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ABSTRACT
We discuss an integrable discretization of the principal chiral field models equations and its involutive reduction. We
present a Darboux transformation and general construction of soliton solutions for these discrete equations.

1 | Introduction

Given a differential equation of mathematical physics that is integrable, one can search for a difference (discrete)
equation such that, first, in a continuum limit goes to the differential one, second, is integrable as well. This article can
be viewed as the first step in a larger program of integrable discretizations of chiral field model equations (or o-models
equations). Therefore, before we summarize the results of this article we would like to glance at the problem from a broad
perspective and to present our motivations first. Namely, by the nonautonomous (or nonisospectral) extension of principal
GL(N) chiral field model equations, we understand the equation

(r®d,, @), + (r®,, @7')) ,, =0, oo =0, 1

where @ is a function of two independent u and v variables (in the hyperbolic case u and v are real variables while in the
elliptic case u and v are treated as complex variables such that one variable is complex conjugation of the second) that
takes values in invertible square matrices of given size N with complex entries, while r is a scalar (in general complex
valued) function of the independent variables.
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The chiral models (or nonlinear o models) appeared in theoretical physics in the 1960s in two classical articles of particle
physics [1, 2]. The history of these models in mathematics is even longer for in the beginning of the previous century [3],
Bianchi constructed the Bicklund transformation for the system

N,o=fN, N-N=U@)+V(), )

where N is a vector valued function of variables u and v, dot denotes (pseudo)-scalar product, and U(u) and V(v) are
prescribed functions of indicated variable. Nowadays, Bianchi system (2) is referred to as O(p, q) o-model ((p, q) is the
signature of the dot product). In the case p = 3, g = 0, the Bianchi system is equivalent to an involutive reduction of U(2)
version of model (1) and (in the case p = 2, g = 1) to hyperbolic Ernst equation of general relativity. Indeed, it turns out
the following two constraints are compatible with Equations (1)

1. involutive constraint
%=1 (3)

which gives after the substitution @ = [ — 2P idempotent constraint on P, that is, P2 =p.

2. (pseudo)-unitary constraint

<I>T77<I>77 =1 n :=diag (1,..,1, -1,..,-1).
4)

i J
In the case N = 2, the constraints give

1 n np + i}’l3

out[ "
\/; e(ny —ing) -n

],n%+e(n§+n§)=r, e==+1

and Equation (1) becomes Equation (2) for N := [ny,n,,n3], where N- N := nf + e(ng + ng) = r. After the stereograph-

. o . 2 1- .
ical projection n, + in3 = \/7 E_n = \/; €€ e come to the equation

1+e€e’ 1= 14+eée’
_ r, r, _
&+ (B +5obu+52E0 ) = 286w b o
oup =20

which is (in the elliptic case and € = —1) the Ernst equation, that is, the equation the problem of finding vacuum solutions
of Einstein equations outside axisymmetric and stationary distribution of matter can be reduced to [4]. A bit more tedious
calculation shows that in the case N = 3 and U(1,2) and involutive reduction leads to the Ernst Einstein-Maxwell
equations [5]

',

(B8 - 1= 1) (S +52bu 5280 ) = (B8 =T ) + £ (B =T

= r’ r; = — = —
(§§ _)Z)( - 1) ()(mu +2_;j)(’u +2_;:L)(au ) =Xou (ggau —XXsv ) + X (ggau —XXu ) (6)
Fyup = 0.

Electromagnetic field outside the distribution of matter manifests in this description as an additional complex variable y.

The essential fact from the point of view of this article is that the differential equations presented above are integrable.
There is a large number of publications on the topic. We confine ourselves to listing the most important ones

* In 1905 [3], Bianchi published Bicklund transformation for the system (2).

* In 1972, Geroch found an infite-dimensional group (the Geroch group K) equation (5) is covariant under [6]. Later on,
Kinnersley extended Geroch’s result to electrovacuum equations (6) finding a covariance group (the Kinnersley group
K") for Equation (6) [7].

