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ABSTRACT
We discuss an integrable discretization of the principal chiral field models equations and its involutive reduction. We
present a Darboux transformation and general construction of soliton solutions for these discrete equations.

1 Introduction

Given a differential equation of mathematical physics that is integrable, one can search for a difference (discrete)
equation such that, first, in a continuum limit goes to the differential one, second, is integrable as well. This article can
be viewed as the first step in a larger program of integrable discretizations of chiral field model equations (or 𝜎-models
equations). Therefore, before we summarize the results of this article we would like to glance at the problem from a broad
perspective and to present ourmotivations first. Namely, by the nonautonomous (or nonisospectral) extension of principal
𝐺𝐿(𝑁) chiral field model equations, we understand the equation

(𝑟Φ,𝑣 Φ−1),𝑢 +
(
𝑟Φ,𝑢 Φ−1

))
,𝑣 = 0, 𝑟,𝑢𝑣 = 0, (1)

where Φ is a function of two independent 𝑢 and 𝑣 variables (in the hyperbolic case 𝑢 and 𝑣 are real variables while in the
elliptic case 𝑢 and 𝑣 are treated as complex variables such that one variable is complex conjugation of the second) that
takes values in invertible square matrices of given size 𝑁 with complex entries, while 𝑟 is a scalar (in general complex
valued) function of the independent variables.
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The chiral models (or nonlinear 𝜎models) appeared in theoretical physics in the 1960s in two classical articles of particle
physics [1, 2]. The history of these models in mathematics is even longer for in the beginning of the previous century [3],
Bianchi constructed the Bäcklund transformation for the system

𝐍,𝑢𝑣 = 𝑓𝐍, 𝐍 ⋅ 𝐍 = 𝑈(𝑢) + 𝑉(𝑣), (2)

where 𝐍 is a vector valued function of variables 𝑢 and 𝑣, dot denotes (pseudo)-scalar product, and 𝑈(𝑢) and 𝑉(𝑣) are
prescribed functions of indicated variable. Nowadays, Bianchi system (2) is referred to as 𝑂(𝑝, 𝑞) 𝜎-model ((𝑝, 𝑞) is the
signature of the dot product). In the case 𝑝 = 3, 𝑞 = 0, the Bianchi system is equivalent to an involutive reduction of𝑈(2)
version of model (1) and (in the case 𝑝 = 2, 𝑞 = 1) to hyperbolic Ernst equation of general relativity. Indeed, it turns out
the following two constraints are compatible with Equations (1)
1. involutive constraint

Φ2 = 𝕀 (3)

which gives after the substitution Φ = 𝕀 − 2𝑃 idempotent constraint on 𝑃, that is, 𝑃2 = 𝑃.
2. (pseudo)-unitary constraint

Φ†𝜂Φ𝜂 = 𝕀 𝜂 ∶= 𝑑𝑖𝑎𝑔 (1, … , 1
⏟⏟⏟

, −1, … ,−1
⏟⎴⏟⎴⏟

).

𝑖 𝑗
(4)

In the case 𝑁 = 2, the constraints give

Φ = 1√
𝑟

[
𝑛1 𝑛2 + 𝑖𝑛3

𝜖(𝑛2 − 𝑖𝑛3) −𝑛1

]
, 𝑛2

1 + 𝜖
(
𝑛2
2 + 𝑛2

3

)
= 𝑟, 𝜖 = ±1

and Equation (1) becomes Equation (2) for𝐍 ∶= [𝑛1, 𝑛2, 𝑛3], where𝐍 ⋅ 𝐍 ∶= 𝑛2
1 + 𝜖(𝑛2

2 + 𝑛2
3) = 𝑟. After the stereograph-

ical projection 𝑛2 + 𝑖𝑛3 =
√

𝑟
2𝜉

1+𝜖𝜉̄𝜉
, 𝑛1 =

√
𝑟
1−𝜖𝜉̄𝜉

1+𝜖𝜉̄𝜉
, we come to the equation

(𝜉̄𝜉 + 𝜖)
(
𝜉,𝑢𝑣 +

𝑟,𝑣
2𝑟

𝜉,𝑢 +
𝑟,𝑢
2𝑟

𝜉,𝑣
)
= 2𝜉̄𝜉,𝑢 𝜉,𝑣

𝑟,𝑢𝑣 = 0

(5)

which is (in the elliptic case and 𝜖 = −1) the Ernst equation, that is, the equation the problem of finding vacuum solutions
of Einstein equations outside axisymmetric and stationary distribution of matter can be reduced to [4]. A bit more tedious
calculation shows that in the case 𝑁 = 3 and 𝑈(1, 2) and involutive reduction leads to the Ernst Einstein–Maxwell
equations [5]

(
𝜉̄𝜉 − 𝜒̄𝜒 − 1

) (
𝜉,𝑢𝑣 +

𝑟,𝑣
2𝑟

𝜉,𝑢 +
𝑟,𝑢
2𝑟

𝜉,𝑣
)
= 𝜉,𝑢

(
𝜉̄𝜉,𝑣 −𝜒̄𝜒,𝑣

)
+ 𝜉,𝑣

(
𝜉̄𝜉,𝑢 −𝜒̄𝜒,𝑢

)
(
𝜉̄𝜉 − 𝜒̄𝜒 − 1

) (
𝜒,𝑢𝑣 +

𝑟,𝑣
2𝑟

𝜒,𝑢 +
𝑟,𝑢
2𝑟

𝜒,𝑣
)
= 𝜒,𝑢

(
𝜉̄𝜉,𝑣 −𝜒̄𝜒,𝑣

)
+ 𝜒,𝑣

(
𝜉̄𝜉,𝑢 −𝜒̄𝜒,𝑢

)
𝑟,𝑢𝑣 = 0.

(6)

Electromagnetic field outside the distribution of matter manifests in this description as an additional complex variable 𝜒.
The essential fact from the point of view of this article is that the differential equations presented above are integrable.
There is a large number of publications on the topic. We confine ourselves to listing the most important ones
∙ In 1905 [3], Bianchi published Bäcklund transformation for the system (2).
∙ In 1972, Geroch found an infite-dimensional group (the Geroch group 𝐾) equation (5) is covariant under [6]. Later on,
Kinnersley extended Geroch’s result to electrovacuum equations (6) finding a covariance group (the Kinnersley group
𝐾′) for Equation (6) [7].

∙ In 1978, the Ernst equations became a part of “soliton” theory [8–13].
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∙ In 1978, Zakharov and Mikhailov established the general scheme for the integration of chiral field equations and their
reductions [14–16].

There are partial results in discretization of system (1) and its reductions, we are going to recall them now.

