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Abstract

Abstract. Data for training structural health monitoring (SHM) systems are often expensive and/or
impractical to obtain, particularly for labelled data. Population-based SHM (PBSHM) aims to address this
limitation by leveraging data from multiple structures. However, data from different structures will follow
distinct distributions, potentially leading to large generalisation errors for models learnt via conventional
machine learning methods. To address this issue, transfer learning — in the form of domain adaptation (DA)
— can be used to align the data distributions. Most previous approaches have only considered unsupervised
DA, where no labelled target data are available; they do not consider how to incorporate these technologies
in an online framework — updating as labels are obtained throughout the monitoring campaign. This paper
proposes a Bayesian framework for DA in PBSHM, that can improve unsupervised DA mappings using a
limited quantity of labelled target data. In addition, this model is integrated into an active sampling strategy
to guide inspections to select the most informative observations to label — leading to further reductions in
the required labelled data to learn a target classifier. The effectiveness of this methodology is evaluated
on a population of experimental bridges. Specifically, this population includes data corresponding to sev-
eral damage states, as well as, a comprehensive set of environmental conditions. It is found that combining
transfer learning and active learning can improve data efficiency when learning classification models in label-
scarce scenarios. This result has implications for data-informed operation and maintenance of structures,
suggesting a reduction in inspections over the operational lifetime of a structure — and therefore a reduction
in operational costs — can be achieved.
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1 Introduction

Data for training structural health monitoring (SHM) systems are often expensive and/or difficult to obtain,
particularly for labelled data relating to rare health-states, such as damage data. While unsupervised approaches
have been shown to be capable of detecting damage [1,2], data-based SHM systems typically cannot provide
contextual information — often encoded as labels — without labelled data. Population-based SHM (PBSHM) is
an emerging field that aims to address the issue of data scarcity by considering data from across a population of
structures [3-5]. However, datasets derived from different structures will not follow the same underlying genera-
tive distribution, meaning the assumption that training and testing data were drawn from the same distribution
is invalid; thus, supervised machine-learning techniques will likely have a large generalisation error [6].

This issue motivates the application of transfer learning (TL), a field of machine learning that aims to
improve the performance in a target domain (structure) by leveraging related information from a more data-
rich source domain (structure) [7]. Unsupervised-transfer learning approaches, such as unsupervised domain
adaptation (DA), have emerged as a promising method and have been demonstrated in a variety of SHM appli-
cations [8-14]. These methods do not require labelled data in the target, meaning that they have the potential
to facilitate damage classification when label information is missing in the target, by allowing a predictive func-
tion learnt using source data to generalise to the target. Nevertheless, these approaches are not infallible and
they may result in performance degradation - so-called negative transfer [7] — if the datasets are not sufficiently
related. They are also particularly sensitive to issues related to class imbalance [15] — where certain classes are
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Figure 1: A demonstration of the assumptions made by conventional unsupervised DA (top) and the active DA
approach proposed in this paper (bottom).

under-represented in the training data — which is already a pertinent issue in SHM datasets, as some health-
states are naturally more common.

Previous applications of DA in PBSHM have mostly focussed on scenarios where the target domain consists
solely of unlabelled data potentially representing all health-states of interest [3,9-12]. However, in practice,
health-state data are sequentially observed and potentially labelled via inspections; the typical DA setting is
compared with an illustrative online SHM scenario in Figure 1. To leverage these sequential observations ef-
fectively DA algorithms are required to be robust in the following two scenarios. Firstly, at the onset of the
monitoring campaign, the target structure may only have data related to normal operation, while the source
dataset(s) could encompass a wider range of the health-states of interest; this situation where datasets are
imbalanced is shown at the start of the active DA illustration in Figure 1, where only data for one class is
avialable in the target dataset, in comparison to three classes in the source dataset. This necessitates robust-
ness in DA algorithms to highly-imbalanced datasets, where data for many classes will be unavailable in the
target. Second, these methods should be capable of adapting as contextual information is acquired during the
monitoring campaign; this may improve generalisation and reduce the likelihood of negative transfer as the
monitoring campaign progresses [16], when maintenance decisions become more critical.

Given the cost of acquiring labels, it would be beneficial to schedule inspections to coincide with the most
informative data. Active learning has been demonstrated to significantly reduce the label requirement in SHM
by using a predictive model to infer which unlabelled data would provide the largest improvement if they were
labelled [17-21]. In the transfer-learning literature, guided sampling strategies have been proposed to leverage
source data to improve the initial model [22-25], and have been demonstrated to mitigate the class-imbalance
issue in DA [25]; these methods will be referred to as active transfer learning methods. However, to the authors
knowledge active transfer learning has not been investigated in SHM.

This paper proposes the first online transfer-learning strategy for PBSHM by incorporating a novel Bayesian
DA method into an active-learning framework. This online framework is able to update mappings estimated via
unsupervised DA using limited labels; the general proposed approach is illustrated in Figure 1. This approach



is validated using an experimental dataset consisting of three laboratory-scale bridges with varied support lo-
cations; these structures were subjected to testing over a range of damage-states and environmental conditions
using an environmental chamber.

This paper is structured as follows. Section 2 outlines the necessary background about transfer learning and
active learning. Section 3 introduces the proposed DA methodology and Section 4 presents the experimental
datasets and demonstrates the transfer of a damage classifier using the proposed method. Finally, conclusions
are presented in Section 5 and potential future work is highlighted.

2 Towards an online framework for transfer learning in PBSHM

Transfer learning can be used to learn predictive models with entirely unlabelled data or only a limited amount
of labelled data in the target domain [26], by leveraging data from a related source domain. However, the
applicable TL methods are dependent on the quantity and type of data required in the target dataset; methods
that can leverage labelled target data generally have a lower likelihood of leading to high generalisation error [16] -
motivating the active transfer learning framework presented in this paper. This section provides a brief overview
of transfer learning, and its associated issues for SHM applications, as well as active learning as a method to
guide the labelling process of online streams of data.

2.1 Transfer learning: background and problem statement

In transfer learning, a domain Q2 = {X,p(x)} is characterised by a d-dimensional feature space X € R? and a
marginal probability distribution p(x) over that space, where x € X [26]. Associated with each domain is a task
T ={Y, f(-)}, defined by a label space Y specifying the set of possible label values and a predictive function
f(), predicting labels y € Y. In a probabilistic framework, the predictive function may also be interpreted as
modelling the conditional distribution p(y|x). The source and target domain distributions will be denoted by
ps(+) and ps(-), respectively.

In unsupervised TL, a source dataset Dy = {Xs i, s}, With ng source observations, each with labels y; ;
and an unlabelled target dataset Dy, = {xt]};“:; with n;, unlabelled target instances x; ;, are used to learn

a predictive function that generalises to the target domain !.

A prominent approach for unsupervised TL involves mapping-based domain adaptation (DA) [26]. For a pre-
dictive model to generalise effectively between source and target domains, their conditional distributions must be
similar, i.e. ps(y|x) = pt(y|x), implying that the predictive relationship between inputs and outputs is domain-
invariant. Mapping-based DA addresses the scenario where both the marginal distributions ps(x) # p:(x) and
the conditional distributions ps(y|x) # p:(y|x) differ. Thus, the goal is to learn a mapping ¢ that projects both
domains into a shared feature space such that the source and target conditional distributions are invariant,
ie. ps(y|o(x)) = pe(y|p(x)). Estimating the conditional distributions directly is challenging without labelled
target data. Therefore, unsupervised DA algorithms typically make the implicit assumption that ¢ can be
learnt by minimising a measure of divergence between the unlabelled data, such as the marginal-distribution
divergence [29-31]. Whether this assumption holds for a given transfer task depends on domain similarity,
typically assessed using domain knowledge [27].

Unsupervised TL could significantly increase the value of SHM data, as labelled source data could be used
to learn predictive models in related structures without directly damaging or performing costly inspections of
the target structure. However, unsupervised transfer learning relies on the assumption that a mapping ¢ that
satisfies ps(y|p(x)) = pt(y|p(x)) can be learnt without labelled target data. In cases where this assumption is
not valid, transfer learning can result in negative transfer, where transfer learning results in worse performance
compared to using only the target data. Negative transfer can be specifically quantified by assessing the risk in
the target domain, which is given by,

R(f) = Exy yoy~p, [0 (%0), 9] (1)

IThis definition of TL follows [27], unsupervised TL is also often referred to as transductive TL as in [28].




where R(f) represents the risk of a predictive function f(-), output by an algorithm taking the source and target
dataset f = A(Dg,D;)?, and this predictive function applied to a labelled target dataset D, ;, to obtain the
expectation E[-] of a loss function £(-,-). Negative transfer can be defined as the event the risk of the predictive
function, learnt via transfer learning, R(A(Ds, D;)), is greater than the risk of a predictive function learnt using
only the target data, R(A(D, D;)), as follows [32],

R(A(D37Dt)) > R(A(@7Dt)) (2)

where () represents an empty set. Given the potential cost of misinforming decisions in SHM, it is pertinent
that transfer learning strategies are robust for SHM applications - particularly near the end of a structures
operating life, where the likelihood of incipient damage and unsafe operating conditions is higher. To avoid
negative transfer, generally the transfer problem must be well-posed — the source and target domains must be
similar — and the TL method should be able to effectively leverage this shared information.

