’s flight schedules and
operational constraints while maximizing overall system performance.
The multi-energy dispatch is optimized at 20-min intervals to achieve
the optimal dispatch plan for the next 24 h. As a renewable power
source, PV generation is inherently variable and non-dispatchable due to
its direct dependence on weather conditions. Hydrogen produced
through water electrolysis serves as a supplement to externally pur-
chased hydrogen when economically beneficial. The HFC units utilize
hydrogen to simultaneously generate electricity and recoverable heat,
with an adjustable thermoelectric output ratio. Recovered waste heat
from these processes is collected through a heat recovery system to
supplement external heat purchases in meeting the thermal loads of
terminal buildings.

2.2. Aircraft electric and hydrogen demand modelling

Previous research on estimating aircraft energy demands for inte-
grated airport energy systems has typically relied on simplified and
single-source demand profiles derived directly from flight schedule data.
For example, several studies utilized average or constant electric aircraft

Flight time T, i Turnaround time T, | Flight time T |
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charging assumptions, assigned fixed charging durations within turn-
around intervals [37,45,46], or evenly divided conventional aircraft
missions into multiple electric missions [27]. These simplifications
generally assume a linear relationship between aircraft energy con-
sumption and flight distance, neglecting significant variations in aircraft
types, sizes, and operational phases. Such assumptions fail to adequately
capture the true complexity of real-world airport operations, where
diverse fleets with heterogeneous energy consumption characteristics
coexist. Consequently, relying on simplified aircraft energy demand
profiles can compromise the accuracy and effectiveness of energy
management strategies, highlighting the necessity for more sophisti-
cated aircraft demand modelling methods. In addition, hybrid
hydrogen-electric aircraft create multi-source demand profiles beyond
electricity, while hydrogen also plays an important role in aircraft de-
mand modelling, introducing new coupling points between electricity
and hydrogen in aircraft propulsion technologies.

To overcome these limitations and enhance the precision of aircraft
demand modelling, this study adopts a detailed aircraft point-mass
model coupled with surrogate modelling techniques, as shown in
Fig. 2. Specifically, typical flight missions are input into a high-fidelity
aircraft dynamic model to simulate flight trajectories and energy de-
mands across critical operational phases from takeoff to landing. The
simulation outputs then serve as training datasets to establish surrogate
models. After deriving aircraft energy demands through the surrogate
models, electric charging or hydrogen refuelling power requirements are
subsequently determined based on predefined charging and refuelling
durations. With charging power and duration established, aircraft de-
mand shifting essentially involves adjusting the timing of charging or
refuelling within the allowable turnaround windows at the airport. This
scheduling adjustment is conducted to align with the optimization ob-
jectives of the airport microgrid, ensuring that operational constraints
are satisfied while maximizing energy dispatch efficiency.

2.2.1. High-fidelity evaluation of aircraft energy consumption

To accurately determine the energy demand of aircraft for surrogate
model training, representative flight distances corresponding to typical
operational missions of all aircraft types are initially sampled. These
sampled data points are subsequently input into a point-mass aircraft
model to precisely simulate aircraft dynamic trajectories and energy
consumption. Specifically, the adopted point-mass model accurately
describes aircraft motion through the following system of equations
[47]:

Propulsion technology

Origin airport i
Target airport |

. Destination airport p
: Hydrogen combustion

Hydrogen-electric hybrid
All-electric

e
! >

air

Aircraft energy
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3 (il Sy GO Ao consumption S power requirements
alabase estimation T surrogate model
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Fig. 2. Flowchart of aircraft energy demand modelling.
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where x, y, h represent aircraft positions in the ground-axis coordinate
system, v denotes the aircraft velocity relative to the ground, y, y, y are
roll bank, flight path, and yaw heading angle respectively, and m in-
dicates the mass of aircraft. Additionally, R, S, F represent the forces of
lift, drag, and thrust acting on the aircraft, g denotes the gravitational
acceleration and a indicates the angle of attack. Parameters for each
flight and its corresponding aircraft propulsion and performance char-
acteristics are sourced from open-access databases.

From Eq. (1), the equilibrium of forces acting on the aircraft at any
moment is formulated in Eq. (2) and illustrated in Fig. 3:

— — —
m—=F+S+R+W @

By adopting the velocity magnitude v and flight path angle y as co-
ordinate variables, and projecting the forces onto both tangential and
normal directions of the wind-axis system, two scalar equations
describing longitudinal motion are derived [48].

1
mgv +mgsiny = T cos a — =CppSv?
dt 2

d 1 ®

myoytmgeosy =T sin a + ECL/JSVZ

where S denotes the wing area, p is air density, Cp(a) and C; () are drag
and lift coefficients respectively, each dependent on angle of attack a.
Accordingly, the propulsion drive power at any instant can be obtained
as:

d /1
PM:??: (Evz

1 3 .
md? ) +§CDpSv + mgvsiny (€)]

For hybrid hydrogen-electric aircraft configured with parallel pro-
pulsion architectures, assuming 100 % drivetrain efficiency, the total
propulsion power at time t is expressed as:

Py (£) = Pry (£) + Pete () ©)

Fig. 3. Aircraft equilibrium forces in aircraft motion.
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Thus, the overall energy consumption required for each complete
flight mission is calculated by integrating the propulsion power
throughout the flight trajectory:

Eyp— / Pan ()dt = / Py, (£)dt + / P (t)dt ©)

The precise aircraft energy consumption data derived from this
rigorous point-mass simulation approach subsequently serve as training
datasets for constructing surrogate models.

Surrogate models refer to mathematical approximations designed to
replace computationally expensive simulations while preserving satis-
factory accuracy. Surrogate modelling generally involves two key pha-
ses: training and prediction [49]. During prediction, given input
parameters a and model parameters k, surrogate models predict output
variables b:

b=f(a k) %]

During training, surrogate model parameters k are optimized to
minimize discrepancies between surrogate predictions and actual ob-
servations across the training dataset [50]:

bi~f(a,k),¥1<i<m ®)

Among various surrogate modelling approaches, Universal Kriging, a
robust interpolation method capable of accommodating global data
trends, is selected in this study. It can accurately model aircraft energy
consumption patterns exhibiting systematic variation across different
operational phases (take-off, climb, cruise, descent, and landing), thus
providing superior predictive fidelity over conventional linear regres-
sion models. In Universal Kriging method, the prediction at a given point
is calculated through polynomial trend and correlation components,
represented mathematically as [51]:

feew)= Y piac Yo wib ©

This is concisely expressed in matrix form as:
y=Pa+¥b (10)

The surrogate models developed using this integrated approach can
precisely represent aircraft energy demands across typical operational
scenarios. This enhanced accuracy and computational efficiency will
enable effective energy dispatch optimization and operational planning
for future airport microgrids incorporating electric and hydrogen
aircraft.

2.2.2. Aircraft charging and refuelling strategy exploiting demand shifting
potential

Once surrogate models accurately predict aircraft energy consump-
tion, it is essential to determine the corresponding electric charging or
hydrogen refuelling durations to obtain the final power demands. In this
study, constant charging and refuelling power assumptions are adopted,
facilitating the implementation of demand shifting strategies. Specif-
ically, based on passenger capacity and flight range, the existing aircraft
fleet is classified and mapped into three categories of zero-emission
aircraft, each with tailored charging or refuelling durations Ty, as
summarised in Table A1. All regional aircraft are replaced by all-electric
aircraft with a fixed charging duration of 40 min, while single-aisle
narrow-body aircraft, such as the Boeing 737, are substituted with
hybrid electric-hydrogen aircraft that retain the same charging/refuel-
ling duration. Twin-aisle wide-body aircraft with approximately 300
seats are uniformly replaced by hydrogen combustion aircraft, consid-
ering current battery technology limitations and their typically longer
flight mission profiles. Accordingly, their refuelling duration is set to 1 h.
In contrast, ultra-large double-deck aircraft, such as the Boeing 747 and
Airbus A380, are excluded from the scope of zero-emission aircraft
modelling due to their limited operational frequency at most UK airports
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and greater viability for sustainable aviation fuel (SAF)-based operations
[4]1.

Moreover, in practical airport operations, additional reserve fuel
beyond the necessary trip energy is also typically provided for flight
safety and operational contingencies [52]. Therefore, as indicated in
Table A1, this study includes reserve energy margins of 10 % for electric
and hybrid aircraft, and 15 % for hydrogen aircraft, calculated based on
the predicted trip energy from the surrogate models. Furthermore, be-
sides the flight duration from the target airport to the destination Tj,
other critical parameters such as the flight duration from the origin
airport to the target airport T; and the turnaround time T, are also
considered, as shown in Fig. 2. By inputting T; into the developed sur-
rogate model, the energy consumption from the preceding flight
segment can be accurately determined, and the corresponding reserve
energy will then serve as the initial energy state of the aircraft upon
arrival at the airport, rather than assuming a zero initial state.

Consequently, the final charging or refuelling power demand for
each aircraft i at the target airport can be mathematically formulated as
follows:

E:_'eq (1 + Arex)'Em'p(TS) - Eres(Tl)

eq _ i
P =T T an

air air

where Eg,(T3) is the predicted trip energy obtained through the surro-
gate model for the subsequent flight departing from the target airport,
E,es(T1) is the reserve energy determined by the energy consumption of
the incoming flight, 1. represents the reserve energy ratio, and T
denotes the predefined constant charging or refuelling duration.

To further realize demand shifting capabilities, it is necessary to
determine the turnaround time of each aircraft T, and subsequently
adjust the timing of charging or refuelling within this available window.
Specifically, the flight schedule dataset used in this study includes
comprehensive arrival and departure information, encompassing flight
numbers and times, aircraft tail numbers, and origin/destination air-
ports [53]. Aircraft tail numbers serve as unique identifiers, enabling
accurate tracking and pairing of arrival and departure records. For
instance, as shown in Table A2 and Table A3, aircraft tail number B-LRT
(Airbus A350-900) arrived at the airport at 07:55 (flight CX219) and
departed at 10:25 (flight CX216), yielding a turnaround time of 2.5 h.
This turnaround interval defines the available window during which
charging or refuelling power demands can be flexibly shifted and
scheduled according to airport energy system optimization
requirements.