* In 1978, the Ernst equations became a part of “soliton” theory [8-13].
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* In 1978, Zakharov and Mikhailov established the general scheme for the integration of chiral field equations and their
reductions [14-16].

There are partial results in discretization of system (1) and its reductions, we are going to recall them now.

* To the best of our knowledge, an integrable discretization of autonomous (or isospectral) (r = const) version of Bianchi
system (2) was given by Orfanidis [17] and reads

T\ Toi+n=F(Tn+Tyn) n-n=1, 7)

where, this time, the dependent variables are 7 : Z> ~ TE" (where TE" denotes tangent space of (pseudo)-Euclidean
21-(T11+To 1)
(Tl ﬁ+Tzﬁ)-(T1 71+T2ﬁ) ’

space), F : 72 — R, is a scalar function that can be expressed in terms of i as follows F =

Equation (7) can be written in the case n = 3 as
A1(D (D)D) + Ay(A(@)D) =0, DTd=1, @*=], (8)
where @ is 2 X 2 matrix such that

ny ny + in2 N
O = . , n :=(I’l0,l’l1,l’l2).
ny —1iny —Nny

* As for discretization of the nonisospectral (nonautonomous) case, only two results are known so far. The first one is
the system introduced by Schief [18]

T,T,N + N = F(T;N + T,N),

- - - - (9)
AA, [(TITZN +N)-(T,N + T2N)] =0

as a permutability theorem of Calapso equation. It has been demonstrated that Schief’s system can be regarded as
discretization of Bianchi system (2) [19-21] but not the only one. The second result is that the system (9) is a potential
version of the system [20]

T]Tz./:f ./\7 N N
—=2_ 4+ = =T\VFT1N + T,\VFT,N,
T\ ToVF | VF 1\/_1 2\/_2

AAS(N - N) = 0.

(10)

The solution spaces of (9) and (10) are related by
N = VE(T,N + T,N).
* Autonomous discrete principal GL(n) o-models has been introduced by Cherednik [22] and read
A (Ax(@)271) + Ay (A (@)D =0. €1))

A Lax pair for the equation and discussion on some of its integrable features can be found in [23, 24].

In the present article, we add to the list the system
A1(Ay(@)D) + Ay(A(P)P) =0, D=1, (12)

which is a discrete integrable version of the autonomous (r = 1), hyperbolic version of Equation (1), subjected to involutive
costraint. We also discuss Equation (8) (i.e., system (12) subjected to unitary constraint) in the case of 2 x 2 matrices, and
show that system matrices (12) of larger size than 2, in contrast to the continuous case, do not admit unitary reduction.
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2 | The Classical Principal Chiral Model and Involutive Reduction

We study one possible integrable discretization of the classical principal chiral field model:
(@,, @71, +(@,, @71),,=0, @& GLN,C), (13)

where ® is GL(N, C)-valued function of two independent real variables u and v.

The integrability of the principal chiral field model was established in [14], where Equation (13) was represented as the
compatibility condition of two linear problems:

A B
= S

-1 (14)

Here, 4 is a spectral parameter.
The compatibility conditions of (14) read

Ay —By=0, Ayp+By,+AB—-BA=0,

and guarantee the existence of a common fundamental solution ¥(u, v; 1). From the second equation, we infer that there
exists potential @ such that

A=-0,,07, B=o,, o1,

Substituting these expressions into the first equation yields Equation (13). The potential ® can be identified with ¥(u, v; 0).