A potential method to reduce the likelihood of negative transfer is to incorporate target labels into the
learning process, which generally leads to a lower generalisation error by providing data to directly minimise
the empirical target risk as discussed in [16]. This paper addresses the problem of identifying a TL method
that can leverage data in an online setting to reduce the likelihood of negative transfer in comparison to fully
unsupervised TL; related domains are identified using engineering expertise and modal analysis [33]. More prin-
cipled approaches for quantifying domain similarity and the likelihood of negative transfer remain active areas
of research [4]. For a deeper discussion on the issue of negative transfer the interested reader may refer to [16,32].

Unsupervised TL is particularly challenging in SHM, as in many cases only data from the undamaged and
perhaps a few damage-states, will be available in the target domain, as illustrated in Figure 1. In such scenarios,
domain adaptation must be robust to variations in the label space of the target domain. Specifically, the target
label space ); may be a subset of the source label space Vs, i.e., J; C V,. Alternatively, novel health states may
be present in the target domain that are absent from the source. In this case, a mapping must be learned via
the shared subset of classes, such that J; N ), # (). When there is a mismatch between the source and target
label spaces, conventional unsupervised DA is prone to negative transfer as a measure on the distance between
the marginal data distributions using the available data does not reflect the discrepancy been the underlying
marginal distributions; thus, specialised methods are generally required [15]. Another advantage of leveraging
labelled data is that methods that leverage target labels are generally more robust to situations where the target
dataset includes only a small subset of all possible health-states, as class distributions or boundaries can be
directly aligned [34].

While in SHM it is often unfeasible to obtain comprehensive labelled datasets because of budget constraints
and/or safety/accessibility issues, it may still be feasible to obtain labels for a few health-states throughout
the operation of the target structure via periodic, or guided, inspections. In such cases, supervised TL could
be used to increase the available information to learn shared regularities between domains [32]. In supervised
TL, both the source dataset, D, and the target dataset, Dy; = {x¢;, Yt ; ?;ll, contain labelled data, with ny;
representing the number of labelled target instances.

To facilitate a practical online framework for PBSHM, this paper aims to combine the advantages of both
unsupervised and supervised TL methods, including labelled target data as it becomes available, to continually
improve predictive performance. To achieve this objective, a TL model is proposed with two main objectives:

1. From the start of the monitoring campaign, the method should allow for classification of health-states
that have only been observed in the source domain; this method should be applicable using limited target
data, potentially only related to the undamaged target structure. It should ideally also reflect uncertainty
on the mapping, such that the uncertainty estimates provided by predictive models trained using source
data are calibrated to the target domain.

2. As labels are acquired throughout the operation of a structure, a TL method should be able to update to
leverage this additional information. Furthermore, it would be beneficial if this information could be used
to improve the prediction of classes which have only been observed (and labelled) in the source domain.

2In this paper, the algorithm A(-) refers to both the transfer learning algorithm and an active learning method.



2.2 Selecting informative labels: probabilistic active learning

As labels are acquired throughout the target structure’s monitoring campaign, it may be possible to improve
generalisation and mitigate the likelihood of negative transfer of a transfer learner. However, budget restrictions
will limit the number of observations in the target domain that can be labelled. Thus, it would be beneficial for
inspections to coincide with the most informative samples to label. One approach to guide inspections is to use
an initial model to classify (online) streams of data, and use the predictions to inform which samples should be
labelled; generally, this is the main objective of stream-based active learning [35].

Active learning generally aims to develop approaches for two main settings: stream-based and pool-based [35].
In stream-based active learning, data are acquired sequentially, and the active learner must determine whether
to label, or query, the current observation; generally, if the observation is not labelled in this instance, it cannot
be labelled retrospectively. Alternatively, pool-based methods aim to label the more informative data from
a previously obtained unlabelled dataset. In SHM, it is typically not possible to obtain labels of previously
obtained data; only the current condition can be investigated. Thus, stream-based methods are the focus of
this paper.

The specification of the sampling strategy is crucial, as it determines which data are most likely to be
selected for labelling. One of the most widely used approaches is uncertainty sampling [35]. For example,
maximum entropy sampling (MES) selects data with the highest entropy, prioritising queries for observations
where the current model yields the most uncertain or “confused” label probabilities [35]. Commonly, uncertainty
is measured using the Shannon entropy [36] of the posterior-predictive-distribution,

c
H(ji) = =Y p(fi = c|xi, Di)log p(fi = c|xi, Dy) (3)
c=1
where C' is the total number of classes and D; represents the labelled training dataset. Entropy-based sampling
typically results in labelling samples that lie close to the boundaries of the classifier, which should be the most
informative data for defining classification boundaries between previously observed classes [37]. A weakness
of this approach is that for most classifiers, observations at the extremities of the model will not be queried,
meaning it may not query data corresponding to novel classes. When using generative models, another approach
to uncertainty-based sampling is to sample observations with low-likelihood values [35]. These queries would
appear more “novel” to the model, rather than confused; thus, this query strategy is well-suited for novelty
detection. To combine the benefits of either approach, these measures can be combined into a joint strategy
to obtain more varied labelled datasets and reduce sampling bias [19]. Other approaches aim to label samples
which are expected to improve the model as quickly as possible. These methods often select samples which
would lead to the largest reduction in entropy of the posterior distribution of a Bayesian model [35].

Labelling data based on a criterion has been shown capable of reducing overall labelling efforts [35]; however,
training datasets will not be representative of the underlying distributions - a phenomenon known as sampling
bias. For example, data may be over-represented near boundaries using MES. This issue may lead to worse
performance than random sampling, particularly as larger datasets are obtained [21,38]. In the worse cases,
poor initial models can cause suboptimal model convergence, where data relating the the optimal model will
never be sampled under the selection criterion [39]. This issue is generally dependent on the labelling criterion
used; development of criterion that mitigate sampling bias is a major research focus in active learning [35,40].

2.3 Active transfer learning

The process of learning a predictive model using transfer learning or active learning for use with online SHM
data is illustrated in Figure 2(a) and Figure 2(b), respectively. In comparison, active transfer learning aims to
initialise the target modelling by also using source data. By considering TL in an active-learning framework,
the drawbacks of considering either approach independently can be alleviated.
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Figure 2: Flow chart showing the process of learning a predictive model with transfer learning (a) and stream-
based active learning (b).

As previously discussed, from a TL perspective incorporating labels can reduce the likelihood of nega-
tive transfer and improve generalisation where unsupervised TL alone achieve insufficient classification perfor-
mance [32]. Using more informative labelled datasets selected via active sampling could achieve these improve-
ments with fewer labels [24]; thus, facilitating the application of supervised TL with smaller labelling budgets.

From the perspective of active learning, leveraging source data has several advantages. First, using transfer
to initialise the active learner may result in a stronger initial model, meaning that it can select more meaningful
samples from the start of the process [22]. However, it should be noted that there is also a risk that important
target samples will not be labelled if initial transfer is poor; this will be discussed more in the following section.
In addition, uncertainty-based methods will likely require fewer samples from classes with abundant source
data before they can be classified with low uncertainty — leading to fewer samples overall [24]. Furthermore,
while conventional active learning allows for classifiers to be learnt without a fully labelled dataset a priori,
observations can only be labelled as classes that have been previously observed. However, using an appropriate
TL strategy, classification of classes that have only been observed in the source domain could also be attempted.

Active transfer learning presents a promising approach for training predictive models in sparse data set-
tings. However, using a more informative transfer-based model also has the potential to compound the effect of
sampling bias. For example, if a source classifier has well-defined boundaries for a wide range of classes, using
MES the likelihood of obtaining data in these regions would be low, potentially meaning incorrect boundaries
defined using source data are not corrected via sampling target data. Thus, the issue of negative transfer is still
an important issue and requires the transfer task to be well posed [27]. To mitigate this problem, this paper
uses a probabilistic mapping to increase uncertainty in target predictions, particularly at the start of the active
sampling process.