Specifically, a normalized variable 4;, is introduced to represent the
proportion of the total required charging or refuelling energy E;* allo-
cated to time step t, for aircraft i. The charging/refuelling load at each
time step t is then formulated as:

ir

g 5B a2
¢ = Ar

i€/

subject to the constraints:

(dep

> die=1,2=0 ve g [, 6] 13)
=t
where L‘?i'po't is the total aircraft charging/refuelling load at time step t,

At denotes the duration of each time step, t{", tfiep are the arrival and
departure times of aircraft i, .2/, represents the set of aircraft present at
the airport at time t. The charging/refuelling demand of each aircraft is
fully met within turnaround time through demand shifting windows,
which demonstrate temporal flexibility for energy demand scheduling
within operational constraints.

In summary, the presented methodology integrates detailed point-
mass aircraft modelling with surrogate model techniques to accurately
predict aircraft energy consumption. Constant-power charging/
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refuelling assumptions and reserve energy considerations are then
applied to transform obtained electric and hydrogen energy demands
into power requirements. By leveraging precise turnaround time iden-
tification based on the actual flight schedule data, the proposed
approach effectively enables flexible demand shifting, enhancing oper-
ational flexibility and efficiency for the energy management of future
airport microgrids.

3. Problem formulation

3.1. Multi-energy microgrid model

3.1.1. Electrical energy network modelling
(1) Airport PV system

At airports, PV systems can be installed not only on suitable ground
areas around the airport but also on the rooftops of airport buildings,
including terminals and car parks, thereby maximizing the use of
available space and minimizing the land footprint required for renew-
able energy generation [41].

The PV output power exhibits a strong dependence on solar irradi-
ance intensity and ambient temperature conditions. Based on statistical
analysis, the solar irradiance intensity over a given time interval can be
effectively approximated using a Beta distribution. The corresponding
probability density function is formulated as [54]:

(L) _M<i> (1 _ i)”” 149
where I represents the Gamma function; G and G, denote the actual
and maximum solar irradiance intensity during the given period,
respectively; a and f# are shape parameters of the Beta distribution,
which are derived from the standard deviation ¢ and mean value y of the
solar irradiance intensity during this time period.

The PV output power can be estimated by comparing the solar
irradiance intensity at standardized testing parameters with the actual
operating conditions, in considering ambient temperature [54], as
expressed in Eq. (15):

G
Ppy (G, Ty) :PSTP@ [1+k(Tp — Tste)] (15)

where STP represent PV operation at standardized test condition; Gsrp
denotes the solar irradiance intensity under STP, set at 1000 W/m?; Tsrp
represents the standard reference temperature, defined as 25 °C; G is the
actual solar irradiance intensity; k represents the power temperature
coefficient; and T, denotes the surface operating temperature of the PV
array.

(2) Battery energy storage system

The BESS is a critical component in the integrated energy system, per-
forming multiple essential functions, such as alleviating renewable en-
ergy volatility, improving power quality, and facilitating peak shaving
and valley filling [55]. In this airport microgrid, Li-ion batteries are
selected for the BESS on account of their superior technical features,
including rapid charging capabilities, minimal self-discharge rates, high
energy density, and excellent safety features.

Unlike conventional models that assume constant efficiency values,
this study incorporates part-load efficiency characteristics to accurately
capture the BESS performance under varying operating conditions. The
state of charge (SoC) of the BESS at a given time t can be described as:

- Psgs(r)) At
B,
(16)

SOCgess (t) = SOCsess (t — 1) - (1 — oprss) + <’7§léss - Phiss pr
BESS
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where SOCggss(t) denotes the charging state of the BESS at time t,
Pho(t) and Pdis(t) are the power charged to and discharged from the
BESS at time t, respectively. The coefficient opgss is the self-discharge
rate, which is treated as a constant value in this study, as its variation
becomes significant only in long-duration simulations on the scale of
weeks or months, consistent with common practice in short-term
dispatch studies [56]. Notably, ngiss and 5d. are power-dependent
efficiency functions rather than constant values, reflecting the
part-load characteristics of the BESS. EjZ% represents the maximum
capacity of the BESS.

Battery degradation represents a significant economic consideration
in BESS operation. Based on the cumulative damage model developed by
the U.S. National Renewable Energy Laboratory (NREL), each discharge
cycle contributes to irreversible battery degradation [54]. The total
useable energy throughput before end-of-life is expressed as:

Ejife = Lg-Dg-Cg 17)

where Cy represents the rated capacity at the rated discharge current, Dg
represents the rated depth of discharge (DoD) used to define the rated
cycle life, and Lg represents the rated cycle life under standard operating
conditions.

The effective throughput per discharge cycle is influenced by both
the DoD and discharge rate. The relationship between DoD and cycle life
follows:

L(DA) =Lgp- (%:)7 0'eXP< — U (ID)fz* 1)) (18)

where L(D,) is the actual cycle life, D, is actual depth of discharge, and
U, up are empirical fitting parameters.
The discharge rate effect on battery capacity is captured through:

Cp=Crko —Ix (19)
where Cj, is the actual discharge capacity, ko denotes an empirical co-

efficient, and I, is the discharge current calculated from the battery cell
power as:

Iy= Pldsgss (t)'106 / (’lgigss : UESS) (20)

where Uggs represents the battery system voltage.
Combining both effects of discharge depth and rate, the effective
ampere-hour consumption per discharge cycle is defined as:

deff(t) = kDOD (t)‘krate(t)‘dact(t)

h C @y
where G
Kaelt) = & (5

doet (t) = Ip(t)-At

where deg(t) is the effective ampere-hour consumption at time t. kpop(t)
is the DoD impact factor. kyq.(t) represents the discharge rate impact
factor, dg.(t) is the actual discharge in ampere-hours.

And the depth of discharge at time ¢ is:

DA (t) = 1 — SOCBESS(t) (22)

After obtaining the effective ampere-hour consumption per
discharge cycle, the remaining battery life can be expressed as:

Ei e
Yige(t) =—/—— L (23)
; o (i)

where 3°i_; dy(i) represents the accumulated effective ampere-hour
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consumption up to time t.

The comprehensive consideration of both DoD and discharge rate
effects, along with part-load efficiency characteristics, ensures accurate
assessment of the complex degradation mechanisms and operational
economics inherent in BESS.

(3) Electrolysers

Currently, two types of electrolyser technologies are widely used for
hydrogen production: alkaline electrolysers and proton exchange
membrane (PEM) electrolysers. Among these technologies, PEM elec-
trolysers offer several advantages including rapid response capabilities,
wide operating range and high current density. Furthermore, PEM
electrolysers demonstrate excellent dynamic performance with fast
startup time and the ability to operate efficiently under partial load
conditions, making them particularly suitable for coupling with inter-
mittent renewable energy sources and responding to fluctuating
hydrogen demand in airport microgrid systems [57]. Therefore, this
study adopts PEM electrolysis as the hydrogen production method in the
proposed airport microgrid model. The electrolyser model captures
realistic operational characteristics by incorporating multiple operating
states and part-load characteristics, reflecting the actual technical con-
straints and efficiency variations of commercial electrolysers. It should
be noted that pressure ramping dynamics are not considered in this
model, as the optimization time intervals (20 min) exceed typical
pressure ramping periods of PEM electrolysers, and the hydrogen stor-
age system is assumed to maintain constant pressure through dedicated
regulation equipment [58].

The electrolyser operates in four distinct states: production, standby,
startup, and shutdown. During production state, the hydrogen genera-
tion rate exhibits a non-linear relationship with power consumption due
to varying efficiency across different operating loads:

my, =f (PZmedv’?ez (P ZI.prod>> vteT 24

where my;, is the amount of hydrogen generated at time t; 7,; represents
the load-dependent efficiency and the electrical power input to the
electrolyse is denoted as Py, 4.
The total power consumption of PEM electrolysers comprises three

components:

t __ pt t t
Pel _Pel.prod + Pel.starmp + PeLSmﬂdby'us[andby vteT (25)
where Pf:l.smnup denotes startup power consumption, Pejgands, is the

constant standby power requirement, and u! is the binary standby

tandby
state indicator.

3.1.2. Hydrogen energy network modelling

(1) Hydrogen storage tank
The HST serves as a reservoir for hydrogen produced through water
electrolysis, providing hydrogen supply for both hydrogen-powered

aircraft and hydrogen fuel cells. The hydrogen level in the HST at time
t can be described as [59]:

Pds (1)\ At
SOCysr (t) =SOCusr(t — 1) + (Pf{hsT(t) Mty — st1+()> “Emax (26)
Mast HST

where SOCysr(t) represents the state of charge of the HST at time ¢,
P (t) and P (t) are the hydrogen charging and discharging rates at
time t. The self-discharge factor oust = 0, as self-discharge effects are
typically negligible for hydrogen storage. 7, and 5, represent the
HST charging and discharging efficiency factors, while Ej3} represents

the maximum capacity of the HST.
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(2) Hydrogen fuel cell

Hydrogen fuel cells can reverse the energy conversion process of elec-
trolysers, transforming stored hydrogen into electrical energy. The HFC
model captures power and thermal outputs in relation to energy con-
version efficiency and hydrogen consumption under varying load
conditions.

The electrical power output of the fuel cell system is expressed as
[59]:

Pl =1, LH Vi, | A @7

where P}C is the electrical power output of fuel cell at time t, ”}c,ele rep-
resents the electrical efficiency, m}C‘HZ denotes the hydrogen consump-

tion rate (kg/ At), LHVy, is the lower heating value of hydrogen, and At
is the time interval.
The thermal power generation from the fuel cell is characterized by:

. 1l
Q}c = mjt'c‘Hg "LHVp, - Z;h (28)

where Q;; represents the thermal power output and 7, ;, denotes the
thermal efficiency of the fuel cell system.

3.1.3. Thermal energy network modelling

The TST serves dual functions in the airport microgrid: absorbing
excess waste heat recovered from HFC operations, while providing
thermal energy during periods of high heating load for the terminal
building. The thermal energy level in the TST at time t can be expressed
as [54]:

Pdis (£)\ At
$OCrs () = 50Cn(e 1)+ (i) 1ty - PLH ). 28 29)
Ntst TST

where SOCrsr(t) represents the state of charge of the TST at time ¢,
PSh(t) and P4is, (t) are the thermal energy charging and discharging rates
at time t. Similar to the HST, the self-discharge factor opst = 0, as self-
discharge effects are also typically negligible for thermal storage in
well-insulated systems. 7%, and 74, represent the TST charging and
discharging efficiency factors, while ET&¥ represents the maximum ca-

pacity of the TST.