∙ To the best of our knowledge, an integrable discretization of autonomous (or isospectral) (𝑟 = 𝑐𝑜𝑛𝑠𝑡) version of Bianchi
system (2) was given by Orfanidis [17] and reads

𝑇1𝑇2𝑛 + 𝑛 = 𝐹(𝑇1𝑛 + 𝑇2𝑛) 𝑛 ⋅ 𝑛 = 1, (7)

where, this time, the dependent variables are 𝑛 ∶ ℤ2 ↦ 𝑇𝔼𝑛 (where 𝑇𝔼𝑛 denotes tangent space of (pseudo)-Euclidean
space), 𝐹 ∶ ℤ2 ↦ ℝ, is a scalar function that can be expressed in terms of 𝑛 as follows 𝐹 = 2𝑛⋅(𝑇1𝑛+𝑇2𝑛)

(𝑇1𝑛+𝑇2𝑛)⋅(𝑇1𝑛+𝑇2𝑛)
.

Equation (7) can be written in the case 𝑛 = 3 as

Δ1(Δ2(Φ)Φ) + Δ2(Δ1(Φ)Φ) = 0, Φ†Φ = 𝕀, Φ2 = 𝕀, (8)

where Φ is 2 × 2matrix such that

Φ ∶=
[

𝑛0 𝑛1 + 𝑖𝑛2

𝑛1 − 𝑖𝑛2 −𝑛0

]
, 𝑛 ∶= (𝑛0, 𝑛1, 𝑛2).

∙ As for discretization of the nonisospectral (nonautonomous) case, only two results are known so far. The first one is
the system introduced by Schief [18]

𝑇1𝑇2𝑁⃗ + 𝑁⃗ = 𝐹(𝑇1𝑁⃗ + 𝑇2𝑁⃗),

Δ1Δ2

[
(𝑇1𝑇2𝑁⃗ + 𝑁⃗) ⋅ (𝑇1𝑁⃗ + 𝑇2𝑁⃗)

]
= 0

(9)

as a permutability theorem of Calapso equation. It has been demonstrated that Schief’s system can be regarded as
discretization of Bianchi system (2) [19–21] but not the only one. The second result is that the system (9) is a potential
version of the system [20]

𝑇1𝑇2⃗

𝑇1𝑇2
√

𝐹
+ ⃗√

𝐹
= 𝑇1

√
𝐹𝑇1⃗ + 𝑇2

√
𝐹𝑇2⃗ ,

Δ1Δ2(⃗ ⋅ ⃗ ) = 0.
(10)

The solution spaces of (9) and (10) are related by

⃗ =
√

𝐹(𝑇1𝑁⃗ + 𝑇2𝑁⃗).

∙ Autonomous discrete principal 𝐺𝐿(𝑛) 𝜎-models has been introduced by Cherednik [22] and read

Δ1
(
Δ2(Φ)Φ−1

)
+ Δ2

(
Δ1(Φ)Φ−1

)
= 0. (11)

A Lax pair for the equation and discussion on some of its integrable features can be found in [23, 24].

In the present article, we add to the list the system

Δ1(Δ2(Φ)Φ) + Δ2(Δ1(Φ)Φ) = 0, Φ2 = 𝕀, (12)

which is a discrete integrable version of the autonomous (𝑟 = 1), hyperbolic version of Equation (1), subjected to involutive
costraint. We also discuss Equation (8) (i.e., system (12) subjected to unitary constraint) in the case of 2 × 2matrices, and
show that system matrices (12) of larger size than 2, in contrast to the continuous case, do not admit unitary reduction.
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2 The Classical Principal Chiral Model and Involutive Reduction

We study one possible integrable discretization of the classical principal chiral field model:

(Φ,𝑢 Φ−1),𝑣 +(Φ,𝑣 Φ−1),𝑢 = 0, Φ ∈ 𝐺𝐿(𝑁,ℂ), (13)

where Φ is 𝐺𝐿(𝑁,ℂ)-valued function of two independent real variables 𝑢 and 𝑣.
The integrability of the principal chiral field model was established in [14], where Equation (13) was represented as the
compatibility condition of two linear problems:

Ψ,𝑢 =


𝜆 − 1
Ψ, Ψ,𝑣 =



𝜆 + 1
Ψ. (14)

Here, 𝜆 is a spectral parameter.
The compatibility conditions of (14) read

,𝑣 −,𝑢 = 0, ,𝑣 +,𝑢 + −  = 0,

and guarantee the existence of a common fundamental solution Ψ(𝑢, 𝑣; 𝜆). From the second equation, we infer that there
exists potential Φ such that

 = −Φ,𝑢 Φ−1,  = Φ,𝑣 Φ−1.

Substituting these expressions into the first equation yields Equation (13). The potentialΦ can be identified withΨ(𝑢, 𝑣; 0).
Equation (13) can naturally be reduced to any complex or real classical Lie group [25], assuming that the variables ,
are elements of the corresponding Lie algebra. In [14], it was shown that the principal chiral field model (13) admits a
remarkable (see the introduction) integrable reduction:

Φ2 = 𝕀. (15)

We refer to this as the involutive reduction or projective (idempotent) reduction, since condition (15) implies the
representation Φ = 𝕀 − 2𝑃, where 𝑃 is a projector (𝑃2 = 𝑃). In terms of 𝑃, Equation (13) takes the elegant form [14]:

[𝑃𝑢𝑣, 𝑃] = 0.

In this article, we study an integrable discretization

Δ1((Δ2Φ)Φ−1) + Δ2((Δ1Φ)Φ−1) = 0 (16)

of the principle chiral model (13), where Φ is 𝐺𝐿(𝑁,ℂ)-valued function of two discrete variables (𝑚1,𝑚2) ∈ ℤ2 and Δ𝑖
denotes forward difference operator in variable𝑚𝑖 , that is, Δ1𝑓(𝑚1,𝑚2) ∶= 𝑓(𝑚1 + 1,𝑚2) − 𝑓(𝑚1,𝑚2), Δ2𝑓(𝑚1,𝑚2) ∶=
𝑓(𝑚1,𝑚2 + 1) − 𝑓(𝑚1,𝑚2), for any function 𝑓 ∶ ℤ2 ↦ ℂ. In Section 3, we construct explicitly two poles Darboux–
Bäcklund transformations for Equation (13). In Section 4, we show that the involutive reduction Φ2 = 𝕀 is compatible
with the discrete system (13) (a constraint is compatible with an equation iff its imposition on initial conditions implies
that due to the equation the constraint holds at every point of the domain), leading to an additional symmetry of the Lax
representation and the corresponding fundamental solution. In Section 4.1, we construct a two-pole Darboux matrix and
the corresponding soliton solution of the reduced system

Δ1((Δ2Φ)Φ) + Δ2((Δ1Φ)Φ) = 0, Φ2 = 𝕀, (17)

where Φ ∈ 𝐺𝐿(𝑁,ℂ). This solution is parameterized by two points on the complex Grassmannian 𝐺𝑘,𝑁 and two complex
parameters 𝜆0 and 𝜇0 (see Corollary 2). In the case 𝑁 = 2, solutions for the system (17) are presented in Section 4.2. This
particular case (𝑁 = 2) admits the unitary reduction Φ−1 = Φ† = Φ and solutions for the system (17) subjected unitary
constraintΦ†Φ = 𝕀 are presented in Section 5. In this case, the solution obtained is parameterized by one point on the 𝐶𝑃1

and one complex parameter 𝜆0.

