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Abstract

Because of the global need to increase power production from renewable
energy resources, developments in the online monitoring of the associated
infrastructure is of interest to reduce operation and maintenance costs. How-
ever, challenges exist for data-driven approaches to this problem, such as in-
complete or limited histories of labelled damage-state data, operational and
environmental variability, or the desire for the quantification of uncertainty
to support risk management.

This work first introduces a probabilistic regression model for predict-
ing wind-turbine power, which adjusts for wake-effects learned from data.
Spatial correlations in the learned model parameters for different tasks (tur-
bines) are then leveraged in a hierarchical Bayesian model (an approach to
multi-task learning) to develop a “metamodel”, which can be used to make
power-predictions which adjust for turbine location—including on previously
unobserved turbines not included in the training data. The results show that
the metamodel is able to outperform a series of benchmark models, while
demonstrating a novel strategy for making efficient use of data for inference
in populations of structures, in particular where correlations exist in the
variable(s) of interest (such as those from wind-turbine wake-effects).

Keywords: Multi-task learning, Hierarchical Bayes, Population-based SHM

*Corresponding author.
Email address: sbrealyl@gmail.com (Simon M. Brealy)

Preprint submitted to Mechanical Systems and Signal Processing October 29, 2025


https://arxiv.org/abs/2502.14527v2

(PBSHM), Wind-power prediction

1. Introduction

1.1. Motiwwation

Commitments to the expansion of the renewable energy sector equate
to tripling the installed capacity globally by 2030 [I]. This growth presents
some significant challenges, including how to efficiently manage the increasing
cost of operations and maintenance (O&M)—which represent approximately
40% of the lifecycle cost of an offshore wind-farm [2]. Currently, O&M is
supported by online monitoring systems [3], utilising sensors from across the
turbines for decision-making; gaining the maximum possible insight from
these data is therefore of interest to help maximise the economic viability of
offshore wind-farms.

1.2. Data-driven Modelling

A common application of data for the online monitoring of wind-farms
is in modelling the relationship between wind-speed and power (known as
power-curve modelling). These models may be used as a damage-sensitive
feature during operation, to inform the need for any remedial repairs [4] [5].
As an additional benefit, these models can also be repurposed to make pre-
dictions of future wind-power generation (given forecasted weather inputs),
which can help with risk mitigation in both operational and electricity market
settings; this includes planning unit dispatch, maintenance scheduling and
maximising profit in power trading [0l [7]. A relatively recent review of the
modelling approaches developed for power-curve monitoring is provided by
Wang et al. [§], which is a heavily researched area. However, in many cases
the approaches used provide point, deterministic, predictions to predict out-
put power. Inspection of typical power-curve data reveals that it is both
heteroscedastic (the variance of the output power changes with wind-speed),
and asymmetrically distributed. Deterministic approaches fail to capture
these properties; as such, probabilistic approaches have gained greater at-
tention more recently from researchers [4, [5, 9], which provide information
on both the mean and the expected variance of the prediction. This addi-
tional information gives greater insight into model uncertainty, which could
be helpful for managing risk in both engineering and commercial settings.



Further data-driven applications for the online monitoring of offshore
wind-farms exist, including focussing on component health such as gener-
ator and gearbox-temperature monitoring, blade and bearing fault detection
and, pitch and yaw misalignment [10, 11}, 12], or more system-level health
e.g. detection of scour around the base of turbine monopiles [I3]. However,
in these applications (and also more generally in the monitoring of engineer-
ing systems), significant challenges remain, including (1) a lack of labelled
damage-state instances [14], (2) short or incomplete histories of failure data
[15], and (3) operational and environmental variability. These challenges can
impede the level of sophistication, or even practical implementation of these
systems [16].

1.3. Multi-task Learning

As a solution to the problem of limited data, multi-task learning (MTL)—
a form of transfer learning (TL)—is a machine-learning approach where the
goal is to learn multiple related tasks simultaneously, so that similarities (and
differences) can be harnessed between tasks; in this way, model predictive ac-
curacy is improved in domains where data are limited [17, I8, 19]. In practice,
a common approach to MTL is by the use of hierarchical Bayesian models,
which are able to pool information across tasks via population-level parame-
ters, while accounting for task-specific nuances via task-level parameters. By
pooling information in this way, these models can better handle tasks with
limited data, and produce robust probabilistic predictions. This model archi-
tecture can intuitively be applied to wind-farms, where individual turbines
(tasks) may have individual differences (e.g. because of maintenance, dam-
age or physical location), but are ultimately similar to each other as part of
the wind-farm population. Hierarchical Bayesian models have recently been
applied to other engineering infrastructure; Bull et al. [20] uses a hierarchi-
cal Bayesian modelling approach to learn population-level and task-specific
parameters in a combined inference, in the setting of a truck-fleet survival
analysis. Similarly, Dardeno et al. [2I] and Brealy et al. [22] use hierar-
chical Bayesian models, in order to transfer Frequency Response Function
information between helicopter blades and wind-turbine foundation stiffness
parameters respectively. In both cases, the uncertainty of parameters in
data-sparse domains was reduced as a result of knowledge transfer between
structures, as compared to modelling the data-sparse domains independently.



1.4. Research Contribution

In this work, a probabilistic power-curve model is first developed, that
considers the heteroscedastic and asymmetric nature of power-curve data,
using data from an in-service wind-farm. This model utilises wind-farm
(population-level) wind-speed and direction features, with predictions in-
dicating that a level of wind-directionality (from wind-turbine wake-effects),
has been captured by the model. Spatial correlations found in the underlying
model parameters inspired the incorporation of this model into a hierarchi-
cal Bayesian model architecture, where the population-level parameters were
designed to capture spatial, inter-task correlations between turbines, which
is described here as the “metamodel”.

This model design has a tangible real-world benefit—if one were able to
make accurate probabilistic predictions for a variable of interest, at a
location without data (and perhaps even without associated telemetry),
this may reduce the overall telemetry requirements among a population.

The results show that for predicting wind-turbine output power, the meta-
model outperforms a series of benchmark models, both in terms of mean
prediction and predictive uncertainty, by making efficient use of data and
accounting for environmental variability. The metamodel could also be de-
scribed as a purely data-based approach to power modelling with adjustment
for wake-effects, without the need for physics-based simulation (thus making
it more efficient).