3.2. Objective function

The objective functions are defined by the unique operational char-
acteristics of zero-carbon airport microgrids, where aircraft electric
charging and hydrogen refuelling dominate the airport energy demand.
These demands vary across airports of different scales and operational
intensities, often reaching hundreds of megawatts even with only
regional aircraft [46]. To accommodate such electric and hydrogen
demands, airport microgrids typically incorporate large-scale PV in-
stallations, which introduce inherent output fluctuations. For
hydrogen-powered aircraft, airport energy infrastructure is further
expanded with on-site electrolysers for local hydrogen production, and
fuel cells for hydrogen-to-electricity conversion. Waste heat from fuel
cell is recovered via thermal energy storage for subsequent utilization.
Such airport microgrids create complex energy conversion processes and
tight coupling across electricity, hydrogen, and thermal networks. The
complexity of multi-energy interactions in airport microgrids presents
significant challenges for long-term stable energy dispatch. To address
this, this study incorporates operational risk metrics for each energy
network (electrical, thermal, and hydrogen) as optimization objectives,
thereby enhancing the system’s ability to maintain continuous energy
balance. Furthermore, an innovative demand shifting strategy for
aircraft electric charging and hydrogen refuelling is also introduced,
enabling redistribution of these large, time-bound loads within
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allowable time windows. Given the considerable magnitude of aircraft
energy demands, such shifting can significantly impact power exchange
with the external grid, motivating a flexibility objective to optimize
power exchange and support grid services.

The proposed multi-objective optimization framework integrates
three objectives: minimizing economic energy dispatch cost, reducing
operational risk across multi-energy networks, and enhancing grid
flexibility. The economic objective ensures cost-effective operation by
minimizing daily operational expenses, the risk objective mitigates po-
tential instabilities across electrical, thermal, and hydrogen networks,
and the flexibility objective, defined as reducing grid purchase,
strengthens grid auxiliary service capability. A weighted optimization
framework balances trade-offs among these objectives, allowing system
operators to adapt priorities to operational needs, seasonal variations, or
emergency scenarios, thereby enhancing the airport microgrid’s adapt-
ability, resilience and cost effectiveness.

The inherent variability of solar irradiance introduces certain fluc-
tuations into PV power output, necessitating a robust probabilistic
modelling framework for stable system operation. To effectively capture
these variations, a scenario-based modelling approach is adopted. Let &
denote the random variable representing variations in the system, pri-
marily the variable PV output. A set of representative scenarios
{&,5s=1,...,S} is generated using Latin Hypercube Sampling (LHS).
Specifically, for each scenario &, sampling process is first performed
using its Cumulative Distribution Function (CDF), which indicates the
likelihood of the variable falling at or below a certain value [54]. The
cumulative distribution function F(G) is divided into N equal probability
intervals, where

1
P(Gk<G<Gk+1):N (30)

The corresponding CDF value is calculated as

1 k-1
FGo)=gfn+—§— (31)
where r, follows a uniform distribution N (0,1). The actual sample
values for scenario & are then obtained through inverse transform
sampling, expressed as

Go=F" Gfr +le> 32

The generated scenarios {&} are organized into an N x P matrix,
where P represents the number of time periods under consideration.
While LHS provides good space-filling properties in the sample space, to
improve numerical conditioning and reduce computational burden, a
two-stage reduction process is implemented.

First, the Gram-Schmidt (GS) orthogonalization process is applied to
minimize linear dependencies between scenarios and enhance the nu-
merical stability of the scenario matrix. Given the smooth and unimodal
nature of daily PV output profiles, this orthogonalization preserves the
essential temporal patterns while improving computational tractability.

Subsequently, a Synchronous Backward Reduction (SBR) technique
is also employed to obtain a representative subset while preserving the
statistical properties of the original set. The distance between scenarios
&; and ¢&; is quantified using the Euclidean norm [54]:

d(i.j) = (33)

where ¢, and & represents the value of scenario i and j at time ¢,
respectively.

This distance-based reduction approach ensures that extreme sce-
narios (e.g., days with exceptionally high irradiance or heavily overcast
conditions) are preserved, as they typically lie at the boundary of the
scenario set in Euclidean space and maintain large distances from other
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scenarios. The algorithm preferentially eliminates scenarios in dense
regions of the sample space, thereby maintaining scenario diversity and
capturing the full range of PV variability critical for robust system
operation.

Each scenario & is assigned a corresponding probability weight w;,
where

i w,=1 (34

s=1

The objective function is then formulated to minimize the expected
value across all scenarios, expressed as:

min E[f(x, )] = Z w[TC(x, &) + OPR(x, &) — GF(x, &)] (35)

s=1

where TC(x, &) represents the system operation cost under scenario &;
OPR(x,&) denotes the operational risk of the electricity-thermal-
hydrogen energy networks under scenario &; and GF(x,¢,) indicates
the grid flexibility assessment under scenario .

The proposed probability-based modelling approach effectively
captures the stochastic characteristics of PV output while maintaining
computational efficiency. This optimization framework is particularly
suitable for the multi-objective optimization of airport microgrid sys-
tems, as it enables the simultaneous balancing of system economics,
operational security, and flexibility under variable renewable energy
generation in multi-energy networks.

3.2.1. Operational cost

The economic objective function for the day-ahead optimal problem
is expressed as follows, where TC represents the total cost of operating
the microgrid over T time periods, the objective function is represented
in Eq. (36), The specific formula for each part of objective function is
shown in Eq. (37)-(45).

T Ny T
min TC(x, &)=Y Y Com(P) + >
t=1 n=1 t=1
Na T
X Z eav + Z |:Ct £ + Ct & +Ct s C;fzs + C;Iisat] Cixemand
n=1 t=1
(36)
L Ptés
Com (P5) = Kom, P55 + Cogr(1 1) 37)

26280(1 4 )" — 1

where cost of equipment maintenance and operation for the n th unit is
denoted by Cop (), P represents the power generate by the equipment,
and N; is the number of equipment in the microgrid; Kom, denotes the
maintenance cost factor of unit power output for equipment n, C,;,, is the
unit capacity investment costs for equipment n, L, denotes the expected
lifetime, r is the annual growth rate of depreciation, the list of equipment
is included as n = PV; HFC; EL; TST; HST.

Cear (P

) = (Kecco, + Kecgo, + Keenoy ) % P;ﬁji (38)

The emissions cost of the unit is shown in Eq. (38), where Cesy (P;f&)

denotes the cost of emissions associated with the operation of the
equipment. The hydrogen fuel cell in the system only uses green
hydrogen and do not emit polluting gases, while other local generation
equipment including PV panel, electrolyser and energy storage equip-
ment are also considered operating without pollution, therefore the

emissions cost is only induced by the external grid in this study. P;ﬁ;

represents the power purchased from the external grid at time t. Kecco, ;
Kecso, ; Kecno, are the unit cost coefficients for emissions associated with
grid power generation.

The battery aging cost represents a significant component of the total

eTransportation 27 (2026) 100485

system operation cost. For each time interval, the degradation cost is
calculated based on the effective discharge throughput [54]:

nil ax | qt<s
Cll;ESS EI;IESS d

Che= 2 (39)

Eie

where C¥It: represents the unit investment cost of the BESS, dzf? is the

effective ampere-hour consumption considering both DoD and discharge

rate effects, and Ejy, is the total baseline throughput in ampere-hours.
The total battery degradation cost over the optimization horizon T is:

T
otal. & t,Es
Ccloabs — § Coong (40)

aging
t=1

This degradation cost is incorporated into the overall system oper-
ation cost objective, incentivizing operational strategies that balance
immediate energy arbitrage benefits against long-term battery life
preservation.

The electrolyser contributes to the total system operation cost
through startup-related expenses, which reflect the operational wear
and efficiency losses during transient states:

& _ tés
Cztel t= Cstanupﬁold ll ‘startup cold + CXWWP hot* ustarmp hot (41)
; . . . . .
where ugr. g and usmmp 1o are binary variables indicating cold and

hot startup events at time t, Cyiqrup cold aNd Cyiarap hot T€Present cold and
hot startup costs respectively.

Cold startup costs are significantly higher due to extended power
consumption during the startup sequence and increased thermal stress
on system components. Hot startup costs are relatively lower as the
system maintains residual thermal energy, enabling faster transition to
production state with minimal auxiliary power requirements.

Eq. (42) denotes the cost or revenue associated with buying and

selling electricity, where C;buy and C;seu denote the purchase price and

sale price of the grid at time t, respectively. P[gﬁsdbuy and P*%

aridsell Fepresent

the interactive power exchange of the grid at time t.

5; _ £ t Es
Ct pbu_yp gridbuy Cpxellp gridsell (42)

Eq. (43) shows the cost for buying hydrogen through external

hydrogen pipeline, Cy, denotes the price of hydrogen, P;Izbuy is the
quantity of hydrogen purchased at time t.
Chiy = CiuPiiiny (43)

Eq. (44) represents the cost for purchasing heat from the external
district heating network. Cyeq: denotes the unit price of thermal energy,

PHiamy is the quantity of heat purchased at time t.
C;{isat Chear* P Heatbuy (44)

Apart from the typical cost elements associated with conventional
multi-energy microgrids, airports featuring large-scale aircraft electri-
fication are characterized by exceptionally high electricity consumption,
which can impose significant stress on the upstream power grid during
peak demand periods. To mitigate peak airport demand and reduce grid
stress, demand charges are implemented as an economic incentive
mechanism that encourages demand shifting and peak shaving behav-
iours. The demand charges are calculated based on the peak power
demand during the optimization period, as expressed in Eq. (45):

ijsemand =P peak *Tdemand (45)

where Pp.q represents the maximum power demand over the selected
day, and 7gemanq denotes the demand tariff rate. The demand tariff is
determined according to data regularly published by the National En-
ergy System Operator (NESO) for Great Britain [60]. While several
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European countries implement explicit demand-based tariffs, the UK
employs a triad-based scheme where demand charges are determined
based on the average peak power over the three highest half-hour pe-
riods of grid demand on specific days in winter. In this study, demand
charges are simplified and defined as the peak demand of the selected
day multiplied by the demand tariff for computational tractability.

