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Abstract 23 

Road use tolling is an effective way of alleviating congestion. Although many tolling models have been developed, there 24 

is gap in the research for a model that: i) is dynamic, ii) accounts for the impacts of tolls on travel demand and departure 25 

time choice, iii) accounts for stochasticity in travellers’ route choices, iv) is well-behaved, producing continuous outputs, 26 

and v) is computationally feasible to apply to real-life large-scale networks. This paper fills this gap, by developing a 27 

tolling model based on the dynamic multi-region Macroscopic Fundamental Diagram (MFD) Stochastic User 28 

Equilibrium (SUE) traffic model introduced in Duncan et al. (2025). We begin by extending the model to account for 29 

elastic demand and departure time choice. Then, we integrate the model within a toll-price optimisation framework, 30 

where the tolling scheme is travel-time-based and the objective function maximises social welfare. We first test the 31 

model in a small-scale example multi-region MFD system, and then apply it to estimate an optimal toll-price in a real-life 32 

large-scale and detailed case study of Zealand, Denmark. Experiments find that the model is well-behaved and produces 33 

smooth objective function surfaces with a unique maximum. Travel behaviour implications of tolling are also realistic, 34 

where some travellers opt not to travel by car, some change their departure time, and some change their route. Results 35 

suggest that tolling could instigate a positive change in travel behaviour to benefit society.  36 

 37 

Key Words: multi-region macroscopic fundamental diagram traffic model, dynamic stochastic user equilibrium, elastic 38 

demand, departure time choice, toll-price optimisation 39 

 40 

1 Introduction 41 

Traffic congestion is a recurring problem for societies. The many hours wasted in congestion each day results in huge 42 

economic losses, and has a negative impact on the environment and public health. An effective way of alleviating 43 

congestion is to encourage a change in travel behaviour through road use tolling (Zheng et al, 2016; Meng et al, 2012; 44 

Liu et al, 2017). Developing suitable models for evaluating tolling schemes is, however, a challenging task. To be 45 

behaviourally realistic, such a model should ideally: i) be dynamic, accounting for the propagation of traffic and time-46 

dependent traffic conditions, ii) account for the impact of tolling on travel demand, iii) account for the impact of tolling 47 

on departure time choice, and iv) account for stochasticity in travellers’ route choices. Many tolling models have been 48 

developed that exhibit some of these features, such as i) (Lu et al., 2008), ii) (Yang & Bell, 1997; Verhoef et al., 1996), 49 

iii) (Mahmassani & Herman, 1984; Arnott et al., 1990), iv) (Yang, 1999; Rambha & Boyles, 2016), ii) & iv) (Meng et al., 50 

2012; Watling et al., 2015), i) & iii) (Aboudina et al., 2016), i), ii) & iii) (Yang & Meng, 1998; Szeto & Lo, 2004), and a 51 

limited number exhibiting i), ii) iii), & iv) (Joksimovic et al., 2005; Lentzakis et al., 2020; Jing et al., 2024). For 52 

comprehensive reviews of tolling models, we direct the reader to de Palma & Lindsey (2011), Cheng et al. (2017), and 53 

Lombardi et al. (2021). 54 
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The issue, however, is that to be useable in real-life, the tolling model should ideally also be well-behaved, 1 

producing continuous outputs (e.g. route travel times / choice probabilities) as model inputs such as toll-price are varied, 2 

and computationally feasible to apply to real-life large-scale networks. Many detailed traffic models produce non-3 

continuous outputs, especially outputs from traffic simulation software packages, which makes finding optimal toll-price 4 

solutions difficult. Moreover, many tolling models developed are only ever applied to small often synthetic networks 5 

(e.g. Yang & Meng, 2000; Yang, 1999; de Palma et al., 2005; Meng et al., 2012), and while it is not impossible to apply 6 

methodologies to large networks, and some have (e.g. Aboudina et al., 2016; Jing et al., 2024), adopting a detailed 7 

dynamic link-network-based approach makes efficient application unlikely. This limits the rigor in which analyses can be 8 

conducted. Jing et al. (2024), for example, explore different congestion pricing schemes on a large network using a large-9 

scale microsimulator, but concede that computational intractability prevented them from optimising toll-prices. 10 

In the current paper, we develop a tolling model that exhibits each of the four desirable behavioural features i)-iv) 11 

above, and is both well-behaved and computationally feasible, shown by successfully optimising toll-prices in a real-life 12 

large-scale case study. Rather than analysing tolling with a traditional ‘microscopic’ link-network traffic model, we use a 13 

more aggregate ‘macroscopic’ traffic modelling approach, where traffic conditions are captured over entire regions 14 

through Macroscopic Fundamental Diagrams (MFDs). The appeal of this approach is greater computational efficiency, 15 

easier calibration (Duncan et al, 2025), and suitability for analysing area-based tolling schemes, which most real-world 16 

tolling systems are (e.g. in Singapore, London, Stockholm, and Milan, see Gu et al. (2018) for an overview). 17 

Region-based MFD traffic models have been used to model traffic in numerous traffic management studies, such as: 18 

route guidance management (Yildirimoglu et al., 2015; Knoop et al., 2012; Hosseinzadeh et al., 2023; Menelaou et al., 19 

2023; Jiang et al., 2024; Chen et al., 2024), traffic control in urban networks (Geroliminis et al., 2012; Keyvan-Ekbatani 20 

et al., 2012,2015a,2015b; Ramezani et al., 2015; Haddad et al., 2013; Haddad, 2017a,2017b; Zhong et al., 2018a,b,2020; 21 

Guo & Ban, 2020; Batista et al., 2021; Fu et al., 2021; Yu et al., 2025; Sirmatel & Yildirimoglu, 2023; Sirmatel et al., 22 

2021; Sirmatel & Geroliminis, 2021; Ren et al., 2020; He et al., 2024; Zhu et al., 2023; Kouvelas et al., 2023; Tsitsokas 23 

et al., 2023; de Souza et al., 2024; Jiang & Keyvan-Ekbatani, 2023; Keyvan-Ekbatani et al., 2021; Ding et al., 2025; Qian 24 

et al., 2024; Hamedmoghadam et al., 2022; Chen et al., 2024; Chen et al., 2022), parking management (Zheng and 25 

Geroliminis, 2016), vehicle dispatching (Ramezani & Nourinejad, 2018; Alisoltani et al., 2020,2021; Beojone & 26 

Geroliminis, 2021; Ramezani & Valadkhani, 2023; Valadkhani & Ramezani, 2023), tradable credit schemes (Balzer et 27 

al., 2023; Balzer & Leclercq et al., 2022), and emissions estimation (Barmpounakis et al., 2021; Batista & Leclercq 2020; 28 

Batista et al., 2022). 29 

Although the research field on tolling with region-based MFD traffic models is growing, the literature is not vast. 30 

Geroliminis & Levinson (2009), Amirgholy & Gao (2017), and Daganzo & Lehe (2015) use a single-region MFD model 31 

to address the morning commute problem, using dynamic tolling to alter departure times to maximise outflow / user 32 

benefits. Lehe (2017) presents a static model of traffic into a single tolled downtown region with an MFD, in which 33 

commuters with varying trip lengths and benefits from driving decide between driving and a zero-utility outside option. 34 

Wang & Gayah (2021) use an MFD traffic model to explore cordon-tolling two urban regions to push traffic onto two 35 

motorway regions. Genser & Kouvelas (2022) use a multi-region MFD traffic model to identify optimal real-time 36 

dynamic tolls for maintaining system optimum. Zheng & Geroliminis (2013) use a multimodal-MFD model to optimise 37 

dedicated bus lane allocation and congestion pricing, and Zheng & Geroliminis (2020) adapt the work to maximise 38 

equity through different value of time groups. Parishad et al. (2025) employ reinforcement learning and a trip-based 39 

MFD model to develop a real-time dynamic cordon-based pricing scheme and evaluate its impact on travellers’ mode 40 

choices.1 41 

To the best of our knowledge, no study has developed a toll-price optimisation framework based on a dynamic 42 

multi-region MFD Stochastic User Equilibrium (SUE) traffic model accounting for elastic demand and departure time 43 

choice, and applied the model to optimise tolls in a real-life large-scale case study. The current paper fills this research 44 

gap. In Duncan et al. (2025) we developed a new dynamic multi-region MFD SUE traffic model and calibrated and 45 

applied it in a real-life large-scale and detailed case study of Zealand, Denmark with 135 regions and motorways 46 

considered separately. The current paper extends this model to account for both elastic demand and departure time 47 

choice, and then integrates it within a toll-price optimisation framework maximising social welfare. The tolling scheme 48 

explored is a ‘time-based’ scheme, meaning that the price paid depends on the travel time spent in the tolled area. The 49 

model and toll-price optimisation model are tested in an illustrative example and then applied to the real-life case study.  50 

 
1 The literature also includes numerous studies that use a traffic simulation software package (e.g. AIMSUM, MATSim) 

to simulate traffic given tolling in a single zone (Zheng et al, 2012,2016; Simoni et al, 2014; Gu et al, 2018,2019; Gu & 

Saberi, 2021; Chen et al, 2016,2021; Dantsuji et al, 2019; Mansourianfar et al, 2021,2024), multiple zones (Chen et al, 

2023), or tolling expressway streets and arterial streets (Wei & Sun, 2018), and use an MFD to measure network 

performance. We do not class these though as using region-based MFD traffic models. They also require a traffic 

simulation package to be set up for the area and can come with considerable computational burden to run (Zheng et al, 

2012; Gu & Saberi, 2021). 
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The paper is structured as follows. In Section 2 we introduce the dynamic multi-region MFD SUE traffic model 1 

developed in Duncan et al. (2025). In Section 3 we describe how a time-based toll can be captured by the model, as well 2 

as extend the model to account for elastic demand and departure time choice. In Section 4 we describe the solution 3 

method we use for solving the traffic equilibrium model. In Section 5 we integrate the model within a toll-price 4 

optimisation framework for maximising social welfare. In Section 6 we introduce the setup of the real-life case study, 5 

and in Section 7 we explore the optimal toll price in the case study and implications for travel behaviour. In Section 8 we 6 

discuss and provide thoughts on future research. 7 

 8 

2 Dynamic multi-region MFD SUE model 9 

In this section we give an overview of the dynamic multi-region MFD SUE model developed in Duncan et al. (2025), 10 

which we extend in Section 3 to model a tolling policy scheme and to account for tolling effects on elastic demand and 11 

departure time choice. For a more detailed description of the dynamic multi-region MFD SUE model we direct the reader 12 

to Sections 2-4 of Duncan et al. (2025).  13 

The dynamic multi-region MFD SUE model has two components: a traffic propagation component and a traffic user 14 

equilibrium component, which feed back into each other. For a given setting of the route (regional path) flows, the traffic 15 

propagation component captures the journeys of vehicles from origin region to destination region over time and space, 16 

interacting with each other. This outputs experienced regional path travel times, which feed into the traffic user 17 

equilibrium component to determine regional path choice probabilities, outputting new regional path flows to feed back 18 

into the traffic propagation model.  19 

A table of the nomenclature used in this paper can be found in Appendix A. 20 

 21 

2.1 General multi-region MFD setup 22 

An area of road network is partitioned into a set of regions 𝑅. The traffic conditions in each region 𝑟 ∈ 𝑅 are described 23 

by a speed-MFD function 𝑣𝑟(𝑛𝑟), which describes the space-mean speed of vehicles in the region as a function of the 24 

total number of vehicles (accumulation), 𝑛𝑟, in the region at a given moment in time. As accumulation increases, average 25 

MFD speed decreases. Each region has an internal origin/destination, while regions with external borders may also have 26 

an external origin/destination (see Fig. 1). 𝑀 is the set of regional Origin-Destination (OD) movements between each 27 

origin and destination. A regional path (otherwise termed r-path) is defined as a sequence of regions traversed when 28 

travelling an OD movement. 𝑃𝑚 is the choice set of regional paths for OD movement 𝑚 ∈ 𝑀. The total runtime period of 29 

the system (e.g. a morning, evening, or full day) is split into an indexed set Ψ of discrete time-slices, each with duration 30 

𝜀. The travel demands 𝑑𝑚
𝜏  for each regional OD movement 𝑚 ∈ 𝑀 departing during each time-slice 𝜏 ∈ Ψ, are obtained 31 

by aggregating travel demands from the underlying network ODs over the time-slice between the OD regions. The travel 32 

demand 𝑑𝑚
𝜏  for OD movement 𝑚 departing during time-slice 𝜏 is split among the available regional paths 𝑝 ∈ 𝑃𝑚 33 

according to a regional path choice model, to give the regional path vehicle flows 𝑓𝑚,𝑝
𝜏 . 𝒇 is the vector of all r-path flows. 34 

Denote 𝑙𝑚,𝑝,𝑟 as the average distance travelled in region 𝑟 (regional trip length) when travelling regional path 𝑝 ∈ 𝑃𝑚, i.e. 35 

an average of the distances travelled by different link-routes on the underlying link-network through the region. For a 36 

given accumulation 𝑛𝑟 in region 𝑟 at a given entry time to the region, corresponding to an average MFD speed 𝑣𝑟(𝑛𝑟) in 37 

the region, the instantaneous travel time 𝑡𝑚,𝑝,𝑟  to cross region 𝑟 when travelling r-path 𝑝 ∈ 𝑃𝑚 is: 𝑡𝑚,𝑝,𝑟 =
𝑙𝑚,𝑝,𝑟

