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ABSTRACT

Background Immunotherapies, driven by immune-
mediated antitumorigenicity, offer the potential for
significant improvements to the treatment of multiple
cancer types. Identifying therapeutic strategies that bolster
antitumor immunity while limiting immune suppression is
critical to selecting treatment combinations and schedules
that offer durable therapeutic benefits. Combination
oncolytic virus (OV) therapy, wherein complementary

0Vs are administered in succession, offer such promise,
yet their translation from preclinical studies to clinical
implementation is a major challenge. Overcoming this
obstacle requires answering fundamental questions about
how to effectively design and tailor schedules to provide
the most benefit to patients.

Methods We developed a computational biology model
of combined oncolytic vaccinia (an enhancer virus) and
vesicular stomatitis virus (VSV) calibrated to and validated
against multiple data sources. We then optimized protocols
in a cohort of heterogeneous virtual individuals by
leveraging this model and our previously established in
silico clinical trial platform.

Results Enhancer multiplicity was shown to have

little to no impact on the average response to therapy.
However, the duration of the VSV injection lag was found
to be determinant for survival outcomes. Importantly,
through treatment individualization, we found that optimal
combination schedules are closely linked to tumor
aggressivity. We predicted that patients with aggressively
growing tumors required a single enhancer followed by

a VSV injection 1 day later, whereas a small subset of
patients with the slowest growing tumors needed multiple
enhancers followed by a longer VSV delay of 15 days,
suggesting that intrinsic tumor growth rates could inform
the segregation of patients into clinical trials and ultimately
determine patient survival. These results were validated in
entirely new cohorts of virtual individuals with aggressive
or non-aggressive subtypes.

Conclusions Based on our results, improved therapeutic
schedules for combinations with enhancer OVs can be
studied and implemented. Our results further underline
the impact of interdisciplinary approaches to preclinical
planning and the importance of computational approaches
to drug discovery and development.

34 Katia Belaid,?®
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BACKGROUND

Oncolytic viruses (OVs) are genetically modi-
fied viruses designed to specifically target
tumor cells.'" The antitumor effects associ-
ated with oncolytic virotherapy are medi-
ated significantly by immune mechanisms,
which can be either advantageous or disad-
vantageous depending on the type of virus.'
Although immunosuppression may improve
viral oncolysis, this gain is achieved at the
cost of antitumor immunity, a key factor for
improving cancer therapies. The importance
of considering immune-virus interactions
is supported by the mechanism of action of
the OV talimogene laherparepvec (T-VEC).2
T-VEC was the first US Food and Drug Admin-
istration (FDA)-approved OV and is a genet-
ically modified form of herpes simplex virus
that encodes the immunostimulatory cytokine
granulocyte-monocyte colony-stimulating
factor (GM-CSF). The OV’s effectiveness is
amplified by its immunostimulatory counter-
part,” attesting to the need to find a reason-
able balance between a multitude of immune
mechanisms (such as viral clearance and the
antitumor immune response) to achieve ulti-
mate treatment success.

Therapeutic cancer vaccines are admin-
istered to cancer patients with the goal of
eradicating tumor cells through strength-
ening the patient’s own immune response.’
Combination OV protocols or vaccination
schedules use a sequential combination of
immunologically distinct viruses to induce
immunity, circumvent or mitigate the anti-
viral immune response, and ultimately
enhance antitumor efficacy.”” Currently,
there are three clinical trials investigating
the efficacy of combining adenovirus and
the OV Maraba as an anticancer vaccination
treatment,8 ¥ two of which are in the USA
(NCT02285816; NCT02879760) and one in
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Canada (control number 195876, protocol number: AD/
MGI1-MAGEA3-001).

The principal idea behind combination OV regimens is
to stimulate alternate mechanisms of antitumor immunity
that act cooperatively or synergistically to enhance thera-
peutic effect. In this way, OVs can be used in enhancer
virus/primary virus regimens whereby the pre-existing
immune response induced by the enhancer OV will
improve the efficacy of the second primary heterologous
OV administration.'” It has been shown that the develop-
ment of an acquired antiviral immune response usually
takes less than a week in treatment-naive animals, leaving
a small window of opportunity for oncolytic vectors to
function."’ Accepting that the ensuing immune response
dictates that viral oncolysis will inevitably be transient in
nature, the anti-OV immune response can be usefully
reoriented to enhance the therapeutic impact of the
vector.

Bridle et al’ were among the first to investigate the
synergy between combination OV therapies. They showed
that the antitumor response to vesicular stomatitis virus
(VSV) was weaker than the anti-VSV response. This led
them to complement the initial injection of VSV with an
injection of a different virus with the goal of harnessing
the original anti-VSV response and improving the anti-
tumor immune response. Bridle et al'* therefore, investi-
gated VSV as a boost to adenovirus antigen. They found
that VSV antigen produced a more tumor-specific CD8+
T cell response which was more cytotoxic in combina-
tion with adenovirus-antigen with increased cytokine and
granzyme production.

The exact immune mechanisms through which OVs
induce antitumor responses depend on the type of virus
used and the transgenes encoded. Tlett ¢t al' showed that
reovirus induced the priming of a CD8+, Thl-type anti-
tumor response whereas VSV expression promoted a
potent antitumor CD4 +Th17 response, and that priming
with reovirus, followed by VSV significantly improved
survival of B16 melanoma tumor-bearing mice versus
virus alone. Previous work has also suggested that three
low doses of adenovirus, followed by three low doses of
vaccinia virus (VV) resulted in a superior antitumor effi-
cacy versus six doses of either virus.'