3.2.2. Multi-energy network operational risk

Operational risk in power systems is typically defined as a compre-
hensive assessment of both the probability and severity of uncertainties
during system operation. In this paper, we select three primary risk in-
dicators for the airport multi-energy microgrid: electrical power
imbalance, thermal power imbalance, and hydrogen power imbalance.
Each of these imbalance indicators encompasses both positive and
negative deviations. The final risk assessment is quantified by multi-
plying the power imbalances with their corresponding severity factors.
The overall system operational risk is expressed in Eq. (46):

T
minOPR(x, &) = Z

i=1

(P x S () +

out

+Hgi % Ser (o))

out

Qi > Ser (Qit) +
(46)

where OPR represents the total system operational risk and T is the
system operation period. Pf;ﬁ}, i% and H.% represent the electrical,
thermal, and hydrogen power imbalances at time i, respectively.
Sev (Pim> Sev( ) and Sev< ,,;‘t) denote the severity factors for the
power imbalances in these energy networks, respectively.

The severity factor represents the degree of severity when power
imbalances occur in the system. In this paper, the severity of electrical,
thermal, and hydrogen power imbalances is characterized by the func-
tion shown in Eq. (47):

exp(A* (P) +B;) — 1

SEV (Pt)li) = Ci
% (()ils AR
(Q;i}) _ xp(al ( ;i) +ﬁz) (47)
iy exp(e(HSS) +6;) — 1
S () = 2L ) £0) -

where A;, B;, C; are the fitting parameters for the electrical power
imbalance severity function; a;, §;, §; are the fitting parameters for the
thermal power imbalance severity function; and ¢;, 6; , y; are the fitting
parameters for the hydrogen power imbalance severity function. The
term exp() represents the exponential function with base e.

Based on Eq. (47), it can be observed that the severity factor exhibits
exponential growth with the increase in power imbalance, which
significantly impacts the objective function. This exponential relation-
ship effectively serves as a penalty term, naturally constraining the
further escalation of operational risks in the airport multi-energy
microgrid. Such a mechanism is particularly crucial for maintaining
the stable operation of the integrated electricity-thermal-hydrogen
network.

3.2.3. Flexibility potential of airport microgrid
The system flexibility is quantified by comparing the grid interaction
patterns between two optimization scenarios. Let Pbg;fji denote the total

daily grid power exchange between the airport microgrid and the utility
grid when the objective function only include operational costs and

risks; ng’;’f‘ represents the aggregate grid power exchange over the

scheduling period when all three objectives are optimized. The flexi-
bility is quantified as:

max GF(x, &) = )Pbgfé - ng’;‘g‘

(48)
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The flexibility can be classified into two types: positive flexibility and
negative flexibility. Positive flexibility represents a reduction in grid
power purchases compared with baseline scenario, while negative
flexibility indicates an increase in grid power purchases. In this study,
positive flexibility is adopted as the primary flexibility indicator,
reflecting microgrid’s capability to reduce dependency on external grid
power. The mathematical formulations for positive and negative flexi-
bility are expressed as follows:

max GFyos(x, &) = Poy — Ph’™ (49
Max GFoeq (X, &) = Phos®s — Po (50)

3.3. Constraints

3.3.1. Multi-energy network balance and external interaction constraints

The operation of the airport microgrid is constrained by energy
balances across electricity, thermal, and hydrogen networks. The elec-
trical balance constraint is expressed as:

s s s
- P;’V + P)t‘c + P f

S5 s s S5
PZIeload + Pi + Pt gridsell + P:ZESS cha BESS dis + Pt gridbuy (51)

where P"‘fﬁ represents power consumed by electrolyser, and the power

output of HFC is indicated by P}™. P

¢ .
piss,cha A1 Pppss 4 are the charging

tés
P, gridbuy and P gnd.sell

denotes the power purchase from and sale to the utility grid, respec-
tively.
The thermal network balance constraint is given by:

and discharging power of the BESS at time t, while

s t.C: (3
Plised =Pl + Qi + Pl

Heatbuy

(52)

The power balance constraint of the thermal network is described by
Eq. (52), including the waste heat recovered through heat exchanger
Q}fs, external thermal power purchase PHembuy, the thermal load of the
terminal building P% ., and the thermal power output or input of the
TST P

The hydrogen network balance follows:

Pt§5

feHy —

f@s

_ ptés s Ls
Pitoad Pis + Prigr + Py

Hybuy (53)

The power output or input of the HST is denoted as P.%,, and the
s P

HsLoad* fc Hy

consumption power of the HFC, while Pﬁfzsbuy
Phes

Hybuy

hydrogen demand at time ¢ is represents the hydrogen

is the hydrogen consump-

tion power of the electrolyser. is the hydrogen power purchased

from the pipeline at time t.

In this study, the airport microgrid is modelled using a single-bus
structure without considering detailed internal network physics. Spe-
cifically, electrical network constraints such as voltage limits and line
capacity, thermal network characteristics including heat losses and
temperature gradients, and hydrogen network dynamics such as pres-
sure variations and flow limitations are not explicitly modelled. This
simplification is justified by the compact spatial scale of the airport
microgrid, the short distribution distances involved, and the support
from external utility networks that ensure stable operating conditions.
The energy balance equations (Eq. (51)-(53)) therefore represent
aggregated power flows at the system level rather than detailed network
power flow calculations.

The interactions with external energy networks are further con-
strained by upper and lower bounds on power, hydrogen, and heat ex-
changes:
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prin < P < P

gridbuy gridbuy — * gridbuy
Pglry}dsell <P ‘[gﬁsdsell < PZgr:'lqd);ell (54)
Pgirll)uy S P;[isbuy S Pg;lt’r(uy
ngclltbuy < P ;—}istltbuy < nggtbuy

3.3.2. Dispatchable equipment power output constraints

Dispatchable equipment such as fuel cells and electrolysers are
constrained within minimum and maximum output ranges, expressed
as:

PR <P < Pp™,n = HFG, EL 69

where PMn and PM# denote the minimum and maximum power output
of equipment n, respectively.

Beyond these limits, electrolyser operation is also governed by the
following technical and operational constraints to ensure realistic sys-
tem behaviour [57]. Startup dynamics are modelled to capture both cold
and hot processes, requiring proper durations and corresponding elec-
trical consumption, which is formulated as:

. . ) [Smax _St—l (1 —0 )]
OSp;,ChSP;.ch max — mln{Pfll.lmaﬁ : i’]fr:hAt :

n=BESS,HST, TST

. . St—l 1-0 7smin ”dis
ngzimgpzimmm:mln{Pgiu7[ . ( g)t . } . }

t
t T
uun + Z ustamgp.culd < 1 vteT

T=t—Teoig+1

t
t T
usta.ndby + Z ustartup‘cold < 1 vteT
T=t—Tgog+1
t—1

t t—1 t t T
Upp — Upp < usmrtup.hut + ustartup.cold + § usmrtup.cold vteT
=t=Teoua

Py, :

_ rtup cold T t

PZI,xmrtup - T E : ustan:up,cold +P, SfaYTUP«hOf'uxtam/p.hot vteT
old et "Tegi

(56)

where T4 represents the cold startup duration, ensuring that cold
startup requires sustained operation for T,y periods. These constraints
ensures that the electrolyser can achieve proper cold and hot startup
processes while consuming the corresponding power.

Electrolyser operating states are mutually exclusive, preventing
simultaneous operation in production and standby modes, which is
expressed as:

t t
u,, +u

standby <1 VteT (57)

To ensure durability, a minimum load constraint is imposed since
industrial electrolysers cannot maintain stable electrochemical reactions
at very low current densities, leading to efficiency degradation:

Pel,min u, <P

on — * elprod

vteT (58)

where Py i, represents the minimum stable operating load.
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Hydrogen production is coupled to the active state of the electro-
lyser, formulated as:

m;lz <Mu, VteT (59)

where M is a sufficiently large constant, ensuring that hydrogen is only
produced during the active operating state. Finally, the electrolyser
thermal state is preserved to allow hot startup within T;,ogown, @ defined
cooldown duration after shutdown, which is represented by:

t—1

u;tanup.hot S Z u;n vteT (60)

7=t="Tco0tdown

3.3.3. Constraints on energy storage systems
Eq. (61) constrains the remaining energy capacity at any given time t
to ensure operational feasibility within the system’s physical limitations.

Spin < She < g (61)

where S™" and S™ represent the minimum and maximum allowable
capacity of the multi-energy storage systems, respectively.

During the energy dispatch process, the charging and discharging
power of storage systems is constrained by both their permissible
remaining capacity range and inherent technical limitations. The
maximum charging and discharging power can be expressed as:

(62)

where P and P% = are the maximum charging and discharging
power of the multi-energy storage systems, respectively.

To enhance the participation of multi-energy storage systems in the
dispatch of subsequent days, it is essential that their final capacity at the
end of the current dispatch S;T aligns with the initial capacity St°.
However, considering the large capacity of the storage tank and the
flexibility of the energy system, a threshold value y,, is set in this study to
reduce the computational complexity of optimization problem, the
remaining capacity at the end of a day and initial capacity of the day are
subject to the following constraints:

t=0 t=T
|S'IS£17:OS"| Sy, (63)
3.3.4. Aircraft charging and refuelling constraints
Based on the predefined charging or refuelling power and duration
for each aircraft described in Section 2.2.2, the following constraints
must be satisfied in the charging and refuelling schedule optimization:
First, to ensure continuous charging or refuelling process, each
aircraft can only be charged or refuelled once without interruption. The
charging or refuelling status of aircraft i at time t is defined by a binary
variable x; .. When the aircraft is being charged or refuelled, x;, equals 1,
otherwise, it equals 0. This continuous charging or refuelling require-
ment can be described as:

1, ifs;<t<s+T,
x,-t{ o sstesit e Gienveer (64)

0, otherwise

where s; represents the charging or refuelling start time of aircraft i, and
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Ti,. denotes its required charging or refuelling duration.