4 of 15 Studies in Applied Mathematics, 2025
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3 The 𝑮𝑳(𝒏) Principal 𝝈-Models in the Discrete Case

We start our considerations from the pair of linear equations (the so-called Lax pair) on a function Ψ(𝑚1,𝑚2; 𝜆) [23] (two
independent variables are integers and are omitted to make formulas shorter)

𝑇1Ψ(𝜆) =
(
𝕀 + 1

𝜆 − 1
𝔸

)
Ψ(𝜆) 𝑇2Ψ(𝜆) =

(
𝕀 + 1

𝜆 + 1
𝔹

)
Ψ(𝜆), (18)

where 𝜆 is a complex valued parameter referred to as spectral parameter and in general can depend on𝑚1 and𝑚2, however,
in the present article, we confine ourselves to the isospectral case, that is, to the case when 𝜆 does not depend on the
independent variables. We assume that the square matrices 𝔸 and 𝔹 do not depend on 𝜆 and do depend on𝑚1 and𝑚2, 𝕀
denotes the unit matrix and we recall that 𝑇𝑗 (𝑗 = 1, 2) denotes forward shift operators: 𝑇1Ψ(𝑚1,𝑚2) ∶= Ψ(𝑚1 + 1,𝑚2),
𝑇2Ψ(𝑚1,𝑚2) ∶= Ψ(𝑚1,𝑚2 + 1). The function Ψ is a fundamental matrix solution of the system (18) so it takes values in
square matrices. Shortly, we have

𝑇1Ψ(𝜆) = 𝑈(𝜆)Ψ(𝜆), 𝑇2Ψ(𝜆) = 𝑉(𝜆)Ψ(𝜆),

where 𝑈 and 𝑉 are characterized as having simple poles at 𝜆 = 1, and 𝜆 = −1, respectively, and

lim
𝜆→∞

𝑈(𝜆) = 𝕀 , lim
𝜆→∞

𝑉(𝜆) = 𝕀 . (19)

We want the compatibility conditions of system (18)

(𝑇2𝔸 −𝔸 − 𝑇1𝔹 + 𝔹)𝜆 + (𝑇2𝔸 − 𝕀)(𝔹 + 𝕀) − (𝑇1𝐵 + 𝕀)(𝔸 − 𝕀) = 0 (20)

to be valid for all 𝜆 ∈ ℂ̄∖{1,−1}, so we arrive at

Δ2𝔸 = Δ1𝔹 (21)

[𝑇2(𝔸 − 𝕀)](𝔹 + 𝕀) = [𝑇1(𝔹 + 𝕀)](𝔸 − 𝕀). (22)

Due to Equation (22), we can introduce1“potential” Φ

𝔸 − 𝕀 = −(𝑇1Φ)Φ−1 𝔹 + 𝕀 = (𝑇2Φ)Φ−1. (23)

Thus,

𝔸 = −(Δ1Φ)Φ−1 , 𝔹 = (Δ2Φ)Φ−1 . (24)

The potential Φ can be defined as

Φ = Ψ(0). (25)

Substitution (24) to Equation (21) gives

𝑇1𝑇2Φ(𝑇1Φ
−1 + 𝑇2Φ

−1) = (𝑇1Φ + 𝑇2Φ)Φ−1 (26)

which is nothing but Equation (16). To prove the integrability of (26), we will construct its Darboux–Bäcklund transfor-
mation.

3.1 Construction of a Darboux Matrix

We consider the Darboux transformation

Ψ̃(𝜆) = 𝔻(𝜆)Ψ(𝜆) (27)

5 of 15
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which leads to the Darboux–Bäcklund transformation

𝑈̃(𝜆) = (𝑇1𝔻(𝜆))𝑈(𝜆)𝔻(𝜆)−1 , 𝑉̃(𝜆) = (𝑇2𝔻(𝜆))𝑉(𝜆)𝔻(𝜆)−1 , (28)

where 𝔻 is usually referred to as Darboux matrix and depends on𝑚1,𝑚2, and 𝜆.
The normalization ℕ of the Darboux matrix is defined by

ℕ ∶= lim
𝜆→∞

𝔻(𝜆), (29)

we tacitly assume that the limit exists. First, we are going to check whether condition (19) is preserved by the
transformation. Taking into account (19) and (29), we have

lim𝜆→∞ 𝑈̃(𝜆) = (𝑇1ℕ)(lim𝜆→∞ 𝑈(𝜆))ℕ−1 = (𝑇1ℕ)ℕ−1 ,

lim𝜆→∞ 𝑉̃(𝜆) = (𝑇2ℕ)(lim𝜆→∞ 𝑉(𝜆))ℕ−1 = (𝑇2ℕ)ℕ−1 .
(30)

These limits are equal to 𝕀 if and only if 𝑇1ℕ = 𝑇2ℕ = ℕ.

Corollary 1. If ℕ = const, then the Darboux transformation (28) preserves the constraints (19).

We assume throughout the article, ℕ = 𝕀.
There is another, more fundamental, constraint to be preserved by the transformation (28), namely, the dependence of
𝑈,𝑉 on 𝜆 (the divisors of poles of 𝑈 and 𝑉). We adapt the classical results on 𝑁-pole Darboux matrix for continuous
𝐺𝐿(𝑛) principal 𝜎-model to the discrete 𝐺𝐿(𝑛) principal 𝜎-model (16), that is, we confine ourselves to the following form
of 𝔻 and its inverse 𝔻−1:

𝔻 = 𝕀 +
𝑁∑
𝑖=1

𝜆𝑖𝑃𝑖

𝜆 − 𝜆𝑖
, 𝔻−1 = 𝕀 +

𝑁∑
𝑗=1

𝜇𝑗𝐹𝑗

𝜆 − 𝜇𝑗
, ∀𝑖, 𝑗 ∶ 𝜆𝑖 ≠ 𝜇𝑗, 𝜆𝑖, 𝜇𝑖 ≠ 1, (31)

where the rank of all matrices 𝑃𝑗 , 𝐹𝑗 is the same and equals 𝑘, that is,

𝑃𝑗 =
|||𝑝1𝑗

⟩⟨
𝑝2𝑗

|||, 𝐹𝑗 =
|||𝑓1𝑗

⟩⟨
𝑓2𝑗

|||, (32)

where “bras” are 𝑘 × 𝑛 matrices of rank 𝑘 while “kets” are 𝑛 × 𝑘 matrices of rank 𝑘.
The conditions 𝔻𝔻−1 = 𝔻−1𝔻 = 𝕀 impose the following constraints:

⟨𝑝2𝑖|𝔻−1(𝜆𝑖) = 0, 𝔻(𝜇𝑖)|𝑓1𝑖⟩ = 0,

𝔻−1(𝜆𝑖)|𝑝1𝑖⟩ = 0, ⟨𝑓2𝑖|𝔻(𝜇𝑖) = 0,
(33)

which allow us to express |𝑝1𝑖⟩ and ⟨𝑓2𝑖| in terms of |𝑓1𝑖⟩ and ⟨𝑝2𝑖|.
To ensure that the transformation (28) preserves divisors of poles of 𝑈 and 𝑉, we demand that the residua at 𝜆𝑖 , 𝜇𝑖 (𝑖 =
1, … ,𝑁) of the right-hand sides of (28) vanish:

𝑇1(𝑃𝑖)𝑈(𝜆𝑖)𝔻
−1(𝜆𝑖) = 0,

𝑇2(𝑃𝑖)𝑉(𝜆𝑖)𝔻
−1(𝜆𝑖) = 0,

𝑇1(𝔻(𝜇𝑖))𝑈(𝜇𝑖)𝐹𝑖 = 0,

𝑇2(𝔻(𝜇𝑖))𝑉(𝜇𝑖)𝐹𝑖 = 0.

(34)

The following theorem takes place in full analogy with the continuous case [14, 26, 27]:

Theorem 1. If ⟨𝑝2𝑖| = ⟨𝑝0𝑖|Ψ−1(𝜆𝑖) and |𝑓1𝑖⟩ = Ψ(𝜇𝑖) |𝑓0𝑖⟩, where Ψ(𝜆) is a solution of the linear problem (18) and ⟨𝑝0𝑖|
and |𝑓0𝑖⟩ are, respectively, constant 𝑘 × 𝑛 matrices of rank 𝑘 and 𝑛 × 𝑘 matrices of rank 𝑘 and |𝑝1𝑖⟩ and ⟨𝑓2𝑖| are given via
formulas (33), then Equations (34) are satisfied.

6 of 15 Studies in Applied Mathematics, 2025

 14679590, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.70084 by U
niversity O

f L
eeds B

rotherton, W
iley O

nline L
ibrary on [29/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Proof. The proof is straightforward. It is enough to substitute ⟨𝑝2𝑖| = ⟨𝑝0𝑖|Ψ−1(𝜆𝑖) and |𝑓1𝑖⟩ = Ψ(𝜇𝑖) |𝑓0𝑖⟩ to (34) and to
take into account𝑇1Ψ(𝜆) = 𝑈(𝜆)Ψ(𝜆),𝑇2Ψ(𝜆) = 𝑉(𝜆)Ψ(𝜆) evaluated at 𝜆 = 𝜆𝑖 or 𝜆 = 𝜇𝑖 . The resulting expression vanishes
by virtue of (33), for example, for the first equation of (34) we have

𝑇1(𝑃𝑖)𝑈(𝜆𝑖)𝔻
−1(𝜆𝑖) = (𝑇1|𝑝1𝑖⟩)(𝑇1⟨𝑝2𝑖|)𝑈(𝜆𝑖)𝔻

−1(𝜆𝑖) =

= (𝑇1|𝑝1𝑖⟩)⟨𝑝0𝑖|(𝑇1Ψ
−1(𝜆𝑖))𝑈(𝜆𝑖)𝔻

−1(𝜆𝑖) = (𝑇1|𝑝1𝑖⟩)⟨𝑝0𝑖|Ψ−1(𝜆𝑖)𝔻
−1(𝜆𝑖) =

= (𝑇1|𝑝1𝑖⟩)⟨𝑝2𝑖|𝔻−1(𝜆𝑖) = 0. □

Remark 1. The factors |𝑝1𝑖⟩, ⟨𝑝2𝑖|, |𝑓1𝑖⟩, and ⟨𝑓2𝑖| in (32) are not uniquely defined. Indeed, a transformation
|𝑝1𝑖⟩ ↦ |𝑝1𝑖⟩𝑊−1

𝑖 , ⟨𝑝2𝑖| ↦ 𝑊𝑖⟨𝑝2𝑖|, |𝑓1𝑖⟩ ↦ |𝑓1𝑖⟩𝑊̂−1
𝑖 , ⟨𝑓2𝑖| ↦ 𝑊̂𝑖⟨𝑓2𝑖|,

where 𝑊𝑖, 𝑊̂𝑖 are any invertible 𝑘 × 𝑘 matrices, does not change the matrices 𝑃𝑖, 𝐹𝑖 . Now, it follows from (33) and
Theorem 1 that the dressing Darboux matrix (31) is parameterized by 2𝑁 points ⟨𝑝0𝑖| , |𝑓0𝑖⟩ on the Grassmanian 𝐺𝑘,𝑁
and by the set of 2𝑁 complex parameters 𝜆𝑖, 𝜇𝑖, 𝑖 = 1, … ,𝑁.

Remark 2. In (32), we assumed that all poles of the Darboux matrices in the spectral parameter 𝜆 are simple, that the
number of poles in𝔻 and𝔻−1 coincide, and that the ranks of matrices 𝑃𝑖, 𝐹𝑖 are the same and do not depend on 𝑖. A more
general Darboux dressing matrix can be easily constructed without the above assumptions and in the same way but it
would make the paper less readable.

3.2 Darboux Matrix With Two Poles

Since in the case of reductionΦ2 = 𝕀 considered in the next section, it is sufficient to consider the Darbouxmatrix with two
poles; we discuss the case 𝑁 = 2 in detail. In the case 𝑁 = 2 Darboux transformation, the Darboux matrix and its inverse
take, respectively, forms

Ψ̃(𝜆; 𝜆1, 𝜆2) = 𝔻(𝜆; 𝜆1, 𝜆2)Ψ(𝜆), (35)

𝔻(𝜆) ∶= 𝕀 +
𝜆1ℙ

𝜆 − 𝜆1
+

𝜆2ℚ

𝜆 − 𝜆2
, (36)

𝔻−1(𝜆) ∶= 𝕀 +
𝜇1𝔽

𝜆 − 𝜇1
+

𝜇2𝔾

𝜆 − 𝜇2
. (37)

Taking into account 𝔻𝔻−1 = 𝔻−1𝔻 = 𝕀, we arrive at the equations

ℙ

(
𝕀 +

𝜇1

𝜆1 − 𝜇1
𝔽 +

𝜇2

𝜆1 − 𝜇2
𝔾

)
= 0

ℚ

(
𝕀 +

𝜇1

𝜆2 − 𝜇1
𝔽 +

𝜇2

𝜆2 − 𝜇2
𝔾

)
= 0(

𝕀 +
𝜆1

𝜇1 − 𝜆1
ℙ +

𝜆2

𝜇1 − 𝜆2
ℚ

)
𝔽 = 0(

𝕀 +
𝜆1

𝜇2 − 𝜆1
ℙ +

𝜆2

𝜇2 − 𝜆2
ℚ

)
𝔾 = 0.