Individually, VV and VSV have both been extensively
investigated as possible oncolytic virotherapy agents.' *~®
Morphologically and immunologically, VSV and VV are
very distinct. VV is a complex double stranded DNA virus
encoding a large number of genes with immune evading
properties that allow the virus to establish local pockets of
infection within an infected host at a tissue level.'? At the
systemic level, VV is a highly immunogenic virus, eliciting
strong T-cell-mediated and antibody responses.”” Due to
the role VV played in the worldwide smallpox eradication
program, it has long been recognized as an efficient ther-
apeutic vaccine and has the longest and most extensive
history of human use of any virus, which demonstrates its
safety.”’ In contrast, VSV is a genetically simple RNA virus
(with only five gene products) that rapidly replicates and

spreads within tumors. VSV is extremely sensitive to the
antiviral effects of type I interferons (IFNs),' which act to
inhibit viral replication and spread in immunocompetent
(IC) hosts.?! %

The feasibility of using VV and VSV together in combi-
nation OV treatment was previously demonstrated, with
the potential to improve therapeutic outcomes in triple
negative breast cancer (TNBC) 1 Le Boeuf et al'® used VV
naturally expressing the viral gene product B18R, an IFN
receptor decoy that locally antagonizes the cellular anti-
viral response initiated by type I IFNs, in parallel with a
recombinant version of VSV expressing fusion-associated
small-transmembrane protein to further enhance VV’s
ability to spread through an infected monolayer. The
combination of these viruses resulted in a ‘ping pong’
oncolytic effect wherein VV enhanced the ability of VSV
to replicate and/or spread in tumor cells. In their work,
Le Boeuf et al'’ only considered a single administration
of the combined dosage protocol (VV+VSV). A rational
approach leveraging quantitative, predictive modeling
and experimental results would help to delineate the
therapeutic potential of combined enhancer VV with
VSV, and further preclinical investigations into combined
oncolytic virotherapy strategies.

The translation of OVs from preclinical studies to
clinical implementation is a major challenge. Solving
this obstacle requires answering fundamental questions
about how to effectively design and tailor schedules to
provide the most benefit to patients. Here, mathemat-
ical and computational biology help to identify strategies
that offer durable therapeutic benefits prior to human
trials.” ™ Interpatient heterogeneity is a defining obstacle
in cancer therapy, and patient-to-patient variability in
cancer can cause finely tailored treatment protocols
to exhibit extreme disparate antitumor responses.” **
Quantitative approaches have similarly been leveraged to
integrate experimental data and identify robust optimal
treatment protocols,” with quantitative systems pharma-
cology models contributing to decision making at the
regulatory level.”

In particular, virtual clinical trials (or in silico
‘twins"® *) have recently been used in preclinical
research to make ‘go or no go’ decisions.”® ***** We have
previously developed a computational biology model
describing tumorimmune interactions and systemic
cytokine concentrations over time,"” which we used to
determine the optimal combination of GM-CSF and
OV.** We predicted that appropriately eliciting immune
responses could significantly improve b-year patient
outcomes. Jafarnejad et al®® conducted an in silico clin-
ical trial of anti-PD-1 molecule nivolumab for non-small-
cell lung cancer calibrated to human patient clinical
trial data. They predicted that patients with adjuvant
nivolumab treatment in addition to the clinical trial
protocol of neoadjuvant nivolumab treatment, followed
by resection produced a durable response. With a
focus on cytotoxic T-lymphocyte-associated protein 4
(CTLA-4), programmed cell death protein 1 (PD-1) and

36 37

2

Jenner AL, et al. J Immunother Cancer 2021;9:¢001387. doi:10.1136/jitc-2020-001387

'salbojouyoal Jejiwis pue ‘Buluresy |y ‘Buiuiw elep pue 1xa) 01 parejal sasn 1o} Buipnjour ‘ybLAdod Ag pajoslold
1sanb Aq GZ0z 1oquianoN 1 uo wod fwg only:sdny wouy papeojumoq "Tz0g Areniga- 6T UO /8ET00-0202-9M/9€TT 0T Se paysiignd 1siy :19oue) Jo Adelayounww| 10) feuinor



programmed death-ligand 1 (PD-L1) blockade in mela-
noma, Milberg et al*’ similarly leveraged a virtual clinical
trial to predict the performance of therapeutic combina-
tions given heterogeneous patient characteristics. Using
their model validated to measurements from clinical
trials, they predicted that response rates were higher for
anti-PD-1/PD-LL1 vs anti-CTLA-4/PD-1 combinations,
and that anti-PD-1 administered before anti-CTLA-4
produced a greater response than the converse, consis-
tent with clinical results. Applications of virtual patient
‘twins’ are not only specific to oncology but have also
been applied in drug development, for example, to esti-
mate the long-term effects of a treatment from short-term
placebo-controlled trial measurements.*

Here, we expanded our mathematical model to investi-
gate the therapeutic potential of enhancing VSV efficacy
using VV as an enhancer. Using an in silico trial platform,
we leveraged our computational biology model to predict
tumor burden under clinically actionable combination
OV-therapy administration schedules. Motivated by the
results of Le Boeuf et al'’ where VV was shown to enhance
the efficacy of VSV, we then interrogated the impact of
enhancer (VV) multiplicity and the lag in VSV adminis-
tration on tumor growth dynamics to establish an optimal
enhancer number and VSV lag. Our results suggest that
intrinsic tumor characteristics, mainly tumor aggressivity,
are the primary drivers of therapeutic response and ulti-
mate success. Importantly, we show that these attributes
can be exploited for patient stratification and to tailor
therapeutic protocols.