1.5. Paper Layout

The layout of the paper is as follows. Section [2| describes the data used
and the preprocessing steps. Sections [3] and [ describe the models. Section
describes the model training and scoring process. Results are analysed in
Section [6] Conclusions and further work are described in Section [7] Finally,
links to the model code used in this study can be found in Section [§]

2. Dataset Overview and Preprocessing

2.1. Description

A Supervisory Control and Data Acquisition (SCADA) dataset was avail-
able to the authors of this work, which contains 224 wind-turbines, spanning



three separate wind-farms between the years 2020-2023, at a ten-minute res-
olution. The measurements within come from a broad range of sensors, but
generally fall into electrical, control, component/system temperature mea-
surements, and ambient environmental parameters. This study focuses on
one of these wind-farms (under the pseudonym “Ciabatta”), for the full year
of 2021; this was chosen to maintain a full year of cyclical environmental vari-
ation, and to reduce computational overhead with a focus on demonstrating
the methods herein.

The raw SCADA data, showing the power-curve relationship for the wind-
turbines in wind-farm Ciabatta are shown in blue in Figure [I In these
data, a number of patterns typical to wind-farm operation are identifiable,
including curtailments (whereby turbine power is deliberately limited), shut-
downs (indicated by a power output of zero, despite significant wind-speeds),
and power-boosting (where power is raised above nominal turbine capacity).
These three (controlled or otherwise) deviations of power away from normal
operation are typically related to technical and/or commercial constraints,
dependent on factors which were considered outside the scope of this work.

2.2. Data Filtering

For the purposes of predicting power output during normal operation,
data most likely related to shutdowns and curtailments were filtered out.
For the power-boosted data, rather than filtering it, it was instead artifi-
cially reduced to the rated-power; this was done for two main reasons: (1)
For some turbines, it accounted for a significant portion of the data at high
wind-speeds, such that filtering it would create data-sparse regions for those
turbines, making robust model development and comparison between dif-
ferent models more difficult. (2) From a practical perspective, if a model
predicts that rated-power is achievable, and the specific conditions required
for power-boosting are known, then domain-experts could apply a manual
correction if necessary. Additionally, since wake-effects are more prevalent
at lower wind-speeds [23], this modification was not expected to significantly
interfere with wake-related behaviour in the data. A summary of the main
criteria chosen to filter the data are shown in Table [1

Between low and rated-power, in normal operation the blade pitch angle
is approximately zero, while during curtailment it increases to control the
output power to a set level. When a turbine is offline or during a shutdown,
the pitch angle is also higher than in mormal operation. Additionally, as
the wind-speed increases beyond the cut-out wind-speed, the shaft speed



Filtering step

Description

Filtering target

1: Thresholding

Filter data based on
blade pitch angle and
rotor speed (RPM)

Curtailments and
shutdowns

2: Rate of change

Filter data where the
RPM changes rapidly
between time steps

Transient behaviour
during startup and
shutdown procedures

3: Stationary data

Filter data where the
power or wind-speed
measurements are
stationary

Curtailments and
sensor faults

4: Mahalanobis
squared-distance
outlier detection [24]

Filter data based on
the distance in the
blade pitch-angle vs.
power relationship

Remaining outliers

5: Standard-deviation
outlier detection

Filter that retains the
middle two standard

Remaining outliers

deviations in power,
for the binned
freestream wind-speed

Table 1: Summary of the steps used to filter the raw SCADA data

(RPM) remains high, while the generated power drops considerably; these
three sets of behaviours were targeted for filtering in step one, by defining
set-thresholds on the blade-pitch-angle and rotor-speed, for differing levels
of power. The second filtering step was introduced as it was found that
in some cases, the RPM changed quickly; this was considered indicative of
startup and shutdown procedures of the turbines, and not representative of
normal operation. In this step, data where the RPM increased or decreased
by more than a set threshold, compared to the previous value were filtered
out. In the data, instances of stationary wind-speed measurements were
found, which were deemed likely to be due to sensor or SCADA system
error. To combat this, step three was used to remove data where the wind-
speed measurements were stationary in time. The same technique was also
applied to remove any stationary power data that was not filtered by step one.
Step four was used to help remove any remaining outliers in the pitch-angle
vs. power relationship, by using a Mahalanobis Squared Distance (MSD)-



based approach [24], which takes account of both correlation and scale in
the data. Finally, step five removed remaining outliers that were observed in
the output power, by retaining only the middle two standard-deviations for
a binned freestream wind-speed—defined in Section

The filtered data are plotted in orange in Figure [I| compared to the raw
unfiltered data in blue. It can be seen that the filtered data appear much
more representative of normal operation only.
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Figure 1: Data from all turbines in wind-farm Ciabatta showing the power-curve relation-
ship. Blue markers show the raw data prior to filtering, and orange markers show the data
after filtering.

To demonstrate how the filtering process influences the underlying dis-
tributions in the data, Figure [2] shows density plots for the generated power
(2a), yaw angle (2], and wind-speed (2d) variables. The raw (unfiltered)
data are shown in blue and the filtered data are shown in orange. Here it
can be seen that in most cases the general shapes of the distributions after
filtering are consistent. One clear difference can be seen at low (or zero)



generated power; this is expected, since a large amount of data was present
in this region and targeted for filtering. Some reductions in data density can
be seen between 0.4-0.6 in generated power; this is because of the removal
of the curtailment data. Finally, there is an increase in the quantity of data
in the final bin of the filtered generated power; this is because of the capping
of the power-boosted data. For completeness, the filtered data that had then
undergone stratified (sub)sampling on both yaw angle and power features
(discussed in Section are also shown here in green; in this case it can
be seen that the desired effect of flattening the density plots for the yaw angle
and power features had broadly been achieved.
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Figure 2: Density plots for the raw data (blue), filtered data (orange) and the subsampled
data (green) for the generated power, yaw angle and wind-speed variables.