𝑣𝑟(𝑛𝑟)
.  38 

 39 
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Fig. 1. Example area with a three-region partitioning, displaying two regional paths from the external origin of R1 to the internal 1 
destination of R2. 2 

 3 

2.2 Traffic propagation model 4 

Embedded within the traffic user equilibrium model is a traffic propagation model based on utilising features of a Space-5 

Time Graph (STG)2. Here we shall briefly describe the model, for the full details we direct the reader to Section 3 of 6 

Duncan et al. (2025). Throughout each time-slice, demand is assumed to depart uniformly and continuously, and all 7 

drivers are assumed to experience the same speed in a region. Vehicles departing at the beginning and end of each time-8 

slice travelling each regional path are tracked from origin to destination on the STG based on region travel times, see Fig. 9 

2. Occupying STG areas of regional path flows are then used to calculate accumulation levels, which feed back to 10 

determine average vehicle speeds in a region during a time-slice (through the speed-MFD function), and thereby region 11 

travel times. The traffic propagation model is thus naturally expressed as a fixed-point problem in terms of region travel 12 

times. 13 

Features/notation from the model that are relevant for the concepts in this paper are as follows: 14 

• The constant time to cross region 𝑟 when entering the region during time-slice 𝜏 travelling regional path 𝑝 ∈ 𝑃𝑚 15 

of OD movement 𝑚 is denoted 𝑡𝑚,𝑝,𝑟
𝜏 . 𝒕 is the vector of all region travel times. 16 

• For a given regional path flow vector 𝒇, 𝒕∗(𝒇) is a region travel time vector solution to the traffic propagation 17 

fixed-point problem 𝒕 = 𝑯(𝒕, 𝒇) (see equation (4) in Duncan et al. (2025)). 18 

• For a given setting of the region travel times 𝒕 and regional path flows 𝒇, 𝑛̅𝑚,𝑝,𝑟
𝜏′→𝜏 (𝒕, 𝒇) is the average 19 

accumulation in region 𝑟 during time-slice 𝜏 from the flow travelling regional path 𝑝 ∈ 𝑃𝑚 departing during 20 

time-slice 𝜏′. 21 

• Ψ𝑚,𝑝,𝑟
𝜏  is the set of active time-slices that some time is spent travelling in region 𝑟 by any vehicle departing 22 

during time-slice 𝜏 travelling r-path 𝑝 ∈ 𝑃𝑚 (e.g. in Fig. 2, region 4 is active during time-slices 1, 2, & 3: 23 

Ψ1,1,4
0 = {1,2,3}, and region 5 is active during time-slices 2 & 3: Ψ1,1,5

0 = {2,3}). 24 

As discussed in Section 3 of Duncan et al. (2025), the traffic propagation model satisfies desirable traffic flow theory 25 

properties such as First In, First Out (FIFO) and causality (partial causality within each time-slice and strict causality 26 

between time-slices). Note that in this study, congestion capacities and receiving capacities of regions are not considered, 27 

and thus there are no restrictions in the management of the outflow/inflow between adjacent regions.  28 

Although the traffic propagation model is formulated as a fixed-point problem, in our solution method for solving 29 

the full dynamic multi-region MFD SUE model (described in Section 4), we do not fully solve the traffic propagation 30 

fixed-point problem for each new setting of the regional path flows. It can be solved, however, by iteratively performing 31 

Steps 1-5 (the Traffic Propagation Stage) in Algorithm 1, and using either the Fixed-Point Iteration Method (Isaacson & 32 

Keller, 1966) or an averaging scheme to obtain the region travel times for the next iteration. In some experimentation we 33 

found the Fixed-Point Iteration Method worked well. 34 

 35 

 
2 It is important to note that the model describes the traffic dynamics in a different way to the typical continuous-time 

inflow-outflow approach of which the accumulation (Daganzo, 2007; Geroliminis & Daganzo, 2008), trip (Arnott, 2013; 

Fosgerau, 2015; Lamotte & Geroliminis, 2016; Mariotte et al., 2017; Leclercq et al., 2017), and time-delay (Huang et al., 

2020; Zhong et al., 2020) models are based. Although the traffic propagation model here is based on the same principle 

as the trip-based model, in that travellers’ travel times depend on the time-varying traffic speeds over the course of the 

trip, the way in which we calculate the time-varying traffic speeds and model the traffic propagation are very different. 

The traffic propagation model here is a discrete-time model, designed to operate with coarse-grained time-slices (e.g. 15-

60 minutes). The motivations for this are discussed in Section 1 of Duncan et al. (2025). 
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 1 

Fig. 2. Example of a flow trajectory on a space-time graph, for a regional path with 5 regions. Spatial X-axis is proportion of region 2 
completed and temporal Y-axis is proportion of time-slice completed (here each time-slice is 𝜀 = 8 mins). 3 

 4 

2.3 Traffic user equilibrium model 5 

The Dynamic Multi-Region MFD SUE (D-MR-MFD-SUE) model embeds the traffic propagation model described in the 6 

previous section within an overall traffic user equilibrium model for equilibrating regional path traffic flows. Two 7 

versions of the model were derived in Duncan et al. (2025): in version 1 regional path choice is based on the region travel 8 

times at the current departing time-slice (i.e. instantaneous travel times), and in version 2 regional path choice is based on 9 

region travel times actually experienced at the time of travel (i.e. experienced travel times). Basing regional path choice 10 

on experienced travel times is more behaviourally realistic, as we supported empirically in Duncan et al. (2025). It is also 11 

more behaviourally realistic for elastic demand and departure time choice, corroborated in Remark 3.2 in Zhong et al. 12 

(2021). In this study we thus operate with experienced travel times.  13 

One of the assumptions of the traffic propagation model is that the demand departs continuously and uniformly 14 

during the departing time-slice. As such, the demand experiences different travel times depending on when it departs 15 

during the time-slice. It is assumed though that the demand at each departing time-slice has the same regional path 16 

choice. Regional path choice is thus based upon the average experienced travel time from the flow departing at different 17 

times. The average experienced travel time of region 𝑟 travelling r-path 𝑝 ∈ 𝑃𝑚 departing during time-slice 𝜏, 𝑡𝑚̅,𝑝,𝑟
𝜏 , is 18 

calculated as follows: 19 

 𝑡𝑚̅,𝑝,𝑟
𝜏 (𝒕, 𝒇) = ∑

𝑛̅𝑚,𝑝,𝑟
𝜏→𝜏′ (𝒕, 𝒇)

∑ 𝑛̅𝑚,𝑝,𝑟
𝜏→𝜏′′(𝒕, 𝒇)𝜏′′∈Ψ𝑚,𝑝,𝑟

𝜏
∙ 𝑡𝑚,𝑝,𝑟
𝜏′

𝜏′∈Ψ𝑚,𝑝,𝑟
𝜏

, (1) 

where Ψ𝑚,𝑝,𝑟
𝜏  is the set of active time-slices that some time is spent in traversing region 𝑟 by any vehicle departing during 20 

time-slice 𝜏 travelling r-path 𝑝 ∈ 𝑃𝑚. So, the average travel time of region 𝑟 is a weighted average of the region travel 21 

times in succeeding time-slices the flow travels the region in, i.e. 𝑡𝑚,𝑝,𝑟
𝜏′  for 𝜏′ ∈ Ψ𝑚,𝑝,𝑟

𝜏 , where the weighting for 22 

succeeding time-slice 𝜏′ is its average contributing accumulation 𝑛̅𝑚,𝑝,𝑟
𝜏→𝜏′ . See Section 4.3 of Duncan et al. (2025) for a 23 

demonstration. The total average experienced regional path travel time of r-path 𝑝 ∈ 𝑃𝑚 when departing during time-slice 24 

𝜏 is 𝑇̅𝑚,𝑝
𝜏 (𝒕, 𝒇) = ∑ 𝑡𝑚̅,𝑝,𝑟

𝜏 (𝒕, 𝒇)𝑟∈𝑅𝑚,𝑝 .  25 

In general, the generalised region travel cost function is a weighted function of multiple travel cost attributes, 26 

including experienced travel time 𝑡𝑚̅,𝑝,𝑟
𝜏 (𝒕, 𝒇). In this study, we specify the travel cost function for region 𝑟 of r-path 𝑝 ∈27 

𝑃𝑚 when departing during time-slice 𝜏 as: 28 

 𝑐𝑚,𝑝,𝑟
𝜏 (𝒕, 𝒇) = 𝛼𝑡𝑡 ∙ 𝑡𝑚̅,𝑝,𝑟

𝜏 (𝒕, 𝒇) + 𝛼𝑙 ∙ 𝑙𝑚,𝑝,𝑟 , (2) 

where 𝑙𝑚,𝑝,𝑟 is the regional trip length (in [km]) of region 𝑟 travelling r-path 𝑝 ∈ 𝑃𝑚, 𝑡𝑚̅,𝑝,𝑟
𝜏  is the average experienced 29 

travel time (in [min]) of region 𝑟 when travelling r-path 𝑝 ∈ 𝑃𝑚 departing at time-slice 𝜏, 𝛼𝑡𝑡 is the Value of Time (VOT) 30 

(in [DKK/min]), and 𝛼𝑙 is the Value of Distance (VOD) (in [DKK/km]). Therefore, 𝑐𝑚,𝑝,𝑟
𝜏  is in units of [DKK]. The 31 

generalised travel cost of r-path 𝑝 ∈ 𝑃𝑚 is 𝐶𝑚,𝑝
𝜏 (𝒄(𝒕, 𝒇)) = ∑ 𝑐𝑚,𝑝,𝑟

𝜏 (𝒕, 𝒇)𝑟∈𝑅𝑚,𝑝 .  32 
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Regional path choice probabilities 𝑄𝑚,𝑝
𝜏  are determined given the generalised region / regional path travel costs. In 1 

this study we adopt the same regional path choice model as adopted in Duncan et al. (2025), which is a modified version 2 

of the C-Logit model (Cascetta et al., 1996). For the formulation of the probability function and a discussion of its 3 

properties, as well as a discussion on what we believe regional path choice to represent, see Section 6.2.2 in Duncan et al. 4 

(2025). 5 

D-MR-MFD-SUE conditions are formulated as follows: 6 

D-MR-MFD-SUE: A r-path flow vector 𝒇∗ ∈ 𝐹 is a D-MR-MFD-SUE solution iff the flow departing during time-slice 𝜏 7 

travelling r-path 𝑝 ∈ 𝑃𝑚 of OD movement 𝑚, 𝑓𝑚,𝑝
𝜏,∗

, is a solution to the fixed-point problem 8 

 𝑓𝑚,𝑝
𝜏 = 𝑑𝑚

𝜏 ∙ 𝑄𝑚,𝑝
𝜏 (𝒄(𝒕∗(𝒇), 𝒇)), ∀𝑝 ∈ 𝑃𝑚, ∀𝑚 ∈ 𝑀, ∀𝜏 ∈ Ψ, (3) 

where 𝑑𝑚
𝜏  is the travel demand for OD movement 𝑚 departing during 𝜏, 𝑄𝑚,𝑝

𝜏  is the choice probability function for r-path 9 

𝑝 ∈ 𝑃𝑚 and departing time-slice 𝜏, and 𝑐𝑚,𝑝,𝑟
𝜏  is as in (2), given 𝒇 and 𝒕∗ which is a region travel time solution to the 10 

traffic propagation fixed-point problem, given 𝒇. 11 

 12 

3 Tolling and travel demand extensions 13 

3.1 Time-based tolling 14 

Before extending the dynamic multi-region MFD SUE model to account for elastic demand and departure time choice, 15 

we first introduce how tolling is captured within the model. Extending the cost function in (2) to include toll, the travel 16 

cost function for region 𝑟 of r-path 𝑝 ∈ 𝑃𝑚 when departing during time-slice 𝜏 is: 17 

 𝑐𝑚,𝑝,𝑟
𝜏 (𝒕, 𝒇) = 𝛼𝑡𝑡 ∙ 𝑡𝑚̅,𝑝,𝑟

𝜏 (𝒕, 𝒇) + 𝛼𝑙 ∙ 𝑙𝑚,𝑝,𝑟 + 𝜅𝑚,𝑝,𝑟
𝜏 , (4) 

where 𝜅𝑚,𝑝,𝑟
𝜏  in [DKK] is the toll paid in region 𝑟 by drivers departing during time-slice 𝜏 travelling r-path 𝑝 ∈ 𝑃𝑚 of OD 18 

movement 𝑚.  19 

In this study we consider a time-based toll. The reason for this is that this is the tolling scheme currently being 20 

explored in Denmark, the area of our case study. It is trivial to adapt the time-based toll to be distance-based (we shall 21 

describe how below), or cordon/area-based, and one can do this if one wishes.  22 

For the time-based toll, a toll is imposed when travelling within certain regions of the multi-region MFD system, 23 

and the price of the toll depends on the time spent in the region. The policy could be implemented in several ways. 24 