METHODS

Mathematical model of combination OV therapy and response

We extended our previous model for tumor growth and

resistance to treatment with virotherapy and the resulting

immune response’® to consider the impact of using dual

VV ‘enhancer’ and VSV OV injection. In this scenario,

the antitumor immune response is either upregulated or

downregulated depending on the type of virus injected.

We considered total vaccinia and vesicular stomatitis

virions (Vw(t) and VVSV(t), respectively) and two corre-

sponding infected cell populations (Iw(t) and IVSV(t).

Parameters from Cassidy and Craig™ relating to viral

kinetics were taken here to be virus dependent (subscript

notation for s, 6, o and w). Additionally, we included
an immunomodulation term p € [0, 1] that modulates
the production of immunostimulatory cytokines. The
complete set of model equation is provided in the online
supplemental technical information. A summary of the
biological assumptions and model schematic is given in

figure 1.

Briefly, the following biological interactions were added
to the model described in Cassidy and Craig*®:

» VSV and VV are morphologically and cytotoxically
distinct'’’ and therefore have the following virus-
specific characteristics: virion-cell infection rates (svsv
and Kyy), virion induced cell lysis rates (Jysy and dyy),

virion burst sizes (@vsy and ayy), and virion death
rates (Qysy and Qyy).

» Viruses modulate the production of cytokines
through either promoting an inflammatory or anti-
inflammatory immune response,”’ modeled through
an immune modulation constant (0 < p <1) that
controls the rate of cytokine production from the
immune interaction with cycling tumor cells (infected
and uninfected). As p — 0, cytokine production
is reduced, recapitulating an anti-inflammatory
immune regulation, and as p — 1, normal inflamma-
tory immune response is recovered.

» VV downregulates the production of antiviral factors,
which aids the spread of VSV."’ Therefore, we consider
VV to downregulate cytokine production, instigating
an anti-inflammatory response (ie, p=0), whereas
VSV upregulates cytokine production from both
infected and uninfected tumor cells (ie, p =~ 1).

» Limitations on the binding of immune cells to
cognate growth factors or signals’’ due to the simul-
taneous infection of both VV and VSV in the tumor
were represented by higher production of inflamma-
tory cytokines (p=1) and a lower rate of maximal
immune cell production (k,) when VSV particles are
introduced after VV has commenced replication.

All other interactions are as in Cassidy and Craig.*
For more information on the biological interactions and
their model implementation see online supplemental
technical information.

Estimation of vaccinia (VV) and VSV viral and immune related
parameters

Parameters of the model were estimated via a hierarchical
fitting algorithm in which subsets of the model were fit to
different experiments using VV and VSV. Full details are
provided in the online supplemental technical information.
Briefly, we sequentially fit model parameters to the experi-
mental measurements from HT29 and 4TT cell lines from
Le Boeuf et al'’ and Rausch e al' (online supplemental
figures TS1-TS3). Tumor growth parameters were obtained
by fitting the rate quiescent cells enter the G, phase (a;), the
rate HT29 (human colorectal adenocarcinoma) and 4T1
(murine mammary carcinoma) cells leave G, to enter the
active phase (@), and the rate cells undergo apoptosis in G,
phase (dy), in immunodeficient (ID) mice (ie, H729/ID and
4T1/ID obtained by Le Boeuf ¢t al'’ and Rausch et al’’ respec-
tively). We then fixed these parameter values and estimated
the viral kinetic parameters Kysy, Ky, Ovsy, Oy, Qysy and ayy
from VSV, VV and VV+VSV treated HT29 tumor growth
measurements in ID mice (ie, HT29/ID-VSV, HT29/ID-VV
and HT29/ID-VV+VSV obtained by Le Boeuf et allg). Then,
using IC mice experiments from Rausch ¢t al,”' we estimated
the immune cell-tumor cell contact rate k,, the immune cell
digestion constant k,,, the cytokine production half effect
¥, and the maximal immune cell production rate k. To
account for the effects of humoral immune responses the
viral-kinetic parameters wysy, Wyy, dysy, Oy were then reca-
librated to the presence of the immune system using 4T1
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Schematic representation of the tumor growth model under combination OV-therapy. (A) Biological assumptions

for the combination OV-therapy interactions between VV (enhancer) and VSV oncolytic viruses. Infection of cells by either VV