2.4 Related work

This paper presents both a novel DA method and introduces the concept of active transfer learning to PBSHM.
Thus, this section provides a summary of how the proposed methodology related to the previous TL and active



learning literature.

Many of the previous applications of TL to SHM have focused on unsupervised DA to transfer source la-
bels in the absence of any target labels. For example, it has been applied in the context of PBSHM to learn
damage classifiers for multi-storey structures [8], bridges [41,42], and aircraft wings [9,43]. Xu et al. [44] used
multi-source DA to perform damage quantification. Domain adaptation has also been used to improve dam-
age detection in tailplanes [11] and bridges [45]. There have also been a number of applications of deep-DA
architectures proposed to perform fault diagnosis in machines under changing loading conditions and rotation
speeds [12-14,46,47]. However, these methods assume there are unlabelled observations for each of the damage-
states of interest in the target domain, as depicted in the top flow chart in Figure 1; whereas, in practice, it is
unlikely there would be observations of multiple damage scenarios in the target domain. Moreover, if damage
in the target structure is detected, a few labels could be collected; however, these previous applications do not
incorporate any labels.

A few examples exist where target labels have been used for TL in SHM. Previous applications of supervised
TL mostly focus on fine-tuning of neural networks; for example, to perform crack detection in images [48-51] and
unprocessed frequency response data [48,52]. Meta-learning using neural networks has also been used to learn
a model that can be updated with a novel damage class with few labels [53]. However, these applications all
require labelled data from all classes of interest in the target domain. In practice, damage will be observed and
(potentially) labelled sequentially throughout the monitoring campaign. Thus, to transfer a classifier trained
using data from multiple damage-states in the source domain, transfer can only be performed using solely un-
labelled target data, or a limited set of target labels which only represent a subset of all classes in the source,
ie Yy C V.. As far as the authors are aware, Gardner et al. [54] is the only example of supervised domain
adaptation for PBSHM. In [54], kernelised Bayesian transfer learning (KBTL), was applied to learn a shared
classifier, and a shared feature space, across multiple structures with different feature dimensions. It was shown
this approach could classify damage-states where there were no labels in that specific domain; however, the case
studies assume most classes included labels.

Beyond proposing an active transfer learning framework for PBSHM, this paper also introduces a novel
Bayesian DA model that uses a low-variance interpretable-probabilistic mapping, regularised via informed pri-
ors, while fully exploiting source data via a shared-flexible predictive model. While, performing DA via a joint
classifier has been investigated in a few previous studies [34,55,56], the proposed classifier has a unique set of
properties that make it suitable for active transfer learning with sparse target datasets. In [56], a shared feature
space was found via a joint binary support vector machine (SVM). This approach differs from the proposed
method since it cannot learn a shared space common to multiple classes, so it cannot be used to predict classes
that have previously not been observed in the target domain. Hoffman et al. proposed the first approach to
learn a shared feature space common to multiple binary SVM classifiers, with the objective of predicting classes
in the target domain which have not been previously labelled [34]. However, this method requires both the
mapping and classifier to be learnt in the same feature space (typically a nonlinear kernel basis), and is not
a probabilistic model. The most similar approach is KBTL [55], which finds a projection into a latent space
shared between multiple domains in a Bayesian framework. The main differences to the proposed approach
is KBTL learns a nonlinear DA mapping (via a kernel mapping), and does not maintain the interpretability
of the original feature space. This mapping is powerful in scenarios where feature dimensions differ between
domains, or where dimensionality reduction is required. However, the flexibility of the mapping may not be
suitable when target data are sparse and it does not result in an interpretable feature space, which may make
defining an informative prior mapping challenging.

A few previous studies have demonstrated that active learning can reduce the number of labels required to
train conventional machine-learning models for SHM. For example, generative mixture models have been used
with a mixture of entropy- and likelihood-based [19,40] and risk-based sampling strategies [20]. In addition, to
further reduce label requirements and mitigate the effects of sampling bias the combination of semi-supervised
and active learning has been investigated [21,40], as well as the use of efficient discriminative classifiers (the
relevance vector machine) [21]. Uncertainty sampling has also been used with neural networks to classify images
of defects [18] and in [17] a Bayesian convolutional neural network was used for tool monitoring. Finally, [57]
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Figure 3: Graphical model representation of the proposed DA-RVM. Nodes correspond to variables: shaded
nodes denote observed variables, solid outlines indicate random variables, and dotted outlines represent deter-
ministic nodes. Arrows without a connected parent node indicate prior distributions. Plates represent replicates
over dimensions for the mapping variables and classes for classifier weights.

proposed a probabilistic framework for active sampling for a damage-progression model. However, active learn-
ing has only recently been considered in the context of PBSHM for multi-task learning (using hierarchical
modelling) for regression [58], and has not been investigated in the context of classification or TL.

In reliability analysis, data are often queried based on the U-function [59,60]. The U-function aims to select
samples that are both uncertain and correspond to system states operating close to failure. In this sense, it is
similar to risk-based active learning [20], as both approaches aim to prioritise data associated with decision-
critical health states - i.e., if the system is identified to be close to failure, it should be shut down and inspected.
While MES or likelihood-based sampling can be effective at improving model performance, they may lead
to the labelling of data that have minimal effect on the decision-making process. An interesting future direc-
tion would be to extend the framework proposed in this work to incorporate such risk-based sampling strategies.

3 Classifier-based Bayesian domain adaptation

This section presents a novel Bayesian model for DA, the DA-relevance vector machine (DA-RVM). The DA-
RVM is proposed to facilitate classification in both domains via a flexible classifier, learnt largely using source
data, while defining a probabilistic mapping that can be defined using minimal parameters that can be reg-
ularised via informative priors. By considering uncertainty on the mapping, the model reduces confidence of
classification of target data in comparison to directly applying a source classifier to the target data via a de-
terministic mapping, which is a may prevent missing informative target data in the active sampling process.
The section following section outlines the proposed model, as well as methods used for defining prior mapping
parameters and the active sampling scheme.

3.1 Model assumptions

The model has two core components — a classifier that is learnt using both source and (limited) target data,
and a linear mapping that is applied to the target data to allow for data in both domains to be classified by a
shared classifier. To achieve a high likelihood of classification in both domains using a single classifier, domain
divergence must be low [61]; as a result, the mapping aims to project target data into a feature space where
distribution divergence between ps(y|x) and p;(y|x) is reduced. In addition, using a shared classifier to reduce
distribution divergence does not rely on assumptions about the underlying generative process of the data or
require nonparametric measures between the data distributions, which may be beneficial in sparse data scenar-
ios [21]. A graphical model depicting the proposed model is shown in Figure 3.



In this paper, the main objective is to learn a mapping that minimises distribution divergence between
the domains using minimal target data. Thus, the mapping is restricted to a linear transformation, which is
decomposed into a scale s € R%, translation t € R?, and rotation 6 = {05}, j)er € R™, where m = %d(d -1)
and 7 is the set of all index pairs between the features (7, ) such that 1 <1i < j < d. Compared to more complex
mappings found by many popular DA methods, the proposed mapping may require fewer data to estimate [37],
while the classifier can be defined to be more flexible as it is learnt using larger quantities of source data 3. The
modelling assumptions for the mapping parameters are given by,

si~ TN (us,05,as,bs) fori=1,...,d (4)
ti ~ N(pg,0?) fori=1,...,d (5)
0¢~TN(u9,og,a9,b9) fori:l,...,m (6)

where TN is the truncated normal distribution, with parameters u, and o, representing the mean and standard
deviation defining the prior for each scale component s; € s; pg and oy are the corresponding parameters for
each rotation angle component 6; € 8; and the upper and lower bounds are defined by as < s; < b for the scale
parameters, and ag < 6; < by for the rotation parameters. The prior for the translation components t; € t, is
defined as a normal distribution A, with mean u; and standard deviation o;.

The rotation angles, scale and translation are assembled into matrix form; where S is the scale matrix, given
by S = diag(s), T is the translation matrix, given by T' = diag(t), where diag denotes a diagonal matrix elements
of a vector placed along its diagonal. The rotation matrix © is constructed using the following expression,

0= H G(i’j)(a(i,j))a (7)

(i,5)€T

where G(+7) (0¢i.5)) € R™?is a Givens rotation matrix in the (i, j)-plane by angle 6; ;) [62]. The transformation
on the target features prior to classification can be expressed by,

X, =X,-0T.5+T (8)
where X, denotes the transformed target features.