Vehicles could be tracked in real-time, identifying when the vehicle enters and leaves a tolled region, and thus charging 25 

according to the time actually spent in the region and according to the toll-price at the time. This could be problematic 26 

though if there is for example an accident and drivers get charged an unfair amount. Drivers also like to know what they 27 

will pay before they set off. An alternative could therefore be to present drivers with a set of route options for the journey 28 

they are going to make giving them the toll cost for travelling each route, based on what the model predicts when 29 

departing at that time. The driver’s journey is then tracked, and they are charged at the end based on the route they 30 

actually took and the time they departed, but using the model to predict the times they spent in the tolled regions and thus 31 

the toll they should pay.  32 

Regardless of how the scheme is implemented, we must first model its implementation. Let 𝜔𝑟
𝜏 be the toll-price in 33 

[DKK/min] for travelling in region 𝑟 during time-slice 𝜏. 𝝎 is the vector of all toll prices for all time-slices and regions. 34 

As described in Section 2.3, r-path flow experiences different region travel times depending on when it departs during the 35 

departing time-slice. Similarly, r-path flow experiences different tolls depending on when it departs during the departing 36 

time-slice. Depending on when the r-path flow departs (during the departing time-slice), a region may be traversed at 37 

different succeeding time-slices. As the travel times of the regions may be different at different succeeding time-slices, 38 

the travel times experienced may thus be different. And, as the toll-price may be different at different succeeding time-39 

slices, the toll-price experienced may be different. We therefore calculate the average toll experienced by r-path flow 40 

departing during a time-slice. For a given region travel time vector 𝒕 and r-path flow vector 𝒇, the average time-based toll 41 

experienced in region 𝑟 when departing during time-slice 𝜏 travelling regional path 𝑝 ∈ 𝑃𝑚, 𝜅𝑚,𝑝,𝑟
𝜏 , is calculated as 42 

follows: 43 

 𝜅𝑚,𝑝,𝑟
𝜏 (𝒕, 𝒇, 𝝎) =∑

𝑛̅𝑚,𝑝,𝑟
𝜏→𝜏′ (𝒕, 𝒇)

∑ 𝑛̅𝑚,𝑝,𝑟
𝜏→𝜏′′(𝒕, 𝒇)𝜏′′∈Ψ𝑚,𝑝,𝑟

𝜏
∙ 𝑡𝑚,𝑝,𝑟
𝜏′ ∙ 𝜔𝑟

𝜏′

𝜏′∈Ψ𝑚,𝑝,𝑟
𝜏

. (5) 

So, the average toll experienced in region 𝑟 is a weighted average of the tolls experienced in succeeding time-slices the 44 

flow travels the region in, i.e. 𝑡𝑚,𝑝,𝑟
𝜏′ ∙ 𝜔𝑟

𝜏′  (time spent in region in [min] ∙ toll price in [DKK/min]) for 𝜏′ ∈ Ψ𝑚,𝑝,𝑟
𝜏 , where 45 

the weighting for succeeding time-slice 𝜏′ is its average contributing accumulation 𝑛̅𝑚,𝑝,𝑟
𝜏→𝜏′ . As can be seen from (5), this is 46 

similar to how average experienced region travel times are calculated. The total average time-based toll experienced 47 
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when travelling regional path 𝑝 ∈ 𝑃𝑚 and departing during time-slice 𝜏 is: Κ𝑚,𝑝
𝜏 (𝒕, 𝒇, 𝝎) = ∑ 𝜅𝑚,𝑝,𝑟

𝜏 (𝒕, 𝒇, 𝝎)𝑟∈𝑅𝑚,𝑝 . For a 1 

distance-based tolling scheme simply replace 𝑡𝑚,𝑝,𝑟
𝜏′  in (5) with 𝑙𝑚,𝑝,𝑟. 2 

With the time-based tolling scheme, 𝜅𝑚,𝑝,𝑟
𝜏  in the travel cost function in (4) is equal to 𝜅𝑚,𝑝,𝑟

𝜏 (𝒕, 𝒇, 𝝎) in (5). 3 

Regional path travel costs thus depend on the tolling setting 𝝎, and thus so do the regional path choice probabilities: 4 

𝑄𝑚,𝑝
𝜏 = 𝑄𝑚,𝑝

𝜏 (𝒄(𝒕, 𝒇, 𝝎)). D-MR-MFD-SUE conditions with time-based tolling are as follows: 5 

 6 

D-MR-MFD-SUE: A r-path flow vector 𝒇∗ ∈ 𝐹 is a D-MR-MFD-SUE solution iff the flow departing during time-slice 𝜏 7 

travelling r-path 𝑝 ∈ 𝑃𝑚 of OD movement 𝑚, 𝑓𝑚,𝑝
𝜏,∗

, is a solution to the fixed-point problem 8 

 𝑓𝑚,𝑝
𝜏 = 𝑑𝑚

𝜏 ∙ 𝑄𝑚,𝑝
𝜏 (𝒄(𝒕∗(𝒇), 𝒇,𝝎)), ∀𝑝 ∈ 𝑃𝑚, ∀𝑚 ∈ 𝑀, ∀𝜏 ∈ Ψ, (6) 

where 𝑑𝑚
𝜏  is the travel demand for OD movement 𝑚 departing during 𝜏, and 𝑄𝑚,𝑝

𝜏  is the choice probability function for r-9 

path 𝑝 ∈ 𝑃𝑚 and departing time-slice 𝜏, and 𝑐𝑚,𝑝,𝑟
𝜏  is as in (4), given 𝒇, 𝝎, and 𝒕∗ which is a region travel time solution to 10 

the traffic propagation fixed-point problem. 11 

 12 

To demonstrate how the model can capture the impacts of tolling on regional path choice, consider the small-scale 13 

example multi-region MFD system illustrated in Fig. 3. This small-scale example system will be used throughout the 14 

paper to demonstrate the different concepts we introduce, where we have set the system up to resemble the real-life case 15 

study in Section 6. There are 4 regions, 1 OD movement from region 1 to region 4, and two regional paths: RP1: 1→2→4, 16 

RP2: 1→3→4. For both r-paths, regions 1&4 have a regional trip length of 6km, for r-path 1 region 2 has a regional trip 17 

length of 30km, and for r-path 2 region 3 has a regional trip length of 40km. The speed-MFD functions for each region 18 

assume the following functional form: 19 

𝑣𝑟(𝑛𝑟) = (𝑎 − ℎ)𝑒
−𝑏𝑛𝑟 + ℎ, 20 

where 𝑎 > 0 gives the free-flow region speed, 𝑏 > 0 determines the curve of the speed function, and ℎ is the minimum 21 

speed. All regions have a free-flow speed of 𝑎 = 60km/hr and minimum speed of ℎ = 5km/hr. The curve parameters for 22 

regions 1-4 are 𝑐 = 0.001, 𝑐 = 0.0005, 𝑐 = 0.0003, and 𝑐 = 0.001, respectively. Fig. 4A plot the speed-MFD functions 23 

for regions 2&3, respectively. Throughout this paper, both in this example system and the real-life case study, the total 24 

runtime period is a day (1440 minutes) split into 𝜀 = 30 minute time-slices. Fig. 4B plots the demand profile over the 25 

course the day, where as can be seen there is a morning and evening peak. The values for VOT 𝛼𝑡𝑡 and VOD 𝛼𝑙 are taken 26 

from the case study (see Section 8.2): 𝛼𝑡𝑡 = 1.99[DKK/min] and 𝛼𝑙 = 0.96[DKK/km]. Unless specified otherwise, we 27 

also set the Logit scaling parameter 𝜃 and commonality scaling parameter 𝜈 for the C-Logit r-path choice model (see 28 

Section 6.2.2 in Duncan et al. (2025)) as those from the case study: 𝜃 = 0.0658 and 𝜈 = 0.1389. 29 

 30 

Fig. 3. Example multi-region MFD system. 31 
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 1 

Fig. 4. A: Speed-MFD functions for regions 2 and 3. B: Travel demand departing at each 30-min time-slice over the course of the day. 2 

 3 

We will compare the shift in travel behaviour predicted by the model from the No Tolling Scenario (NTS) (where there 4 

are no tolls) to a Tolling Scenario (TS) (where there is a toll enforced). Suppose that the toll imposed in the TS is upon 5 

travelling in region 2 during the morning/afternoon peaks between 7-9am and 3-6pm (time-slices 14-17 and 30-35), with 6 

price 0.5 DKK/min. The toll-price vector 𝝎 is thus set such that:  7 

𝜔𝑟
𝜏 = {

0.5    if 𝑟 ∈ {2} and 𝜏 ∈ {𝑥 ∈ ℤ: 14 ≤ 𝑥 ≤ 17 or 30 ≤ 𝑥 ≤ 35}
0       otherwise                                                                                      

. 8 

Fig. 5A displays the experienced travel times for regional paths 1&2 under the NTS and TS, when departing at different 9 

times across the day. Fig. 5B displays the regional path travel costs, and Fig. 5C displays the regional path choice 10 

probabilities. Under the NTS, regional path 1 is quicker than regional path 2 (see Fig. 5A), and therefore it has a cheaper 11 

travelling cost (see Fig. 5B) and most travellers choose it (see Fig. 5C). The travel time difference between the two 12 

regional paths is less during the peak hours due to congestion in region 2 of regional path 1, and therefore some flow 13 

switches to regional path 2. Under the TS, since the travel time of region 2 during the peak hours is around 40 mins, the 14 

time-based toll paid is around 20 DKK. This increases the travel cost of regional path 1 when departing during and just 15 

before the peak hours (see Fig. 5B), pushing further travellers onto regional path 2 (see Fig. 5C), and thus decreasing the 16 

travel time of regional path 1 (see Fig. 5A). 17 

 18 

A B 

A B 
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 1 

Fig. 5. Small-scale example system: Demonstrating the impact of tolling on regional path choice. A: Travel times of regional paths 2 
1&2 under the NTS and TS, when departing at different times across the day. B: Regional path travel costs. C: Regional path choice 3 

probabilities. 4 

 5 

3.2 Elastic demand 6 

In this section we extend the dynamic multi-region MFD SUE model to account for elastic demand, i.e. to account for 7 

how travel demand may vary depending on the level of service (travelling costs). For example, increased costs for 8 

travelling a regional OD movement due to having to pay tolls may result in travellers opting to travel via a different 9 

mode of transport, or opting to cancel their trip, resulting in a decrease in the car travel demand. Contrastingly, decreased 10 

travelling costs due to improvements in regional path travel times from a reduction or displacement in traffic may attract 11 

travellers to travel by car, thus resulting in an increase in car travel demand. 12 

To capture elastic demand, we adopt a traditional elastic demand function approach. The general approach is to 13 

compare the Level of Service (LoS) from the No Tolling Scenario (NTS) with that under tolling setting 𝝎, and decrease/ 14 

increase the demand depending on how much the LoS worsens/improves. The LoS metric we use in this study is the 15 

expected travel cost for travelling the OD movement, obtained by weighting regional path travel cost by regional path 16 

choice probability.  17 

Upon solution of the dynamic multi-region MFD SUE model in (6) where there are no tolls (the NTS), denote the 18 

equilibrated choice probability and travel cost of regional path 𝑝 ∈ 𝑃𝑚 of OD movement 𝑚 when departing during time-19 

slice 𝜏 as 𝑄𝑚,𝑝
𝜏,𝑁𝑇𝑆

 and 𝐶𝑚,𝑝
𝜏,𝑁𝑇𝑆

, respectively. Thus, under the NTS, the LoS (expected travel cost) of OD movement 𝑚 when 20 

departing during time-slice 𝜏 is computed as follows: 21 

 𝐶̃𝑚
𝜏,𝑁𝑇𝑆 =∑ 𝑄𝑚,𝑝

𝜏,𝑁𝑇𝑆 ∙ 𝐶𝑚,𝑝
𝜏,𝑁𝑇𝑆

𝑝∈𝑃𝑚

. (7) 

Now, with tolling, for a given setting of 𝒕, 𝒇, and 𝝎, and thereby setting of the region travel costs 𝒄(𝒕, 𝒇,𝝎) from the 22 

travel cost function (4), the LoS (expected travel cost) of OD movement 𝑚 when departing during time-slice 𝜏 is 23 

computed analogously as: 24 

 𝐶̃𝑚
𝜏 (𝒄(𝒕, 𝒇, 𝝎)) =∑ 𝑄𝑚,𝑝

𝜏 (𝒄(𝒕, 𝒇, 𝝎)) ∙ 𝐶𝑚,𝑝
𝜏 (𝒄(𝒕, 𝒇,𝝎))

𝑝∈𝑃𝑚

. (8) 

The elastic demand function we assume is a power law function adopted in previous studies such as Watling et al. (2015) 25 

and Koh et al. (2012). This function was chosen as it gives constant elasticities. For a given setting of the regional path 26 

travel costs 𝒄(𝒕, 𝒇,𝝎), the elastic travel demand function for OD movement 𝑚 and departing time-slice 𝜏 is: 27 

 𝑑̃𝑚
𝜏 (𝒕, 𝒇, 𝝎) = 𝑑𝑚

𝜏,𝑁𝑇𝑆 (
𝐶̃𝑚
𝜏 (𝒄(𝒕, 𝒇, 𝝎))