(38)

We assume that all matrices ℙ,ℚ, 𝔽, 𝔾 are of the same rank 𝑘 > 0 so can be written as

ℙ = |𝑝1⟩⟨𝑝2|, ℚ = |𝑞1⟩⟨𝑞2|, 𝔽 = |𝑓1⟩⟨𝑓2|, 𝔾 = |𝑔1⟩⟨𝑔2|,
7 of 15
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where “bras” are 𝑘 × 𝑛 matrices of rank 𝑘 while “kets” are 𝑛 × 𝑘 matrices of rank 𝑘. Equations (38) take form

⟨𝑝2| + 𝜇1
𝜆1−𝜇1

⟨𝑝2 |𝑓1⟩⟨𝑓2| + 𝜇2
𝜆1−𝜇2

⟨𝑝2 |𝑔1⟩⟨𝑔2| = 0

⟨𝑞2| + 𝜇1

𝜆2 − 𝜇1
⟨𝑞2 |𝑓1⟩⟨𝑓2| + 𝜇2

𝜆2 − 𝜇2
⟨𝑞2 |𝑔1⟩⟨𝑔2| = 0

|𝑓1⟩ + 𝜆1

𝜇1 − 𝜆1
|𝑝1⟩⟨𝑝2 |𝑓1⟩ + 𝜆2

𝜇1 − 𝜆2
|𝑞1⟩⟨𝑞2 |𝑓1⟩ = 0

|𝑔1⟩ + 𝜆1

𝜇2 − 𝜆1
|𝑝1⟩⟨𝑝2 |𝑔1⟩ + 𝜆2

𝜇2 − 𝜆2
|𝑞1⟩⟨𝑞2 |𝑔1⟩ = 0,

(39)

where ⟨𝑝2 |𝑓1⟩, ⟨𝑝2 |𝑔1⟩, ⟨𝑞2 |𝑓1⟩, and ⟨𝑝2 |𝑓1⟩ are matrices 𝑘 × 𝑘. The system (39) can be solved with respect to |𝑝1⟩,|𝑞1⟩, ⟨𝑓2|, and ⟨𝑔2|, therefore |𝑝1⟩, |𝑞1⟩, ⟨𝑓2|, and ⟨𝑔2| are given in terms of ⟨𝑝2|, ⟨𝑞2|, |𝑓1⟩, and |𝑔1⟩. The latter set,
according to Theorem 1, evolves in a simple way and can be integrated, namely, ⟨𝑝2| = ⟨𝑝20|𝜓(𝜆1), ⟨𝑞2| = ⟨𝑞20|𝜓(𝜆2),|𝑓1⟩ = |𝑓10⟩𝜓(𝜇1), and |𝑔1⟩ = |𝑔10⟩𝜓(𝜇2) where ⟨𝑝20|, ⟨𝑞20|, |𝑓10⟩, and |𝑔10⟩ are constant bras and kets. Upon the
observation that in Equation (39) ⟨𝑝2| and ⟨𝑞2| are combinations of |𝑓2⟩, |𝑔2⟩ only, while |𝑓1⟩ and |𝑔1⟩ are combinations
of ⟨𝑝1| and ⟨𝑞1| only, one can obtain formulas for |𝑝1⟩, |𝑞1⟩, ⟨𝑓1|, ⟨𝑔1| by inverting 2 × 2 block matrices. We will need here
only formulas for |𝑝1⟩, |𝑞1⟩ which are

|𝑝1⟩ = 1
𝜆1

(
(𝜇1 − 𝜆2)|𝑓1⟩⟨𝑞2 |𝑓1⟩−1 − (𝜇2 − 𝜆2)|𝑔1⟩⟨𝑞2 |𝑔1⟩−1

)(𝜇2 − 𝜆2

𝜇2 − 𝜆1
⟨𝑝2 |𝑔1⟩⟨𝑞2 |𝑔1⟩−1 −

𝜇1 − 𝜆2

𝜇1 − 𝜆1
⟨𝑝2 |𝑓1⟩⟨𝑞2 |𝑓1⟩−1

)−1

,

|𝑞1⟩ = 1
𝜆2

(
(𝜇1 − 𝜆1)|𝑓1⟩⟨𝑝2 |𝑓1⟩−1 − (𝜇2 − 𝜆1)|𝑔1⟩⟨𝑝2 |𝑔1⟩−1

)(𝜇2 − 𝜆1

𝜇2 − 𝜆2
⟨𝑞2 |𝑔1⟩⟨𝑝2 |𝑔1⟩−1 −

𝜇1 − 𝜆1

𝜇1 − 𝜆2
⟨𝑞2 |𝑓1⟩⟨𝑝2 |𝑓1⟩−1

)−1

,

(40)

formulas for ⟨𝑓2| and ⟨𝑔2| will not be used and we omit them.
4 Involutive Reduction 𝚽𝟐 = 𝕀

As far as the reduction Φ2 = 𝕀 is concerned, we are guided by the results obtained in the continuous case (see [14]). The
first observation is that the constraint Φ2 = 𝕀 is a valid reduction of (16), for it is preserved under propagation of Φ by
means of Equation (16). Indeed, if at some point of the lattice Φ2 = 𝕀 holds and at neighboring points we have 𝑇1Φ

2 = 𝕀
and 𝑇2Φ

2 = 𝕀, then due to (16), we have

𝑇1𝑇2Φ
2 = (𝑇1Φ + 𝑇2Φ)Φ−1

(
𝑇1Φ

−1 + 𝑇2Φ
−1
)−1

(𝑇1Φ + 𝑇2Φ)Φ−1
(
𝑇1Φ

−1 + 𝑇2Φ
−1
)−1

=

(𝑇1Φ + 𝑇2Φ)Φ(𝑇1Φ + 𝑇2Φ)
−1

(𝑇1Φ + 𝑇2Φ)Φ(𝑇1Φ + 𝑇2Φ)
−1 = 𝕀.

(41)

The second observation is that if the constraint

Φ2 = 𝕀 (42)

holds, then the matrices

𝑈(𝜆) ∶=
𝜆𝕀 − (𝑇1Φ)Φ−1

𝜆 − 1
, 𝑉(𝜆) ∶=

𝜆𝕀 + (𝑇2Φ)Φ−1

𝜆 + 1

of the Lax pair

𝑇1Ψ(𝜆) = 𝑈(𝜆)Ψ(𝜆), 𝑇2Ψ(𝜆) = 𝑉(𝜆)Ψ(𝜆) (43)

has the property

𝑈(𝜆−1) = (𝑇1Φ)𝑈(𝜆)Φ−1, 𝑉(𝜆−1) = (𝑇2Φ)𝑉(𝜆)Φ−1. (44)

Due to the property (44), matrix ΦΨ(𝜆−1) is a fundamental solution of the Lax pair (43) thus we have

Ψ(𝜆−1) = ΦΨ(𝜆)𝕊 (45)

8 of 15 Studies in Applied Mathematics, 2025

 14679590, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.70084 by U
niversity O

f L
eeds B

rotherton, W
iley O

nline L
ibrary on [29/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



valid for every 𝜆 ∈ ℂ̄ and where 𝕊 is an invertible constant matrix. In general, matrix 𝕊 can depend on 𝜆, but we shall see
that assumption that 𝕊 does not depends on 𝜆 leads to nontrivial Darboux transformation. We will usually choose such a
fundamental solution of Ψ(𝜆) such that Ψ(0) = Φ. In the latter case, evaluating (45) at 𝜆 = 0 and 𝜆 = ∞ we get

Ψ(∞) = 𝕊, Ψ(∞)𝕊 = 𝕀, (46)

that is,

𝕊2 = 𝕀.