or VSV results in cell lysis, whereby new virus particles are released along with a cocktail of antigens, antivirals and cytokines.
For simplicity, we considered each virus to release associated cytokines concentrations that can independently instigate the
recruitment of immune cells (such as phagocytes). However, in the presence of both VV and VSV infections, we assume the
cytokine production decreases the recruitment of immune cells, allowing for a more targeted immune response and virus-
induced cell lysis. Additionally, VSV releases antivirals that block the intracellular replication of the virus and the infection of
neighboring cells. In comparison, lysis of VV infected cells produces antivirals that downregulate the antivirals produced by VSV,
allowing for infection and replication to occur. Once activated, these immune cells induce cell apoptosis of uninfected cancer
cells. (B) In the model, quiescent susceptible cells (light blue) activate and begin division by transitioning into the G, phase of
the cell cycle. Cells exit G, to enter the active phase (mitosis) and complete division. Most susceptible cells in the active phase
re-enter quiescence after mitosis, however, certain dividing cells may mutate into an immune-resistant lineage (red). Immune
interactions are driven by immune cells who encounter quiescent, G, and actively dividing susceptible tumor cells. Tumor-
immune interactions increase proinflammatory cytokine concentrations to recruit additional immune cells to the tumor site. VSV
and VV infect both normal and immune-resistant tumor cells, creating virus-specific infected cell pools. These infected cells
undergo lysis releasing new virus progeny. The virus also influences the cytokine production which controls the immune cell
production and activity. VSV: vesicular stomatitis virus; VV: vaccinia virus.

tumor growth measurements in IC mice under VSV, VV and
VV+VSV (ie, 4T1/IC-VSV, 4T1/IC-VV and 4T1/IC-VV+VSV
obtained by Le Boeuf et al™).

Generation of in silico individuals and patient cohorts
To reflect interindividual variability and the heteroge-
neity in treatment outcomes, we generated a unique set
of parameters to represent individual virtual patients
(figure 2A, no human patients were involved in this
study). For this, we sampled tumor and immune cell-
related parameters a;, @, do, T, k), k,, k,, k, (Where 7 is
the expected tumor cell cycle duration) from a normal
distribution with mean x corresponding to the parameter
value returned in the hierarchical fitting described above.
To avoid the inclusion of non-realistic virtual individuals, we
verified that each parameter set resulted in a tumor growth
within two SD of the experimental measurements and the
mean prediction at each corresponding data time point
(figure 2B). Using this approach, we created 200 patients
with parameter values normally distributed about the mean
empirical or fitted value (online supplemental figure SI,

online supplemental information), rejecting 265 parameter
sets for not meeting the inclusion criteria. Since the maximal
immune cell production rate (k,) changes when VSV is
introduced, we assumed each individual patient’s parameter
varied equivalently. To recapitulate heterogeneity in initial
tumor size and immune populations, we simulated an initial
seeding of 10° tumor cells, along with an initial cytokine
concentration Cy and immune cell count P, (day 0) for each
in silico patient parameter set and fixed the initial conditions
for treatment to be the tumor and immune populations on
day 6 (online supplemental figure S2).

Kaplan-Meier survival curves for each cohort treated
using the combination protocols were used to compare
the effectiveness of the different trials. To determine a
cull threshold for the survival of the virtual patients, we
extrapolated the Kaplan-Meier curves in Le Boeuf et al"
by taking populations of 10 randomly sampled individ-
uals and calibrating to their cumulative survival curve,
giving a volume threshold (online supplemental tech-
nical information, online supplemental figure TS4). A
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Figure 2 In silico trial strategy recapitulates experimentally observed variability. (A) (1) Model parameters are established by
calibrating experimental results to the model’s predictions. A distribution of responses centered at the mean of the experimental
data is then used to generate parameter sets representing virtual individuals. (2) To populate the trial, each virtual patient’s
tumor growth is simulated to determine whether they are candidates for the trial. Patients whose tumor growth is acceptable (ie,
clinically relevant) are placed into repeated identical cohorts. (3) Alternative treatment schedules are then tested on each cohort
by simulating individual virtual patient responses with the mathematical model and summarizing cohort level outcomes (such
as mean and SD of responses). (4) optimal actionable schedules are then inferred by comparing cohort level and individual
outcomes. (B) Tumor growth (relative to tumor volume on day 6) over time in absence of treatment. Black line: model fit; red
stars: experimental observations measured by Le Boeuf et al,'® gray shaded region: distribution of growth from full cohort of
patients. (C) Virtual patients were ordered based on intrinsic tumor growth rates r (top and bottom 10% denoted by shaded
regions). OV: oncolytic virus.
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local parameter sensitivity analysis of the mean empirical
values showed that tumor growth was closely related to
cell cycling rates and immune stimulation (online supple-
mental figure S3, online supplemental information).

We also quantified the growth rate r of the control
tumors by approximating the growth curves with an
exponential growth function from day 12 to 18, that is,
r=(In(T(18) —In(T(12)) /6, to obtain an estimate of
later tumor growth. This measurement period was chosen
to account for the discernable differences between cell
lines after day 12 and the experimental end point at day
18." The implicit parameter r describes the aggressivity
of the tumors, with high r corresponding to aggres-
sively growing tumors and low 7 corresponding to slowly
growing tumors. Ordering patients by their tumor growth
rate showed a gradual increase in r values across the
cohort (figure 2C). Numerical simulations, the creation

of the virtual cohort, all statistical analyses and figure
generation were performed using Matlab R2019b.