𝐶̃𝑚
𝜏,𝑁𝑇𝑆 )

−𝛾

, (9) 

where 𝐶̃𝑚
𝜏,𝑁𝑇𝑆

 and 𝐶̃𝑚
𝜏  are as in (7) and (8), respectively, 𝑑𝑚

𝜏,𝑁𝑇𝑆
 is the travel demand for OD movement 𝑚 departing at 28 

time-slice 𝜏 under the NTS, and 𝛾 ≥ 0 is the demand elasticity parameter for car. The elastic demand function compares 29 

the level of service under the NTS 𝐶̃𝑚
𝜏,𝑁𝑇𝑆

 with the level of service under the tolling scenario 𝐶̃𝑚
𝜏  and increases or 30 

decreases the car demand depending on whether the level of service has improved or worsened with tolls. 𝛾 determines 31 

the rate at which demand is attracted to/away from car with an increase/decrease in the level of service (decrease/increase 32 

in expected minimum car travelling cost). Greater values of 𝛾 result in greater increases/decreases in demand for a given 33 

change in level of service. 34 

C 
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D-MR-MFD-SUE conditions with toll-dependence and elastic demand are as follows: 1 

 2 

D-MR-MFD-SUE: A r-path flow vector 𝒇∗ ∈ 𝐹 is a D-MR-MFD-SUE solution iff the flow departing during time-slice 𝜏 3 

travelling r-path 𝑝 ∈ 𝑃𝑚 of OD movement 𝑚, 𝑓𝑚,𝑝
𝜏,∗

, is a solution to the fixed-point problem 4 

 𝑓𝑚,𝑝
𝜏 = 𝑑̃𝑚

𝜏 (𝒄(𝒕∗(𝒇), 𝒇,𝝎)) ∙ 𝑄𝑚,𝑝
𝜏 (𝒄(𝒕∗(𝒇), 𝒇,𝝎)), ∀𝑝 ∈ 𝑃𝑚, ∀𝑚 ∈ 𝑀, ∀𝜏 ∈ Ψ, (10) 

where 𝑑̃𝑚
𝜏  is the elastic travel demand function in (9) for OD movement 𝑚 and departing time-slice 𝜏 and 𝑄𝑚,𝑝

𝜏  is the 5 

choice probability function for r-path 𝑝 ∈ 𝑃𝑚 and departing time-slice 𝜏, given 𝒇, 𝝎, and 𝒕∗(𝒇) which is a region travel 6 

time solution to the traffic propagation fixed-point problem, given 𝒇. 7 

 8 

To demonstrate how the elastic demand extension captures the impact of tolling on car travel demand, consider again the 9 

small-scale example multi-region MFD system in Fig. 3. Suppose again that the toll price is set as 0.5 DKK/min in 10 

region 2 between 7-9am and 3-6pm. As shown in Fig. 5B, the travel costs are worse for both regional paths under the TS 11 

during the peak period. This means that the LoS will be worse when departing during the peak period, thus resulting in a 12 

decrease in car demand. Supposing that the demand elasticity parameter is 𝛾 = 0.75, Fig. 6A displays the percentage 13 

difference in travel demand across the day between the NTS and TS (where a negative number means there is less 14 

demand under the TS). As shown, the demand decreases for time-slices in which travellers travel in region 2 during the 15 

tolled peak hours. Demand increases slightly for time-slices around these decreased demand time-slices. This is because, 16 

for example, less demand now departs between 8:30-9am as they will experience a toll, meaning accumulation levels are 17 

lower during 9-9:30am, meaning lower travel times/costs and thus a better level of service departing during 9-9:30am, 18 

resulting in induced demand.  19 

Fig. 6B displays how the percentage difference in demand between the NTS and TS departing during 7:30-8am 20 

varies as the demand elasticity parameter 𝛾 is varied. As shown the peak-hour-departing demand decreases as 𝛾 is 21 

increased and travellers are more sensitive to increases in car travelling costs. 22 

 23 

Fig. 6. Example system: demand changes under tolling from elastic demand. A: Percentage difference in demand between the NTS 24 
and TS at different times across the day (negative number implies less demand in the TS). B: Percentage difference in demand at 7-25 

7:30am for different settings of the demand elasticity parameter 𝛾.  26 

 27 

3.3 Departure time choice 28 

With increased travelling costs from tolls, rather than opting to switch to other modes or cancel trip, car travel demand 29 

may instead choose to depart earlier or later to avoid tolling periods. We thus here extend the dynamic multi-region MFD 30 

SUE model further to account for departure time choice. The assumption we make is that the NTS is the ‘ground truth’, 31 

by which we mean that the dynamic multi-region MFD SUE solution with no tolls is assumed to be how people wish to 32 

behave, in terms of the travel demand and preferred departing/arrival times. We thus assume behaviour under the NTS is 33 

habitual and in a user equilibrium and so drivers know their travel costs when departing at their habitual departure time. 34 

Upon the introduction of tolls, we assume that travel behaviour will adjust to a new habitual user equilibrium, and given 35 

these new travel costs when departing at their preferred NTS departure time, travellers will either choose to mode switch 36 

/ trip cancel or change their departure time. The assumption we make is that travellers first choose whether they will 37 

mode switch / cancel trip, and then, if continuing to travel by car, choose whether to adjust their departure time. As such, 38 

the demands and travelling costs from the departure time choice model feed into the elastic demand function, rather than 39 

elastic demand feeding into the departure time choice. Fig. 7 illustrates the assumed decision-making process of 40 

travellers. 41 

A B 
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 1 

 2 

Fig. 7. Assumed decision-making process of travellers. 3 

 4 

We shall begin by defining the departure time utility function, which is inspired by such functions in Cantelmo & Viti 5 

(2019), Dantsuji et al. (2021). The OD movement 𝑚 utility of departing during time-slice 𝜏 given the driver departs 6 

during time-slice 𝜏′ under the NTS is as follows: 7 

 

𝑌𝑚
𝜏′→𝜏(𝒕, 𝒇, 𝝎) = −𝑇̅𝑚

𝜏 (𝒕, 𝒇) −
𝛼𝑒𝑎𝑟𝑙𝑦
𝜏

𝛼𝑡𝑡
(𝑃𝐴𝑇𝑚

𝜏′ ,𝑁𝑇𝑆 − 𝐴𝑇𝑚
𝜏 (𝒕, 𝒇))

+
−
𝛼𝑙𝑎𝑡𝑒
𝜏

𝛼𝑡𝑡
(𝐴𝑇𝑚

𝜏 (𝒕, 𝒇) − 𝑃𝐴𝑇𝑚
𝜏′,𝑁𝑇𝑆)

+

−
1

𝛼𝑡𝑡
Κ𝑚
𝜏 (𝒕, 𝒇, 𝝎). 

(11) 

𝑃𝐴𝑇𝑚
𝜏′ ,𝑁𝑇𝑆

 is the OD movement 𝑚 aggregate Preferred Arrival Time (PAT) when departing during time-slice 𝜏′ in the 8 

NTS, and, under toll setting 𝝎: 9 

• 𝑇̅𝑚
𝜏  is the average experienced travel time of OD movement 𝑚 when departing during time-slice 𝜏, 10 

• 𝐴𝑇𝑚
𝜏  is the aggregate Arrival Time (AT) of OD movement 𝑚 when departing during time-slice 𝜏, 11 

• Κ𝑚
𝜏  is the average toll experienced when departing during time-slice 𝜏 travelling OD movement 𝑚. 12 

𝛼𝑡𝑡 is VOT in [DKK/min] (the same as in (4)), 𝛼𝑒𝑎𝑟𝑙𝑦
𝜏  is the value of arriving early in [DKK/min] when departing during 13 

time-slice 𝜏 in the NTS, and 𝛼𝑙𝑎𝑡𝑒
𝜏  is the value of arriving late in [DKK/min] when departing during time-slice 𝜏 in the 14 

NTS. 
𝛼𝑒𝑎𝑟𝑙𝑦
𝜏

𝛼𝑡𝑡
 and 

𝛼𝑙𝑎𝑡𝑒
𝜏

𝛼𝑡𝑡
 are therefore the relative values of arriving early and late, respectively, compared to VOT. These 15 

give the ratio of the value of being early/late by 1 minute to the value of 1 minute of travel time. In the small-scale 16 

system and real-life case study in the current paper we consider a full work-day time horizon where there is a morning 17 

and afternoon commute. We assume that in the morning there is a greater penalty for arriving late, and in the afternoon 18 

there is a greater penalty for arriving early (leaving early). The values we adopt throughout the paper were taken from 19 

Small (1982), and adopted in numerous other studies such as Dantsuji et al. (2021). For time-slices 𝜏 before midday, 20 
𝛼𝑒𝑎𝑟𝑙𝑦
𝜏

𝛼𝑡𝑡
= 0.609 and 

𝛼𝑙𝑎𝑡𝑒
𝜏

𝛼𝑡𝑡
= 2.377, while for time-slices 𝜏 after midday, 

𝛼𝑒𝑎𝑟𝑙𝑦
𝜏

𝛼𝑡𝑡
= 2.377 and 

𝛼𝑙𝑎𝑡𝑒
𝜏

𝛼𝑡𝑡
= 0.609. Note that since 21 

Κ𝑚
𝜏  is in units of [DKK] (see below), 𝑌𝑚

𝜏′→𝜏 is in units of time [min].  22 

Since we assume that the NTS is the ground truth, PATs are obtained from r-path travel times from the dynamic 23 

multi-region MFD SUE solution with no tolls. Denote the experienced travel time of r-path 𝑝 ∈ 𝑃𝑚 when departing 24 

during time-slice 𝜏′ under the NTS as 𝑇̅𝑚,𝑝
𝜏′,𝑁𝑇𝑆

, obtained from the equilibrated region travel times 𝒕∗ and r-path flows 𝒇∗ 25 
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upon solution of (6) with 𝝎 = 𝟎 (see Section 3). The average travel time of OD movement 𝑚 when departing during 1 

time-slice 𝜏′ under the NTS is calculated by averaging the r-path travel times for that OD movement: 2 

 𝑇̅𝑚
𝜏′,𝑁𝑇𝑆 =∑ 𝑄𝑚,𝑝

𝜏′,𝑁𝑇𝑆 ∙ 𝑇̅𝑚,𝑝
𝜏′,𝑁𝑇𝑆

𝑝∈𝑃𝑚

, (12) 

where 𝑄𝑚,𝑝
𝜏′ ,𝑁𝑇𝑆

 is the choice probability of r-path 𝑝 ∈ 𝑃𝑚 when departing during 𝜏′ under the NTS. The average OD 3 

movement travel time is therefore a weighted average of the r-path travel times, weighted by r-path choice probability. 4 

For a demand departing during time-slice 𝜏′, it is assumed for simplicity that the departure time is at the half-way point 5 

of the time-slice, so that a single PAT can be obtained. Thus, if 𝑡0 is the initial real time of the runtime period and 𝜀 is the 6 

time-slice duration, then the assumed departure time of a demand departing during time-slice 𝜏′ is (𝑡0 + 𝜏
′ ∙ 𝜀 + 𝑡0 +7 

(𝜏′ + 1) ∙ 𝜀)/2, where 𝑡0 + 𝜏
′ ∙ 𝜀 and 𝑡0 + (𝜏

′ + 1) ∙ 𝜀 are the beginning and end times of the time-slice, respectively. 8 

Therefore, the aggregate PAT of the demand travelling OD movement 𝑚 and departing during time-slice 𝜏′ under the 9 

NTS is: 10 

 𝑃𝐴𝑇𝑚
𝜏′ =

𝑡0 + 𝜏
′ ∙ 𝜀 + 𝑡0 + (𝜏

′ + 1) ∙ 𝜀

2
+ 𝑇̅𝑚

𝜏′,𝑁𝑇𝑆. (13) 

While the PATs are exogenous, fixed as inputs into the system, 𝑇̅𝑚
𝜏 , 𝐴𝑇𝑚

𝜏 , and Κ𝑚
𝜏  in (11) are endogenous, dependent 11 

upon 𝒕, 𝒇, and 𝝎.  12 

𝑇̅𝑚
𝜏  is calculated by averaging the experienced r-path travel times (see Section 2.3) for that OD movement: 13 

 𝑇̅𝑚
𝜏 (𝒕, 𝒇, 𝝎) =∑ 𝑄𝑚,𝑝

𝜏 (𝒄(𝒕, 𝒇, 𝝎)) ∙ 𝑇̅𝑚,𝑝
𝜏 (𝒕, 𝒇)

𝑝∈𝑃𝑚

, (14) 

where 𝑄𝑚,𝑝
𝜏 (𝒄(𝒕, 𝒇,𝝎)) is the choice probability of r-path 𝑝 ∈ 𝑃𝑚 when departing during 𝜏. 14 

Κ𝑚
𝜏  is calculated in a similar fashion: 15 

 Κ𝑚
𝜏 (𝒕, 𝒇, 𝝎) =∑ 𝑄𝑚,𝑝

𝜏 (𝒄(𝒕, 𝒇, 𝝎)) ∙ Κ𝑚,𝑝
𝜏 (𝒕, 𝒇, 𝝎)