Considering these filtered data (and power-curve data generally), there
are two distinct features that present challenges for modelling: (1) the data
are heteroscedastic—as the wind-speed changes, the variance in generated
power changes significantly and (2), the skewness changes from being positive
at low wind-speeds before cut-in, to negative above the rated wind-speed.
These properties should be considered in the model design phase to ensure
that the data are modelled appropriately.

2.3. Model Training Features

For all models developed in this study, three features were used for pre-
dicting turbine-specific output power. First, came the freestream wind-speed
(later referred to as Feature One); since data from a meteorological mast
was not available, this was instead approximated as being equivalent to the
maximum measured wind-speed of the turbines used in training, for a given
timestamp. Since there are turbines on all edges of the wind-farm in the train-
ing data sets, this was deemed a reasonable approximation as measurements
from “unwaked” turbines were always available. The authors are aware that
anemometer sensor error will likely add noise to the data and could reduce
model predictive performance as a result, however it is believed it does not
detract from the novelty of the method developed in this work.

The second and third features were derived from what was considered a
proxy for wind-direction—the measured turbine yaw angle; these were as-
sumed to be approximately equal to each other, since for operation in the
normal regime the control system should orientate the turbines in the direc-
tion of the incoming wind. Specifically, Features Two and Three took the
sine and the cosine of the yaw angle; this was done to create a smooth tran-
sition in the inputs between the equivalent angles of zero and 360 degrees.
The median values were used for these features which were taken across the
turbines for a given timestamp, to obtain an averaged wind-direction, less
subject to individual turbine noise. Finally, all features were scaled between
zero and one for both numerical efficiency, and data anonymity.

The motivations for choosing these features were as follows: (1) using the
freestream wind-speed in combination with wind-directional features, enables
the possibility to capture some of the wake-effects that may be present in the
data. (2) While not the main focus of this study, population-level features
are more representative of forecast data by data providers such as ECMWF
[25], since higher resolution turbine-specific forecasts that also account for
turbine wake-effects are not readily available.
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3. B-spline Beta Regression Model

The heteroscedacity, skewness and bounded nature of power-curve data
share similarities with the shape of the beta distribution, which is bounded
between zero and one, and whose variance changes with the mean of the
distribution. These two factors motivated the development of the B-Spline
Beta Regression Model (BSBR), which is a probabilistic regression-based
model utilising a beta-likelihood. Mclean et al. [4] similarly used a beta-
likelihood, and the description of the BSBR model that follows is very similar
to that of Capelletti et al. [26] whom also used a spline-based approach.

3.1. Generalised Linear Models

Suppose one wishes to model the distribution of a real target variable y =
[y1, y2...yn]T, given an input design matrix X. Generalised Linear Models
(GLMs) are a generalisation of linear regression, which are characterised by
three components:

1. a distribution for modelling y (which must be from the exponential
family of distributions);

2. alinear predictor f = X3, where 3 is a vector of regression parameters;
3. a link function ¢(-) such that E(y|X) = p = ¢~ '(f) which allows linear
models to be related to a real target variable, y, via the link function.

3.2. Beta Regression Model

Beta regression is one such type of GLM, where the beta distribution
is chosen for modelling y. Beta distributions are bounded in the interval
between zero and one, while their variance can change with the mean of the
distribution; this has clear similarities with power-curve data, which can be
sensibly bounded between zero and rated power, with trivial rescaling. The
beta distribution for a scalar y is defined as,

f(y|/~% ¢) = %y(‘l_l)(l _ y)(b—l) <1>

where I'(-) denotes the gamma function, and where 0 < g < 1 and ¢ > 0.
The mean and variance of y are,

E(y) = u (2)
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p(1 — p)

Vi) =k g
whereby p can be described as the mean parameter, and ¢ the precision
parameter since it is inversely proportional to the variance.

In this case for modelling power-curve data, consider a linear predictor
model, f; = Xn for a GLM, where 1 is a vector of regression parameters. The

link function is chosen to be the logit function (equivalent to g~' equalling
the expit function [27]), such that,
p = expit(Xn) (4)

where p is the mean parameter vector for the beta distribution. The choice
of the logit link function ensures that 0 < E(y) < 1, which in words, means
the predictive mean of the model must lie between zero and one, intuitively
matching the behaviour of normalised power-curve data. For additional flex-
ibility in the model, the precision parameter vector ¢ (in the beta distribu-
tion) was also allowed to vary with X according to an additional linear model
fo = X, where ¢ is an additional vector of regression parameters. Since ¢
must be non-negative (to ensure that V(y) is positive), a natural logarithm
link function is chosen (equivalent to ¢! equalling the ezponential function),
such that,

¢ = exp(X() ()

This model definition allows both the mean, p, and precision, ¢, parameter
vector entries to vary as a function of X, resulting in beta distributions
whose shapes vary with the input feature(s); this is similar to the “Variable
dispersion beta regression model” described in [26].

3.3. B-spline Linear Models

Regression spline models are chosen for functions f; and fo; these provide
greater flexibility in modelling nonlinear outputs compared to polynomial re-
gression [28], while still being linear in parameters. Regression splines are
piece-wise continuous polynomial functions, joined at knots, where the first
and second derivatives of adjacent functions are equal; this ensures a smooth
transition between polynomials. In practice, polynomials of degree three (cu-
bic splines), balancing smoothness and flexibility, are most commonly used
[29] and are chosen here. Specifically, the B-spline basis-function approach
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is used for its numerical stability and computational efficiency [30]. Figure
shows the B-spline basis-functions for polynomials of degree three, using four
interior knots between zero and one. Parameters (weights) are learned for
each basis-function during model fitting, with model predictions calculated
as a weighted sum of parameters and basis-functions.

1.0 A Basis functions
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Figure 3: B-spline basis-functions over the interval of zero and one, with four interior
knots.

Using the B-spline basis-function approach, the design matrix X was
constructed and used alongside the linear model parameters n and ¢ for the
mean (p) and precision (¢) parameters. B-splines of order four were cho-
sen, with four, uniformly spaced, interior knots per feature. Uniform spacing
was chosen for simplicity, while additional knots resulted in no significant im-
provement in the normalised mean squared error (NMSE) (defined in Section
; this is demonstrated in Figure |4} Further optimisation of the number of
knots for individual features, and the location of knots was not considered,
and is left as an area for further model refinement.