As the mapping projects target data into the source feature space, the interpretability of the original feature
space is maintained, i.e. in structural terms, increases in natural frequency values can still be interpreted as a
stiffness increase. In addition, decomposing the mapping in this way promotes interpretability of the mapping
itself, allowing for engineering judgement to be used to define prior mapping values. For the specific case study
in this paper, these parameters were restricted to improve learning with sparse target data. The features used
were natural frequencies; thus, scale was restricted to be positive (as = 0 and by = oo in equation (4)) to reflect
the belief that for a given pair of natural frequencies, the relationship between the reduction in stiffness and
damage will not reverse between domains — damage is almost always expected to result in a reduction in natural
frequencies [2]. Furthermore, natural frequencies were selected using the MAC to ensure they correspond to

T 7

similar modes (e.g. bending or torsion etc.); therefore, rotation was limited to [—7, 7] to both reflect the fact

the relationship between stiffness does not invert, and features should not be reordered.

The classifier used in this model is a relevance vector machine (RVM), a sparse vector learner first proposed
by Tipping et al. [63], and later extended to a multi-class setting in [64]. In the RVM, data are projected into
a reproducing kernel Hilbert space (RKHS) via a kernel embedding that represents each data point in terms
of its similarity to other training data via a kernel function k(-), allowing for more expressive boundaries to
be found using linear-in-the-weights models. The RVM also induces sparsity over the weights, whereby most
weights are zero; therefore, effectively reducing the number of model parameters and reducing the likelihood
of overfitting [6]. Thus, test data are classified given their similarity (via the kernel function) to the samples

31t should be noted that the proposed mapping does imply a strong prior assumption about the form of the shift between
domains; in many scenarios this assumption may be too strict and it could be relaxed by kernelising the data prior to finding the
mapping or including additional transformation terms.



corresponding to non-zero weights; these samples are referred to as relevance vectors. First data are projected
into RKHS yielding a kernel matrix K, which is found by,

K= [k(xi,xs,j)]iEijns (9)
where n is the total number of labelled samples n = n, + n;;. Note that the target data are projected into the
kernel space after they are mapped to the source feature space via equation (8). Thus, the mapping remains
linear, while the classifier can be specified as a flexible nonlinear classifier with a suitable kernel function. Here,
relevance vectors are restricted to the source samples, which forces the mapping to align the data such that these
relevance vectors are representative of both the source and target domains, implying that divergence between
the domains must be low. This choice was to prevent the potential solution of finding domain-specific relevance
vectors, which may lead to an arbitrary mapping, as target data must be classified based on their similarity to
the set of source relevance vectors.

The probabilistic modelling assumptions for the classifier are given by,

Wei | Qe NN(O,agl) fori=1,...,ns (10)

7

where w, € R™ is a vector of weights with components defined as w.; € w,, for class ¢ € {1,...,C}, with
C classes. Prior precision values are specified by a. € R"s, where each component a.; € o, is assumed to
be conditionally independent of the others. The precision values for each component are assumed to follow a
Gamma distribution I'(+), as follows,

ac; ~ Gamma(a,b) fori=1,...,n; (11)

where are a and b shape and rate parameters. By specifying a and b so the gamma distribution results

in a weakly-informative prior on the precision, this prior promotes large precision values o, ;, driving the

corresponding weights w, ; towards zero under the posterior. As a result, while the n, weights are estimated,

the effective number of parameters should be much lower; more details on this hierarchical prior structure for

inducing sparsity can be found in [63]. These weights are used to obtain the class membership scores 7. for
class ¢ by,

Ve = kiw?! (12)

k; € K represents a kernelised sample. To achieve multi-class classification, the softmax function normalises the
unbounded membership values into a valid categorical distribution over the classes; therefore, class probabilities
are given by,

e'YC
C )
v
Zj:l e

Normalising the membership scores in this way allows a categorical likelihood function to be used. Since both
source and target data are used to learn a classifier, this model is also related to multi-task learning [55], which
mainly differs from TL in that it aims to equally improve the performance across multiple domains, instead of
prioritising the target domain.

Ply=c| k)= (13)

While there are a variety of suitable classifiers that could be used in this framework, the RVM was chosen for
three core reasons. First, the RVM is a flexible nonparametric classifier which has been shown to learn efficiently
with sparse datasets [63,64]. The RVM produces tight decision boundaries, and when a Gaussian kernel is used,
prediction probabilities converge to a uniform distribution as test points move further from the relevance vectors
because of their similarity to the relevance vectors approaching zero, i.e. k(x;,xs;) =0 Vj e {1,...,ns}. To
demonstrate the behaviour of the RVM, a toy example showing the entropy for a Bayesian logistic regression
model and an RVM is presented in Figure 4. From the perspective of transfer, high classification likelihood
would be achieved when data are mostly distributed in low entropy regions, on the correct side of the classi-
fication boundaries; thus, more restrictive boundaries restrict the possible mappings significantly — potentially
leading to better alignment when only a few classes are labelled in the target domain. In the example in Figure
4, for the RVM, it can be seen the region of low entropy is significantly smaller compared to logistic regression.
There is also an additional benefit when considering this model for MES. As previously discussed, MES typically
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leads to sampling near the boundaries, but often will not sample novel data at the extremities of the model.
However, the RVM only has high confidence in data near the relevance vectors, as can be seen in Figure 4; thus,
it will also assign high entropy to observations at the extremities of the model, combining the benefits of both
MES and low-likelihood sampling [21].

The model was implemented in a general-purpose probabilistic programming language — numpyro [65]. The
posterior over the weights if intractable because of the categorical likelihood and (potentially) nonlinear trans-
formation via the kernel embedding. Thus, the parameters of the model are inferred via MCMC using the
no-U-turn (NUTS) implementation of Hamiltonian Monte Carlo [66]. The parameters for the RVM were ini-
tialised using only the source data with the RVMs expectation-maximisation algorithm outlined in [64]. Weights
with values below 10~° were pruned from the initial model to reduce the computational complexity of learning
this model via sampling.

While HMC via NUTS enables approximation of the full posterior — given a sufficient sample size — it may
face limitations when scaling to high-dimensional problems. To address this limitation, alternative inference
strategies may be more appropriate. For example, variational inference or an expectation-maximisation scheme
could offer more efficient inference, while importance sampling may allow parallel computational resources to be
leveraged more effectively [6]. Investigating these approaches represents an interesting direction for future work.

Nevertheless, the current approach remains applicable to many SHM scenarios, which often rely on a small
number of damage-sensitive features - such as natural frequencies - as demonstrated in the case study presented
in this paper. Moreover, since the aim of the proposed method is to update the DA-RVM online as new labels
are acquired, reducing the computational cost of inference would also help minimise ongoing resource demands.
However, in many SHM scenarios, labels are acquired only periodically; therefore, the DA-RVM would also only
require periodic retraining, which could feasibly be performed offline before redeployment for online monitoring.

3.2 Inferring a prior mapping with distribution alignment

In practice, to learn a discriminative classifier, it is required that the underlying conditional distributions of the
training and testing data are the same, i.e. ps(y|x) = p:(y|x). However, the lack of labels and limited samples
of data means that learning a mapping that directly aligns the conditional distributions is often not possible.
As previously discussed, unsupervised DA generally assumes that the underlying conditional distributions can
be aligned by minimising a distribution distance metric between a sample of data — often these approaches
aim to minimise marginal-distribution distance, assuming labels are unavailable or sparse [26]. Such mappings

RVM

Logistic Regression

0.7

0.0

Figure 4: Toy example with shaded regions showing the entropy in label predictions produced by a Bayesian
logistic regression model (left) and an RVM (right).
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will only result in invariant conditional distributions if both the domains are sufficiently related, and there is a
suitable DA method to find a mapping with available data [32]. In addition, testing the outcomes of transfer is
challenging, as in many cases labelled data will not be sufficient in the target domain to perform conventional
validation, such as cross-validation. As such, current approaches to DA must be applied to testing data prior
to full validation.

Determining when these assumptions apply, without traditional model validation, is a critical challenge for
the practical application of DA. Without direct validation, assessing the prediction quality on target test data
is challenging, highlighting the importance of research into validation and prediction of transfer outcomes for
PBSHM [67]. This paper proposes that these mappings can be treated as a “prior mapping” in the DA-RVM,
where prior uncertainty is reflect the trust in unsupervised DA*.In this way, assumptions made when estimating
the initial DA mapping can be considered as a prior, where the posterior mapping parameters are updated
with data directly relating to the quantity of interest — the likelihood of classification in the target domain. A
consequence of the Bayesian formulation is, as labelled data become more abundant in the target, the posterior
mapping becomes less influenced by the prior mapping, meaning it relies less on the strict assumptions made
by unsupervised DA.