𝑝∈𝑃𝑚

, (15) 

where Κ𝑚,𝑝
𝜏  is the total average toll experienced when travelling regional path 𝑝 ∈ 𝑃𝑚 and departing during time-slice 𝜏 16 

(see Section 3).  17 

Given the average OD movement travel time 𝑇̅𝑚
𝜏 , the aggregate AT of the demand travelling OD movement 𝑚 and 18 

departing during time-slice 𝜏 is: 19 

 𝐴𝑇𝑚
𝜏 (𝒕, 𝒇) =

𝑡0 + 𝜏 ∙ 𝜀 + 𝑡0 + (𝜏 + 1) ∙ 𝜀

2
+ 𝑇̅𝑚

𝜏 (𝒕, 𝒇). (16) 

(𝑃𝐴𝑇𝑚
𝜏′,𝑁𝑇𝑆 − 𝐴𝑇𝑚

𝜏 (𝒕, 𝒇))
+

 and (𝐴𝑇𝑚
𝜏 (𝒕, 𝒇) − 𝑃𝐴𝑇𝑚

𝜏′ ,𝑁𝑇𝑆)
+

 in (11) are therefore the aggregate amount of time an OD 20 

movement 𝑚 traveller will arrive early and arrive late, respectively, when departing during time-slice 𝜏 given they depart 21 

during time-slice 𝜏′ in the NTS.  22 

Now, for the departure time choice, we assume a Multinomial Logit (MNL) choice model, chosen because of its 23 

simple closed-form probability function. MNL may potentially miss correlations between departure time alternatives, 24 

though we consider large time-slices in our dynamic traffic model where correlation is likely to be less. Moreover, in an 25 

empirical study, Steed & Bhat (2000) found that an Ordered Generalised Extreme Value correlation-based model gave 26 

unrealistic estimates, and that, for all trip-type categories, MNL was adequate in representing departure time choice in 27 

terms of data fit. Several other studies have also found MNL to be reasonable (de Palma et al., 1983; Small, 1982; 28 

Abkowitz, 1980). Thus, supposing that travellers choose from all time-slices throughout the day, for given a set of 29 

departure time utilities 𝒀, the probability that an OD movement 𝑚 traveller chooses to depart during time-slice 𝜏, given 30 

that they depart during time-slice 𝜏′ under the NTS, is as follows: 31 

 𝜋𝑚
𝜏′→𝜏(𝒀(𝒕, 𝒇,𝝎)) =

exp (𝜇𝑌𝑚
𝜏′→𝜏(𝒕, 𝒇, 𝝎))

∑ exp (𝜇𝑌𝑚
𝜏′′→𝜏(𝒕, 𝒇, 𝝎))𝜏′′∈Ψ

, (17) 

where Ψ is the set of time-slices, 𝑌𝑚
𝜏′→𝜏 is the OD movement 𝑚 utility of departing during time-slice 𝜏 given the driver 32 

departs during time-slice 𝜏′ under the NTS, and 𝜇 > 0 is a departure time choice Logit scaling parameter.  33 

Given our assumption that travellers first choose whether they will mode switch / trip cancel, and then if continuing 34 

to travel by car whether to change their departure time, the demand travelling OD movement 𝑚 choosing to depart during 35 

time-slice 𝜏 is calculated as follows: 36 
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 𝑑̃𝑚
𝜏,𝐷𝑇𝐶(𝒕, 𝒇, 𝝎) =∑ 𝜋𝑚

𝜏′→𝜏(𝒀(𝒕, 𝒇,𝝎)) ∙ 𝑑̃𝑚
𝜏′(𝒄(𝒕, 𝒇, 𝝎))

𝜏′∈Ψ
, (18) 

where 𝜋𝑚
𝜏′→𝜏 is as in (17) and 𝑑̃𝑚

𝜏′  is as in (9). The total demand departing during time-slice 𝜏 is thus obtained by summing 1 

up the demands that, having chosen to continue travelling by car, choose to depart at that time-slice. Note that the 2 

average NTS OD movement travelling costs 𝐶̃𝑚
𝜏,𝑁𝑇𝑆

 in 𝑑̃𝑚
𝜏′  in (9) for departure time choice are those from solving 3 

dynamic multi-region MFD SUE with departure time choice, but without elastic demand (i.e. (19) below with 𝛾 = 0). 4 

D-MR-MFD-SUE conditions with toll-dependence, elastic demand, and departure time choice are as follows: 5 

 6 

D-MR-MFD-SUE: A r-path flow vector 𝒇∗ ∈ 𝐹 is a D-MR-MFD-SUE solution iff the flow departing during time-slice 𝜏 7 

travelling r-path 𝑝 ∈ 𝑃𝑚 of OD movement 𝑚, 𝑓𝑚,𝑝
𝜏,∗

, is a solution to the fixed-point problem 8 

 𝑓𝑚,𝑝
𝜏 = 𝑑̃𝑚

𝜏,𝐷𝑇𝐶(𝒕∗(𝒇), 𝒇,𝝎) ∙ 𝑄𝑚,𝑝
𝜏 (𝒄(𝒕∗(𝒇), 𝒇,𝝎)), ∀𝑝 ∈ 𝑃𝑚 , ∀𝑚 ∈ 𝑀, ∀𝜏 ∈ Ψ, (19) 

where 𝑑̃𝑚
𝜏,𝐷𝑇𝐶

 is the departure time choice travel demand function in (18) for OD movement 𝑚 and departing time-slice 𝜏 9 

and 𝑄𝑚,𝑝
𝜏  is the choice probability function for r-path 𝑝 ∈ 𝑃𝑚 and departing time-slice 𝜏, given 𝒇, 𝝎, and 𝒕∗(𝒇), which is a 10 

region travel time solution to the traffic propagation fixed-point problem, given 𝒇. 11 

 12 

To demonstrate how the departure time choice extension captures the impact of tolling on departure time choice, consider 13 

again the small-scale example multi-region MFD system in Fig. 3. Suppose again that the toll price is set as 0.5 14 

DKK/min in region 2 between 7-9am and 3-6pm. Suppose the demand elasticity parameter is 𝛾 = 0.7 and departure time 15 

choice Logit scaling parameter is 𝜇 = 3. Fig. 8A displays, given the departure time choice, the travel demand under the 16 

NTS departing at each 30-min time-slice across the day. As shown, the demand profile resembles the original demand 17 

profile in Fig. 4B, but with some demand during the peaks shifted to earlier/later. Fig. 8B displays the percentage 18 

difference in travel demand across the day between the NTS and TS, with fixed demand (FD) and with elastic demand 19 

(ED). As shown, for the morning and afternoon commutes, some demand departs earlier or later to avoid the tolling 20 

period. More demand departs earlier in the morning and later in the evening due to the greater arriving late / leaving early 21 

penalties. With elastic demand, the demand departing during the peaks is even less in the TS. 22 

 23 

Fig. 8. Small-scale example system: Departure time choice demands. A: Travel demand per 30-min time-slice departing across the day 24 
with departure time choice under the NTS. B: Percentage difference in demand between the NTS and TS at different times across the 25 

day, with fixed demand and with elastic demand (negative number implies less demand in TS).  26 

 27 

4 Traffic equilibrium solution methodology 28 

4.1 Solution method 29 

Here we introduce the method we adopt for solving the traffic equilibrium model, for a given setting of the tolls. This is 30 

not to be confused with the solution method for solving the toll optimisation problem, which will be discussed in Section 31 

5.3. 32 

In Duncan et al. (2025) a solution method was proposed for solving the standard D-MR-MFD-SUE model without 33 

elastic demand and departure time choice (see Section 4.4 of that paper). Here, we extend the method to solve D-MR-34 

MFD-SUE with elastic demand and departure time choice by adding additional steps. Pseudo-code for the solution 35 

method is given in Algorithm 1, and Fig. 9 presents a schematic diagram illustrating the method. As evident from (19), 36 

the D-MR-MFD-SUE model is a fixed-point problem embedded within another fixed-point problem. This gives rise in 37 

B A 
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our algorithm to an inner-loop involving region travel times 𝒕, and an outer-loop involving the r-path flows 𝒇. As shown 1 

in Algorithm 1 and Fig. 9, there is thus a Traffic Propagation Stage to update the region travel times given the current r-2 

path flows, and then a Flow Updating Stage to update r-path flows given the updated region travel times from the traffic 3 

propagation model.  4 

One solution method could be to fully solve at every outer iteration the inner traffic propagation fixed-point problem 5 

in (19) for each set of updated r-path flows. For example, in the schematic diagram in Fig. 9, at master iteration 𝑘 one 6 

could perform a series of inner-loops between tracking trajectories of first departing vehicles and computing region travel 7 

times, for fixed r-path flows. However, tracking vehicle trajectories is the most computation time consuming part, and 8 

thus in the method we propose we try to minimise this. As illustrated in Fig. 9, we instead propose that, at each master 9 

iteration 𝑘, just one loop / run-through of the traffic propagation steps is performed updating the region travel times, 10 

which feed into updating the r-path flows.  11 

For details on the flow-averaging scheme and convergence criteria we utilise in this study, see Section 4.4 of 12 

Duncan et al. (2025). 13 

 14 

Step 0: Initialisation. Initialise the r-path region travel time vector 𝒕(0) and r-path flow vector 𝒇(0) for iteration 𝑘 = 0. Set 15 

𝑘 = 1. 16 

For iteration 𝑘: 17 

Traffic Propagation Stage 18 

Step 1: Track trajectories of first departing vehicles. Given the r-path region travel time vector 𝒕(𝑘−1) from 19 

iteration 𝑘 − 1, for each r-path for each OD movement, track the trajectories of the first vehicle departing at the 20 

beginning of each time-slice 𝜏 ∈ Ψ, plus the trajectory of the last vehicle departing at the end of the last 21 

departing time-slice in Ψ (see Appendix C.1 in Duncan et al. (2025)). 22 

Step 2: Compute proportional occupying STG areas. Given the tracked vehicle trajectories in the previous step, 23 

calculate the proportional occupying STG areas (see Appendix C.2 in Duncan et al. (2025)). 24 

Step 3: Compute average region accumulations. Given the r-path region travel time vector 𝒕(𝑘−1) and r-path 25 

flow vector 𝒇(𝑘−1) from iteration 𝑘 − 1, and the proportional occupying STG areas computed in the previous 26 

step, compute the average contributing accumulations from each r-path flow, and thereby the total average 27 

region accumulations (see equations (3) and (2) in Duncan et al. (2025)). 28 

Step 4: Compute average region speeds. Given the average region accumulations computed in the previous step, 29 

compute the average region speeds (see equation (1) in Duncan et al. (2025)). 30 

Step 5:  Update region travel times. Given the average region speeds computed in the previous step, update the 31 

r-path region travel time vector 𝒕(𝑘) for iteration 𝑘 (see equation (4) in Duncan et al. (2025)). 32 

Flow Updating Stage 33 

Step 6: Compute experienced region travel times and tolls. Given the updated r-path region travel times 𝒕(𝑘) for 34 

iteration 𝑘, and the average region accumulations computed in Step 3, compute the experienced region travel 35 

times (see equation (1)) and experienced region tolls (see equation (5)). 36 

Step 7: Compute region travel costs. Given the experienced region travel times and tolls computed in the 37 

previous step, compute the region travel costs (see equation (4)). 38 

Step 8: Compute r-path choice probabilities. Given the region travel costs computed in the previous step, 39 

compute the r-path choice probabilities (see e.g. equation (13) in Duncan et al. (2025)). 40 

Step 9: Compute elastic demands.  41 

Step 9.1: Given the r-path choice probabilities computed in the previous step and the region travel 42 

costs computed in Step 7, compute the average OD movement travel costs (see equation (8)). 43 

Step 9.2: Given these, compute the elastic demands (see equation (9)). 44 

Step 10: Compute departure time choice demands.  45 

Step 10.1: Given the experienced region travel times and tolls computed in Step 6, compute average 46 

OD movement ATs (see equation (16)) and tolls experienced (see equation (15)).  47 

Step 10.2: Given these and the NTS PATs, compute the departure time utilities (see equation (11)). 48 

Step 10.3: Given these, compute the departure time choice probabilities (see equation (17)). 49 
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Step 10.4: Given these and the elastic demands computed in Step 9, compute the departure time choice 1 

demands (see equation (18)) 2 

Step 11: Update r-path flows. Given the r-path choice probabilities computed in Step 8 and the travel demands 3 

computed in Steps 9-10, compute auxiliary r-path flows and perform some averaging scheme to update the r-4 

path flow vector 𝒇(𝑘) for iteration 𝑘. 5 

Step 12: Check for convergence. If convergence criteria are met for 𝒕(𝑘) and 𝒇(𝑘) (see e.g. equations (8) and (9) 6 

in Duncan et al. (2025)), stop. Otherwise, set 𝑘 = 𝑘 + 1 and continue to next iteration. 7 

 8 

Algorithm 1. Pseudo-code for solving D-MR-MFD-SUE with elastic demand and departure time choice 9 

 10 

 11 

Fig. 9. Schematic diagram illustrating overall solution method for solving D-MR-MFD-SUE with elastic demand and departure time 12 
choice. 13 