RESULTS

Tumor aggressivity dictates the optimal number of enhancer
injections

The effect of the multiplicity of VV enhancer injections
on the success of therapy is largely unknown, especially
for a cohort with varying underlying tumor growth rates.
To assess the impact of the number of enhancer admin-
istrations, we simulated our virtual cohort after multiple
daily enhancer infections followed by a VSV injection
given 7 days after the last enhancer (figure 3A). The total
number of VV injections (Ng) ranged from 1 to 7 and the
dosage sizes were fixed to those used in the Le Boeuf e
al” (online supplemental technical information).

A B x10 , , , , , ,
—— L — 1
‘ s n.s T
Y 8 1 . = 4
VSV — 1 = 4 |
£ . 4 |
- T 6 y & & i
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Figure 3 Influence of enhancer injection multiplicity on tumor burden. (A) The effects of enhancer multiplicity (N) were

investigated by simulating 1-7 VV enhancers, with VSV administered 7 days after the final enhancing dose. Tumor growth was
assessed 15 days after the administration of VSV. (B) Distribution in number of tumor cells 15 days after VSV administration
with respect to the multiplicity of enhancers. Central mark (red) indicates median, bottom edge denotes the bottom quartile,
top edge denotes the top quartile. Significance indicators report the non-significant results of a Kolmogorov-Smirnov test for
significance of difference between distributions (p < 0.05). (C) Tumor growth dynamics from last enhancer to 15 days after VSV
administration for protocols with 1 (blue) and 7 (red) enhancers. Mean is denoted by a solid line, SD by shaded regions of same
color and individual virtual patient values are plotted as circles. (D) Kaplan-Meier survival curves for protocols with 1 (dark blue),
2 (light blue) and 7 (red) enhancers. No significant difference between protocols from 2 to 7 enhancers was found (measured by
log-rank test for significance, p < 0.05). VSV: vesicular stomatitis virus; VV: vaccinia virus.
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To assess the performance of different enhancer sched-
ules, we quantified the number of tumor cells 15 days
after VSV administration (VSV +15 days; figure 3B). In
particular, we found that the number of VV enhancers
(Ne) did not significantly impact the average tumor size at
VSV+15, and that the distribution of tumor sizes between
sequential enhancer multiplicities, that is, one enhancer
and two enhancers, two enhancers and three enhancers
etc., was not significantly different. There was, however,
a difference in the distribution of tumor sizes between
one enhancer and all other enhancer multiplicities from
three enhancers onwards (as confirmed by a Kolmogrov-
Smirnov test, p = 0.0475, see online supplemental
figure S4A for significant pairings). We also determined
that the mean number of tumor cells was only signifi-
cantly different between one and six enhancers, and
one and seven enhancers (pairwise t-test, p = 0.034 and
p = 3.8 x 10~* respectively; online supplemental figure
S4B, online supplemental information). This suggests
that the duration of treatment and tumor aggressivity
could be the principle drivers of the distribution in tumor
sizes at 20 days, irrespective of the number of enhancers.

Nonetheless, we were able to distinguish low and high
responders by their tumor growth at VSV +15 days after
7 vs 1 enhancer (figure 3C; results for all multiplicities
of enhancer injections in online supplemental figure
S5A). Though the mean dynamics of the number of
tumor cells are qualitatively similar after one or seven
enhancers, there is a statistically significant difference in
the mean number of tumor cells at VSV +15 days for one
enhancer compared with seven enhancers. The differ-
ence in variance of cohort responses can be explained
by the fact that the last enhancer is administered on day
1 for the one enhancer protocol vs day 6 under the seven
enhancer schedule, implying that tumors have ultimately
been growing for a longer period of time under the seven
enhancer protocol, supporting the conclusion that ther-
apeutic success is largely driven by intrinsic aggressivity
(ie, higher growth rates). Log-rank tests of the cohort’s
Kaplan-Meier survival curves also showed that the one
enhancer protocol was significantly different from all

0.0196
0.0286
0.0373

0.0470

Change in tumour size

’ 0 20 40 60 80

100
Patient

Individual responses to multiple enhancer injections protocols are stratified by intrinsic tumor growth rates. (A)

120 140 180

Figure 4
Waterfall plot of the change in tumor size 15 days after VSV admin

others (figure 3D and online supplemental figure S5B in
the online supplemental information).

An increase in the variability of responses was observed
with a corresponding increase in the number of
enhancers (figure 3B). To investigate whether there was
a link between a patient’s intrinsic tumor growth rate
and the optimal number of enhancers, we established
each patient’s optimal number of enhancers through
numerically simulating all possible treatment protocols
and finding the one that minimized tumor burden at VSV
+15. We found that the optimal number of enhancers
grew with decreases in intrinsic tumor growth rates
(figure 4A). Further, our results show that individuals
with high growth rates consistently had worse outcomes,
even during ‘optimal’ treatment with two enhancers. To
discern patterns of responses in less aggressive tumors
and higher growth rates, we ordered the number of
enhancers from best protocol to worst protocol for each
patient, based on the tumor size 15 days after the VSV
injection (figure 4B). Patients with low tumor growth
rates were found to perform best under treatment with
seven enhancers and worst under treatment with a single
enhancer, whereas patients with high tumor growth rates
performed best with two enhancers and worst under
seven enhancers. These results suggest that there is a
significant difference in the efficacy of protocols given a
patient’s intrinsic tumor growth rate.