3.4. Graphical Model

A graphical representation of the B-spline beta regression (BSBR) model
is displayed in Figure |5| Latent variables (to be estimated) are depicted as
unshaded circled nodes, while the shaded circled node represents the observed
variable. The dotted lines indicate parameters linked by a transformation,
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Figure 4: Comparison of NMSE score vs. the number of (evenly-spaced) interior knots
per feature, for the no-pooling BSBR model described in Section

while the arrows indicate that the target parameter is drawn from a distribu-
tion using the preceding parameters. The plate represents multiple instances
of the contained node.

Figure 5: A graphical representation of the B-spline beta regression model.

Here, t relates to the training turbine, while N, relates to the number
of training data points for that turbine. In this initial case, independent
models are learned per turbine ¢, used to model the observed target variable
Yit. The column vector y;, with entries y;, for : = 1,2,..., IV, is distributed
according to the reparameterised beta distribution,

y: ~ Beta(p,, ¢;) (6)

Additionally, hyperpriors were placed over the estimated parameters i, and
¢;, according to a Normal distribution,

{ne, e} ~ N(0,3)  (element-wise) (7)
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where the means and standard deviations of 0 and 3 respectively were found
to be weakly informative, while sufficiently aiding convergence.

3.5. Inference

The observed variables in graphical models may be referred to as evi-
dence nodes [31]. In the example in Figure , the regression would have the
following evidence nodes:

&= {yt} (8>

Latent variables on the other hand are hidden nodes,

H=A{n,, ¢} (9)

Bayesian inference relies on finding the posterior distribution of H given &,
that is, the distribution of the unknown parameters given the data,

p(€ | H)p(H)
p(H|E) )
_ (el m, C)p(n,)p(S,)
p(ye)
p(ye | 45 €)p(m,)p(C,)

~ T T o [ 10 Cop(n)p(C,)dn,dE,

As is common in Bayesian inference problems, the integral in this case
is intractable, and cannot be solved analytically. In this work, the posterior
distribution is approximated using the Monte Carlo Markov Chain (MCMC)
method, via the no U-turn (NUTS) implementation of Hamiltonian Monte
Carlo (HMC) [32].

(10)

4. A Metamodelling Approach

4.1. Hierarchical Bayesian Modelling for Multi-task Learning

In Section [3] the presented BSBR model can be described as being an ex-
ample of single task learning (STL), since the task-level parameters n, and ¢,
are learned independently for each task; in this case, there is no-pooling (NP)
of information between tasks. By contrast, a model containing parameters
solely at the population-level which are shared across all tasks, can be said

14



to have a complete-pooling (CP) modelling structure. In this case, all tasks
are treated as identical, which can lead to poor model generalisation to new
tasks. Alternatively, hierarchical Bayesian models (also known as multi-level
models) provide a middle-ground, containing both task-specific parameters
(allowing for differences between population members), and population-level
parameters, which encourage task parameters to be similar; this modelling
structure can be described as having partial-pooling (PP) of information.
These models are often used as an approach to multi-task learning (MTL),
where the goal is to improve the performance and generalisation of a model,
by training it on multiple related tasks simultaneously [33].

In the context of power-curve modelling, allowing PP of information
makes intuitive sense; wind-turbines within a wind-farm are nominally iden-
tical, so they are likely to have similar power-curves (at a population-level),
but differences may also arise from varying wake patterns at individual tur-
bine locations (the task-level). An additional benefit of PP of information,
is that data-poor tasks in particular are able to borrow statistical strength
from data-rich tasks. While in this context data availability is not a signifi-
cant problem, it is common in the field of data-driven SHM [16], which has
led to these modelling approaches being used as a solution in the domain of
population-based SHM (PBSHM) research [20), 21].

4.2. Metamodel Design

In the results in Section correlations are observed among the learned
1, and ¢, parameters of the NP BSBR models, in relation to the turbine  and
y spatial coordinates. This fact motivated the integration of a metamodel,
which can be described as a model over models. The metamodel was de-
signed to capture the inter-turbine relationships in power-curve parameters,
which could be used to predict power for previously unobserved turbines,
not necessarily in the training data. This model design has a tangible real-
world benefit—if one were able to make accurate probabilistic predictions for
a variable of interest, at a location without data (and perhaps even without
associated telemetry), this may reduce the overall telemetry requirements
among a population. While in the use case here data are readily available
at each turbine location, it serves as a useful testbed to experiment with the
modelling approach.

First-order linear metamodels were chosen here for both simplicity and
to reduce the risk of overfitting to the (potentially noisy) training data. In
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matrix form, the parameter vectors np and ¢ are described via the linear
metamodels,

n = CM,_+ C,M,, (11)

¢ =CiM¢, +C,Mc, (12)

where Cy and Cy are the linear regression design matrices for the normalised
x and y coordinates for each turbine, and M,, and M, are the metamodel
parameter matrices for parameter vector n. Similarly, M, and M, are the
metamodel parameter matrices for parameter vector (.

As in the NP BSBR model, hyperpriors were used to aid model conver-
gence, and were placed over the metamodel parameter matrices assuming
normal distributions,

{M,,, M} ~N(0,3) (element-wise) (13)

where M,, = {Mnx,Mny} and M¢ = {McvaCy} and the prior means
and standard deviations were set equal to 0 and 3 respectively, given the
distribution of learned parameters seen for the individual NP BSBR models;
these were again found to be weakly informative, while sufficiently aiding
convergence. Figure [6] shows a graphical representation of the model. As
with Figure [f, arrows represent distribution inputs, while dotted lines show
calculated inputs, with plates indicating multiple instances of their contained

nodes.

g

Figure 6: A graphical representation of the metamodel. Arrows leading from parameters
indicate they are distribution parameters, whereas dotted lines indicate parameters are
associated via a transformation.
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Note that the metamodel parameters are located outside the plates, and are
therefore learned at the population-level, while the parameters 0, and ¢, are
determined specifically for each turbine.