Although Eq. (64) defines the charging status, the start time s; is an
implicit decision variable that requires additional constraints to define
its feasible range, (o7 <s <M — Ti . Excessive computational
complexity is caused by formulating s; as a continuous variable with
nonlinear constraints linked to binary variables x;;, or by modelling
each x;; as an independent binary decision variable. In the latter
approach, 200 aircraft over 72 time intervals at 20-min resolution would
require up to 14,400 binary variables along with numerous logical
constraints for continuity and exclusivity. To overcome this issue, the
problem is reformulated by explicitly optimizing charging start time
through discrete binary variables.

Binary decision variables are introduced to indicate when charging
begins:

Wi, = 1,
is — 07

The charging and refuelling scheduling problem is then expressed as:

if aircraft istarts charging at time s

otherwise ViEN,VseT

(65)

(4P i
i~ Tair

> wis=1VieN
s=tam

i

(66)

_Tt

where w;, = 0,Vi € N,Vs < t%" or s > ti% — T,

This constraint ensures that each aircraft has exactly one charging or
refuelling start time within its feasible window.

In addition, to guarantee a continuous and complete charging or
refuelling process, it is necessary to ensure that once charging or refu-
elling begins at time s, it proceeds without interruption for the full
duration Ti; required by the aircraft type. Therefore, the charging or
refuelling status x;, is determined by the selected start time and only
remain active throughout the charging or refuelling period, as expressed
in Eq. (67):

Xip = Z wis,Vie NNVt e T

se.7(t)

(67)

where .7;(t) = {s is<t<s+TE T <s< tfep —Tflir} represents the set

air’ "i
of start time that would result in charging or refuelling at time ¢.
Meanwhile, to prevent system overload, the total power demand
from all aircraft at any time must not exceed the system capacity:

Z (P x;e )

i

ir
< Pgna)w

vteT (68)

ar js the power demand of aircraft i and P%"

where P; .

maximum system power capacity.

These constraints collectively ensure that each aircraft receives one
continuous charging or refuelling session while maintaining the system
power demand within its capacity limit throughout the optimization
period.

represents the

4. Solution methodology
4.1. Model linearization

The optimization model for airport energy management involves two
types of nonlinear terms that need to be addressed: the absolute value
terms and the part-load efficiency curves of energy storage and con-
version equipment. We propose systematic linearization approaches for
each type of nonlinearity to transform the model into a MILP
formulation.

It should be emphasized that in the aircraft charging and refuelling
constraints, the relationship between w; and x;, in Eq. (65) represents a
logical constraint rather than a bilinear term. Since the charging power
for each aircraft is predetermined as a constant (as shown in Eq. (11)),
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the constraint states that if charging starts at time s when w;; = 1, the
aircraft must maintain its charging status during the interval [s, s +
e — 1]

T;ir
This logical relationship is expressed as:

Wi =1x,=1,Vt € [s,s+ T}, — 1]

air

(69

Given that x;, € {0,1} represents a binary charging status and the
charging power is a predetermined constant, this constraint can be
implemented without introducing bilinear terms through:

Xi¢ > Wis t€ [S,S + Ti

t—1],Vis (70

Additionally, to prevent charging activity outside the selected
charging period, the following constraint is imposed:

Xit < Z wi,s,Vi,t eT

se./i(t)

(71)

This constraint serves as an upper bound: when no charging start
time covers time slot t, the summation equals 0, forcing x;, = 0; when
exactly one start time covers time slot t, the summation equals 1,
allowing x;, = 1.

Together, Egs. (70) and (71) ensure that x;; = 1 if and only if time ¢
falls within a selected charging period. With predetermined constant
charging powers, the formulation remains a standard MILP problem
without requiring Big-M linearization, thus preserving numerical sta-
bility and avoiding relaxation gaps typically associated with Big-M
methods.

The energy conversion devices in the multi-energy microgrid exhibit
nonlinear efficiency characteristics that vary significantly with oper-
ating load levels. To maintain the linearity of the optimization model
while accurately capturing these nonlinear behaviours, we employ
piecewise linear (PWL) approximation based on convex combinations
with Special Ordered Set of Type 2 (SOS2) constraints.

The core principle of our linearization approach is to represent any
operating point as a convex combination of predefined breakpoints. For
a nonlinear efficiency function n(P /P™™), we select Ny, breakpoints at

load levels {pl,p% ...,prp} with corresponding efficiencies {nl,nz,
"Nbp} . The efficiency at any operating point is then approximated as:

Npp

n= Z j~k.t"7k
k=1

(72)

where the weight variables ;. form a convex combination satisfying:

Npp
D ke=1,4c > 0,Vk,t
k=1

(73)

These constraints ensure that the weights are non-negative and sum
to unity, defining a valid convex combination. However, allowing all A,
to be simultaneously non-zero would result in arbitrary weighted av-
erages rather than piecewise linear interpolation. To enforce proper
PWL behaviour, we impose the SOS2 constraint:

50s2 (/Ilyt, A2ty s ANbp,t) 74)

This constraint restricts at most two adjacent A variables to be non-
zero, ensuring that the operating point is represented as a convex
combination of only two consecutive breakpoints. Mathematically, if the
operating load falls between breakpoints k and k + 1, then:

/1k.t +ﬂk+1<t = 17/1j,t =0 Vj ¢ {k, k+ 1} (75)

This formulation achieves linear interpolation between adjacent
breakpoints while maintaining the convexity properties of the approxi-
mation. The operating power is expressed as convex combinations:
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Ny,

P, = Z jvk,t'pk
k=1

This convex combination approach transforms the nonlinear effi-
ciency curves into a set of linear constraints, while the SOS2 constraints
ensure that the approximation follows the piecewise linear segments
rather than arbitrary convex hull relaxations. The method preserves the
computational advantages of linear programming while maintaining

(76)
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high fidelity to the original nonlinear characteristics, particularly in the
typical operating regions where breakpoints are strategically
concentrated.

Another source of nonlinearity comes from the absolute value terms.
Due to the scale of the model and the number of variables involved, the
absolute value terms in our airport energy management model present
significant non-linear challenges. For any absolute value term |x|, we
introduce an auxiliary variable k to represent the absolute value. The

Source-load Characteristics Analysis

Scenario-based
modelling of PV output
characteristics

Surrogate model-based analysis
of Aircraft charging/refuelling
demand characteristics

Statistical analysis of
terminal building electric
and thermal load profiles

Energy Dispatch Optimization Model for Airport Integrated Energy Microgrid

[

Objective: minimize total system cost, improve L
grid flexibility, and mitigate operational risks

s

-

[

Constraints: demand shifting constraints of aircraft,
system and component operational constraints, ...

J

[

Model reformulation into an MILP using piecewise-linear approximations,
binary indicators, convex combinations, and auxiliary variables

]

Optimization Solving Process

Setting Gurobi Optimization Parameters
MIPGap: Optimality gap, 6
MIPFocus: Search strategy, €
Heuristics: Runtime on heuristic search, &

k=k+1

.

Call the MILP solver to solve the energy dispatch optimization model,
calculating the current primal ObjVal and dual ObjBound.

]

| ObjBound — ObjVal |

|ObjVal |

<0

Fig. 4. Optimization framework for airport microgrid energy dispatch.
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relationship |x| = k can be equivalently transformed into a set of linear
constraints:

k>x
k> —x

where k is a non-negative variable representing |x|. This transformation
is exact because in the objective minimization, k will always take the
value |x| at optimality due to the minimization pressure.

The proposed linearization approaches introduce additional vari-
ables and constraints. In absolute value linearization, continuous vari-
ables k and paired inequality constraints are added, while in the SOS2-
based piecewise linearization, weight variable ;, and SOS2 constraints
are introduced. Although these transformations increase the problem
dimension, the resulting MILP formulation is typically more computa-
tionally tractable for commercial optimization solvers such as Gurobi or
CPLEX than original nonlinear formulation, and it preserves the logical
structure of the formulation while improving computational efficiency.

77)

4.2. Solution process

The proposed optimization framework for airport microgrid energy
dispatch comprises three primary phases, as depicted in Fig. 4. The
initial phase analyzes source-load characterization, where scenario-
based techniques capture PV generation variability, surrogate models
analyse aircraft energy requirements during charging/refuelling opera-
tions, and statistical methods establish electric and thermal demand
patterns for the terminal building.

Subsequently in the second phase, the energy dispatch optimization
model is formulated with multiple objectives: minimizing overall
operational expenditure, enhancing power grid flexibility, and reducing
system-wide operational risks. This model integrates aircraft demand
shifting capabilities alongside comprehensive operational constraints
for microgrid equipment. The resulting nonlinear formulation is trans-
formed into a computationally efficient MILP formulation through
piecewise linearization, binary variable introduction, and convex
reformulation techniques.

In the optimization solving phase, key Gurobi solver parameters are
configured to balance computational efficiency with solution quality.
The embedded MILP solver iteratively computes both primal and dual
bounds until the relative optimality gap satisfies the prescribed toler-
ance, thereby guaranteeing convergence to a high-quality solution
within acceptable computational time.

5. Results and analysis

The proposed methodology is demonstrated through a case study
based on Manchester Airport, UK. The system comprises various energy
supply equipment sized to meet the airport’s electrical, thermal, and
hydrogen demands. A large-scale PV installation with 50 MW capacity
serves as the primary renewable energy source. The energy conversion
equipment includes a 100 MW hydrogen fuel cell system with a load-
dependent thermoelectric ratio and a 100 MW hydrogen electrolysis
plant to facilitate bidirectional energy conversion between the hydrogen
and electrical networks. Notably, the electrolyser employs a multi-state
transition model to more accurately evaluate the performance and
economics of on-site hydrogen production.

The multi-energy storage systems are designed with coordinated
capacity to ensure reliable energy supply. A BESS with 150 MWh ca-
pacity is implemented alongside a TST rated at 50 MWh and a HST with
150-ton capacity. The BESS incorporates battery degradation costs to
reflect the economic impact of cycling-induced aging. For all storage
systems, the initial SoC is set at 0.5 and v is fixed at 0.01, with opera-
tional constraints limiting the SoC between 0.2 and 0.9 to ensure system
longevity and operational stability.