In this paper, the mapping is composed of scale, translation and rotation parameters. Thus, an appropriate
set of DA techniques would be statistic alignment, a branch of DA which aim to directly align the lower-order
statistics [26]. Since engineering datasets are prone to class imbalance, a method called normal condition
alignment (NCA) was used [68]. NCA was used to mitigate issues related to class imbalance by selecting a
subset of data from the beginning of the monitoring campaign, where it is typically assumed that the structure
was undamaged and is a standard practice in damage detection [1,2]. This method first standardises the source
domain, and the normal conditions are then aligned by,

Tti — M
2t = (”) Tsn + Mo (14)
Otn

)

where z;; is the transformed target data, p ., py,, and o, o, are the means and standard deviations of
the normal-condition data for the source and target respectively. Using NCA, the prior scale mean parame-

Osn

ters (equation 4), can be defined by p, = o, and the prior mean translation parameters (equation 5), as

Os,n

Il T U e In this paper, prior rotation was assumed to be zero; however, methods such as correlation

alignment [69], or Procrustes analysis [70] could be used to define a prior rotation.

While in some cases these approaches may lead to better generalisation by regularising the mapping, if these
mappings are not appropriate for a specific transfer problem, they could still cause negative transfer. In general,
prior mappings should only be used when they are suitable for a given transfer task, highlighting the need for
similarity-quantification methods — an area of ongoing research [4]. Nevertheless, NCA was used in this case as
it has been shown to perform successful transfer in a number of previous case studies in PBSHM [42, 68].

3.3 Active sampling scheme

While incorporating labels into a DA framework may be beneficial, it is pertinent that the number of samples
are minimised to reduce the associated cost of the monitoring system. To this end, an active-sampling strategy
is proposed to ensure that the most informative data are labelled. This paper utilises a MES strategy first
proposed in [40]. Sampling is performed in a stream-based setting following the procedure outlined in Figure 5.

To decide when to query a sample, first entropy is obtained for test data using equation (3). To constrain
the mapping prior to the acquisition of damage labels, the classifier is trained to discriminate between ambient
and freezing undamaged data, where data collected above 0°C was considered to be generated under “ambient”
conditions and below to be “freezing”. To prevent unnecessary labelling at this boundary the probabilities

4In practice, defining this prior uncertainty may depend on similarity assessment performed between domains and engineering
judgement.

12



of these classes are combined. In general, different weightings could be given to each class based on their
importance to decision making [71]. The information efficiency [36] is then used to normalise entropy between
zero and one,

_ H(g:)

The information efficiency 7(x;), reflects the confidence in the label prediction compared to a uniformly
distributed label prediction. Following [40], n(x;) can be treated as a pseudo-probability that observation i
should be labelled. An observation is then labelled if a random draw ¢ from a uniform distribution ¢ ~ (0, 1)
is less than 7(x;). Since the probability of sampling any observation will never be zero, this sampling scheme
provides some protection against sampling bias.

(15)

By considering uncertainty on the DA mapping, the proposed DA-RVM model has an important advantage
for MES in comparison to approaches that find deterministic mappings. As a result of mapping uncertainty,
prediction uncertainty will generally be higher in the target domain to reflect the reduced trust in predictions
caused by the reliance on source data. In the context of MES, accounting for this source of uncertainty will
also have implications on the sampling procedure, potentially preventing overconfident predictions leading to
ignoring informative target data.

Label and
retrain
e . Yes
Estimate prior Initialise shared Present a single
mapoin Lf)sin classifier and target
an Fi)rﬁ)ita?set 0? —» mapping using — observation and —» q < n(x;)
target data source data and calculate the
g initial target data entropy.
t No
Continue

Figure 5: Flow chart to illustrate the active-learning process with DA.

4 Transfer between lab-scale bridges

This section presents an experimental dataset collected to investigate the active transfer learning approach for
damage classification using a population of lab-scale beam and slab bridges. Specifically, data for three bridges
with varying span lengths were obtained across changing temperatures, and the same four pseudo-damage states.

The inspection and maintenance for populations of bridges presents a major challenge, and there are signifi-
ant safety concerns as bridges are operated towards the end of their design life. In addition, the scale and cost
of these structures will often limit available SHM data to streaming data obtained throughout the operation of
the structure. While it is uncommon for two bridges to have a nominally-identical design, there exists many
examples of large heterogeneous populations with slight variations in geometry (i.e. with different lengths and
support locations), managed by a single asset manager. For example, the main highways agency in the UK,
National Highways, was responsible for managing 9,392 bridges in 2020 [72]. This motivates the application of
the proposed active transfer-learning framework to bridge monitoring applications.
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Figure 6: The experimental set-up to perform modal testing for one configuration (B1), showing the full bridge
(a) and the connection between the deck and supports via roller bearings (b). The red dots in (a) indicate the
locations masses were added.

4.1 Experimental dataset

A population of three bridges, each with three spans, was constructed using a bespoke modular bridge kit that
facilitates changing of the deck length, number of supports and support locations; thus, allowing for controlled
variation between structures®. Figure 6(a) presents an example of one of the configurations used in these exper-
iments. The kit consist of a set of four supports and a deck, supported by two I-beams, which are connected via
a pair of roller bearings at each support, shown in Figure 6(b). The bearings at one end are locked, such that
they behave as pin joints. The location of the supports was varied between bridges to produce a heterogeneous
population. The locations of the supports for each bridge are presented in Table 1. The bridges are referred to
as B1, B2, and B3; this abbreviation will be used for the remainder of the paper.

Table 1: Summary of the configuration for each experimental bridge structure. Support locations indicate the
position of the bearings connecting the deck and the supports.

Support 1 Support 2 Support 3 Support 4
Deck length (m) location (m) location (m) location (m) location (m)

B1 3.00 0.14 0.725 2.28 2.86
B2 3.00 0.14 0.82 2.19 2.86
B3 3.00 0.14 0.86 2.15 2.86

The bridges were attached to a six-axis shaker table via bolts at the base of each support, within an envi-
ronment chamber. The bandwidth of excitation from the shaker table is approximately 90Hz; therefore, a set of
masses were uniformly distributed along the underside of the deck, shown in Figure 6(a), to reduce the natural
frequencies and aid modal identification. Modal testing was conducted by applying a continuous white-noise
random excitation, via the shaker table. Data were collected via twenty uniaxial 100 mV /g accelerometers,
organised in two rows of ten on each edge of the underside of the deck, and the response was measured at a
sample rate of 256Hz.

To investigate challenges presented by changing environmental conditions, the first two bridges, B1 and B2,
were subjected to a range of temperature effects; B3 was only tested at ambient temperatures. Specifically, the
response of the bridges was measured across two temperature cycles: from 15°C down to -15°C for B1, and from
15°C to -5°C for B2. A thermocouple was attached to the deck surface to monitor its temperature. To emulate
a bi-linear stiffness relationship, which can be observed in concrete bridges [73|, a fabric sheet was attached to
the surface of the deck and saturated with water for the second temperature cycle, such that when frozen, its
stiffness would sharply increase. Data were also acquired at ambient temperatures (between 23°C and 31°C),
as well as for four pseudo-damage states which correspond to two masses (damage extents), 21.6g and 64.4g
masses, placed in the centre of the central span in two locations, indicated by the red circles in Figure 6. These
masses were chosen as they represent a relatively small change in mass in comparison the the deck, which had

5 All testing was conducted at the laboratory for verification and validation (LVV) at the University of Sheffield.

14



Table 2: Number of samples available after SSI per class for each bridge.

Ambient Freezing 21.6g off-centre 21.6g centre 64.4g off-centre  64.4g centre

Bl 179 138 10 9 10 10
B2 129 54 5 5 7 10
B3 36 0 3 ) 10 10

a mass of 30kg [74].

To obtain natural frequencies for use as features, output-only modal analysis (OMA) was performed using
covariance stochastic-subspace identification (SSI); natural frequencies were extracted, based on a reference set,
selected via an automated pole-selection algorithm, using the software presented in [75]. Several samples were
unidentified and a few experimental outliers were removed from the normal condition data. Table 2 shows
the number of samples per class for each dataset following modal analysis. As is often characteristic of SHM
datasets, the data are imbalanced, with larger quantities of undamaged data.

The full experimental dataset is openly available. For more details, the interested reader may refer to [76,77].

Figure 7: Visualisation of the MAC scores between each pair of structures used as a source/target pair.