4.8. Metamodel Predictions

Following posterior estimation of the population-level metamodel pa-
rameters, one can make probabilistic predictions at locations of interest,
based on spatial coordinates alone,

n* = CiM,,_ + c;M,,y (14)

¢ =CiM,_ + c;MCy (15)

where n* and ¢* are the predicted metamodel parameters for all turbine loca-
tions of interest, Cx* and C,* are their associated first-order linear regression
design matrices for the normalised spatial coordinates, and M,, , M, , Mc,

and Mcy are the estimated metamodel parameters. The predicted parame-
ters can then be used in line with the population-level input features, X, to
make probabilistic power-predictions.

4.4. Metamodel Benchmarking

The model presented in Section [4]is a hierarchical Bayesian model, incor-
porating a metamodel—this model is simply referred to as the metamodel.
To help assess the performance of the metamodel, it is benchmarked against
three models which have no metamodel structure or spatial component. The
first of these, is the NP BSBR model that was first introduced, which treats
each turbine independently—i.e. there is no-pooling of information between
turbines, with separate sets of parameters for each one. Secondly the meta-
model is compared to a partially-pooled (PP) hierarchical model (shown
in Figure [7)), where the turbine-specific parameters are drawn from shared
population-level distributions. For completeness, the metamodel is compared
to a complete-pooling (CP) approach, where all turbines are considered iden-
tical and a single set of model parameters are learned for all turbines; this
is shown in Figure [§] In the PP model, the  and { parameter vectors
were assumed to be normally distributed, controlled by the population-level
distribution parameters { Ky Oy e 0'4}. For further details, including the
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details of the hyperpriors placed over the parameters in the models, stan
code containing the four models is provided in the links in Section [§

rORNG

tel: T

= J

3 P8

Figure 8: Completely-pooled (CP) BSBR graphical model.

5. Model Training and Testing

5.1. Training and Testing Datasets
5.1.1. BSBR Model Demonstration

In the first instance, to demonstrate the suitability of the BSBR model
for capturing the heteroscedastic and asymmetric nature of power-curves, the
model is trained and tested on individual turbines (i.e. using the no-pooling
model definition). A subset of the filtered data that had undergone stratified
sampling by yaw angle is used, to provide the models with an approximately
even distribution of data across yaw angles, to try to help make the models
more generalisable to all wind-directions. The training and testing datasets
consisted of 4000 and 1000 data points per turbine respectively.
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5.1.2. Metamodel

In the SCADA data, it was noted that there were significant proportions
at zero or maximum power; because of this, additional stratified sampling
was applied based on measured turbine output power. The reasons for doing
this were twofold: (1) to train and assess models equally for all regions of the
power-curve (2) because of the heteroscedastic nature of the power-curve,
harmonising the proportions of data in different regions of the power-curve
between turbines was considered to make comparisons between predictive
metrics more reasonable. Since the metamodel aims to capture spatial cor-
relations induced by wake-effects, reason (1) is particularly important, since
wake-effects are more prevalent in the transitional region of the power-curve
[23], which is comparatively data-sparse. The distributions of the resulting
(sub)sampled data are shown in Figures [2a] and [2b]

Additionally, for the metamodel, since a single model is learned for all
data simultaneously, computational expense is increased significantly, so a
reduced number of training points were needed. The resulting training and
testing sets, having undergone stratified sampling on both the yaw angle and
output power, consisted of just 250 points per turbine, which were used for
the metamodel and benchmark models. Furthermore, since the metamodel
and benchmark models are to be trained on a subset of the turbines, as an
example, one quarter of the turbines were used, which were approximately
equally-spaced throughout the wind-farm. The chosen training and the test-
ing turbines are highlighted in Figure 0] The resulting combined training
and test sets consisted of 5000 and 20000 data points respectively.

5.2. Model Training

As previously discussed, MCMC is used to estimate the posterior distri-
butions of our parameters, given observed levels of power per turbine. For
all the models in this study, MCMC was implemented using stan [34], with
2000 burn-in and 2000 inference samples per chain, and four chains. In all
cases, the mazimum R convergence statistics did not exceed 1.01, which sug-
gests proper mixing of the chains [35]. Additionally, the minimum effective
sample sizes (ESS) were greater than 400, a benchmark considered suitable
for stable parameter estimates and proper interpretation of the R statistics
[35].
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Figure 9: Map showing the training and testing turbines for the metamodel. Red circles
show the locations of the turbines used in training, while all turbines (shown by the blue
markers) were used in testing.

5.8. Model Scoring

In order to quantify the success of each of the models, two performance
metrics were used. Firstly, the normalised mean squared error (NMSE) as-
sesses the goodness-of-fit, or how close point predictions are to their test
value. The NMSE functions similarly to percentage error, where a score of
zero indicates a perfect model, while a score of 100 is equivalent to a model
simply predicting the mean value of the data. NMSE is defined as,

100

NMSE = == V/(y = 9)'(y — 3) (16)

where N is the number of data points, 05 is the variance of the measured

data, y the measured data, and y the model predictions.

Since the models are probabilistic and include predictive variance, the
joint-log-likelihood (JLL) is also calculated as a measure of how well the
uncertainty in the measured data was captured by the model. The JLL is
calculated as,
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S8 S log flyas,
S

where f(yi¢ |pit,, Piz,) is the probability density function of the beta distri-
bution as defined in equation , and S is the number of posterior samples.
The larger the JLL, the better the model has captured the true distribu-
tion of the test data. Given the prevalence of power-curve modelling in the
literature, it is worth stating that since the model metrics are dependant
upon both the training features and test data used, they are best used as a
comparison of the models within this paper only.

JLL — Hit,, ¢i,ts)

(17)

6. Results and Discussion

6.1. BSBR Model Demonstration

To first demonstrate probabilistic predictions that can be made with the
BSBR models (with no-pooling), Figure [10|shows predictions from models of
turbines on both the west and east-side of the wind-farm in subplots (a) and
(b) respectively, using the 1000 testing data points in each case. Test data
are indicated by red crosses, model mean predictions are indicated by circles
(which are coloured by the value of the wind-direction), and model uncer-
tainty is represented by the blue shaded area-indicating the 95-percentile
of predictions.