Equation (13) can naturally be reduced to any complex or real classical Lie group [25], assuming that the variables A, B
are elements of the corresponding Lie algebra. In [14], it was shown that the principal chiral field model (13) admits a
remarkable (see the introduction) integrable reduction:

@2 = 1. 15)

We refer to this as the involutive reduction or projective (idempotent) reduction, since condition (15) implies the
representation ® = | — 2P, where P is a projector (P? = P). In terms of P, Equation (13) takes the elegant form [14]:

[Py, P] = 0.
In this article, we study an integrable discretization
A1((220)27H) + A(4 D)2 =0 (16)

of the principle chiral model (13), where ® is GL(N, C)-valued function of two discrete variables (m;, m,) € Z? and A;
denotes forward difference operator in variable m;, that is, Ay f(my, my) := f(my + 1,my) — f(my, my), Ay f(my, my) :=
f(my,my + 1) — f(m;, my), for any function f : Z> — C. In Section 3, we construct explicitly two poles Darboux-
Biéicklund transformations for Equation (13). In Section 4, we show that the involutive reduction ®* = I is compatible
with the discrete system (13) (a constraint is compatible with an equation iff its imposition on initial conditions implies
that due to the equation the constraint holds at every point of the domain), leading to an additional symmetry of the Lax
representation and the corresponding fundamental solution. In Section 4.1, we construct a two-pole Darboux matrix and
the corresponding soliton solution of the reduced system

A((222)D) + Ay((A D)D) =0, P* =1, a7

where ® € GL(N, C). This solution is parameterized by two points on the complex Grassmannian Gy  and two complex
parameters A and y, (see Corollary 2). In the case N = 2, solutions for the system (17) are presented in Section 4.2. This
particular case (N = 2) admits the unitary reduction ®~! = &' = & and solutions for the system (17) subjected unitary
constraint ®'® = [ are presented in Section 5. In this case, the solution obtained is parameterized by one point on the CP!
and one complex parameter A;.
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3 | The GL(n) Principal o-Models in the Discrete Case

We start our considerations from the pair of linear equations (the so-called Lax pair) on a function ¥(my, m,; 4) [23] (two
independent variables are integers and are omitted to make formulas shorter)

T, (1) = <u + /%A)lp(/l) T, (1) = <u + TLB)W(A), (18)
where 4 is a complex valued parameter referred to as spectral parameter and in general can depend on m; and m,, however,
in the present article, we confine ourselves to the isospectral case, that is, to the case when 4 does not depend on the
independent variables. We assume that the square matrices A and B do not depend on A and do depend on m; and m,, [
denotes the unit matrix and we recall that T'; (j = 1,2) denotes forward shift operators: T1¥(my, my) := ¥(m; + 1, my),
T,¥(my, my) :=¥(my, m, + 1). The function ¥ is a fundamental matrix solution of the system (18) so it takes values in
square matrices. Shortly, we have

¥ =UW¥Q),  T,¥A)=V(AD)¥A),

where U and V are characterized as having simple poles at A = 1, and 4 = —1, respectively, and
lim U(A) =1, lim V(1) =1. 19)
A—>o0 A—0

We want the compatibility conditions of system (18)
(ToA = A —T1B+ B+ (ToA - DB +1) - (T1:B+ DA -1)=0 (20)
to be valid for all 1 € €C\{1, —1}, so we arrive at
AA = A B (21)
[T2(A = DIB +10) = [T1(B + DI(A = D). (22)

Due to Equation (22), we can introduce!“potential” @

A-1=—(T;®)d! B+1=(T,0)d . (23)
Thus,
A=—(AD)DL, B =(A,®)P L. (24)
The potential ® can be defined as
@ = W(0). (25)

Substitution (24) to Equation (21) gives
T1T,®(T; 07! + T,& 1) = (T1® + T,®)d ! (26)

which is nothing but Equation (16). To prove the integrability of (26), we will construct its Darboux-Bécklund transfor-
mation.

3.1 | Construction of a Darboux Matrix

‘We consider the Darboux transformation

¥(1) = DA)P) (27)
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which leads to the Darboux-Backlund transformation
U@) = (T,DA)UDDA)L,  V(2) = (T,DA)V(A)DQA) T, (28)

where D is usually referred to as Darboux matrix and depends on m, m,, and 1.