 14 

4.2 Convergence demonstration 15 

Here we shall provide empirical support that Algorithm 1 converges to a D-MR-MFD-SUE solution. Fig. 10A-B 16 

demonstrate for the small-scale example system in Fig. 3 and real-life case study (see Sections 6 & 7), respectively, 17 

convergence of Algorithm 1 solving D-MR-MFD-SUE with elastic demand and departure time choice. For the small-18 

scale example system the model/toll specifications are the same as those for Fig. 8C, and for the real-life case study the 19 
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model specifications are as discussed in Section 6.2, with the toll-price set as the optimised value of 4.544 DKK/min (see 1 

Section 7). Fig. 10 displays the regional path flow and region travel time Normalised Root Mean Squared Error 2 

(NMRSE) convergence measures (see Section 4.4 in Duncan et al. (2025)) at each iteration of Algorithm 1. As can be 3 

seen, both measures converge to zero, demonstrating successful convergence. 4 

 5 

Fig. 10. Demonstrating convergence of Algorithm 1 for solving D-MR-MFD-SUE with elastic demand and departure time choice. A: 6 
Example system. B: Real-life case study. 7 

 8 

5 Social welfare optimisation framework 9 

5.1 Objective function 10 

The objective function we consider in this study is a classical social welfare function, that has been used in a variety of 11 

studies such as Huang et al. (2000), Ying & Yang (2005), Meng et al. (2012), and Watling et al. (2015), where detailed 12 

discussions of the derivation of this measure can be found. The objective function to maximise is as follows: 13 

 
𝑍𝑆𝑊(𝝎) = 𝑍𝐼𝐷(𝒕, 𝒇, 𝝎) + 𝑍𝐿𝑜𝑆(𝒕, 𝒇, 𝝎)⏟                

𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟

+ 𝑍𝑇𝑅(𝒕, 𝒇, 𝝎)⏟      
𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟

, 
(20) 

where 𝑍𝐼𝐷 is the Inverse Demand component of consumer surplus, 𝑍𝐿𝑜𝑆 is the LoS component of consumer surplus, and 14 

𝑍𝑇𝑅 is the Toll Revenue component representing the producer surplus. These will be specified in turn below, noting that 15 

we specify the objective function as relative to a base case, which is social welfare under the NTS. The interpretation of 16 

the objective function is therefore the gain in social welfare from the NTS.  17 

The Inverse Demand component of 𝑍𝑆𝑊 captures the disbenefit from not travelling by car due to tolling. Without 18 

departure time choice, given the power law elastic demand function assumed in (9), the inverse demand function for OD 19 

movement 𝑚 time-slice 𝜏 is as follows for a demand 𝑥: 20 

 𝑔𝑚
𝜏 (𝑥) = 𝐶̃𝑚

𝜏,𝑁𝑇𝑆 (
𝑥

𝑑𝑚
𝜏,𝑁𝑇𝑆)

𝛾

. (21) 

Integrating the inverse demand function between demands 𝑥0 and 𝑥1: 21 

∫ 𝑔𝑚
𝜏 (𝑥). 𝑑𝑥

𝑥1

𝑥0

=
𝐶̃𝑚
𝜏,𝑁𝑇𝑆

(𝑑𝑚
𝜏,𝑁𝑇𝑆)

𝛾∫ 𝑥𝛾. 𝑑𝑥
𝑥1

𝑥0

=
𝐶̃𝑚
𝜏,𝑁𝑇𝑆

(𝑑𝑚
𝜏,𝑁𝑇𝑆)

𝛾 [
1

𝛾 + 1
𝑥𝛾+1]

𝑥0

𝑥1

=
𝐶̃𝑚
𝜏,𝑁𝑇𝑆

(𝑑𝑚
𝜏,𝑁𝑇𝑆)

𝛾 (
1

𝛾 + 1
(𝑥1)

𝛾+1 −
1

𝛾 + 1
(𝑥0)

𝛾+1). 22 

Thus, integrating between the NTS demand and the elastic demand under toll setting 𝝎, for each 𝑚 ∈ 𝑀 and 𝜏 ∈ Ψ, the 23 

Inverse Demand component of the social welfare objective function is: 24 

 

𝑍𝐼𝐷(𝒕, 𝒇, 𝝎) = ∑ ∑ ∫ 𝑔𝑚
𝜏 (𝑥). 𝑑𝑥

𝑑̃𝑚
𝜏 (𝒕,𝒇,𝝎)

𝑑𝑚
𝜏,𝑁𝑇𝑆

𝑚∈𝑀𝜏∈Ψ

 

= ∑ ∑ {
𝐶̃𝑚
𝜏,𝑁𝑇𝑆

(𝑑𝑚
𝜏,𝑁𝑇𝑆)

𝛾 (
1

𝛾 + 1
(𝑑̃𝑚

𝜏 (𝒕, 𝒇, 𝝎))
𝛾+1

−
1

𝛾 + 1
(𝑑𝑚

𝜏,𝑁𝑇𝑆)
𝛾+1
)}

𝑚∈𝑀𝜏∈Ψ

, 

(22) 

where 𝑑̃𝑚
𝜏  is the elastic demand function in (9), for a given setting of the region travel times 𝒕, regional path flows 𝒇, and 25 

toll-prices 𝝎. Note that the LoS under the NTS, 𝐶̃𝑚
𝜏,𝑁𝑇𝑆

, is different depending on whether departure time choice is being 26 

considered in the tolling scenario. If so, then the LoS in the NTS is calculated with regional path costs and probabilities 27 

A B 
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from the traffic equilibrium with departure time choice (i.e. solving (19) with 𝝎 = 𝟎). Otherwise, it is from the traffic 1 

equilibrium without departure time choice (i.e. solving (6) with 𝝎 = 𝟎). Note though that 𝑑̃𝑚
𝜏  and 𝑑𝑚

𝜏,𝑁𝑇𝑆
 remain the 2 

elastic demand and NTS demand before departure time choice is conducted. This is because the Inverse Demand 3 

component aims to capture only the costs incurred by travellers who have chosen not to travel by car. The costs incurred 4 

by departure time switchers are captured in the LoS component below. When 𝝎 = 𝟎, 𝑑̃𝑚
𝜏 = 𝑑𝑚

𝜏,𝑁𝑇𝑆
, resulting in 𝑍𝐼𝐷(𝟎) =5 

0. 6 

The Level of Service component of 𝑍𝑆𝑊 captures the disbenefit of tolling to the consumers (drivers) from increased 7 

travelling costs (or benefits from improved travel times). It is a surplus as it is relative to the costs they paid under the 8 

NTS. As discussed in Section 4, the LoS measure we adopt is the expected travel cost. 𝑍𝐿𝑜𝑆 is calculated as follows: 9 

 𝑍𝐿𝑜𝑆(𝒕, 𝒇, 𝝎) = ∑ ∑ 𝑑𝑚
𝜏,𝑁𝑇𝑆𝐶̃𝑚

𝜏,𝑁𝑇𝑆

𝑚∈𝑀𝜏∈Ψ

−∑ ∑ 𝑑̃𝑚
𝜏,𝐷𝑇𝐶(𝒕, 𝒇, 𝝎) ∙ 𝐶̃𝑚

𝜏 (𝒄(𝒕, 𝒇,𝝎))

𝑚∈𝑀𝜏∈Ψ

, (23) 

where 𝑑̃𝑚
𝜏,𝐷𝑇𝐶

 is the departure time choice travel demand function in (18) and 𝐶̃𝑚
𝜏  is the LoS function in (8), given 𝒕, 𝒇, 10 

and 𝝎. Note that when considering departure time choice, 𝑑𝑚
𝜏,𝑁𝑇𝑆

 and 𝐶̃𝑚
𝜏,𝑁𝑇𝑆

 are based on the NTS traffic equilibrium 11 

with departure time choice (i.e. solving (19) with 𝝎 = 𝟎). Otherwise, they are based on the NTS traffic equilibrium 12 

without departure time choice (i.e. solving (6) with 𝝎 = 𝟎). Moreover, when not considering departure time choice, 13 

𝑑̃𝑚
𝜏,𝐷𝑇𝐶

 is replaced with 𝑑̃𝑚
𝜏  in (9). When 𝝎 = 𝟎, 𝑑̃𝑚

𝜏 = 𝑑𝑚
𝜏,𝑁𝑇𝑆

 and 𝐶̃𝑚
𝜏 = 𝐶̃𝑚

𝜏,𝑁𝑇𝑆
, resulting in 𝑍𝐿𝑜𝑆(𝟎) = 0. 14 

The Toll Revenue component of 𝑍𝑆𝑊 captures the benefit of tolling for the governing authority who will receive the 15 

toll revenue. 𝑍𝑇𝑅 is calculated as follows: 16 

 𝑍𝑇𝑅(𝒕, 𝒇, 𝝎) = ∑ ∑ ∑ 𝑓𝑚,𝑝
𝜏 (𝝎) ∙ Κ𝑚,𝑝

𝜏 (𝒕, 𝒇,𝝎)

𝑝∈𝑃𝑚𝑚∈𝑀𝜏∈Ψ

, (24) 

where 𝑓𝑚,𝑝
𝜏  and Κ𝑚,𝑝

𝜏  are the flow and toll paid on regional path 𝑝 ∈ 𝑃𝑚 when departing during time-slice 𝜏, given 𝒕, 𝒇, 17 

and 𝝎. When 𝝎 = 𝟎, there is no toll revenue, resulting in 𝑍𝑇𝑅(𝟎) = 0. 18 

Inserting (22) for 𝑍𝐼𝐷, (23) for 𝑍𝐿𝑜𝑆, and (24) for 𝑍𝑇𝑅 into (20), the full social welfare objective function is: 19 

 

𝑍𝑆𝑊(𝒕, 𝒇, 𝝎) = 𝑍𝐼𝐷(𝒕, 𝒇, 𝝎) + 𝑍𝐿𝑜𝑆(𝒕, 𝒇, 𝝎) + 𝑍𝑇𝑅(𝒕, 𝒇, 𝝎) 

= ∑ ∑ {
𝐶̃𝑚
𝜏,𝑁𝑇𝑆

(𝑑𝑚
𝜏,𝑁𝑇𝑆)

𝛾 (
1

𝛾 + 1
(𝑑̃𝑚

𝜏 (𝒕, 𝒇, 𝝎))
𝛾+1

−
1

𝛾 + 1
(𝑑𝑚

𝜏,𝑁𝑇𝑆)
𝛾+1
)}

𝑚∈𝑀𝜏∈Ψ

 

+(∑ ∑ 𝑑𝑚
𝜏,𝑁𝑇𝑆

𝑚∈𝑀𝜏∈Ψ

𝐶̃𝑚,𝑝
𝜏,𝑁𝑇𝑆 −∑ ∑ 𝑑̃𝑚

𝜏 (𝒕, 𝒇, 𝝎) ∙ 𝐶̃𝑚
𝜏 (𝒄(𝒕, 𝒇, 𝝎))

𝑚∈𝑀𝜏∈Ψ

) 

+∑ ∑ ∑ 𝑓𝑚,𝑝
𝜏 ∙ Κ𝑚,𝑝

𝜏 (𝒕, 𝒇, 𝝎)

𝑝∈𝑃𝑚𝑚∈𝑀𝜏∈Ψ

. 