Shorter VSV lags are necessary to slow aggressive tumors

Thus far, enhancer multiplicity was investigated with VSV
administered 7 days after the last enhancer. However,
the number of days between the final enhancer and the
VSV administration can also influence the priming of the
immune response and the efficacy of the treatment. To
measure the impact of the VSV lag (D; days), we simu-
lated a single administration of VSV 1-15 days after the
final enhancer, with dosages fixed as in Le Boeuf et al®
(figure 5A). The number of enhancers was set to either 1
or 7, based on the enhancer multiplicity results described
previously. As before, therapeutic response was assessed

T
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worst (top row) for each patient based on the tumor size 15 days after VSV administration. Corresponding tumor growth rates
are plotted above (patient ordering identical based on intrinsic tumor growth rate as in A). VSV: vesicular stomatitis virus; VV:

vaccinia virus.
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VSV: vesicular stomatitis virus; VV: vaccinia virus.

by the number of tumor cells (ie, tumor size) at VSV +15
days (figure 5B).

Similar to what was observed with the enhancer multi-
plicity, increasing the VSV lag increased the variance of
the cohort’s response (figure 5B). A VSV lag of 1 day,
irrespective of the number of enhancers, produced the
smallest average tumor size, with a very small distribution
of responses at VSV +15 days. In comparison, we observed
more dispersion in overall responses for VSV lags of 7 days
or more, with some individuals achieving lower tumor
sizes than for shorter VSV lags (see online supplemental
information, online supplemental figure S6A).

Overlonger time, the separation in the tumor size under
a 1-day vs 15-day VSV lag becomes clearer (figure 5C). On
average, 15-day VSV injection-lags performed the worst of
all tested scenarios, especially at longer time points (65
days past VSV). This further solidifies that, as opposed
to enhancer multiplicity, the time to VSV administration
is the key determinant of tumor size. Since the immune
cell population is essentially stabilized by VSV +15 days
(figure 5E), and cytokine concentrations are saturated
(figure 5D), the dynamics that occur immediately after

the VSV injection must lead to the divergence of long-
term tumor behavior.

As we hypothesized that interindividual variability
would significantly impact treatment responses, we next
investigated the optimal VSV lag for each individual after
either one or seven enhancers. For the one enhancer
protocol, the optimal VSV lag was a single day for all but
three individuals with particularly slow growing tumors,
for whom a 5-day VSV lag was best (figure 6A). However,
we expect this response to be not particularly significant,
as the difference in tumor cell numbers between the
optimal and the second most optimal protocol for these
three individuals was negligible compared with the rest of
the cohort (results not shown).

Tumor responses to treatment were increasingly strat-
ified for optimal schedules after seven enhancer admin-
istrations (figure 6B), likely related to the increased
interindividual variability observed in this case. We
found that optimal schedules for virtual patients with the
slowest intrinsic growth rates required a 15-day VSV lag vs
1 day for those with slow growing tumors. Indeed, there
was a clear delineation between aggressively growing
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Figure 6 Optimal VSV lag is stratified by intrinsic tumor growth rates. (A) Waterfall plot of the change in tumor size 15 days
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are plotted above (patient ordering identical based on intrinsic tumor growth rate as in B. The ordering of the optimal VSV lag
for the one enhancer protocol is provided in online supplemental figure S6 in online supplemental information). VSV: vesicular
stomatitis virus.

tumors that required as short of a lag as possible for  followed by a 1-day VSV lag) tumors (figure 7A). Interest-
maximal therapeutic effect and slower growing tumors ingly, for a range of low intrinsic growth rates », optimal
that responded best with as long of a VSV lag as possible schedules resulted in near complete tumor removal,
(figure 6C and online supplemental figure S7 in the whereas we found a jump in the number of tumor cells,
online supplemental information). Crucially, individuals followed by a linear dependence on the intrinsic growth
with the slowest tumor growth were predicted to have rate after a critical value around r ~ 0.03 1/day. Clinically,
the most meaningful responses, completely recovering  an r value of 0.03 corresponds to a tumor doubling time

in some cases. This again underlines that patient stratifi-  of 23 days, which was above the original cohort average of
cation and schedule tailoring is crucial for ensuring the 15 days (figure 2C). Overall, these results underline that
most meaningful clinical response. tumor aggressivity is the determining factor for combina-

tion OV scheduling and the outcome of enhancer-VSV
Individualizing enhancer-VSV scheduling therapy.

To further delineate vaccination scheduling in distinct

subcohorts, we tailored VV enhancer multiplicity (between Cross-validating tailored strategies

1 and 7) and VSV lag (between 1 and 15 days) for each ~ To confirm that outcomes are improved by employing

virtual individual according to intrinsic tumor character-  therapeutic strategies based on tumor aggressivity and

istics (figure 7A). The individual optimal protocol was  investigate the robustness of our stratification strategy, we

determined by simulating all scheduling possibilities and  generated two new cohorts comprised of 50 virtual individ-

minimizing tumor size at VSV +15 days. uals with slow growing tumors (0.0196 < r < 0.0260) and
As before, we found clear stratification between optimal 50 with aggressively growing tumors (0.0629 < r < 0.0657).