The airport terminal energy demand is estimated using the modelling
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and analysis method presented in Ref. [61], which provides statistically
analysed daily energy consumption patterns for a representative sample
of administrative offices, including key end-use facilities such as light-
ing, heating, ventilation, and air conditioning (HVAC), and plug loads,
which represent the primary electrical and thermal energy-consuming
equipment servicing airport terminals [62]. The demand profiles are
subsequently scaled by the airport’s annual passenger volume to reflect
airport-specific energy demand, enabling a data-driven approximation
that captures both operational characteristics and system scale. To
accommodate varying energy costs throughout the day, the system
operates under a time-of-use electricity purchase pricing structure.
Specifically, rates are set at 0.07 £/kWh during off-peak hours from
00:00-07:00. The rate increases to 0.15 £/kWh during mid-peak periods
from 10:30 to 16:00 and from 21:00 to midnight. The highest rate of
0.20 £/kWh applies during peak periods from 7:00-10:30 and from
16:00-21:00. The electricity sale price to the external grid is set at 0.09
£/kWh based on the current electricity market rates. Heat purchase from
external sources is priced at 0.08 £/kWh, accounting for clean heat re-
quirements in district heating via heat pumps and other renewable
technologies.

Despite the lack of a standardized hydrogen market mechanism,
considering the potential correlation between hydrogen production
costs and electricity prices due to the electricity-intensive nature of
electrolysis, we adopt a hydrogen pricing strategy aligned with the peak-
valley structure of time-of-use electricity tariffs. This approach is
consistent with current green hydrogen production practices, which
predominantly rely on large-scale electrolysis [63]. To reflect practical
market dynamics and pricing delays, hydrogen prices are modelled with
a 1-h lag relative to electricity prices. Other economic parameters are
provided in the Appendix.

The stochastic nature of PV generation is modelled using beta dis-
tribution parameters derived from historical illumination intensity data,
with mean and variance values given in Ref. [64]. 10 representative PV
generation scenarios, obtained using scenario generation and reduction
methods, are illustrated in Fig. 5(a), with their corresponding proba-
bility distributions shown in Fig. 5(b).

The developed multi-energy microgrid optimization framework,
which coordinates the energy dispatch between future airport in-
frastructures and zero-emission aircraft, is implemented in MATLAB
2024b. The resulting MILP problem is solved using the Gurobi optimi-
zation solver. All computations are performed on a MacBook equipped
with an M4 Pro chip and 48 GB RAM.

5.1. Statistical analysis of electric and hydrogen-powered aircraft energy
demands at airport

To comprehensively understand the flight operations and energy
demand variations at the selected airport, flight data throughout the
year 2023 are collected and analysed. The dataset includes flight dura-
tion and aircraft type information for each flight. Different aircraft
models are assigned specific weighting factors to account for their
varying energy demands. The equivalent flight duration for each flight
operation is calculated using Eq. (78), and the total equivalent flight
hours for each time period is determined by Eq. (79):

teqi = tacruati X Wiype,i (78)

Teq,p = Zteq.i

icF,

(79)

where t,q; is the equivalent flight duration of flight i, tscnar; represents
the actual flight duration of flight i, Wy,.; is the weighting factor cor-
responding to the aircraft type of flight i, T4, is the total equivalent
flight hours during time period p , and F, denotes the set of flights
operating during time p.

Using Eq. (78) and Eq. (79), the daily cumulative equivalent flight
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hours are calculated. The k-medoids clustering method is then applied to
identify representative daily demand patterns, resulting in six typical
clusters. As shown in Fig. 6, these representative days are well-
distributed throughout the dataset, with a particularly higher concen-
tration around September aligning with the airport’s busiest operations.
The temporal distribution of the clustered typical days effectively cap-
tures both seasonal variations and peak operation periods, validating the
effectiveness of the clustering approach.

In the proposed energy dispatch optimization strategy, aircraft de-
mands are shifted in real-time based on airport microgrid needs during
the optimization process. This means the aircraft’s total demand profile
is not fixed beforehand. To facilitate analysis of aircraft demand pattern
variations, we considered a scenario where aircraft do not perform de-
mand shifting. Instead, each aircraft begins charging or refuelling
immediately upon landing. (If an aircraft arrived prior to the selected
day, charging or refuelling is completed at the corresponding time
before its scheduled departure). The duration for charging or refuelling
is determined by the settings for each aircraft type as specified in
Table Al. By fixing the charging or refuelling start time, the electric and
hydrogen power demands for aircraft operations on six representative
days (February 28, April 5, August 12, September 10, September 22, and
December 18) are obtained, as shown in Fig. 7.

From Fig. 7, it can be observed that each of the six representative
days exhibits unique characteristics in both electric and hydrogen power
demands. In particular, aircraft energy demands in August and
September are significantly higher than those on other days, aligning
with the increased air traffic during the UK’s summer travel peak.
Specifically, September 10 exhibits the highest peak electric demand;
however, its demand profile fluctuated more significantly compared to
August 12. The latter maintained a relatively stable high-level demand
throughout the day, peaking at around 300 MW. The hydrogen demand
profile presents a different pattern, with September 10 showing both the
highest peak value and average value. Since medium and large aircraft
primarily rely on hydrogen-powered propulsion, these trends suggest
that while both days experience high airport traffic, August 12 accom-
modates more small aircraft, whereas September 10 generally hosts
more large aircraft.

February 28 presents the lowest aircraft energy demands among the
selected days. Notably, the electric and hydrogen demand profiles for
this day follow relatively similar trends, generally showing a gradual
decrease from a morning peak, with no flight operations during the
night. These demand patterns reflect a significantly lower proportion of
hydrogen-powered aircraft on this day, with operations mainly domi-
nated by hybrid hydrogen -electric aircraft, resulting in a noticeable
correlation between electric and hydrogen demands. In contrast,
December 18 displays an almost opposite demand pattern. Aside from
the early morning period with few flights, electric and hydrogen de-
mands often changed inversely throughout the day, possibly indicating a
limited presence of medium-sized hybrid hydrogen-electric aircraft.
With fewer total flight operations, an increase in battery-powered
aircraft likely results in a decrease in hydrogen-powered aircraft,
contributing to this inverse relationship between these two types of
energy demands.

The analysis reveals significant variations in demand patterns and
magnitudes across these representative days, reflecting the dynamic
nature of aircraft energy requirements at airport throughout the year.
Overall, given that the electric charging demands are comparable in
scale between all-electric aircraft and the battery-supplied portion of
hybrid hydrogen-electric aircraft, the electric demand variations across
different days show complex trends with no significant regular patterns,
primarily influenced by the actual flight schedules of each day.
Hydrogen demands, however, exhibit a very clear peak from morning to
midday. While the peak magnitudes vary across days, the timing of these
peaks remains relatively consistent, indicating that large hydrogen-
powered aircraft, which constitute the majority of hydrogen demand
at the selected airport, mainly operate during arrival and departure in
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this period.

Among these typical days, April 5 is selected as the representative
day for detailed energy dispatch analysis of the airport microgrid in the
following chapter. This is due to its distinctive demand characteristics,
with a relatively balanced distribution of all three aircraft types, making
it an ideal case for demonstrating the airport microgrid’s capability in
managing sharp demand variations and coordinating multiple energy
sources. Additionally, its moderate flight volume and peak demand
levels represent a balanced scenario that can effectively illustrate the
typical operation patterns of the proposed energy management
strategies.

5.2. Analysis of airport energy dispatch results

To comprehensively evaluate the impact of different optimization
objectives on the energy dispatch results, five cases are designed to
progressively incorporate various system features and objectives:

Case 1: Only operational cost minimization; aircraft demand shifting
and PV variability are not considered.

Case 2: Only operational cost minimization; aircraft demand shifting
allowed, PV variability not considered.

Case 3: Operational cost and risk minimization; aircraft demand
shifting and PV variability considered.

Case 4: Operational cost minimization and power grid flexibility
maximization; aircraft demand shifting and PV variability considered.

Case 5: Comprehensive optimization: operational cost minimization,
operational risk minimization, and power grid flexibility maximization;
aircraft demand shifting and PV variability considered.

The energy dispatch results for the electrical, thermal, and hydrogen
networks are presented in Figs. 8-12, while Table 1 illustrates the
relative changes in the three optimization objectives compared to Case
1.

In Case 1, where aircraft demand shifting strategy is not adopted, the
electric demand exhibits a significant peak of approximately 350 MW
shortly after 5 a.m., as shown in Fig. 8(a). The magnitude of the demand
exceeds the capacity of the originally designed grid power exchange
capacity for the airport microgrid, necessitating a specific increase in the
maximum allowable power purchase limit for this case. Despite the off-
peak electricity tariff during early morning hours, the hydrogen demand
within the system is still met through external hydrogen purchase due to
the coinciding low hydrogen prices and minimal hydrogen aircraft
refuelling demand during this period, making hydrogen purchase more
economically favourable than on-site production. Similar to aircraft
electric demands, the hydrogen demand of the aircraft also cannot be
optimized based on system characteristics, resulting in significant peak
hydrogen demands. To accommodate these large peaks, the hydrogen
import capacity are assumed to be adequately sized in Case 1. As shown
in Fig. 8(c), this adaptation of system constraints leads to a dispatch
pattern that heavily relies on external hydrogen purchase rather than
utilizing the integrated hydrogen storage system, reflecting the
hydrogen network’s preference for direct energy supply when facing
inflexible high demands. The fuel cell output varies in response to
electricity and hydrogen price differentials. Notably, during 7-8 AM,
electricity prices have risen to peak tariff levels while hydrogen prices
remain at their daily minimum due to the 1-h lag, resulting in near-
maximum fuel cell output to capitalize on this price arbitrage, as
evident in Fig. 8(a) and (b).

With the adoption of demand shifting strategy in Case 2, the peak
demand significantly decreased to approximately 150 MW, while de-
mand levels increased during periods that has low charging demand in
Case 1, effectively achieving peak shaving and valley filling potential, as
depicted in Fig. 9(a). Specifically, the system maximizes power pur-
chases during the 0-7 AM low-price period to meet both aircraft
charging and battery storage charging demands. Beyond the morning
peak, demand shifting results in increased aircraft energy demands
during midday low-price periods and reduced demands during high-
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Fig. 9. Energy dispatch results under Case 2: (a) power network, (b) thermal network, and (c) hydrogen network.

price time. Battery storage provides additional support during peak
electricity price periods and high aircraft demand intervals, reducing
high-price power purchases from upper grid. As shown in Table 1, this
demand shifting strategy can reduce total costs by over 340,000 £. Un-
expectedly, the electrolyser operates briefly between 7 and 8 a.m.
despite unfavourable costs, as hydrogen prices are still at their lowest
while electricity costs have risen to peak levels. This unusual operation
is actually driven by peak hydrogen demand from aircraft refuelling
requirements, necessitating on-site production to supplement insuffi-
cient external supply and ensure service reliability. According to Fig. 9
(b), thermal storage operation becomes less intensive due to the more
stable fuel cell thermal output. Notably, hydrogen storage is utilized
more frequently, absorbing excess hydrogen during off-peak pricing
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periods and releasing it during peak demand and high-price periods,
with nighttime recharging to meet storage operational constraints, as
demonstrated in Fig. 9(c).