(25) 

The toll-price optimisation problem is therefore: 20 

 max
𝝎
𝑍𝑆𝑊(𝒕, 𝒇, 𝝎) (26) 

subject to: 21 

 𝒕 = 𝑯(𝒕, 𝒇) (27) 

 𝒇 = 𝒅̃𝐷𝑇𝐶(𝒕, 𝒇, 𝝎) ∙ 𝑸(𝒄(𝒕, 𝒇,𝝎)) (28) 

 𝝎 ≥ 𝟎 (29) 

Constraint (27) is the traffic propagation region travel time fixed-point problem, see Section 2.2. Constraint (28) is the D-22 

MR-MFD-SUE with elastic demand and departure time choice regional path flow fixed-point problem in (19), which for 23 

simplicity of notation has been vectorised. This constraint can be replaced with the appropriate traffic equilibrium 24 

depending on whether elastic demand and departure time choice are or are not being considered. Constraint (29) 25 

stipulates that the toll-prices should be non-negative. 26 

Note that in (25), as is typically done, it is assumed that the disbenefit to the consumer and benefit to the producer of 27 

a toll have equal worth for society, and so the tolls paid and received cancel out. This is a very classical assumption that 28 

is made, however it need not be true, as it depends on how the tolls received are reinvested to benefit consumers. It could 29 

be that the toll revenues are not fully reinvested (e.g. if there is a private operator that is remunerated for the operation, or 30 

if there are multiple authorities with different jurisdictions), or do not benefit society in an equivalent manner to the 31 

disbenefit from paying the tolls. To account for this one could scale the producer component of the social welfare 32 
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objective function by a scaling factor between 0 and 1. In Appendix B we explore how results differ in the real-life case 1 

study for different values of this scaling factor. 2 

As described above, when the tolls are zero (𝝎 = 𝟎), the objective function equals zero. For a given setting of the 3 

tolls 𝝎, the dynamic multi-region MFD SUE traffic model is re-solved, outputting equilibrated regional path flows and 4 

region travel times to update the objective function. The objective function surface will not be globally concave, since as 5 

the toll-price tends to infinity there will be an inertia, where demand can no longer change their regional path or 6 

departure time to avoid paying a toll, or there is no longer any car demand. Ideally, the objective function surface will be 7 

smooth and have a unique maximum. In each case, we check this by manually inspecting the objective function by 8 

performing a grid search and plotting the surface. In the cases studied, we have found the objective function to be smooth 9 

and have a unique maximum (see Fig. 11D, Fig. 20, & Fig. 26B). Thus, although we cannot mathematically prove that 10 

the toll-prices we identify are optimal, we provide empirical evidence to support that they are. 11 

 12 

5.2 Demonstration 13 

To demonstrate, consider the example multi-region MFD system in Fig. 3. Fig. 11A-C plot how the Inverse Demand, 14 

LoS, and Toll Revenue components of the social welfare objective function vary as the toll-price is varied, for different 15 

configurations of the dynamic multi-region MFD SUE model: Fixed Demand (FD) with and without Departure Time 16 

Choice (DTC) and Elastic Demand (ED) with and without DTC. The regional path choice model parameters are as in 17 

Section 3.1, and the elastic demand and departure time choice parameters are 𝛾 = 0.7 and 𝜇 = 3, respectively (the same 18 

as for Fig. 8C).  19 

As shown in Fig. 11A, with fixed demand the Inverse Demand component is always zero. With elastic demand, the 20 

Inverse Demand components decrease with the toll price, as more people shift away from car due to increased costs of 21 

travelling. The Inverse Demand component estimates the costs experienced from not travelling by car, for example the 22 

LoS of taking a different mode or cost of cancelling.  23 

As shown in Fig. 11B, the LoS component decreases much faster for fixed demand than elastic demand. This is 24 

because with elastic demand the demand decreases as the toll-price increases, resulting in lower total car traveller costs 25 

experienced (as there are fewer car travellers), as well as quicker travel times for these car travellers from lower 26 

congestion levels. 27 

As shown in Fig. 11C, the Toll Revenue component for each model increases as the toll-price increases, as one 28 

would expect. It increases slower for elastic demand as the lower demand levels mean less tolls received. 29 

Fig. 11D plots how the social welfare objective function varies as the toll-price varies, for the different models. As 30 

shown, the objective functions have a unique maximum in this range of the toll-price. For the fixed demand models, 31 

welfare increases initially as flow is pushed onto the non-tolled r-path and thus the travel time of the congested tolled r-32 

path decreases. Increasing the toll-price too much, however, leads to too much flow taking the longer non-tolled r-path 33 

resulting in a decrease in welfare. For the departure time choice models, tolling instigates a beneficial shift to departing 34 

earlier/later, which initially alleviates congestion during peak hours, but then as the toll-price increase results in 35 

displacing congestion to the off-peak period. For the elastic demand models, the higher the toll-price the lower the 36 

demand level and thus the lower the travel times for both r-paths. However, as more people opt not to travel by car, the 37 

total cost incurred for those travellers increases, which at some point outweighs the saved cost from improved travel 38 

times for the car travellers. 39 

The fixed demand optimised toll-prices are lower than the elastic demand optimised toll-prices. This is because, for 40 

elastic demand, the lower travelling costs for remaining car travellers through travel time savings from the decreased 41 

demand, outweigh the costs for the travellers who choose not to travel by car. 42 

 43 

A B 
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 1 

Fig. 11. Example system: Objective function components as toll-price is varied, for fixed/elastic demand with/without departure time 2 
choice. A: Inverse Demand component. B: Level of Service component. C: Toll Revenue component. D: Social Welfare. 3 

 4 

5.3 Optimisation solution methodology 5 

Algorithm 2 outlines general pseudo-code for solving the toll-price optimisation problem. In this study, to identify the 6 

toll-prices to test in the next iteration in Step 3, we applied a convex minimisation algorithm (minimising −𝑍𝑆𝑊). Since 7 

the derivative of the objective function cannot be calculated analytically, we approximated the gradient using finite 8 

difference. This was operationalised through applying the L-BFGS-B bound-constraint, quasi-Newton minimisation 9 

algorithm (Byrd et al., 1995). As discussed in Section 5.1 above, to check the validity of using convex minimisation, we 10 

also manually inspected the objective function surface, which we found, in those cases, to have a unique maximum and 11 

be locally concave in the reasonable range of toll-prices evaluated (see Fig. 11D / Fig. 20). 12 

 13 

Step 0: Initialisation. Initialise the toll-price vector 𝝎(0) for iteration 𝑘 = 0. Set 𝑘 = 1. 14 

Step 1: Re-solve the dynamic multi-region MFD SUE traffic model. Given the toll-price vector 𝝎(𝑘) for iteration 𝑘, re-15 

solve the dynamic multi-region MFD SUE traffic model (see Section 4.2) to obtain the equilibrated regional path flow 16 

vector 𝒇∗,(𝑘) and equilibrated region travel time vector 𝒕∗,(𝑘) for iteration 𝑘. 17 

Step 2: Compute social welfare objective function. Given the equilibrated regional path flow vector 𝒇∗,(𝑘) and 18 

equilibrated region travel time vector 𝒕∗,(𝑘) obtained in the previous step, compute the social welfare objective function 19 

𝑍𝑆𝑊
(𝑘)

 for iteration 𝑘 (see equation (25)). 20 

Step 3: Identify toll-price search direction. Based on 𝑍𝑆𝑊
(𝑠)

 and associated toll-price vectors 𝝎(𝑠) for all 𝑠 ≤ 𝑘, identify a 21 

new set of toll-prices 𝝎(𝑘+1) to test in the next iteration 𝑘 + 1. 22 

Step 4: Check for convergence. If social welfare objective function and toll-prices have sufficiently converged, stop. 23 

Otherwise, set 𝑘 = 𝑘 + 1 and return to Step 1. 24 

 25 

Algorithm 2. Pseudo-code for solving the toll-price optimisation problem. 26 

 27 

To demonstrate the toll-price optimisation solution method, Fig. 12A-B display for the small-scale example multi-region 28 

MFD system in Fig. 3 and real-life case study (see Sections 6 & 7), respectively, the toll-price and social welfare 29 

objective function values at each iteration of the L-BFGS-B algorithm, solving with the D-MR-MFD-SUE with elastic 30 

demand and departure time choice model. For the example system the model specifications are the same as those for Fig. 31 

8C/Fig. 11, and for the real-life case study the model specifications are as discussed in Section 6.2. For both cases the 32 

initial toll-price condition was set as 0 DKK/min, while the bound-constraints for the algorithm were set as [0,2] for the 33 

example system and [0,10] for the real-life case study. As shown, in both cases, the algorithm successfully identifies the 34 

toll-price that maximises social welfare. For the example system, the optimised toll-price of 0.684 DKK/min aligns with 35 

the visual social welfare maximum in Fig. 11D (see the red dotted curve). For the real-life case study, the optimised toll-36 

price of 4.544 DKK/min aligns with the visual social welfare maximum in Fig. 20.  37 

In the cases studied in this paper, we only optimise a single toll-price, but multiple toll-prices can be optimised. In 38 

Appendix C we demonstrate the model / algorithm optimising multiple toll-prices. 39 

C D 
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 1 

Fig. 12. Demonstrating convergence of the adopted optimisation algorithm for maximising social welfare. A: Example system. B: 2 
Real-life case study. 3 

 4 

6 Case study setup 5 

6.1 Multi-region MFD system 6 

We shall briefly provide details here on the case-study multi-region MFD system and how it was set-up. For an in-detail 7 

description of the system and how it was set-up see Section 5 in Duncan et al. (2025).  8 

The area of the case study is large, spanning eastern Zealand in Denmark, as depicted in Fig. 13. The area includes 9 

the urban area cities/towns of Copenhagen, Roskilde, Hillerød, and Helsingør, as well as rural areas between the 10 

cities/towns. There is also a motorway network superimposed upon the rural and urban areas, as well as external 11 

entry/exit points (port zones) to the area. First, 39 urban/rural underlying regions were partitioned by grouping together 12 

several neighbouring administrative zones (‘GMM’ zones) using logic, local understanding, and trial-and-error, see Fig. 13 

14. Then, 96 superimposed motorway regions were partitioned according to the underlying regions, and then further by 14 

name, direction, and at junctions, as exemplified in Fig. 15. There are thus 135 regions in total, where both the 15 

underlying regions and motorways regions are treated as regions the same in the system, though with different speed-16 

MFD functional forms, see below. 17 

B A 
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 1 

Fig. 13. Area of case study. 2 

 3 

Fig. 14. Underlying region partitioning and superimposed motorway network. 4 
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 1 

Fig. 15. Example of superimposed motorway region partitioning. 2 

 3 

The speed-MFD functions for each of the regions were calibrated using a combination of probe vehicle data and vehicle 4 

count data, the latter being used to estimate the penetration rate of the probe vehicles (= 3.84%). Speed-MFD functional 5 

forms were fitted to a set of cleaned accumulation-speed datapoints. For the underlying urban/rural regions, we fit an 6 

exponential speed-MFD functional form. This is as follows for an accumulation state 𝑛𝑟: 7 

𝑣𝑟(𝑛𝑟) = (𝑎 − ℎ)𝑒
−𝑏𝑛𝑟 + ℎ, 8 

where 𝑎 > 0 gives the free-flow region speed, 𝑏 > 0 determines the curve of the speed function, and ℎ is the minimum 9 

speed. Fig. 16 plots two examples.  10 

 11 

Fig. 16. Examples of two fitted exponential speed-MFD functions. A: Region 8 - Greater Copenhagen. B: Region 7 - Amager. 12 

 13 

For the motorway regions, we fitted a piecewise-exponential speed-MFD functional form. This is as follows for an 14 

accumulation state 𝑛𝑟: 15 

A B 
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𝑣𝑟(𝑛𝑟) = {
(𝑎 − ℎ)𝑒−𝑏𝑛𝑟 + ℎ                                 𝑖𝑓 𝑛𝑟 ≤ 𝑛𝑟

𝑐𝑟𝑖𝑡

(𝑎 − ℎ)𝑒−𝑏𝑛𝑟
𝑐𝑟𝑖𝑡
𝑒−𝑐(𝑛𝑟−𝑛𝑟

𝑐𝑟𝑖𝑡) + ℎ      𝑖𝑓 𝑛𝑟 > 𝑛𝑟
𝑐𝑟𝑖𝑡
, 1 

where 𝑎 > 0 gives the free-flow region speed, 𝑛𝑟
𝑐𝑟𝑖𝑡 > 0 is the critical accumulation, 𝑏 > 0 and 𝑐 > 0 determine the 2 

curves of the speed function pre- and post-critical accumulation, respectively, and ℎ is the minimum speed. Fig. 17 plots 3 

two examples. 4 

 5 

Fig. 17. Examples of two fitted piecewise-exponential speed-MFD functions. A: Region 10 motorway ‘M3_N’. B: Region 11 6 
motorway ‘Hels_N’.  7 

 8 

As described above, each underlying region is associated with a set of administrative GMM zones. The indexed set of 9 

regional OD movements 𝑀 was determined by considering whether for each pair of origin and destination region, any 10 

demand is travelled across the day from any GMM zone in the origin region to any GMM zone in the destination region. 11 

Due to the presence of external entry/exit points (port zones) (see Fig. 13), an underlying region can have more than one 12 

origin/destination point, i.e. internal and external. Regional OD movement 1 ∈ 𝑀 could for example be from external 13 

origin in region 17 (flow entering from the Helsingør ferry from Sweden) to internal destination in region 6 (Roskilde). 14 

There are in total 1898 regional OD movements.  15 

The regional OD movement travel demands were obtained by aggregating the travel demand from all GMM zones 16 

in the origin region to all GMM zones in the destination region. Fig. 18 plots the total travel demand across the OD 17 

movements at each 30-min time-slice of the day. As shown, there are two demand peaks, in the morning and evening, as 18 

one would expect. 19 

 20 

Fig. 18. Total travel demand across regional OD movements at each 30-min time-slice of the day.  21 

 22 

To obtain the regional path choice sets, shortest path searches were conducted between GMM zones of regional OD 23 

movements on the actual link-network, based on different link travel costs, to identify a set of link-routes for each 24 

regional OD movement. The regional path of each link-route was obtained by tracing along it and determining the order 25 
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of regions it traverses. The unique generated regional paths for each regional OD movement were then determined. To 1 

obtain reasonably-sized regional path choice sets, the choice sets were trimmed, in a manner maximising the variation in 2 

r-paths. See Algorithm 2 in Duncan et al (2025) for details on the entire process. The maximum choice set size was 23 3 

and the total number of r-paths is 31,760.3 The lengths of the links in the generated link-routes for each regional path 4 

were used to determine the average regional trip lengths of each region in each regional path.  5 

 6 

6.2 Model specification 7 

For the case study, we obtained model parameter values by assuming a VOD value and fitting the other model 8 

parameters to data. The assumed VOD value was obtained from the official Danish transport economic unit price 9 

catalogue (Transportministeriet, 2024). Assuming that perceived distance costs to drivers are associated with perceived 10 

petrol costs and maintenance costs, then the VOD is 𝛼𝑙 = 0.96 [DKK/km]. We then estimated the other parameters of 11 

the dynamic multi-region MFD SUE model, utilising the same procedure and dataset described in Duncan et al. (2025). 12 