The normalization N of the Darboux matrix is defined by

N :=/1lim D), 29)

we tacitly assume that the limit exists. First, we are going to check whether condition (19) is preserved by the
transformation. Taking into account (19) and (29), we have

lim; o U = (TiN)(lim oo UM)IN ! = (T1NN

30
limy o V(2) = (ToN)(limy oo VAONT! = (T;N)N G0

These limits are equal to [ if and only if T{N = T,N = N.
Corollary 1. If N = const, then the Darboux transformation (28) preserves the constraints (19).

We assume throughout the article, N = [.

There is another, more fundamental, constraint to be preserved by the transformation (28), namely, the dependence of
U,V on A (the divisors of poles of U and V). We adapt the classical results on N-pole Darboux matrix for continuous
GL(n) principal o-model to the discrete GL(n) principal o-model (16), that is, we confine ourselves to the following form
of D and its inverse D~:

N N
AP 4 Wl

D=1 s D= =1 s Vi,j @ A oA, M £ 1 31

+;/1_/1i +j§1/1_/'{j LJ l;éluj i» Mi £ (31)

where the rank of all matrices P s F j is the same and equals k, that is,

p;= ’plj><P2j|’ Fj= |f1j)<fzj|, (32)

where “bras” are k x n matrices of rank k while “kets” are n X k matrices of rank k.

The conditions DD~! = D™D = [ impose the following constraints:

(pulD~1(A) =0, D(u)lf1i) =0,

1, N . N (33)
D™ (4)|p1i) =0, (f2i1D(u;) = 0,

which allow us to express | py;) and (f5;| in terms of | f1;) and {p,;|.
To ensure that the transformation (28) preserves divisors of poles of U and V, we demand that the residua at A;, y; (i =

1, ..., N) of the right-hand sides of (28) vanish:
T1(PHUA)D~(4;) = 0,
TL,(PHV(A)D~1(A) = 0,
T1(D(u))U(u)F; = 0,
To(D(u)V (wi)F; = 0.

(34)

The following theorem takes place in full analogy with the continuous case [14, 26, 27]:

Theorem 1. If (py;| = (poi| Y~ (A;) and | f1;) = ¥(;) | foi)» where W(A) is a solution of the linear problem (18) and { py;|
and |fo;) are, respectively, constant k X n matrices of rank k and n X k matrices of rank k and |py;) and {f,;| are given via
formulas (33), then Equations (34) are satisfied.
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Proof. The proof is straightforward. It is enough to substitute (p,;| = (po;l ¥~(4;) and |f1;) = ¥(w;) | fo;i) to (34) and to
take into account T, ¥(4) = UA)¥P(A), T,¥ (1) = V()¥(A) evaluated at 4 = A; or 4 = ;. The resulting expression vanishes
by virtue of (33), for example, for the first equation of (34) we have

T (PYUA)D ™ (A;) = (T1|p1)(T1{p2i DUA)D () =
= (T1 | pu))(Poi(T1¥ ' (AU @)D (A) = (T1|p1i)Xpoi ¥ (A)DD™H(A) =
= (T1|p1)){p2lD~'(A) = 0. n
Remark 1. The factors | py;), {pail, | f1i), and {f5;| in (32) are not uniquely defined. Indeed, a transformation
Ip1i) = [pw)W L (pail = Wilpails 1) = 1f10W; T (Fail = Wilfails
where Wl-,W,- are any invertible k X k matrices, does not change the matrices P;, F;. Now, it follows from (33) and
Theorem 1 that the dressing Darboux matrix (31) is parameterized by 2N points {py;|, |fo;) on the Grassmanian Gy

and by the set of 2N complex parameters 4;, u;, i =1,...,N.

Remark 2. In (32), we assumed that all poles of the Darboux matrices in the spectral parameter A are simple, that the
number of poles in D and D! coincide, and that the ranks of matrices P;, F; are the same and do not depend on i. A more
general Darboux dressing matrix can be easily constructed without the above assumptions and in the same way but it
would make the paper less readable.