In Case 3, where operational risks are constrained, the power
network demonstrates a more pronounced risk reduction compared to
the hydrogen and thermal networks. Specifically, as shown in Fig. 10,
fuel cell operation becomes more frequent and intensive compared to
the cost-minimization scenario in Case 2. Notably, in power network
energy dispatch, fuel cells generate power even during periods when
both electricity and hydrogen prices are high, indicating that the system
starts to compromise economic efficiency to achieve risk mitigation, as
shown in Fig. 10(a), while changes in thermal and hydrogen networks
remain relatively modest. This differential response can be attributed to
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the greater variety and quantity of dispatchable power equipment in the
electrical network, combined with the demand shifting capability of
electrical aircraft demands, which collectively enhance its risk man-
agement flexibility.

In contrast, the thermal network primarily serves terminal building’s
heating loads, which are fixed loads and therefore lack shifting flexi-
bility. Additionally, despite the availability of external heat purchase
from district heating networks, due to the inherent coupling between
fuel cell heat recovery and thermal storage, the thermal network’s dis-
patchable energy supply equipment often responds passively to varia-
tions in thermal supply. Similarly, the hydrogen network encounters
limitations in risk reduction due to minimal active utilization of
hydrogen storage, as discussed in the previous chapter. Moreover,
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according to the proposed aircraft recategorization strategy, hydrogen-
powered aircraft are typically larger models with correspondingly
higher energy demands, resulting in greater impact on the airport
microgrid. Consequently, to maintain stable system operation while
preserving economic efficiency, the optimization solution always tends
to retain higher operational risks in both the hydrogen and thermal
networks when feasible.

To enhance positive grid flexibility in Case 4, the electrical network
significantly reduces morning low-price power purchases, as illustrated
in Fig. 11(a), with high-output fuel cell generation covering the
remaining electrical load. Hydrogen demand is primarily met through
external purchase, with minor contributions from hydrogen storage
during high-price periods. Compared to Case 2, midday electrical power
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Fig. 12. Energy dispatch results under Case 5: (a) power network, (b) thermal network, and (c) hydrogen network.

Table 1
Variation of optimization objectives across different cases.
Case 2 Case 3 Case 4 Case 5
Overall cost increment £ £ £ £
—346425.83 14375.22 83941.95 97734.76
Operation risk / 63.21 % / 38.28 %
reduced by
Grid flexibility / / 29.4 % 16.5 %

increased by

purchase reductions are compensated by battery storage discharge and
fuel cell generation, particularly during peak solar irradiance periods
with low electric demand when the system achieves complete energy
self-sufficiency. However, frequent high-load fuel cell operation sub-
stantially increases external hydrogen purchase, thereby elevating
overall system operating costs. The absence of power sales to the
external grid indicates that, under current pricing and objective weights,
the revenue potential does not offset the overall cost impact.

Case 5 represents a comprehensive balance of all optimization ob-
jectives. To achieve better economic performance, the system retains
large-scale power purchases during off-peak morning periods, while
midday loads are entirely supplied by fuel cells and PV generation,

(50T XF) 3502 |[BISAQ
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" B \
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Fig. 13. Sensitivity analysis of energy prices on system total cost.
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significantly enhancing system flexibility, though remaining below Case
4 levels. Operational risk shows significant reduction (38.28 %) but also
remains higher than the comparison scenario Case 3 where grid flexi-
bility is not considered, as shown in Fig. 12(a) and Table 1. Total system
costs reach their maximum across all cases, reflecting the trade-offs
required to simultaneously satisfy risk constraints and provide grid
flexibility while maintaining cost efficiency. More precisely, this sub-
stantial cost increase results from the diminished weight of the economic
objective in the objective function, as the system simultaneously ac-
commodates network operational risk constraints while maintaining
considerable grid flexibility.

5.3. Sensitivity analysis of energy prices on system performance

To comprehensively investigate the relationship between the three
optimization objectives proposed in this study, a sensitivity analysis is
conducted to examine how energy prices affect the airport microgrid’s
total operating cost, network operational risks, and power grid flexi-
bility. All other parameters remain consistent with those in Case 5 of the
previous section, with the energy dispatch optimization considering all
three objectives simultaneously, as illustrated in Figs. 13-14 and 16.
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Fig. 14. Sensitivity analysis of energy prices on operation risk of
power network.
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The airport microgrid’s total operating cost exhibits a clear trend of
monotonic increase with rising electricity and hydrogen prices, as
shown in Fig. 13. Notably, the cost increase rate is substantially higher
with respect to hydrogen price variations compared to electricity price
changes, indicating a significantly higher hydrogen utilization in the
system. This observation aligns with the scales of electric and hydrogen
demands shown in Fig. 7, where hydrogen demands constitute a larger
portion of the total energy consumption. When hydrogen prices rise
across all periods, local hydrogen production from electrolyser becomes
more economical than external purchase even during off-peak hours,
significantly increasing grid electricity purchases. However, the mar-
ginal increase in total cost gradually diminishes with rising electricity
prices, suggesting that the grid power purchase has already approached
its upper limit at moderate electricity prices.

Given that the operational risk in power network demonstrates the
highest parameter sensitivity among the three network risks, as evi-
denced by the preceding energy dispatch analysis, this section focuses
specifically on investigating the dynamic characteristics of power
network operational risks under varying energy prices. As shown in
Fig. 14, when electricity prices are low (0.4-0.6 times the baseline
price), the power network maintains nearly risk-free operation regard-
less of hydrogen price fluctuations. This occurs because the cost incre-
ment from increasing grid power purchase is lower than the penalty
imposed by additional risk in the objective function at low electricity
prices. In other words, flexible adjustment of grid power purchase alone
can sufficiently manage potential operational risks when electricity
prices are low. As electricity prices rise, operational risks begin to
emerge when external hydrogen prices are also high. When electricity
prices increase further (up to 1.6 times the baseline), power network
operational risks rise significantly across all hydrogen price ranges,
indicating that the cost impact of increased power purchase becomes
more dominant in the objective function, leading the system to tolerate
higher operational risks. Specifically, when hydrogen prices reach
1.6-1.8 times the baseline, risks increase dramatically due to electro-
lyser operating near its maximum capacity for extended periods, as
shown in Fig. 15, substantially reducing their risk regulation capability.
This situation is further intensified by higher electricity prices limiting
grid power purchases, resulting in fewer flexible energy resources for
adjustment. Notably, at intermediate hydrogen price levels, risks
decrease slightly compared to lower hydrogen price scenarios. This
unusual behaviour most likely results from specific combinations of
multi-source power outputs rather than indicating a systematic trend.

The relationship between power grid flexibility and energy prices
exhibits more complex patterns, as demonstrated in Fig. 16. To better
understand how flexibility potential varies with energy prices, further
analysis of daily power purchase patterns is required, comparing sce-
narios with and without flexibility objectives, as shown in Figs. 17-18.
This analysis is essential since positive grid flexibility is defined as the
difference in total power exchange with the main grid between scenarios
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Fig. 15. Electrolyser energy consumption variations with energy prices.
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energy prices considering

with and without flexibility parameters in the objective function.

In the baseline scenario without flexibility constraints, grid power
purchase is substantial at low electricity prices and decreases with rising
prices. As hydrogen prices increase, the cost advantage of hydrogen
production from electrolyser becomes more prominent, leading to
increased power purchases. In contrast, the scenario prioritizing grid
flexibility (Fig. 18) moderates power purchases even during low-price
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periods, with significant increases only at high hydrogen prices. This
creates distinct differences in power purchase patterns between sce-
narios despite similar overall trends.

For instance, at the lowest electricity price (0.4 scaling factor of the
baseline), baseline scenario power purchases reach peak levels when
hydrogen prices are only 0.8 scaling factor of the baseline, significantly
exceeding purchases at lower hydrogen prices. Meanwhile, the
flexibility-oriented scenario does not reach similar levels until hydrogen
prices increase to 1.2 scaling factor of the baseline, resulting in the
substantial positive flexibility observed in this price range, as shown in
Fig. 16. At low hydrogen prices, positive flexibility remains minimal
because hydrogen production from electrolyser lacks cost advantages
over external purchase, while fuel cells fully utilize low-cost hydrogen
for maximum power generation, greatly reducing grid purchases in both
scenarios and eliminating flexibility potential.

As hydrogen prices gradually increase, another critical characteristic
emerges above moderate electricity price levels. At moderate electricity
prices, cost considerations lead the airport microgrid to significantly
increase power purchases only when hydrogen prices approach
maximum levels. This leads to comparable power purchase levels be-
tween scenarios at moderate electricity and hydrogen prices, thereby
limiting flexibility potential. Conversely, at high electricity prices, the
incentive to avoid large-scale power purchases prevents significant in-
creases in the baseline scenario even with high hydrogen prices,
resulting in similar purchase levels between scenarios and limited flex-
ibility provision. These findings emphasize the importance of optimal
electricity and hydrogen price selection when aiming to maximize grid
flexibility potential.

5.4. Impact assessment of electric and hydrogen aircraft integration ratio
on system performance

To thoroughly investigate the impact of significant transition in en-
ergy demands from zero-emission aircraft on airport microgrid opera-
tions, the aircraft integration ratio of battery-electric, hydrogen-
powered, and hybrid hydrogen-electric aircraft is systematically
adjusted while adhering to actual flight scheduling requirements. Spe-
cifically, battery-powered regional aircraft are initially replaced by
hydrogen fuel-cell models, while hybrid aircraft are converted to
hydrogen-powered aircraft, thereby establishing an entirely hydrogen
fleet. Subsequently, the transition toward increased electric demand
begins with regional aircraft gradually being converted back to all-
electric models. After fully reinstating all-electric regional aircraft, the
hybridization ratio of hybrid aircraft is progressively increased until the
overall electricity-to-hydrogen energy demand ratio across the entire
fleet reaches approximately 3:7 [57].