There are a number of interesting observations. Firstly, the predictive
uncertainty appears to match the data, with reduced variance at the lower
and upper ends of the curve, and increased variance in the transitional re-
gion between turbine minimum and maximum power. Approximately 5%
of the test points also lie outside the 95""-percentile of the predictive vari-
ance, as should be expected for a correctly-trained model. The “rough”
edges of this uncertainty are from data points that, while having a very sim-
ilar freestream wind-speed, may have significantly different wind-directions,
which also contribute to the predictive uncertainty. Secondly, while the ma-
jority of the influence on output power appears to be associated with the
freestream wind-speed (as expected), the models have allocated some weight
to the wind-directional features, resulting in the variance in the mean pre-
dictions for a given freestream wind-speed; this is mostly prevalent in the
transitional region between minimum and maximum power, and matches in-
tuition since wind-turbine wakes affect this region the most. However, in this
region it is clear that significant deviation between model mean predictions
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Figure 10: NP BSBR model predictions for two separate turbines. Test data (1000 points)
are shown by red crosses, mean predictions are shown as circles, coloured by the wind-
direction. The blue shaded areas show the 95t"-percentile of the predictive variance.

and the test data remains. This deviation is likely to be the result of a num-
ber of factors, including the oversimplification of the wake-effect in assuming
it can be approximated based on the wind-direction. In reality, this fails to
account for atmospheric conditions such as wind shear, turbulence intensity,



thermal stratification and air-density variations, which are known to have an
impact on wake propagation [36, [37]. Furthermore, in calculating the input
features, the wind-direction (yaw angle) is assumed to be the same for all
turbines—this is not the case, as there is a distribution of localised wind-
directions across the wind-farm (yaw angles), which will likely change the
wake patterns. There are also additional sources of noise within the data,
such as sensor calibration errors in the yaw and wind-speed measurements
which are used in calculating the population-level features, as well as possible
changes in the underlying behaviour of the turbines, perhaps because of wear
or damage during the period of the training data used. Additionally, cur-
tailed, shut-down or even power-boosted turbines upstream of a given turbine
will further generate noise in the wake patterns.

Despite these problems, comparison of the west and east-side models
yields some evidence that a level of turbine-dependent wind-directionality
has been captured. For example, for the west-side turbine, it is not expected
to be influenced by wakes when wind approaches from the western direction.
Conversely, the east-side turbine is not expected to be influenced by wakes
when wind blows from the east. In each case, the models appear to predict
higher levels of power when these conditions are true, and less power when
they are not, as one would expect to be the case in reality. While not shown
here, these characteristics can also be seen for other turbine models around
the perimeter of the wind-farm, to similar or lesser degrees.

To explore this model behaviour further, the learned model parameter
vectors which result in differences in predicted power may be inspected. In
this case, each of the vectors n and ¢ consist of 18 parameters, with param-
eters 1-6 associated with Feature One, 7-12 Feature Two and 13-18 Feature
Three. Figure shows the value of selected parameters from the n vec-
tor plotted for each turbine within the wind-farm. The colour of the points
denotes the values of the parameters as indicated by the colour bars.

For Parameter Four (associated with Feature One), there does not ap-
pear to be an obvious spatial correlation. However, while their magnitude is
smaller than Parameter Four, Parameters Ten and 13 (associated with Fea-
tures Two and Three), shown in subfigures and , show clear spatial
correlation across the wind-farm. For Parameter Ten, there is an approxi-
mate negative correlation from east to west, while there is an approximate
south to north negative correlation for Parameter 13. While not shown here,
similar observations can be made for some of the remaining parameters in
the m and ¢ vectors. These spatial differences in parameters represent the
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wake-effect captured by the NP models, and motivated the development of
the metamodel, which aims to remove the requirement of having data from
each individual turbine, by utilising these spatial correlations in the individ-
ual model parameters. The use of a hierarchical model in this case also allows
“statistical strength” to be shared between turbine-specific parameters, via
the population-level parameters.
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Figure 11: Mean parameter values of selected entries of the learned BSBR model 0 vectors,
plotted by turbine location. Colours indicate the value of the parameters.
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6.2. Metamodel

The metamodel learns linear models over the parameter vectors, for tur-
bine = and y coordinates. The right-hand plots in sub-Figures and
show metamodel mean predicted values by colour, for np Parameters Four
and Ten respectively, spatially. The black filled circles denote the locations
of the turbines used for training the metamodel, while the unfilled black cir-
cles represent the locations of the remaining (unobserved) turbines that were
also used in testing. These predictions are compared directly with the NP
BSBR models, shown in the left-hand plots. As with Figure there is
no clear observable spatial correlation for Parameter Four seen for the NP
model; there are also some potential outliers—such as those shaded more
yellow in the upper half of the wind-farm. For the same parameter in the
metamodel, the regularising effect of the linear model assumption removes
the outliers in prediction, while perhaps only a weak correlation in learned
values across the farm is observed. For Parameter Fight it can be seen that
the metamodel has approximated the more clear observable correlation seen
in the NP model parameters. These observations provide confirmation that
the metamodel is working as intended.
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Figure 12: Mean predicted values for the Fourth (subplot (a)) and Tenth (subplot (b))
entries in the i parameter vector, plotted spatially for each turbine in wind-farm Ciabatta.
In each subplot, the left-hand plots show the mean predictions from the NP model, while
the right-hand plots show the mean metamodel predictions. Filled circles represent tur-
bines used in training, while unfilled circles represent turbines used in testing only. The
points are shaded by their values.

6.2.1. Model Scores

The metamodel is compared against the benchmark NP, PP and CP
models, using the scoring metrics. In the case of the NMSE, a lower score
indicates improved model performance, while for the JLL a higher score
indicates an improved model fit. Firstly, Figure shows the NMSE per
turbine, for each model, for the observed turbines only (i.e. those used in
training). Similarly, Figure shows the JLL per turbine, for each model.
For both metrics, it can be seen that on average, the metamodel and PP
models score similarly to each other, and marginally better than both the
CP and NP models, which themselves score similarly to each another.