3.2 | Darboux Matrix With Two Poles

Since in the case of reduction ®? = [ considered in the next section, it is sufficient to consider the Darboux matrix with two
poles; we discuss the case N = 2 in detail. In the case N = 2 Darboux transformation, the Darboux matrix and its inverse
take, respectively, forms

W(4;41,4,) = D(A; 41, 1,)P(A), (35)
AP a0
D@) =1+ T+ 12, (36)
G
D) =14 FAE 26 37)
A—p A—ip

Taking into account DD~! = D~!'D = [, we arrive at the equations

M1
P(I+ G
< A —#1 /11 — M2

)=
afis 22 ) -0

/12—111 /12—,“2

(38)
o A >
I+ Q =0
< M- /11 I«l1 -1
A A >
I+ P+ Q)G=0.
< M2 — A M2 — Ay
We assume that all matrices P, Q, F, G are of the same rank k > 0 so can be written as
= |p1){(p2l, Q = g1 ){q2l, F = |f1){f2], G = |g1){&al,
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where “bras” are k X n matrices of rank k while “kets” are n X k matrices of rank k. Equations (38) take form

(P2l + (P | f1)(f2] + #Zﬂz (P2181)(&21 =0

A1-1 -
M1 M2 _
(CI2|+/12_M1(Q2|f1><f2|+/12_“2(Q2|g1)(g2|—0 -
If1) + P |p1X(p21f1) + -1 lg1){(q21f1) =0

!
g1) + I g1) +
g1) -1 p1Xp2181)

/12/1—2/12 l91){(q2181) = 0,
where (p, |f1), (P2 1€1), (@2 |f1), and {(p, |f1) are matrices k X k. The system (39) can be solved with respect to |p;),
lq1), (f2], and (g,|, therefore |p1), |q1), (f2|, and (g,| are given in terms of (p,|, (q2|, |f1), and |g;). The latter set,
according to Theorem 1, evolves in a simple way and can be integrated, namely, (p,| = (pao| P(11), {(q2] = (q20] P(12),
|f1) = 1f10) $(u1), and [g1) = Ig10) P (i) Where (paol, (g20l, |f10), and |g1o) are constant bras and kets. Upon the
observation that in Equation (39) (p,| and (g, | are combinations of | f,), |g,) only, while | f;) and |g;) are combinations
of {(p1| and (q; | only, one can obtain formulas for | p1), |q1), {f1l, (g1| by inverting 2 x 2 block matrices. We will need here
only formulas for |p;), |q;) which are

-1

-1 — -1 -1 -1 —
|p1) = l((M1_/12)|f1><‘]2 1f1) = (e = 22)181)(q2 181) 1><‘u2_ (P, lgi)q: 121)” - a2 — 2(p2 /142 1f1) l> )
A Mo =4 M= (40)
- - -2 - -2 1\
l92) = 7 (G = I )™ = G = 20 ) )(Z — (@ le)(pa 1) = TR @ R ) ) ,

formulas for (f,| and (g,| will not be used and we omit them.

4 | Involutive Reduction ®* = [

As far as the reduction ®? = [ is concerned, we are guided by the results obtained in the continuous case (see [14]). The
first observation is that the constraint ®> = [ is a valid reduction of (16), for it is preserved under propagation of ® by
means of Equation (16). Indeed, if at some point of the lattice ®> = [ holds and at neighboring points we have T;®? = |
and T,®? = [, then due to (16), we have