protocols for slowly growing (seven enhancers followed by ~ These ranges for » where chosen to correspond to the top

a 14 or 15 days VSV lag) and fast growing (one enhancer  and bottom 10% of the initial cohort’s » value (figures 2C
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is necessary for optimal outcomes. (A) Optimal number of enhancers (yellow), optimal VSV lag (fuchsia) and relative tumor

size 15 days after last VSV versus untreated control (purple) as a function of intrinsic tumor growth rate. For all but a subset

of the least aggressive tumors, individualized protocols called for a VSV lag of 1 day, with fewer than seven enhancers. (B)

Two new cohorts of patients were generated with either aggressive tumor growth (0.0629 < r< 0.0657, purple) or slow tumor
growth (0.0196 < r< 0.0260, green). Original Le Boeuf et al data (red stars) and model fit to the original data (black curve) as

in figure 2C. (C) Each cohort was simulated according to the previously determined optimal aggressive protocol (one enhancer
followed by a VSV 1 day later) and optimal slow protocol (seven enhancers followed by a VSV 15 days later). To assess

the effect specificity of each protocol, a cross-over trial wherein virtual patients with fast growth were treated with the slow
protocol and vice versa was performed. (D) Kaplan-Meier survival curves for the two cohorts under the two different protocols.
(E) To confirm the robustness of the aggressive and slow protocols, the optimal number of enhancers and VSV lag was then
determined for patients in the new cohorts. The results of the newly generated cohort were then compared with the original
cohort in A. Tumor size 15 days after the VSV was assessed. Original cohort individualized therapy compared with the new slow
growth (top left) and new aggressive growth (top right) individualized schedules. Overlays of the corresponding optimal number
of enhancers and VSV lag for each patient from old protocol versus the new slow growth (bottom left) and aggressive growth

(bottom right). VSV: vesicular stomatitis virus; VV: vaccinia virus.

and 7B). We next simulated the tumor growth of these
cohorts under the previously determined optimal proto-
cols, that is, 7 enhancers and a 15-day VSV lag for slow
growing tumors, and one enhancer and a l-day VSV lag
for aggressive tumors (figure 7C). Additionally, we simu-
lated each cohort under the alternate optimal protocol,
that is, aggressively growing tumors with the slow tumor
growth protocol and vice versa.

Overall, in terms of survival and irrespective of
protocol, the aggressive tumor growth cohort performed
markedly worse than the slow tumor growth cohort
(figure 7D). As these represent the 10% most aggressive
tumors of the original cohort, it is not surprising that
the efficacy of therapy is minimal. In contrast, survival
in the slow growing cohort was markedly different under
the two protocols: when treated with their optimized
protocol, all individuals survived, and while survival
declined when treated with the aggressive tumor growth

protocol, it remained overall stronger than in the aggres-
sive tumor cohort treated with its matched optimal treat-
ment strategy. Nonetheless, both strategies perform
better than the no treatment case (results not shown).
To further confirm the optimality of the aggressive and
slow tumor growth protocols, we also determined each
virtual patient’s optimized combination schedule for the
new cohorts (figure 7E). Unsurprisingly, the optimal
protocols were the same as in the larger original cohort,
implying there is a robust link between tumor aggres-
sivity and the optimal combination OV-therapy protocol.
Interestingly, for patients with extremely slow growing
tumors (7 close to 0.0196, doubling time of roughly 35
days) the optimal VSV lag was slightly shorter (D; = 13
days) than the rest of the slow growing tumor cohort.
Thus, we posit that a combined OV therapeutic vaccina-
tion approach with VV +VSV will be most effective for
slow growing tumors.

10

Jenner AL, et al. J Immunother Cancer 2021;9:¢001387. doi:10.1136/jitc-2020-001387

'salbojouyoal Jejiwis pue ‘Buluresy |y ‘Buiuiw elep pue 1xa) 01 parejal sasn 1o} Buipnjour ‘ybLAdod Ag pajoslold
1sanb Aq GZ0z 1oquianoN 1 uo wod fwg only:sdny wouy papeojumoq "Tz0g Areniga- 6T UO /8ET00-0202-9M/9€TT 0T Se paysiignd 1siy :19oue) Jo Adelayounww| 10) feuinor



DISCUSSION

In 2015, the US FDA approved T-VEC for the treatment
of non-resectable late-stage melanoma, making it the
first OV to reach the Western market. However, despite
much promise, the efficacy of OV monotherapy has been
limited.” ** In response, combined OV schedules hold
much promise as an effective cancer therapy capable of
eradicating tumor cells through virus infection, immune
recruitment, and by providing a long-lasting durable
response. Results from combined OV strategies are
encouraging, with three clinical trials underway for an
adenovirus and OV Maraba anticancer combination OV
treatment.””

A major obstacle to the clinical implementation of
combination OV-therapy protocols is designing promising
and optimal therapeutic schedules. Further, the repro-
ducibility of protocol efficacy must be demonstrated in
heterogeneous patient cohorts. For this preclinical plan-
ning, mathematical and computational biology have a
large role to play in predicting therapeutic responses and
designing effective strategies. Leveraging our previous
computational model,** we developed an in silico model
of combination OV-based therapeutic vaccination with
vaccinia (VV) and VSV OVs to test the heterogeneous
response to and optimality of an enhancer virus and VSV
protocols. Each generated virtual patient was created
based on a realistic distribution of model parameters,
with growth following the trend of experimental results.