4.2 Transfer tasks and methodology

Four transfer tasks were investigated in this paper, which are split into two case studies. The first case study
investigates transfer between structures under changing temperatures using the B1 and B2 datasets, considering
each structure as a source and target, resulting in two transfer tasks; there tasks will be referred to as B1—+B2
and B2—B1. The second case study investigates transfer from datasets with comprehensive temperature data
and a target with limited data, considering B1 and B2 as source domains, and using B3 as a target, resulting
in another two transfer tasks, referred to as B1—+B3 and B2—B3.

The results from modal analysis were used to select features for transfer via the modal assurance criterion
(MAC) [78], following [33,41]. The MAC matrices for the first four identified natural frequencies are presented
in Figure 7. In this paper, the first two natural frequencies were selected as features, as they have high MAC
scores for each pair of structures; however, the third mode also has a high MAC value between B2 and B3, and
may be utilised for transfer in future work.

In each transfer task, the objective was to transfer a damage classifier capable of predicting the normal con-
dition, and the four mass-states. The location of the 21.6g masses was not discriminative using the identified
natural frequencies; thus, these two locations were considered as a single class, resulting in three damage classes.
Furthermore, to constrain the mapping in the initial model (before damage is observed), the healthy data were
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split by ambient (7' > 0°C') and freezing temperatures (T' < 0°C'). Therefore, the classifier was trained to dis-
criminate between five classes - ambient and freezing normal condition data, pseudo-damage caused by adding
a 21.6g mass (damage 1) and pseudo-damage resulting from a 64.4g mass placed off-centre (damage 2) and at
the centre (damage 3) of the central span.

To emulate an active-sampling process for SHM, with the structure’s state gradually transitioning from
undamaged to damaged states, the target data were presented to the model as follows. First, data were split
into training and testing datasets at a ratio of 80:20 using stratified sampling to ensure that the proportion
of damage and undamaged data was consistent; the dataset was randomly shuffled and 100 training/testing
datasets were generated in this way to test for differences in initial data used to learn the NCA mapping and
the effect of presenting streaming data in different orders. The damage-states were organised into two damage
scenarios, where in a single location, damage is initialised with minor damage (the 21.6g mass) and progresses to
more severe damage (the 64.4g mass). Data were then ordered to present undamaged data collected at chang-
ing temperatures, followed by undamaged data collected under ambient conditions, subsequently by a damaged
scenario; thus, each target domain includes two cycles of normal condition data, followed by a damage scenario.
Figure 8 presents an example of a single repeat of the training data (the first two natural frequencies), for each
target domain considered. It can be seen that the expected range of values for both the first and second natural
frequencies do not overlap between domains, motivating the application of mapping-based DA for transfer.

At the start of the active sampling process, the model was initialised using the source training dataset
and only a subset of target training data, representing data corresponding to the undamaged structure. Fol-
lowing [68], in each case, the initial data used for NCA was selected to correspond to similar temperatures.
Specifically, for B1—+B2 and B2—B1, 70 initial data were used, and the ambient undamaged class was learned
to learn the NCA mapping, as Bl contains data corresponding to lower temperatures. For B1—B3 and B2—B3,
only 14 initial data were used as there were fewer normal condition data. In addition, data in B3 were only
collected at room temperature; therefore, NCA was learn using data above 23°C in both domains.

The remaining data were presented sequentially, being labelled using the probabilistic sampling strategy
discussed in Section 3.3; uncertainty between the ambient and freezing classes was not considered to prevent
unnecessarily sampling normal condition data. Since there is significant class imbalance, the macro Fl-score
was used to assess classification performance on the entire test data, which included data from each class (for
details see [8]).

The Gaussian kernel was utilised in the RVM as it is flexible and well-studied [6,64]. Following [21, 64],
the bandwidth was defined as é. To demonstrate the benefits of incorporating transfer into the active-learning
procedure, results were obtained for an active learner, using the RVM, algorithm from [64], trained solely with
target data. Since the target-only RVM requires multiple target classes to be initialised, three random samples
from the first damage scenario were selected to initialise the classifier. The specification of variances on the
prior mapping parameters reflect the confidence in the NCA mapping, given the initial quantity of data. Thus,
variances for all mapping parameters were set as 0, = 05 = gg = 0.1 in the first case study, and the variance
for translation and scale were increased to o; = 0, = 1 for the second case study, since only very few data were
used to learn the NCA mapping, leading to large discrepancies in mean and scale between domains, as discussed
in Section 4.5.

4.3 Case study: active transfer learning under changing temperatures

Figures 9(a) and 9(b) show the F1 scores across the test set after each unlabelled observation was presented,
with solid lines representing the mean F1 scores from 100 repeats and the shaded region indicating the 10th
to 90th percentiles. It can be seen in both cases, naively applying a source-only classifier led to poor generali-
sation in the target domain, indicated by the orange line. This motivates the application of transfer learning;
it can be seen applying NCA improves generalisation of the source classifier to the target domain (the mean
F1 score is indicated by the green line). However, NCA still exhibits significantly worse performance compared
to a fully supervised classifier learnt using target data, indicated by the black line in Figure 9, motivating the
incorporation of additional information to further improve the initial NCA mapping.
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Figure 8: Example of the ordered training data used for the active sampling process when B1, B2, and B3 are

Undamaged - ambient
Undamaged - freezing
21.6g mass - off-centre
21.6g mass - centre
64.4g mass - off-centre
64.4g mass - centre

Undamaged - ambient
Undamaged - freezing
21.6g mass - off-centre
21.6g mass - centre
64.4g mass - off-centre
64.4g mass - centre

Undamaged

21.6g mass - off-centre
21.6g mass - centre
64.4g mass - off-centre
64.4g mass - centre

considered as target domains, presented in (a), (b) and (c) respectively.

In both cases, updating the NCA mapping with the DA-RVM using labelled target data significantly im-
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Figure 9: The test F1 score vs the number of unlabelled samples presented to the active learners for B1—B2,
shown in (a), and B2—B1 presented in (b). Mean F1 scores are shown by solid lines, and the region between the
10th and 90th percentile are shown by the shaded region, with the DA-RVM given in blue and the target-only
RVM in red.

proved the F1 scores. While before any damage was observed, the DA-RVM produces similar results to NCA
(the expected initial mapping), after a few observations from the first damage scenario (green and magenta
regions on the colour bar), the mean F1 scores improve significantly. In addition, it consistently produces
better classification than the target-only RVM prior to observing all classes, indicating that leveraging both an
informative initial mapping and a few labels, the DA method is able to learn a classifier that can extrapolate
to yet to be observed classes in the target. Moreover, the 10th percentile does not generally produce lower F1
scores than the mean result of the target-only RVM, demonstrating robustness to negative transfer. Finally,
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after all data are presented to the DA-RVM, it achieves a mean F1 score close to the fully supervised RVM,
matching the target-only RVM in B1—B2 (Figure 9(a)) and exceeding it in B2—B1 (Figure 9(b)).

Although the DA-RVM achieves similar performance to the fully supervised target model at the end of the
active-sampling procedure, it is able to achieve this result using fewer labelled observations, as shown in Figure
10°. The DA-RVM used 10.2% and 12.0% of samples for B1—+B2 and B2—B1, respectively, compared to 23.4%
and 31.5% for the target-only RVM. While both methods reduce the number of labels required compared to
a fully-supervised RVM, the DA-RVM results in fewer queries and a smaller reduction in classification per-

6The dashed line indicates the samples used to initialise the target-only RVM; these were not selected during the sampling
process.
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Figure 10: The number of observations queried via active sampling using the DA-RVM (blue) and target-only
RVM (red), for B1—B2, shown in (a), and B2—B1 presented in (b). The black lines indicate the range of
samples, showing the 10th and 90th percentiles, while the red dashed lines above the 21.6g mass bar represent
additional samples used to initialise the target-only RVM.
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Figure 11: An example of the sampling probability across the feature space (shown by the shaded regions) for a
single test repeat in B2—B1, showing training and testing data. The target data and sampling probabilities are
mapped to the source domain using the expected posterior mapping. The mapping before the active-sampling
process is shown in (a), and (b) shows the mapping after the DA-RVM was presented with all data.
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formance. In addition, the DA-RVM resulted in far less normal condition data being labelled by increasing
confidence in predictions of the undamaged state by leveraging source data, which in practice would reduce
unnecessary inspections.