-1 -1
T1T,®% = (T1® + T,®)@ Y (T1 @71 + T,@71) (119 + T,0)@ (T + T,@7 1) ~ =

41
(T1®@ + Ty ®)D(T,® + T, ®) (T @ + TL®)D(T1® + T,®) ' = 1. ()
The second observation is that if the constraint
@2 = (42)
holds, then the matrices
U = Al - ;Tiq;)cp—l V) = Al + ;Tiqi)qn—l
of the Lax pair
T9(1) = U)P(A), T,9(1) = V(A)¥) (43)
has the property
v hH=mouwe !, vahH=(Tev@e (44)
Due to the property (44), matrix ®¥(1~1) is a fundamental solution of the Lax pair (43) thus we have
y(1~h = dP(1)S (45)
8 of 15 Studies in Applied Mathematics, 2025
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valid for every 4 € C and where S is an invertible constant matrix. In general, matrix S can depend on 1, but we shall see
that assumption that S does not depends on 4 leads to nontrivial Darboux transformation. We will usually choose such a
fundamental solution of ¥(4) such that ¥(0) = ®. In the latter case, evaluating (45) at A = 0 and 1 = co we get

Y(o)=S, Y (0)S =1, (46)
that is,
S?=1.

After the above preliminary considerations, we are ready to construct Darboux transformation that preserves the
constraint ®2 = I.

4.1 | The Darboux-Bicklund Transformation Preserving Constraint ®* = [

Now we demand the constraints (45), to be preserved under the Darboux-Bicklund transformation

¥ = DA¥Q), (47)
that is,

P~ = d¥)S. (48)

Due to chosen normalization of the Darboux matrix D(co) = [ we get from (47) ¥(c0) = ¥(o0) and due to (46), S = S holds.
We immediately (by evaluating (48) at 1 = co) get that ¥(0) = ® and we arrive at the following constraint on the Darboux
matrix D:

DA~ H® = D0)PD(A). (49)

Conversely, if D(1) obey the constraint (49) then matrix ¥(1) given by (47) satisfies (48) where ® = ¥(0) and as a
consequence

(D(0)P)* =1, (50)
that is,
2 =1. (51)

From (49), it follows that the set of poles of D(1) coincides with the set of poles of D(1/4). In the case of the two-pole
Darboux matrix (36), it means that either A;4, =1 or /1% = /1% = 1. We confine ourselves to the first (generic) case. The
same considerations applies to the inverse of D, see (37). We also confine ourselves to the case u; 1, = 1. Therefore, we
assume function D(4) has two poles disposed symmetrically with respect to inversions in the unit sphere

A = A, =451 Ao #0,1, (52)
that is,
AP Q
D) :=1 53
W 1=+ 3o (53)
and its inverse is of the same form (u, = ug, o = 1/, 4o # 0), that is,
_ HolF G
D) =1+ + , (54)
A—py  Aup—1
that is,
M1 =Mos  Ma=Hyt, Mo #0,1. (55)
There are two simple conditions sufficient to satisfy (49):
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Theorem 2. If
(2| ={p2IP, Ig1) = @1 f1), (56)

then constraint (49) is satisfied.

Proof: Indeed, condition (49) D(A~1)®D(1)~! = D(0)® after substitution of assumed forms of D (53) and D! (54) reads

AP 2Q Kot G _

It is clear that residual at oo of left- and right-hand sides of (57) are the same. The remaining residue of left-hand side at
Ao, Ay L uo, Mo ! vanishes iff, respectively,

Mo 1
| | <|] + F+ G) =0,
NP2 do—po  Aopo—1

AoHo Ao
| |<ﬂ+ F+ G| =0,
P12 1= Aoo o —7o
(58)

AP 1 >
I+ + Q)If1)gl=0
< Mo—Ag  Aopo —1 hiie

AotoP
<|] + 0Ho + Ho
1—Aoto Ao = Ho

hold, where we have used conditions (56). The point is that Equations (58) are satisfied because we already made sure that
Equations (38) hold and Equations (38) in virtue of (52) and (55) take form