We found that the number of enhancers does not signifi-
cant impact the average response of our generated virtual
cohort. Though perhaps unintuitive, this is likely due to
a saturation in the initial immune response. Investigating
this further, our results show that while the variance of
tumor sizes increased with the number of enhancers, the
overall survival of the cohort did not vary significantly.
Ultimately, no single optimal protocol was found for most
of the cohort. However, at the individual level, there was
a significant difference in outcomes found when opti-
mizing the number of enhancers: for tumors with low
intrinsic growth rates, a larger number of enhancers is
necessary to be effective, whereas aggressive tumors
required fewer enhancers. The latter finding supports
the idea of ‘hitting hard, hitting early’ for fast growing
tumors. This clear stratification based on tumor aggres-
sivity suggests that the effectiveness of the enhancer-VSV
protocol is largely a function of the relationship between
viral replication and tumor growth. For a given initial
tumor size, faster growing tumors will have more cells
for the virus to infect and subsequently lyse, so there is a
trade-off between the number of enhancers and the delay
in administering the VSV to ensure that cells are suffi-
ciently infected and subsequently recruiting immune cell
subsets. On the other hand, for slowly growing tumors,
more enhancers are needed to load the tumor microen-
vironment with virus and sufficiently activate the immune
system. An advantage of OVs compared with other immu-
nostimulatory compounds is that the concentration of
OVs in the tumor microenvironment will initially increase

due to viral replication, whereas other drugs will experi-
ence rapid clearance.

Conceptually, longer VSV lags should increase the
mean tumor size, given that tumors are not eradicated
by the priming protocol and are thus continuing to grow
prior to administration of VSV. Indeed, we predicted that
the optimal VSV lag should overall be between 1 and 4
days, or shorter than the currently used 7 days. Similar
to what was observed for enhancer multiplicity, we found
that increasing the VSV lag increased the dispersion in
outcomes, irrespective of the number of enhancers.
Thus, it is not necessarily the number of enhancers or
VSV lag driving the variation in treatment response, but
rather the duration of the treatment.

While there are currently no clinical trials combining
VV and VSV for the treatment of TNBC, there are other
clinical and experimental results that support the find-
ings of our virtual clinical trial. A handful of clinical trials
have been conducted with VV or VSV individually,” **°
and there is currently a phase I trial in stage III-IV mela-
noma using VSV-IFNbetaTYRP1 (NCT03865212). The
randomized phase 2 dose-finding trial of Pexa-Vec (an
oncolytic VV with a gene encoded to increase expression
of GM-CSF) for the treatment of on advanced hepatocel-
lular carcinoma found a clear distinction in survival based
on dosage, with the high-dose cohort having an increase
in overall survival compared with the low-dose cohort.”*
Further, the high-dose protocols performed equivalently
on patients with or without metastases, whereas, the
low dose protocol was only optimal for patients without
metastases. As the presence of metastases is an indicator
of disease aggressivity, these findings align with our
conclusion that the stage and overall aggressiveness of a
patient’s disease is a determinant for oncolytic VV treat-
ment efficacy, and underlines the importance of patient
stratification into appropriate schedules for oncolytic VV
therapeutic success.

Further, high levels of Ki-67 expression in TNBC have
been found to correlate strongly with more aggressive
proliferation and poor prognoses.”” By evaluating a total
of 1800 patients with early invasive TNBC, Zhu et al’’
determined that adjuvant chemotherapy was associated
with better overall survival in patients with higher Ki-67
expression than patients with low Ki-67 expression, with
adjuvant chemotherapy having no effect on disease-free
survival in the latter group. Given that Ki-67 is a marker
of proliferation, these data corroborate our finding that
tumor aggressivity can be a predictor of treatment success
in TNBC, and that using Ki-67 expression as a threshold
for therapeutic planning and prognostic factor may
improve survival.

There are certain limitations to our model formalism.
Specifically, the stimulated immune response only
impacts the growth of the tumor and only has a secondary
effect on the virus: reducing the number of cells available
for the virus to infect and lyse. Despite this shortcoming,
our model was able to replicate the observed dynamics
of VV and VSV in IC mice and accommodate for the
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anti-inflammatory and proinflammatory responses to
these viruses. Future iterations of the model could
build on this and develop a more complex model of
the immune response to combination OV-based vaccine
therapy. In doing so, our virtual clinical trial platform
could be used to optimize combined OV-immunotherapy
(such an anti-PD-1 immune checkpoint inhibitor') and
investigate whether we see a similar segregation of the
optimized protocol based on tumor aggressivity. In addi-
tion, future experiments investigating combined VV and
VSV treatment in other tumor lines or humans will allow
for further model validation.

Through rational considerations, we developed a quan-
titative approach to therapeutic cancer vaccination that
provides actionable and clinically relevant scheduling
recommendations that can be easily translated from
bench to bedside using complementary methodologies.
Current experimental work in therapeutic vaccinations
could provide effective novel cancer therapeutics' *® and
there is a growing push towards personalized tumor-
specific vaccination therapies.”® Unfortunately, the pace
of immunotherapy innovation is limited by clinical trial
requirements. Here, we put forward a strategy to fill that
gap, helping to define the next phase of combined OV
regimens.
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