Compared to conventional active learning, leveraging source data not only presents the opportunity to clas-
sify data as yet to be observed classes, but also facilitates more efficient querying behaviour. This improvement
can be explained by inspecting the sampling probability of the DA-RVM; an example of the sampling probability
in the initial classifier for the B2—BI1 task is given in Figure 11(a), with the target data and entropy mapped
to the source feature space via the expected posterior mapping. It can be seen there are already regions where
sample probability is low when the DA-RVM is initialised, particularly for samples from the largest cluster,
which represent the undamaged data. As such, it appears that the source data allows for the initial model
to have better defined boundaries, guiding the labelling process to prioritise damage classes, where classes are
less separable and there are fewer data in the source domain. It can also be seen that by using an RVM as
a classifier the model would effectively sample novel data, as the DA-RVM effectively produces low-entropy
regions near observed data, whereas the extremities of the model have a sampling probability near unity. The
sampling probability for the DA-RVM after the active sampling process is shown in Figure 11(b), where it can
be seen that obtaining labels in the target has led to a further reduction in sampling probability in some regions.
This reduction in sampling probability is particularly evident for the damage classes — the three smaller clusters.

4 < "
e Source: B2
2 . * Target:Bl
e Undamaged - ambient
- e Undamaged - freezing
< 0 e 21.69 mass
e 64.4g mass - off-centre
-2 64.4g mass - centre
-4
-2 -1 0 1 2 -4 -2 0 2 4
Xo Xo
(a) (b)

Figure 12: An example of the training and testing data after the NCA mappings that resulted in the highest
and lowest JMMD values. The NCA mappings for B2—B1, shown in (a) and (b), for the lowest and highest
JMMD values, respectively.

A core advantage of the DA-RVM over conventional DA is its ability to incrementally correct poor initial
alignment using labels, which is particularly useful when sampling bias prevents accurate estimation of distribu-
tion divergence or when domain similarity is insufficient for unsupervised DA. This advantage is demonstrated in
this case study, since the small initial random sample across various temperatures used to learn the NCA map-
ping resulted in varying alignment quality. To demonstrate this impact, the joint-maximum mean discrepancy
(JMMD) — a nonparametric distribution divergence measure (see [30] for details)— was used to identify the “best”
and “worst” NCA mappings, corresponding to the lowest and highest joint distribution distances, respectively.
Features from the “best” mapping for B2—B1 (Figure 12(a)) show the target classes closely aligned with the
corresponding classes in the source domain. In contrast, the “worst” mapping (Figure 12(b)) shows differences
in scale, with source and target damage data occupying distinct regions in the feature space. This variation
variation is likely because the statistics for NCA were calculated with a small sample of normal condition data
distributed across a range of temperatures. It would be expected with larger normal condition samples NCA
mappings would be more consistent. These differences in initial alignment quality potentially contribute to the
higher variability observed in the DA-RVM results compared to the target-only RVM (Figure 9).

The features found following the active-sampling process for these same “best” and “worst” repeats are
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Figure 13: An example of the training and testing data from B2—B1, with the expected final DA-RVM mappings
for the repeats where the NCA produced the lowest and highest JMMD values shown in (a) and (b), respectively.
Solid black lines represent the decision boundary.

presented in Figure 13. It can be seen that alignment could be improved in both cases, resulting in shared
classifiers that can predict samples from both domains, indicated by the classification boundaries shown in
black. This result supports the idea that labels from a few damage classes can be used to improve poor initial
mappings, mitigating the likelihood of negative transfer later in the monitoring campaign. In addition, in the
final feature space, the freezing temperature data for both bridges can be observed as an increase in the values
of these features, following an increase in stiffness, and each damage (mass) class produces a reduction in the
value of these features, showing the features derived via this DA process maintain their physical interpretability,
while also facilitating shared visualisation of both datasets.

4.4 Case study: active transfer to a target domain with limited data

The second case study presents a scenario where target data to estimate initial DA mappings are extremely
sparse, and not representative of the same environmental effects as the source dataset. It can be seen in this
case study, the initial classification rate of the DA-RVM is worse than NCA in both cases, shown in Figure 14.
There are two potential reasons for these results. First, in this case study, only one class is available at the start
of the sampling process, meaning there is limited information to constrain the posterior mapping parameters.
Second, the prior variance on the translation and scale parameters were increased to o, = o5 = 1. Thus, since
the initial information available to reduce the posterior variance is limited, this choice of priors seems to have
increased the uncertainty of prediction for all the damage classes to near uniform; this can been seen by the
initial sampling probabilities in Figure 16(a), where it can be seen the regions of the feature space away from
the normal condition (the large cluster at the origin), has a sampling probability of near one (corresponding
to a uniform labelling probability). This behaviour would often be desirable, and it highlights the importance
of considering both classification and mapping uncertainty, as this increased prediction uncertainty could limit
the impact of incorrect classifications on decision-making in scenarios where trust in initial transfer is low. Note
that in B2—B3, the target-only RVM achieves a slightly higher initial F1 score, likely due to being initialised
with three data points from the 21.6g mass state, enabling classification of this class prior to observation of
these data during the active-sampling process; however, in practice, such data would be unavailable at this stage.

Similarly to the previous case study, it can be seen that observing small quantities of labelled target data
allowed for significant improvements in the F1 score, as shown in Figure 14. Following only a few observations
of the 21.6g mass-state, the rise mean F1 score for classification of all classes is particularly pronounced in
this case study, and the target-only RVM only achieves similar F1 scores after observing data from all classes.
This result provides further evidence that by using only data from a minor damage extent in one location, the
mapping parameters can be updated to allow for classification of classes where labelled data are only available
in the source domain. Furthermore, after only observing a few observations from the 21.6g mass-state, the
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90th percentile reaches an F1 score of unity, showing that in some cases, only a few data from a minor damage
state allows for the effective transfer of all the labelled data in the source domain. In addition, at the end of
the sampling process, both the DA-RVM and the target-only RVM achieved similar mean F1 scores, which are
approaching the result of a fully-supervised RVM, as shown in Figure 14, while using far fewer labelled data as
shown in Figure 15.

Examining the “best” (Figure 17(a)) and “worst” (Figure 17(b)) NCA mappings, selected using the JMMD
as in the previous section, it can be seen there are significant discrepancies between the initial mappings. While
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Figure 14: The test F1 scores for the DA-RVM against the number of labelled samples selected via active
sampling (shown in blue) and random sample (shown in red); B1—B3 is shown in (a), and B2—B3 is given in

(b).
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visually the “best” mapping (Figure 17(a)) appears to align the target such that classes in the source are close
to the corresponding target class, the “worst” mapping seems to have a large difference in scale — visually, this
discrepancy in scale appears to be larger than the “worst” example from the previous case study (shown in
Figure 12(b)). This result is perhaps caused by the small sample of normal condition data used to estimate the
target mean and standard deviation being insufficient to produce unbiased estimates of the statistics. These
poor mappings may be a contributing factor for the 10" percentile indicating negative transfer in Figure 14.
However, following observation of all data the DA-RVM was able to correct the poor initial mapping in the
selected “worst” case, as shown by the expected DA-RVM posterior mapping found after observing all data
shown in Figure 18.

It is worth noting here that the specification of the prior variance has an important effect on the final
mapping. Given the small number of labelled data, if the mapping variance is assumed to be small and large
scale differences are present (as seen in Figure 18(a) and Figure 18(b)), the DA-RVM may struggle to learn the
large-scale values needed to correct this misalignment, as such values are unlikely under the prior. Appendix
A presents the same examples where the variance of the mapping parameters was chosen to be o; = 05, = 0.1
to demonstrate this issue, showing that the worst mappings are unchanged, even with labels. This highlights
the important balance when defining the prior variance: it must be high enough to avoid over-constraining the
mapping parameters, yet low enough to prevent the mapping from overfitting to the limited target data.

As with the previous case, the variation in results for the DA-RVM is higher than the target-only RVM.
Furthermore, while the DA-RVM introduces the potential of increasing the test F1 score beyond the maximum
possible F1 score for a target-only model, in contrast to all other case studies, in B1—-B3 the 10th percentile of
the DA-RVM also drops below the target-only RVM at some stages of the active sampling process, as shown in
Figure 14(a). The few test repeats producing worse F1 scores with the DA-RVM suggest that although labels
can mitigate negative transfer using labels, the negative effect of poor initial mappings can persist even after
the inclusion of labels. This result is likely caused by poor initial NCA mappings, and shows that even though
leveraging labels may reduce the likelihood of negative transfer, it may still be a critical issue and selection of
a suitable source structure, features and data preprocessing are crucial considerations.
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Figure 15: The number of observations queried via active sampling using the DA-RVM (blue) and target-only
RVM (red) is shown for B1—+B3 in (a) and for B2—B3 in (b). The black lines indicate the range of samples,
showing the 10th and 90th percentiles, while the red dashed lines above the 21.6g mass bar represent additional
samples used to initialise the target-only RVM.
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Figure 16: An example of the sampling probability (shown by the shaded regions) for a single test repeat in
B2—B3, showing training and testing data. The target data and sampling probabilities are mapped to the
source domain using the expected posterior mapping. The mapping before the active-sampling process is shown
in (a), and (b) shows the mapping after the DA-RVM was presented with all data.
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Figure 17: An example of the data (training and testing data), after the NCA mappings that resulted in the
highest and lowest JMMD values. The NCA mappings for B2—B3, shown in (a) and (b), for the lowest and
highest JMMD values, respectively.