@>|g1)(f2| =0

Mo 1
| |<u + F+ G> —o0,
PP Ado—po oMo —1

Aok Ao
lq )(q|<|]+ F+ G) =0,
A 1-Aopo  Mo—4o

(59)
AP 1 >
I+ + Q)If1){f2l=0
< Mo—4o  AoHo —1 Juif
AopoP Mo >
I+ + Ql |=0
< 1—2omg Ao — Ho s1)(e2
and are clearly equivalent to (58). O

To assure that constraint ®? = [ is preserved under Darboux transformation we used relations (g,| = (p,| ® and |g;) =
® | f1), but the quantities involved in these relations, by virtue of Theorem 1 obey the following evolution:

(P2l = (P20l®1(A0),  1f1) ="F(Ho)l f10)

(@2l = (@0l (251) . 1g1) =¥ (uy")1810),

(60)

where W(A) is the solution of the Lax pair, and {p,g|, (920l | f10)> |€10) are constant vectors (initial data), so the question
arises whether these relations are compatible with the evolution? The answer is positive.

Due to the reduction (45), we have
P(A5h) = d¥()S, P(uy') = ¥ (up)S 1
0 - 0 ’ :uo ) - (,Uo) ’ (6 )
which means that

(2] = (q20IST )P, 1g1) = P¥(1o)SIg10), (62)

and, as a conclusion we get that to satisfy relations in Lemma 2 it is enough to set {(g,o| = (P20l S and |g19) = S | f10)-

‘We can now formulate the main conclusion of the article.
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Corollary 2. Having a solution ® of system (17) and a corresponding solution W(1) of Lax pair (18), by virtue of Theorem 1

and considerations above we have

(P2l = (P20¥ 7 A0),  1f1) = ¥(uo)|f10),

(63)

where (paol, | f10), are constant vectors (initial data). Equations (40) under the reduction considered in this section with

A=A, =", w=uo =", Ao, Ho #0,1 (64)
and after introducing quantities
0]
Y= (P2|f1), . (P2 DI f1) (65)
Ao — Mo 1 — oMo
take form
Ip1) =251 (If)y ™+ py @1 f1)x7 1) ey~ = yx~H~! (66)
lq1) = = (1f)x™ + pg @l f1)y ™) (xy™ =y )7L (67)
Then the Darboux matrix that respects the constraint ®* = [ is
Aolp1)(p2l | 191)(p2|®
D) =1
W=+ =3 = -1
and family of functions ® given by
® =@ — |p1 )(pa2|® — |q1){p2] (68)
is family of solutions of system (17).
4.2 | Solutions
We apply the procedure described in Corollary (2) to background solution @ of system (17)
0 a™1p"m2
P = ,
L 0
a™ p™m2
where a and b are complex constants. For this solution, the Lax pair (18) takes form
A-a b+2
A-1 0 A+1
TI%() = aoy [Y0. T =t pis1 YO
a(A-1) b(1+1)
from which we get the following fundamental solution:
0 A—a\" b4\
A-1 A+1
PY(A) = my o .
1-al ba+1 0
a—al bA+b
Taking
C4
(P20l = [e2, 1], |f10) = [c ] ,
3
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where c; are arbitrary complex constants we obtain from procedure described in Corollary (2) solution ® of system (17)

~ 1M M
<I>=—[ 11 12]’

D |My —Myy
where
D = opp(y +8 —a—p)a+p+y+9)
My = a™b™2(ugy + 498 — a — Aopof)(a + AgpoB + KoY + A95)
My = a"™b™"2(Aoy + pob — Aopot — B)(Aopoa + B + Ag¥ + HoF)
My = /10(#(2) —1)(ay — BS) + Mo(/l(z) - 1)(ad - By),
and where

a 1= cres(lo — po)(adg — 1) (apg — 1) (bAg + 1) (bug + 1)
B :=cae3(Ao — Ho)(Ao — @) (g — @)™ (b + A9) "2 (b + )"
¥ 1= c1e3(Aorg — D(ado — )™ (o — @)™ (b2 + 1) (b + )"

8 1= crea(Aopo — Do — @)™ (apg — 1™ (b + A9) "2 (buo + 1)™2.