After the above preliminary considerations, we are ready to construct Darboux transformation that preserves the
constraint Φ2 = 𝕀.

4.1 The Darboux–Bäcklund Transformation Preserving Constraint 𝚽𝟐 = 𝕀

Now we demand the constraints (45), to be preserved under the Darboux–Bäcklund transformation

Ψ̃(𝜆) = 𝔻(𝜆)Ψ(𝜆) , (47)

that is,

Ψ̃(𝜆−1) = Φ̃Ψ̃(𝜆)𝕊̃. (48)

Due to chosen normalization of theDarbouxmatrix𝐷(∞) = 𝕀we get from (47) Ψ̃(∞) = Ψ(∞) and due to (46), 𝕊̃ = 𝕊 holds.
We immediately (by evaluating (48) at 𝜆 = ∞) get that Ψ̃(0) = Φ̃ and we arrive at the following constraint on the Darboux
matrix 𝔻:

𝔻(𝜆−1)Φ = 𝔻(0)Φ𝔻(𝜆). (49)

Conversely, if 𝐷(𝜆) obey the constraint (49) then matrix Ψ̃(𝜆) given by (47) satisfies (48) where Φ̃ = Ψ̃(0) and as a
consequence

(𝔻(0)Φ)2 = 𝕀, (50)

that is,

Φ̃2 = 𝕀. (51)

From (49), it follows that the set of poles of 𝔻(𝜆) coincides with the set of poles of 𝔻(1∕𝜆). In the case of the two-pole
Darboux matrix (36), it means that either 𝜆1𝜆2 = 1 or 𝜆2

1 = 𝜆2
2 = 1. We confine ourselves to the first (generic) case. The

same considerations applies to the inverse of 𝔻, see (37). We also confine ourselves to the case 𝜇1𝜇2 = 1. Therefore, we
assume function 𝔻(𝜆) has two poles disposed symmetrically with respect to inversions in the unit sphere

𝜆1 = 𝜆0, 𝜆2 = 𝜆−1
0 , 𝜆0 ≠ 0, 1, (52)

that is,

𝔻(𝜆) ∶= 𝕀 +
𝜆0ℙ

𝜆 − 𝜆0
+ ℚ

𝜆𝜆0 − 1
, (53)

and its inverse is of the same form (𝜇1 = 𝜇0, 𝜇2 = 1∕𝜇0, 𝜇0 ≠ 0), that is,

𝔻−1(𝜆) ∶= 𝕀 +
𝜇0𝔽

𝜆 − 𝜇0
+ 𝔾

𝜆𝜇0 − 1
, (54)

that is,

𝜇1 = 𝜇0, 𝜇2 = 𝜇−1
0 , 𝜇0 ≠ 0, 1. (55)

There are two simple conditions sufficient to satisfy (49):

9 of 15
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Theorem 2. If

⟨𝑞2| = ⟨𝑝2|Φ, |𝑔1⟩ = Φ|𝑓1⟩, (56)

then constraint (49) is satisfied.

Proof: Indeed, condition (49) 𝔻(𝜆−1)Φ𝔻(𝜆)−1 = 𝔻(0)Φ after substitution of assumed forms of 𝔻 (53) and 𝔻−1 (54) reads(
𝕀 +

𝜆𝜆0ℙ

1 − 𝜆𝜆0
+ 𝜆ℚ

𝜆0 − 𝜆

)
Φ

(
𝕀 +

𝜇0𝔽

𝜆 − 𝜇0
+ 𝔾

𝜆𝜇0 − 1

)
= (𝕀 − ℙ −ℚ)Φ. (57)

It is clear that residual at∞ of left- and right-hand sides of (57) are the same. The remaining residue of left-hand side at
𝜆0, 𝜆−1

0 , 𝜇0, 𝜇−1
0 vanishes iff, respectively,

|𝑞1⟩⟨𝑝2|(𝕀 +
𝜇0

𝜆0 − 𝜇0
𝔽 + 1

𝜆0𝜇0 − 1
𝔾

)
= 0,

|𝑝1⟩⟨𝑞2|(𝕀 +
𝜆0𝜇0

1 − 𝜆0𝜇0
𝔽 +

𝜆0

𝜇0 − 𝜆0
𝔾

)
= 0,

(
𝕀 +

𝜆0ℙ

𝜇0 − 𝜆0
+ 1

𝜆0𝜇0 − 1
ℚ

)|𝑓1⟩⟨𝑔2| = 0

(
𝕀 +

𝜆0𝜇0ℙ

1 − 𝜆0𝜇0
+

𝜇0

𝜆0 − 𝜇0
ℚ

)|𝑔1⟩⟨𝑓2| = 0

(58)

hold, where we have used conditions (56). The point is that Equations (58) are satisfied because we already made sure that
Equations (38) hold and Equations (38) in virtue of (52) and (55) take form

|𝑝1⟩⟨𝑝2|(𝕀 +
𝜇0

𝜆0 − 𝜇0
𝔽 + 1

𝜆0𝜇0 − 1
𝔾

)
= 0,

|𝑞1⟩⟨𝑞2|(𝕀 +
𝜆0𝜇0

1 − 𝜆0𝜇0
𝔽 +

𝜆0

𝜇0 − 𝜆0
𝔾

)
= 0,

(
𝕀 +

𝜆0ℙ

𝜇0 − 𝜆0
+ 1

𝜆0𝜇0 − 1
ℚ

)|𝑓1⟩⟨𝑓2| = 0

(
𝕀 +

𝜆0𝜇0ℙ

1 − 𝜆0𝜇0
+

𝜇0

𝜆0 − 𝜇0
ℚ

)|𝑔1⟩⟨𝑔2| = 0

(59)

and are clearly equivalent to (58). □

To assure that constraint Φ2 = 𝕀 is preserved under Darboux transformation we used relations ⟨𝑞2| = ⟨𝑝2|Φ and |𝑔1⟩ =
Φ |𝑓1⟩, but the quantities involved in these relations, by virtue of Theorem 1 obey the following evolution:

⟨𝑝2| = ⟨𝑝20|Ψ−1(𝜆0) , |𝑓1⟩ = Ψ(𝜇0)|𝑓10⟩
⟨𝑞2| = ⟨𝑞20|Ψ−1

(
𝜆−1
0

)
, |𝑔1⟩ = Ψ

(
𝜇−1
0

)|𝑔10⟩, (60)

where Ψ(𝜆) is the solution of the Lax pair, and ⟨𝑝20|, ⟨𝑞20|, |𝑓10⟩, |𝑔10⟩ are constant vectors (initial data), so the question
arises whether these relations are compatible with the evolution? The answer is positive.
Due to the reduction (45), we have

Ψ
(
𝜆−1
0

)
= ΦΨ(𝜆0)𝕊 , Ψ

(
𝜇−1
0

)
= ΦΨ(𝜇0)𝕊, (61)

which means that

⟨𝑞2| = ⟨𝑞20|𝕊Ψ−1(𝜆0)Φ , |𝑔1⟩ = ΦΨ(𝜇0)𝕊|𝑔10⟩, (62)

and, as a conclusion we get that to satisfy relations in Lemma 2 it is enough to set ⟨𝑞20| = ⟨𝑝20|𝕊 and |𝑔10⟩ = 𝕊 |𝑓10⟩.
We can now formulate the main conclusion of the article.
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Corollary 2. Having a solution Φ of system (17) and a corresponding solution Ψ(𝜆) of Lax pair (18), by virtue of Theorem 1
and considerations above we have

⟨𝑝2| = ⟨𝑝20|Ψ−1(𝜆0), |𝑓1⟩ = Ψ(𝜇0)|𝑓10⟩, (63)

where ⟨𝑝20|, |𝑓10⟩, are constant vectors (initial data). Equations (40) under the reduction considered in this section with
𝜆1 = 𝜆0, 𝜆2 = 𝜆−1

0 , 𝜇1 = 𝜇0, 𝜇2 = 𝜇−1
0 , 𝜆0, 𝜇0 ≠ 0, 1 (64)

and after introducing quantities

𝑥 ∶=
⟨𝑝2 |𝑓1⟩
𝜆0 − 𝜇0

, 𝑦 ∶=
⟨𝑝2|Φ|𝑓1⟩
1 − 𝜆0𝜇0

(65)

take form

|𝑝1⟩ = 𝜆−1
0

(|𝑓1⟩𝑦−1 + 𝜇−1
0 Φ|𝑓1⟩𝑥−1

)
(𝑥𝑦−1 − 𝑦𝑥−1)−1 (66)

|𝑞1⟩ = −
(|𝑓1⟩𝑥−1 + 𝜇−1

0 Φ|𝑓1⟩𝑦−1
)
(𝑥𝑦−1 − 𝑦𝑥−1)−1. (67)

Then the Darboux matrix that respects the constraint Φ2 = 𝕀 is

𝔻(𝜆) = 𝕀 +
𝜆0|𝑝1⟩⟨𝑝2|

𝜆 − 𝜆0
+

|𝑞1⟩⟨𝑝2|Φ
𝜆𝜆0 − 1

and family of functions Φ̃ given by

Φ̃ = Φ − |𝑝1⟩⟨𝑝2|Φ − |𝑞1⟩⟨𝑝2| (68)

is family of solutions of system (17).

4.2 Solutions

We apply the procedure described in Corollary (2) to background solution Φ of system (17)

Φ =
⎡⎢⎢⎣

0 𝑎𝑚1𝑏𝑚2

1
𝑎𝑚1

1
𝑏𝑚2

0

⎤⎥⎥⎦ ,
where 𝑎 and 𝑏 are complex constants. For this solution, the Lax pair (18) takes form

𝑇1Ψ(𝜆) =
⎡⎢⎢⎢⎣
𝜆 − 𝑎
𝜆 − 1

0

0
𝑎𝜆 − 1

𝑎(𝜆 − 1)

⎤⎥⎥⎥⎦
Ψ(𝜆), 𝑇2Ψ(𝜆) =

⎡⎢⎢⎢⎣
𝑏 + 𝜆
𝜆 + 1

0

0
𝑏𝜆 + 1

𝑏(𝜆 + 1)

⎤⎥⎥⎥⎦
Ψ(𝜆)

from which we get the following fundamental solution:

Ψ(𝜆) =

⎡⎢⎢⎢⎢⎣
0

(
𝜆 − 𝑎
𝜆 − 1

)𝑚1(𝑏 + 𝜆
𝜆 + 1

)𝑚2

(
1 − 𝑎𝜆
𝑎 − 𝑎𝜆

)𝑚1(𝑏𝜆 + 1
𝑏𝜆 + 𝑏

)𝑚2

0

⎤⎥⎥⎥⎥⎦
.

Taking

⟨𝑝20| = [𝑐2, 𝑐1], |𝑓10⟩ = [
𝑐4
𝑐3

]
,
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where 𝑐𝑖 are arbitrary complex constants we obtain from procedure described in Corollary (2) solution Φ̃ of system (17)

Φ̃ = 1
𝐷

[
𝑀11 𝑀12
𝑀21 −𝑀11

]
,

where

𝐷 = 𝜆0𝜇0(𝛾 + 𝛿 − 𝛼 − 𝛽)(𝛼 + 𝛽 + 𝛾 + 𝛿)

𝑀12 = 𝑎𝑚1𝑏𝑚2(𝜇0𝛾 + 𝜆0𝛿 − 𝛼 − 𝜆0𝜇0𝛽)(𝛼 + 𝜆0𝜇0𝛽 + 𝜇0𝛾 + 𝜆0𝛿)

𝑀21 = 𝑎−𝑚1𝑏−𝑚2(𝜆0𝛾 + 𝜇0𝛿 − 𝜆0𝜇0𝛼 − 𝛽)(𝜆0𝜇0𝛼 + 𝛽 + 𝜆0𝛾 + 𝜇0𝛿)

𝑀11 = 𝜆0
(
𝜇2
0 − 1

)
(𝛼𝛾 − 𝛽𝛿) + 𝜇0

(
𝜆2
0 − 1

)
(𝛼𝛿 − 𝛽𝛾),

and where

𝛼 ∶= 𝑐1𝑐4(𝜆0 − 𝜇0)(𝑎𝜆0 − 1)
𝑚1(𝑎𝜇0 − 1)

𝑚1(𝑏𝜆0 + 1)
𝑚2(𝑏𝜇0 + 1)

𝑚2

𝛽 ∶= 𝑐2𝑐3(𝜆0 − 𝜇0)(𝜆0 − 𝑎)
𝑚1(𝜇0 − 𝑎)

𝑚1(𝑏 + 𝜆0)
𝑚2(𝑏 + 𝜇0)

𝑚2

𝛾 ∶= 𝑐1𝑐3(𝜆0𝜇0 − 1)(𝑎𝜆0 − 1)
𝑚1(𝜇0 − 𝑎)

𝑚1(𝑏𝜆0 + 1)
𝑚2(𝑏 + 𝜇0)

𝑚2

𝛿 ∶= 𝑐2𝑐4(𝜆0𝜇0 − 1)(𝜆0 − 𝑎)
𝑚1(𝑎𝜇0 − 1)

𝑚1(𝑏 + 𝜆0)
𝑚2(𝑏𝜇0 + 1)

𝑚2.