Secondly, Figures and show the NMSE and JLL per turbine, for
each model, for the unobserved turbines; as a reminder, the exception to this
is the NP models, which require data from every turbine, and so all turbines
are individually observed in this case. For these otherwise unobserved tur-
bines, it can be seen that on average the metamodel performs marginally
better than all three of the other models for both the NMSE and JLL met-
rics, including the NP models despite not having observed data from these
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Figure 13: Comparison of model scores for each of the observed turbines in wind-farm
Ciabatta. Dashed horizontal lines indicate mean scores per model.

turbines in training.

Across all observed and unobserved turbines, the CP model scores par-
ticularly poorly on the JLL metric in five instances: the observed turbines 16
and 19, and the unobserved turbines eight, 32 and 38. Since the CP model
learns a single set of shared population-level parameters which are used for
prediction, it is not able to adjust for turbine-specific differences, which may
be the case in these instances. For the unobserved turbines, the PP model is
limited in the same way as the CP model, since the shared population-level
parameters must be used for making predictions; this explains their similar
average scores. However unlike the CP model, the PP model does not share
the same sharp drops in the JLL metric (turbines eight, 32 and 38), suggest-
ing that partial-pooling of information provides improved adaptation to the
model. In the case of the observed turbines, the PP model is able to use the
learned turbine-specific weights in prediction, and so can make adjustments
which improve the model scores relative to the CP model, which are of a
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Figure 14: Comparison of model scores for each of the unobserved turbines in wind-farm
Ciabatta. Dashed horizontal lines indicate mean scores per model.

similar performance to the metamodel.

The metamodel combines strengths from all three approaches: informa-
tion is pooled reducing the effective data-scarcity (like the CP and PP mod-
els), whilst turbine-specific adjustments may also be made (like the PP and
NP models). Importantly however, the metamodel can additionally make ad-
justments for unobserved tasks, resulting in a distinct improvement in model
performance for these tasks. Compared to the next best performing model
for the unobserved turbines (the NP models), the metamodel scores were
improved by 3.2% and 9.8% for NMSE and JLL metrics respectively.

A final observation is that there are some relatively-high NMSE scores
(and reduced JLL scores) across all models for the observed turbines 12-14,
and the unobserved turbines 32-35, compared to the surrounding turbines;
to explore this further, the scoring metrics for the metamodel are plotted
spatially in Figure (15| Here, in general the scores appear to be worse towards
the lower end of the wind-farm; since these turbines follow a less rigid spatial
pattern than the turbines at the upper end, they are likely to be a source
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of additional noise in the spatial wake patterns of these turbines, which may
make accurate prediction of output power using just the freestream wind
speed and direction features used in this work more challenging.
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Figure 15: Maps of the metamodel scores across the wind-farm. The left-hand plot shows
the NMSE per turbine, while the right-hand plot shows the JLL per turbine.

6.2.2. Predicting Unobserved Turbines

The models are now compared in prediction, for an unobserved turbine—
for consistency, the same turbine as previously predicted for in Figure
was chosen. Figures 16d| first compare the learned linear models f; and
fo across all four models. A gridded input over all three features was used,
with averages of the predictive mean and 95" percentile taken over the wind-
directional features (Features Two and Three). Mean predictions are shown
as solid lines, while 95""-percentiles are shown as shaded areas.

To aid interpretation, f; is proportional to the mean prediction as per
Equation (4)), while f, is proportional to the precision (see Equation (f])),
which is interpreted as the inverse of the variance. While the CP, PP and
metamodels are broadly similar in these plots, there are significant differences
in the function shape and 95" percentile that can be seen for the NP model.
As a result of the stratified sampling carried out on the training and test
data, on a turbine-by-turbine basis there is relative data-scarcity at high
freestream wind speeds; for an individual NP model such as this one, this
scarcity is likely to result in both increased uncertainty in the trained model
weights in this region of the curve, and a tendency for these weights to also
be more biased towards their prior distribution, which in this case were
centred on zero. These factors likely both contribute towards f; being pulled
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were taken over Features Two and Three. Solid lines represent the mean prediction, while
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downwards at higher wind speeds (and with increased uncertainty), and fo
(proportional to precision) being relatively smaller (resulting in increased
variance in the beta distribution). However, for both f; and f; the CP, PP
and metamodels are not completely free of the issues of data-scarcity, as
at high freestream wind speeds (beyond 0.8), the curves begin to decrease,
which does not match the shape of the power-curve training data—power
does not decrease at high wind speeds, nor does its variance increase after
rated power is reached (assuming the cut-out wind speed is not reached).
This model behaviour is perhaps a limitation of its current design, which
could be improved by placing tighter, more positive priors for the higher
freestream wind speed weights, which could be reasonably justified based
on known behaviour of wind-turbines. More generally for the f; and f,
functions, it can be said that the metamodel, PP and CP models benefit
from pooling of information, resulting in narrower 95 percentile predictions
for both functions, despite not having observed data from this turbine.

These observations can directly be seen in the full probabilistic power-
predictions—shown in Figure|17, Here, the mean prediction of the NP model
can be seen to be lower than the other models, with increased uncertainty
at higher freestream wind speeds as indicated by the f; and f5 functions.
The CP, PP and metamodels all show broadly similar predictions, which are
well-matched to the shape of power-curve data. In this space, the effects of
the reducing f; and f, functions at high freestream wind speeds appears to
be negligible.
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Figure 17: Probabilistic power-predictions for the unobserved turbine, over gridded input
data, averaged for the wind-direction features
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Finally, to demonstrate how the metamodel is able to make location-
specific adaptations in prediction for different wind-directions (which the CP
and PP models cannot), Figure shows power predictions for the same
unobserved turbine, for easterly (90°), southerly (180°), westerly (270°) and
northerly (360°) winds. As was shown for the model predictions in Figure
[I0D] the model mean prediction is greater in the wake-effected region of the
power-curve during easterly winds (as compared to westerly winds), which
matches intuition.
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Figure 18: Probabilistic power-predictions for the metamodel for the unobserved turbine

35, over a gridded input of freestream wind-speeds, for easterly (90°), southerly (180°),
westerly (270°) and northerly (360°) wind-directions.