In this particular case (N = 2), we are able to find the large class of solutions that satisfy also unitary constraint.

5 | Unitary Reduction ®'® = [ in the Case N = 2

In general, unitary constraint @' ® = [ is not compatible with Equation (16). However, in the particular case N = 2, set of
matrices

S={[ ¢ b+lc]|a,b,ce|R,a2+b2+cz=1}
b—ic -a

is not only unitary, Hermitian, and involutive at the same time o1 =0 = @, but it follows that anticommutator of two
elements of S gives

a b1 + iCl a b2 + iCz
bl - iCl —a; b2 bl iCz —a)

a b2 + iC2 a b1 + iCl _ 1 0
+ [bz —ic, —a, ] [bl —icy —a ] =2(ayay + b1by + c1c3) [0 1

and therefore if at some point of the lattice ® € S and at neighboring points T1® € S and T,® € S then due to (16) we have
(T, T,®)? = [ and moreover (T;T,®)" (T, T,®) = I. As we mentioned in the introduction, this particular case is equivalent
to Orfanidis system (7) and was discussed in article [33]. The results of Section 4 can be used to obtain solutions in this
case as follows.

Applying the procedure from Section 4.2 to seed solution (clearly, ®'® = [ and ®* = [)

0 elamy gibmy
@ = [e—iaml e—ibmy 0 ] ’

where a and b this time are real parameters, it is enough to set

Cq| _ c) _7
[03] B [51] =k
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to guarantee that ®'® = 1. Therefore,

6 1
1 A0l2((s + )2 + (ry +12)?)
ir1[As — AS] + iry[As — A3] elmagimab <(S + 1201282 + (Aory + /10r2)2> )
X . . _ _ _ s 69
g-imjag=impb <(|/10|2s +35)%+ Apr1 + /10r2)2> —ir;[As — A3] — iry[As — A3]
where
_2
A=11y -1)
r1 = (201> = Dler *[e'*2g — 1171 [eP 29 + 1|2
ra = (141> = Dlca[e!®Ag — 1|21 e Rg + 1|22
s =i(lg — Ap)e1Ca(e“2g — )™ (A — €79 (e 2y + 1)™2(Zg + €70)™2
is a family of solution of the system
A (A, @)®) + Ay((A D)D) =0, D2=1, d'D=I, (70)

that is, for the discrete chiral field that takes values on two-dimensional sphere S2,

6 | Conclusions

We have constructed the Darboux transformation for the difference equation
D(my + 1,my + 1) (D71 (my +1,my) + 7 1(my, my + 1)) = (@(my + 1, mp) + ®(my, my + 1))@ 1(my,my)  (71)
and then have reduced the transformation so that it preserves the involutive constraints
(@(my, my))” = 1. (72)

Unlike the continuous case, system (71-72) in general is not compatible with the unitary constraint (4). An open problem
remains to find an integrable discretization of the chiral field models (1) and (13) that admits reductions to classical Lie
algebras (or Lie groups) and further involutive reductions. Moreover, to the best of our knowledge, integrable discretization
of elliptic chiral field model (i.e., when in (1) u = x + iy and v = x — iy, where X, y are real independent variables) has
not been discussed in the literature, so far. In particular, integrable discretization of the original (i.e., elliptic) Ernst
equation is not known, yet. However, in the autonomous case, one can replace the discrete operator in (7) with discrete
Schrodinger operator [28-30] or equivalently to apply the so-called sublattice approach [31, 32] to first equation of (7) to
get its elliptic version.
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Endnotes

IDue to (21), one can introduce “potential” T via A = AT 41, B = AT — [ and, plugging it in (22), get T,(A1T)A,T = T;(A,T)A; T
Alternatively, one can put A = 2A;H, B = AyH and get A\AyH = Th(A1H)AH — T1(A,H)AH.
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