5 Discussion and Conclusions

A critical limitation of conventional data-driven approaches to SHM is that supervised machine learning meth-
ods require a fully-labelled dataset with examples representing each health state of interest, which is often
costly and /or unfeasible. Two technologies for reducing the label requirement of supervised classifiers are trans-
fer learning and active learning. Previous studies have considered these technologies independently; however,
this paper proposes an active transfer-learning strategy to address several key challenges of considering either
approach independently, resulting in a practical framework for online learning in PBSHM.

Four transfer tasks were used to demonstrate the proposed framework by transferring a damage classifier
between lab-scale bridge structures subject to various temperatures and pseudo-damage states. In all cases,
leveraging labelled source data enabled the DA-RVM to classify health states that had not been observed in the
target, even when the target dataset only contained data corresponding to a subset of the classes in the source
dataset — showing robustness to class imbalance. On the other hand, conventional active-learning approaches
can only classify data from previously-observed health-states. The ability to classify health-states prior to their
observation in the target domain has significant implications in SHM, as predictions about health-states critical
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Figure 18: An example of the training and testing data from B2—B3, with the expected final DA-RVM mappings
for the repeats where the NCA produced the lowest and highest JMMD values shown in (a) and (b), respectively.
Solid black lines represent the decision boundary.

to decision making could be achieved before these health-states are observed in the target structure and without
repeating labelling efforts. Furthermore, the active transfer-learning approach resulted in fewer overall queries
compared to conventional active learning, which in practice would result in a reduction in inspections; hence,
lower operational costs throughout a monitoring campaign.

There are several interesting potential directions for future work. One of the main limitations of the current
approach is that the number of observations labelled is not directly related to a labelling budget. In practice, an
operator would have a limited budget for inspections; thus, the current approach may exhaust the budget prior
to observing all data. Ensuring the labelling budget is not depleted early in the sampling process is a common
challenge in stream-based active learning [35]. A potential solution would be to ensure that labels correspond
to health-states useful for decision making, i.e. using a decision-based sampling procedure as in [20,21]. While
this approach can still request more labels than a budget allows, it could result in fewer queries overall as typi-
cally data corresponding to minor damage-states are labelled less, since they are not critical for decision making.

This paper assumes that labelled data are available for all classes in the source domain. In practice, ob-
taining such comprehensive source datasets could be challenging, and a more feasible approach might assume
data are distributed across multiple source domains. Previous DA methods are often prone to negative transfer
when aligning datasets with only a subset of shared classes, whereas the presented framework can effectively
align data using a limited number of shared classes. This capability supports the extension to a multi-source
scenario, which could allow for the aggregation of class information from multiple-source monitoring campaigns
by aligning the target domain to each source domain using a shared subset of classes. Even with data from
multiple structures, novel classes may still arise in the target domain. Given that the proposed approach assigns
a high sampling probability to unexplored regions in the feature space, it should facilitate querying and inclusion
of new target classes, although this requires validation in future studies.

A mapping initialised via unsupervised DA can be used to define initial predictive models for active learning,
even when labelled target data are sparse or unavailable. However, poor initial DA mappings may result from
using limited or biased data, or from scenarios where domains are not sufficiently related, which may prevent a
source model from generalising well to target data. In some cases, as shown in Section 4, such as the examples
given in Figure 12(b) or Figure 17(b), it may be possible to rectify poor initial attempts at transfer by incor-
porating target labels via active learning. However, negative transfer is still an important issue, particularly
as it can have compounding effects with sampling bias. Thus, methods to avoid negative transfer, such as the
development of similarity quantification approaches [27], remain an important direction for future work.

In addition, this paper applies strict assumptions about the mapping form to minimise the risk of overfitting
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more complex mappings when limited labelled target data are available. A drawback of this approach is that, if
these mapping assumptions are too restrictive, it may not be possible to learn a suitable mapping to facilitate
label sharing. Further work could investigate ways to extend the proposed approach to accommodate more
complex mappings while minimising the risk of overfitting; for example, perhaps a number of transformation
operations could be selected from a set of candidates using sparsity-inducing priors. However, in the case studies
presented in this paper, it was found that a linear mapping was sufficient, finding the presented approach to be
capable of sharing value damage labels between different bridges.

Active learning in the context of TL presents several interesting considerations. In some cases, source do-
mains may represent structures still in operation meaning that sampling strategies could consider querying
data from multiple structures. An additional extension could involve a multi-task approach with a latent DA
mapping, where multiple structures stream data with the objective of enhancing performance across all struc-
tures. In addition, this paper leverages a shared damage classifier to learn latent mapping parameters; however,
other tasks could be used to learn the mapping, following a multi-task approach. Future work could investigate
whether tasks with lower labelling costs, such as temperature data (which can be obtained without manual
effort), can be used as target variables to learn a shared regression model, which could allow for a mapping to
be inferred with few labels corresponding to inspections.
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Appendices

A Low prior mapping variance for active transfer to a target without
changing temperatures

This section provides the results for the second case study when prior variance on the scale and translation
is defined to be more restrictive: o, = o5 = 0.1. The F1 scores throughout the active learning process are
presented in Figure 19. It can be seen in this case that, although the initial F1 scores are higher when defining
lower prior variance, the mean F1 score was not improved to the same extent after observing the first damage
scenario, and the final F1 score is slighly lower than the target-only RVM. This result is likely caused by the
low prior variance preventing the mapping from learning large enough scale and translation values to update
poor initial mappings found in some test repeats.

The features found via the expected posterior mapping after observing all data for the same “best” and
“worst” test repeats as Figure 17, are presented in Figure 20. It can be seen while the “best” mappings resulted
in close alignment in the final feature space, shown in Figure 20(a) and Figure 20(c). The “worst” test repeat
for B2—B3, shown in Figure 20(d) remains largely unchanged from the original NCA mapping (Figure 17(b)).
This result suggests that the prior mapping was too restrictive. It can also be seen that there is only a boundary
between the ambient and freezing data in Figure 20(d); this is because high mapping variance means data in
most regions of the feature space were assigned a uniform label probability.
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Figure 19: Mean test f1 score vs the number of samples previously presented to the active learners for B1—B3,
shown in (a), and B2—B3 presented in (b).

B Case study: active transfer learning under changing temperatures
— comparison with random sampling

To verify the effectiveness of the active-sampling strategy, a comparison with random sampling is presented in
Figure 21(a) and Figure21(b), for Bl—B2 and B2—B1 respectively. Random sampling results were generated
by selecting samples at random from the entire target training dataset, selecting the number chosen by the
active-sampling strategy for the given test repeat. In both cases, uncertainty sampling caused a sharper rise in
F1 score and higher performance in the final model. There is a significant increase in the F1 score with random
sampling and a reduction in the inter-percentile range at the higher end of the labelled sample count; however,
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Figure 20: Visualisation of the data (training and testing data), mapped via the expected posterior mapping
after being presented with all data. Figures (a) and (b) present the results from the “best” and “worst” prior
mappings for B1—+B3, respectively, and results from the “best” and “worst” prior mappings for B2—B3 presented
in (c) and (d), respectively.
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Figure 21: The test F1 scores for the DA-RVM against the number of labelled samples selected via active
sampling (shown in blue) and random sample (shown in red); B1—B2 is shown in (a), and B2—BI1 is given in

(b).

this occurs because only a few test repeats led to this many queries, and these test repeats correspond to those
with high F1 scores.
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C Case study: active transfer to a target domain with limited data
— comparison with random sampling
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Figure 22: The test F1 scores for the DA-RVM against the number of labelled samples selected via active
sampling (shown in blue) and random sample (shown in red); B1—B3 is shown in (a), and B2—B3 is given in

(b).

The active-sampling strategy is benchmarked against random sampling for the DA-RVM, as shown in Figure
22. As with the previous case, active sampling results in improvements in the F1 scores with far fewer samples.
In addition, the sudden changes in mean F1 scores seen as the number of labelled samples increases was caused
by the small number of repeats that queried above 20 samples.
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