In this particular case (𝑁 = 2), we are able to find the large class of solutions that satisfy also unitary constraint.

5 Unitary Reduction 𝚽†𝚽 = 𝕀 in the Case𝑵 = 𝟐

In general, unitary constraint Φ†Φ = 𝕀 is not compatible with Equation (16). However, in the particular case𝑁 = 2, set of
matrices

 =
{[

𝑎 𝑏 + 𝑖𝑐
𝑏 − 𝑖𝑐 −𝑎

] |𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎2 + 𝑏2 + 𝑐2 = 1

}

is not only unitary, Hermitian, and involutive at the same time Φ−1 = Φ† = Φ, but it follows that anticommutator of two
elements of  gives[

𝑎1 𝑏1 + 𝑖𝑐1
𝑏1 − 𝑖𝑐1 −𝑎1

] [
𝑎2 𝑏2 + 𝑖𝑐2

𝑏2 − 𝑖𝑐2 −𝑎2

]
+
[

𝑎2 𝑏2 + 𝑖𝑐2
𝑏2 − 𝑖𝑐2 −𝑎2

] [
𝑎1 𝑏1 + 𝑖𝑐1

𝑏1 − 𝑖𝑐1 −𝑎1

]
= 2(𝑎1𝑎2 + 𝑏1𝑏2 + 𝑐1𝑐2)

[
1 0
0 1

]

and therefore if at some point of the latticeΦ ∈  and at neighboring points𝑇1Φ ∈  and𝑇2Φ ∈  then due to (16)we have
(𝑇1𝑇2Φ)2 = 𝕀 andmoreover (𝑇1𝑇2Φ)†(𝑇1𝑇2Φ) = 𝕀. As wementioned in the introduction, this particular case is equivalent
to Orfanidis system (7) and was discussed in article [33]. The results of Section 4 can be used to obtain solutions in this
case as follows.
Applying the procedure from Section 4.2 to seed solution (clearly, Φ†Φ = 𝕀 and Φ2 = 𝕀)

Φ =
[

0 e𝑖𝑎𝑚1e𝑖𝑏𝑚2

e−𝑖𝑎𝑚1e−𝑖𝑏𝑚2 0

]
,

where 𝑎 and 𝑏 this time are real parameters, it is enough to set[
𝑐4
𝑐3

]
=
[
𝑐2
𝑐1

]
, 𝜇0 = 𝜆0

12 of 15 Studies in Applied Mathematics, 2025
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to guarantee that Φ̃†Φ̃ = 𝕀. Therefore,

Φ̃ = 1|𝜆0|2((𝑠 + 𝑠)2 + (𝑟1 + 𝑟2)2)

×
⎡⎢⎢⎣

𝑖𝑟1[Λ𝑠 − Λ̄𝑠] + 𝑖𝑟2[Λ̄𝑠 − Λ𝑠] e𝑖𝑚1𝑎e𝑖𝑚2𝑏
(
(𝑠 + |𝜆0|2𝑠)2 + (𝜆0𝑟1 + 𝜆0𝑟2)

2
)

e−𝑖𝑚1𝑎e−𝑖𝑚2𝑏
(
(|𝜆0|2𝑠 + 𝑠)2 + (𝜆0𝑟1 + 𝜆0𝑟2)

2
)

−𝑖𝑟1[Λ𝑠 − Λ̄𝑠] − 𝑖𝑟2[Λ̄𝑠 − Λ𝑠]

⎤⎥⎥⎦ , (69)

where

Λ = 𝜆0(𝜆0
2
− 1)

𝑟1 = (|𝜆0|2 − 1)|𝑐1|2|e𝑖𝑎𝜆0 − 1|2𝑚1 |e𝑖𝑏𝜆0 + 1|2𝑚2

𝑟2 = (|𝜆0|2 − 1)|𝑐2|2|e𝑖𝑎𝜆0 − 1|2𝑚1 |e𝑖𝑏𝜆0 + 1|2𝑚2

𝑠 = 𝑖(𝜆0 − 𝜆0)𝑐1𝑐2(e𝑖𝑎𝜆0 − 1)𝑚1(𝜆0 − e−𝑖𝑎)𝑚1(e𝑖𝑏𝜆0 + 1)𝑚2(𝜆0 + e−𝑖𝑏)𝑚2

is a family of solution of the system

Δ1((Δ2Φ)Φ) + Δ2((Δ1Φ)Φ) = 0, Φ2 = 𝕀, Φ†Φ = 𝕀, (70)

that is, for the discrete chiral field that takes values on two-dimensional sphere 𝑆2.

6 Conclusions

We have constructed the Darboux transformation for the difference equation

Φ(𝑚1 + 1,𝑚2 + 1)
(
Φ−1(𝑚1 + 1,𝑚2) + Φ−1(𝑚1,𝑚2 + 1)

)
= (Φ(𝑚1 + 1,𝑚2) + Φ(𝑚1,𝑚2 + 1))Φ−1(𝑚1,𝑚2) (71)

and then have reduced the transformation so that it preserves the involutive constraints

(Φ(𝑚1,𝑚2))
2 = 1. (72)

Unlike the continuous case, system (71–72) in general is not compatible with the unitary constraint (4). An open problem
remains to find an integrable discretization of the chiral field models (1) and (13) that admits reductions to classical Lie
algebras (or Lie groups) and further involutive reductions.Moreover, to the best of our knowledge, integrable discretization
of elliptic chiral field model (i.e., when in (1) 𝑢 = 𝑥 + 𝑖𝑦 and 𝑣 = 𝑥 − 𝑖𝑦, where 𝑥, 𝑦 are real independent variables) has
not been discussed in the literature, so far. In particular, integrable discretization of the original (i.e., elliptic) Ernst
equation is not known, yet. However, in the autonomous case, one can replace the discrete operator in (7) with discrete
Schrödinger operator [28–30] or equivalently to apply the so-called sublattice approach [31, 32] to first equation of (7) to
get its elliptic version.
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Endnotes
1Due to (21), one can introduce “potential” Γ via 𝔸 = Δ1Γ + 𝕀, 𝔹 = Δ2Γ − 𝕀 and, plugging it in (22), get 𝑇2(Δ1Γ)Δ2Γ = 𝑇1(Δ2Γ)Δ1Γ.
Alternatively, one can put 𝔸 = 2Δ1𝐻, 𝔹 = Δ2𝐻 and get Δ1Δ2𝐻 = 𝑇2(Δ1𝐻)Δ2𝐻 − 𝑇1(Δ2𝐻)Δ1𝐻.
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