6.3. Model Computational Complexity

To compare the computational complexity of the models, Table [2[ com-
pares both the computational complexity of the likelihoods, and the number
of learned parameters in each case.
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Model 7B lN Likelihocgd Number of
complexity parameters

No-pooling 80 | 18 | 250 | O(NT) = O(20000) | 2B x T' = 36 x 80 = 2880

Complete-pooling | 20 | 18 | 250 | O(NT) (5000) | 2B =36

Partial-pooling 20 | 18 | 250 | O(NT) (5000) | 2BT +2B +2 =758

Meta model 20 | 18 | 250 | O(NT) (5000) | 8B =144

=0
=0
=0

Table 2: Comparison of the model likelihood complexity, and the number of parameters
for each model. T: number of training turbines, B: width of the design matrix, N: data
points per training turbine.

While the number of iterations, and the model architecture influence over-
all computational complexity, the likelihood calculation is repeated every
HMC iteration, and so should contribute significantly to the overall compu-
tational cost; in this case, since the CP, PP and metamodels are trained on 20
of the turbines, their likelihood complexity is one quarter of the overall cost
of the 80 NP models. Additionally, the total number of parameters learned
in each model varied significantly; the NP and PP models learn parame-
ters for every turbine used in training (totalling 2880 and 758 respectively),
while the CP and metamodels only learn parameters at the population-level
(36 and 144 respectively). A higher number of parameters are also likely to
increase the per-iteration cost, while also increasing the complexity of the
posterior geometry, which affects how efficiently HMC can move [31]. In
practice, model training varied in the order of hours for the CP, PP and
metamodels, while it was in the order of a day for all 80 of the NP models,
which roughly correlates with the increased total likelihood complexity, and
number of parameters for these models.

7. Conclusions

A probabilistic, multivariate wind-turbine power-prediction model was
developed, utilising a beta regression model with B-spline basis-functions
(named the BSBR model). This BSBR model was shown to be successful in
capturing both the heteroscedastic and asymmetric properties of power-curve
data. When training the BSBR model on each turbine within a wind-farm,
correlations were observed in the learned model parameters with respect to
turbine locations, which were deemed to be associated with the directional
dependency of wind-turbine wakes.
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These spatial correlations in parameters were then leveraged via a “meta-
model”, which imposed functional constraints over turbine-specific parame-
ters, as part of a hierarchical Bayesian model. This model design is able to
learn from all turbines (tasks) simultaneously, and via the metamodel pa-
rameters, can be used to make adaptive probabilistic predictions for turbines
not necessarily included in the training data, using their spatial coordinates
alone. Across an 80-turbine wind-farm, the metamodel was found to outper-
form three benchmark models that utilised no-pooling, partial-pooling and
complete-pooling of information, both in terms of normalised mean squared
error (NMSE) and joint log-likelihood (JLL) in the majority of cases, while
having a relatively low number of model parameters.

Since the models are trained on farm-level input features to predict turbine-
level output power, they are tuned (to a degree) on the specific environmental
conditions (including wake-effects) of the wind-farm used in this work, which
are also related to the specific layout of the wind-farm, as well as the turbine-
type. If one wishes to apply this model to another wind-farm of interest, the
model parameters should therefore be re-learned on data directly from that
wind-farm in order to obtain valid results.

While in practice, training data for all turbines in a wind-farm are often
available for power-curve prediction, the results suggest that the metamodel
design is an efficient modelling solution for situations where data may be
limited, and correlations could be expected in a variable of interest among
a population of structures. Potential further applications in this domain
include (but are not limited to): structural load assessment for fatigue-life
estimation, condition monitoring and fault detection, and design for wind-
farm layouts. As another perspective, suppose one wishes to measure a new
variable of interest in a population of structures; this modelling approach
could justify instrumenting just a subset of this population. By leverag-
ing shared information across the subset of the population, the model may
estimate the variable of interest with sufficient precision for the remaining
structures without sensors, reducing the overall cost of sensor deployment.

As highlighted in Section [6.1], the complexity of wake-effects cannot be
fully captured by the wind-direction alone, which likely limits the perfor-
mance of all the models in predicting power in the region between the cut-
in and the rated wind-speeds. Future work could consider incorporating
additional explanatory variables, such as wind-shear, turbulence-intensity,
thermal-stratification and air-density variations, which may improve predic-
tive performance. For the turbulence-intensity, if the standard-deviation of
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the wind-speed was available in the SCADA data (which is sometimes the
case), it may be estimated as the ratio of the standard-deviation to the
mean wind-speed [38]. The incorporation of weather forecast (or hindcast)
data may also help in gaining information for the additional variables, which
could be obtained from a provider such as ECMWF [25]. The additional
uncertainty associated with forecasted data does need to be considered how-
ever, as well as how to combine the 10-minute SCADA data with the weather
data, which is likely to be coarser. If turbine-specific data are used, then the
incorporation of computational fluid dynamics-based wake modelling—or a
surrogate model with lower computational cost—may offer further improve-
ments. The PyWake wind-farm simulation tool [39] may be a practical option
for such surrogate modelling.

A number of simplifying assumptions were made in relation to the training
features, to help capture wake-effects from the data; these features may be
improved if meteorological mast data were available, which would likely be a
more accurate reflection of freestream wind conditions. Given the complexity
of turbine wake physics, future work could also consider using physics-based
inputs, to develop a hybrid data and physics-based approach. Datasets la-
belled with turbine operating regimes, and instances of damage or repair that
may indicate a change in underlying turbine behaviour, may also help with
data preprocessing to reduce possible sources of noise. Model design may also
be improved by optimising the number of B-spline knots per feature, or their
locations—perhaps by increasing the density of knots in the regions of the
cut-in wind-speed and where rated power is reached, since these regions have
increased curvature. Alternative spline-modelling approaches could also be
considered. The use of nonlinear metamodels may also be worth considering,
particularly if parameter spatial correlations are complex.

If one wishes to scale the model for larger wind-farms, or perhaps with
more data, it may be practical to reduce the computational cost. One ap-
proach could be the use of variational inference (instead of HMC), where
the posterior is approximated as one of a family of known distributions [31];
this however may come at the cost of accuracy. Keeping the total number
of model parameters as low as reasonably practicable is also likely to reduce
the computational burden.
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8. Data availability
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been made available online at: https://github.com/smbrealy/wind_mtl.
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