To more accurately characterize the impact of aircraft energy de-
mand changes on the operation of the airport microgrid, two indicators
are defined as follows:
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where ES%! and E{fy‘gl represent the total electric and hydrogen energy
demands of all aircraft, respectively. 2 and A™9 reflect the relative
share of each energy type in the overall aircraft energy consumption.

As shown in Fig. 19(a), the total operating cost of the airport
microgrid significantly declines as the proportion of electric demand
increases. This trend is primarily attributed to the substantial hydrogen
energy requirements of aircraft when electric demand is minimal. Under
current pricing parameters, on-site electrolyser remains economically
unviable except during peak demand periods. With most hydrogen
sourced by external purchase at prices significantly exceeding electricity
costs, high hydrogen demand results in substantial operating costs.
Furthermore, when the aircraft integration ratio A% is very low (less
than 0.05), only regional aircraft undergo gradual electrification,
resulting in minimal influence on energy dispatch and system operation
in power network. This limited impact can be consistently observed in
Fig. 19(a)—(c).

Fig. 19(b) illustrates that with the rapid increase in electric demand,
aircraft demand shifting capabilities become fully leveraged, signifi-
cantly enhancing the operational flexibility of the airport microgrid.
Local energy generation operates actively and aligns closely with de-
mand profiles, enabling the airport microgrid to provide considerable
flexibility to the external grid. At an aircraft integration ratio 1°® of
0.225, positive flexibility reaches its peak before rapidly declining.
When 4% increases to 0.3, flexibility falls back to levels comparable to
airport operations without any electric aircraft integration. This occurs
because once electric demand exceeds the maximum output capability
of local generation equipment, the system quickly shifts to relying on
externally purchased electricity to maintain operational stability.

The impact of varying electricity-to-hydrogen energy demand ratio
on airport microgrid energy dispatch is also manifest in the system’s
operational stability, as depicted in Fig. 19(c). When A°'® exceeds 0.075,
significant operational risks emerge in the power network, escalating
rapidly while maintaining considerable margin from the allowable risk
threshold. This indicates that airport microgrid equipment approach
their maximum capability to collaboratively optimize energy dispatch
during complex operational intervals. These intervals include high
electricity price periods (07:00-10:00 and 16:00-21:00) and intensive
aviation demand between 10:00-16:00. Efforts to enhance operational
flexibility while controlling system costs have led to progressive insta-
bility in airport microgrid operations.

After %' exceeds 0.15, following rapid growth, operational risk
stabilizes at a relatively constant level. During this phase, operational
risks also begin to emerge during low electricity-price intervals, but the
lower purchasing cost brings reduced economic penalties. This allows
the airport microgrid to utilize more grid power to balance operational
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Fig. 19. Impact of electric aircraft integration ratio on system operation (a) Total cost; (b) Positive flexibility; (c) Operation risk of power network.
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risks and costs, resulting in slower risk growth. However, it is foresee-
able that if future technology trends enable further growth in aircraft
electric demand, operational risks will soon approach critical thresh-
olds, potentially constraining further aviation electrification without
sufficient airport energy infrastructure.

6. Conclusions

This paper proposes a comprehensive energy dispatch optimization
framework for electricity-thermal-hydrogen airport microgrid that
explicitly incorporates aviation energy demands of electric, hydrogen,
and hybrid hydrogen-electric aircraft. A multi-objective optimization
model is developed to ensure that multi-energy supply dynamically re-
sponds to aviation demand, while optimizing overall system perfor-
mance across economic, operational, and flexibility dimensions.
Comparative scenario analysis under real-world operational re-
quirements demonstrates that the proposed high-fidelity aircraft energy
demand model effectively captures the flexibility potential of zero-
emission aircraft powered by electricity and hydrogen while ensuring
the current flight schedules are maintained. The results show that co-
ordinated dispatch of energy generation, demand, and storage units can
substantially improve both economic efficiency and grid support flexi-
bility, with airport microgrid flexibility increased by 29.4 % and oper-
ational risk reduced by 63.2 %. Sensitivity analysis further highlights
that under current energy prices and system parameters, an aircraft
integration ratio A°® of approximately 0.225 delivers optimal overall
system performance, balancing cost, stability, and flexibility, while
maximizing grid services and keeping operational risks within accept-
able thresholds.

Beyond these quantitative findings, this work also underscores the
transformative impact of emerging aircraft technologies. The adoption
of electric and hydrogen propulsion is expected not only to decarbonise

Appendix
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aviation but also to fundamentally reshape air traffic patterns,
increasing flight frequency across both regional and international
routes. Such changes will intensify operational interdependencies
among airports, highlighting the need for integrated, network-level
studies. Therefore, future research will develop from single-airport
analysis to multi-airport operations that examine inter-airport dy-
namics and the coupling between aviation electrification and energy
networks.
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Zero-emission aircraft mapping and energy supply duration assumptions

Origin aircraft type

Charging or refuelling duration

ATR 42 family

ATR 72 family
Bombardier Dash 8
Embraer E170 family
Embraer E190 family
Embraer ERJ family
SAAB 340/2000 family

Battery-powered only
50-100 seats
Charging duration: 40 min [65]

Airbus A220 family
Airbus A300 family
Airbus A310 family
Airbus A320 family
Boeing 737 family
Boeing 757 family
Boeing 767 family

Hybrid hydrogen-electric configuration:
160-230 seats [46]
Charging/refuelling duration: 40 min

Airbus A330 family
Airbus A340 family
Airbus A350 family
Boeing 787 family
Boeing 777 family

Hydrogen-powered only
280-340 seats
Refuelling duration: 60 min [4]
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Table A2
Flight schedule arrivals [53].
Time Flight Origin Airline Aircraft
07:40 FR2071 Alicante (ALC) Ryanair B38M (EI-IKO)
07:45 FR1862 Cork (ORK) Ryanair B738 (EI-DWV)
07:48 EI631 Belfast (BHD) Aer Lingus AT76 (EI-FSL)
07:50 LM693 Isle of Man (IOM) Loganair AT76 (G-LMTE)
07:55 CX219 Hong Kong (HKG) Cathay Pacific A359 (B-LRT)
07:55 FR552 Dublin (DUB) Ryanair B738 (EI-DLW)
08:00 BA1370 London (LHR) British Airways A319 (G-EUPJ)
Table A3
Flight schedule departures [53].
Time Flight Destination Airline Aircraft
10:00 U22185 Geneva (GVA) easyJet A320 (G-EZTL)
10:05 FR2242 Bologna (BLQ) Ryanair B738 (9H-QCW)
10:05 VS73 Orlando (MCO) Virgin Atlantic A333 (G-VKSS)
10:05 SQ52 Houston (IAH) Singapore Airlines A359 (9V-SMS)
10:25 CX216 Hong Kong (HKG) Cathay Pacific A359 (B-LRT)
10:25 FR4007 Alicante (ALC) Ryanair B738 (EI-DCR)
10:25 GF4 Bahrain (BAH) Gulf Air B789 (A9C-FE)
Table A4

Key economic parameters of devices [7,27,37,54].

Schwab A, Thomas A, Bennett J, Robertson E, Cary S. Electrification of aircraft:

Du H, Zhang X, Yu H. Design of high-energy-density lithium batteries: liquid to all

Guo Z, Zhang X, Balta-Ozkan N, Luk P. Aviation to grid: airport charging

Sawant V, Zambare P. DC fast charging stations for electric vehicles: a review.

Sripad S, Bills A, Viswanathan V, Sripad S, Bills A, Viswanathan V. A review of
safety considerations for batteries in aircraft with electric propulsion. MRS Bull

Yusaf T, Faisal Mahamude AS, Kadirgama K, Ramasamy D, Farhana K, Dhahad HA.
Sustainable hydrogen energy in aviation — a narrative review. Int J Hydrogen

Hughes C, Gear C, Milne K, Webb S, Debney D, Kumar N. Our vision for zero-

Cryogenic hydrogen fuel system and storage. Aerospace Technol Institute 2022.

Devices Installation cost Maintenance cost (per year)
PV 850 £/kW 12.7 £/kW
Fuel Cell 403 £/kW 10.6 £/kW
Hydrogen tank 1260 £/kg 13.7 £/kW
Thermal tank 50 £/kWh 5.3 £/kWh
Battery storage 82 £/kWh 5.1 £/kWh
Electrolyser 546 £/kW 50.2 £/kW
Table A5
Other parameters of airport energy system
[27,54,57].
Para Value
Kecco, 19.28 £/MWh
Kecso, 2.67 £/MWh
Kecno, 10.74 £/MWh
Lgss urc 10 years
Lother 20 years
OBESS 0.01
Pelmin 0.1P¢1 rated
Pl stamdby 0.03Pelrated
Data availability [51
challenges, barriers, and potential impacts. 2021.
[6]
Data will be made available on request. solid state. eTransportation 2025/01,/01;23.
[7]
References - infrastructure for electric aircraft. 2020.
Energ Convers Econom 2024/02/01;5.
[1] Gossling S, Humpe A, Fichert F, Creutzig F. COVID-19 and pathways to low-carbon [91
air transport until 2050. Environ Res Lett 2021;16.
[2] Rupcic L, Pierrat E, Saavedra-Rubio K, Thonemann N, Ogugua C, Laurent A. 2021;46(5). 2021-06-08;46.
Environmental impacts in the civil aviation sector: current state and guidance. [10]
Transport Res Transport Environ 2023;119:103717.
[3] Df Transport. Decarbonising transport: a better, greener Britain. Traffic Energy 2024;52:1026-45.
engineering and control, vol. 51; 2021. [11]
[4] Beddoes S, Foster M, James D, Kay E, Kay O, Shawki K. Aerospace technology carbon emission air travel. FlyZero General Report 2022.
institute-flyzero-zero-carbon emission aircraft concepts, vol. 2; 2022. [12]
[13] Government UK. Net zero strategy. Build Back Greener; 2021.
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