We estimated VOT by setting 𝛼𝑡𝑡 =
𝛼𝑙

𝛼𝑙/𝑡𝑡
, where 𝛼𝑙 is the VOD and 𝛼𝑙/𝑡𝑡 is a parameter estimated describing the relative 13 

preference of travel time compared to length. We therefore estimated three parameters: 𝛼𝑙/𝑡𝑡, the C-Logit scaling 14 

parameter 𝜃, and the C-Logit commonality scaling parameter 𝜈 (like we did in Duncan et al. (2025)). The parameter 15 

estimates we obtained were 𝜃̃ = 0.0658, 𝜈 = 0.1389, and 𝛼̃𝑙/𝑡𝑡 = 0.4827, the latter implying that travellers are prepared 16 

to drive around 2 kilometres further to save 1 minute of travel time, which is a reasonable result. The VOT is thus 𝛼𝑡𝑡 =17 
0.96

0.4827
= 1.99 [DKK/min]. For the car demand elasticity parameter, we assumed a value of 𝛾 = 0.2, taken from values 18 

used in the Danish national transport model (see Rich & Hansen, 2016), but also corroborated with values from other 19 

studies. For the departure time choice Logit scaling parameter, we assumed a value of 𝜇 = 2, determined through manual 20 

experimentation, balancing sensitivity to changes in departure time-slice utilities (e.g. with tolls) against reproducing the 21 

original demand profile. In Appendix D we provide an overview of all the parameters we specify in the case study, as 22 

well as the data sources / studies used to determine their settings. 23 

The tolled regions are regions 3, 4, 7, 8, 9, & 10, see Fig. 19. Region 8 is the region of central Copenhagen and the 24 

other regions are the surrounding urban areas (see Fig. 13 / Fig. 14). The time-based toll is enforced between 7-9am and 25 

3-6pm, i.e. the morning and evening peaks. A single toll-price is optimised for each of the tolled regions and tolled time-26 

slices. These specifications were chosen as these are the specifications being considered by the Danish government. 27 

Note that, for the reasons discussed/demonstrated in more detail in Sections 6.2.2 & 6.2.3 in Duncan et al. (2025), 28 

for the regional path choice, travel costs in the origin and destination regions are disregarded. This is because the regional 29 

path choice we are trying to capture is from a general point (e.g. a centroid) in the origin/destination regions, and 30 

including the origin/destination region costs may misrepresent choice behaviour. This was supported empirically, where 31 

it was found that basing regional path choice on travel costs excluding origin/destination costs provided considerably 32 

better fit to the data than including them. 33 

 
3 Note that we have extended the regional path choice sets in Duncan et al. (2025) for regional OD movements where 

there were regional paths passing through the tolled regions (see Fig. 19), but none avoiding the tolled regions. We did 

this by setting very large link costs for the links inside the tolled regions and conducting shortest path searches based on 

different link costs. A maximum of three extra regional paths were added. 
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 1 

Fig. 19. Tolled area of case study. 2 

 3 

7 Case study results 4 

For the case study, we shall focus on the results for the full D-MR-MFD-SUE model with elastic demand and departure 5 

time choice. Fig. 20 displays the social welfare objective function surface, and Table 1 displays the optimal toll-price, 6 

along with different measures of the predicted social welfare gain. As can be seen, the objective function is smooth and 7 

has a unique maximum. To put the optimal toll-price into perspective, 4.544 DKK/min corresponds to around 0.52 £/min, 8 

0.7 $/min, and 0.61 €/min. Thus, a 20-minute trip through the tolled area during the tolling period would cost around £10. 9 

The optimal toll-price is thus not unreasonable, though it is perhaps a little high. We shall discuss potential reasons for 10 

this later. 11 

In terms of the predicted social welfare gains, the net benefit to revenue ratio (daily gain in social welfare divided by 12 

total daily revenues) of 0.10 is a comparable order of magnitude to some other studies, with Eliasson & Mattson (2006), 13 

de Palma et al. (2005), and Jing et al. (2024) finding values of 0.32, 0.28, and 0.11-0.3, respectively. Moreover, it is 14 

similar to the ratio found in an old study of a similar tolling scheme in Copenhagen in Rich & Nielsen (2007). Excluding 15 

the system costs (as we do), they find a net benefit to revenue ratio of 0.12 for the distance-based scheme, similar to our 16 

0.10. The fact that our ratio is at the lower end of these could be explained by the fact that that our social welfare function 17 

does not currently consider any other externalities such as benefits from reduced emissions, noise, and accidents, unlike 18 

most of these studies. Jing et al. (2024) find a daily welfare gain per capita ranging between 0.26 and 3.53 DKK/person 19 

depending on the tolling scheme, which sits our 1.26 DKK/veh within the range. The fact that our value is at the lower 20 

end might be expected given that many travellers in our case study area are not affected or are only minorly affected due 21 

to travelling in areas away from the tolled regions (approximately 25%).  22 

Regarding the main purpose of the tolling, in reducing congestion in the main area of Copenhagen, the optimal 23 

tolling scheme results in a 7.17% reduction in total vehicle-kilometres driven in the tolled regions. Benchmarking with 24 

the reductions found in Rich and Nielsen (2007), they found a 6.7% reduction in the total vehicle-kilometres driven in the 25 

county of Copenhagen, which is not a one-to-one match with our tolled area, but somewhat similar. During the tolled 26 

hours, our study found a 28.63% reduction in vehicle-kilometres in Copenhagen, leading to higher speeds. On average, 27 

drivers travel 0.91 km/hr faster in the tolled underlying urban regions during the tolled hours, and in some places 4.02 28 

km/hr faster. For the tolled motorway regions, drivers travel on average 7.87 km/hr faster, and in some places 50.67 29 

km/hr faster. Hence, there is a clear alleviation in congestion in the main area of Copenhagen. 30 
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 1 

Fig. 20. Real-life case study: Social welfare objective function surface for the dynamic multi-region MFD SUE model with elastic 2 
demand and departure time choice. 3 

 4 

Optimal Toll-Price Daily Gain in 

Social Welfare 

from NTS 

Percentage Daily 

Gain in Social 

Welfare from NTS 

Daily Welfare 

Gain per Capita 

Net Benefit to 

Revenue 

Ratio 

4.544 DKK/min 3,212,034 DKK 2.12% 1.26 DKK/veh 0.10 

Table 1. Optimal toll price and gain in social welfare. 5 

 6 

We shall now explore the effects of tolling on travel behaviour, considering in turn the effects of tolling on regional path 7 

choice, elastic demand, and departure time choice. 8 

 9 

Regional path choice 10 

While 68.7% of travel demand has a regional path option for their OD movement that travels in the tolled area (which is 11 

the main area of Copenhagen), 58.8% of demand originates and/or destinates in the tolled regions. For these OD 12 

movements, drivers cannot change their regional path to avoid experiencing a toll. They can maybe choose a regional 13 

path that travels less time in the tolled regions, but they cannot avoid paying a toll. The main impact of tolling on 14 

regional path choice is for OD movements that do not originate or destinate in the tolled regions, but have a regional path 15 

that passes through a tolled region. This is 9.8% of the travel demand. Under the NTS, 2.75% of demand passes through 16 

the tolled regions, whereas under the optimal tolling scenario this figure decreases to 2.29%4. This indicates that tolling 17 

will have some impact on regional path choice, with the impact being to divert travellers to going around the main 18 

Copenhagen area. 19 

To demonstrate, Fig. 21 displays two regional paths from the external origin of region 101 to the external 20 

destination of region 17 (i.e. from the far south of the study area to far north). R-path 1 (the orange r-path) goes through 21 

the tolled regions on motorways and r-path 2 (the green r-path) goes around the tolled regions on minor roads. Fig. 22A 22 

displays the travel times for these two regional paths when departing at different times across the day. Fig. 22B displays 23 

their choice probabilities. As can be seen, under the NTS r-path 1 is much quicker than r-path 2, and thus r-path 1 has a 24 

higher choice probability than r-path 2. The travel time for r-path 1 worsens during the peak hours, but it remains 25 

quicker. Under the optimal tolling scenario the congestion levels are lower in the tolled area, and thus r-path 1 travel 26 

times are less during the peak hours than under the NTS. R-path 1 travellers, however, have to pay a toll, which results in 27 

r-path 1 overall having a higher travel cost (than under the NTS). This results in an increase in travellers taking r-path 2 28 

during the peak hours. 29 

 
4 Note that in the tolling scenario this is of the demand continuing to travel by car. 
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 1 

Fig. 21. Real-life case study. Two regional paths from the external origin of region 101 to the external destination of region 17 (from 2 
very south to very north), one passing through the tolled area and one going around. 3 

 4 

Fig. 22. Real-life case study. Travel times (A) and choice probabilities (B) for the two regional paths in Fig. 21 when departing at 5 
different times across the day, under the NTS and optimal tolling scenario. 6 

 7 

Elastic demand 8 

In the optimal tolling scenario, there is a 3.55% decrease in the total demand travelling by car from the NTS. This figure 9 

roughly aligns with the findings in Rich & Nielsen (2007), who predict a 1.6-7.5% decrease in total car demand from 10 

tolling in Copenhagen, depending on the scheme. When inspecting the percentage decrease in demand during the peak 11 

hours, the number is higher. Fig. 23A displays, for the OD movements that have a regional path travelling in the tolled 12 

regions, the average percentage difference in LoS across the day between the NTS and the optimal tolling scenario. Fig. 13 

23B displays the percentage difference in demand, before departure time choice (i.e. just the difference in demand from 14 

the elastic demand component of the model). As shown, during and around the peak hours, the LoS worsens on average 15 

by up to around 30%, which results in around a 12% decrease in travellers travelling by car. This is also perhaps a bit 16 
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low, which could be because the demand elasticity parameter for car is a bit low, or it could be because changing 1 

departure time is a better option, which we explore next.  2 

 3 

Fig. 23. Real-life case study. A: Average percentage difference in LoS across the day between the NTS and optimal tolling scenario 4 
(positive number means worse LoS in the optimal tolling scenario). B: Percentage difference in the travel demand (negative number 5 

means less demand in the optimal tolling scenario).  6 

 7 

Departure time choice 8 

Fig. 24 displays, for the OD movements that have a regional path travelling in the tolled regions, the percentage 9 

difference in demand across the day between the NTS and the optimal tolling scenario. As can be seen, tolling instigates 10 

a clear shift in departure choice, with many opting to depart earlier or later than the tolling period to avoid/reduce paying 11 

a toll. Noting that the percentage changes in the figure include those opting not to travel by car at all, then this would 12 

infer around 20% of travellers usually departing during the peak hours opt to depart earlier or later.  13 

It therefore appears that the most prominent action travellers take to avoid/decrease paying a toll is to change their 14 

departure time. This could though in this case study be because only a small proportion of travellers pass through the 15 

tolled regions under the NTS (2.7%), and therefore not many travellers can change their regional path to avoid tolling. 16 

And/or because the assumed demand elasticity parameter for car is a little low, underestimating the number of drivers 17 

that will opt not to travel by car.  18 

 19 

Fig. 24. Real-life case study. Percentage difference in travel demand across the day between the NTS and the optimal tolling scenario, 20 
for OD movements that have a regional path entering the tolling area. 21 

 22 

As mentioned above, the toll-price is perhaps a little high. There are several potential causes for this, four of which are as 23 

follows. 24 

The first cause could be the tolling setup. The tolled regions cover the main urban area of Copenhagen, which as can 25 

be seen in Fig. 19 is located to the east of Zealand against the sea. Most of the traffic that passes through the tolled area is 26 

travelling between the north (e.g. Helsingør, Hillerød (see Fig. 13)) and the south/south-west (e.g. Roskilde / the 27 

motorways heading west/south). The quickest routes connecting the north and south/south-west are on the motorways, 28 
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which all pass through the tolled area. Avoiding the tolled area means travelling on more minor roads, which takes 1 

longer. There will thus be some reluctance of travellers that usually pass through the tolled regions to go around. Our 2 

intuition is that a fairly high toll-price will be required to push travellers onto the minor roads travelling around the tolled 3 

regions, but a toll-price of 4.544 DKK/min is perhaps a little high. 4 

A second cause could be that the estimated 𝜃 Logit scaling parameter for the C-Logit regional path choice model is 5 

low. A larger value of 𝜃 would push travellers onto the regional paths going around the tolled regions at a faster rate as 6 

the toll-price is increased. Analysing this, we optimised the toll-price with the 𝜃 parameter set to three times its calibrated 7 

value, i.e. 𝜃 = 3 × 0.0658 = 0.1974. The new optimal toll-price was 4.334 DKK/min, so only slightly lower than the 8 

original 4.544 DKK/min toll-price. This is likely because, as discussed above, only a small proportion of travellers pass 9 

through the tolled regions under the NTS (2.7%), and therefore not many travellers can change their regional path to 10 

avoid tolling. The main action that travellers take is to change their departure time, and perhaps due to this, changing 11 

regional path is less required. 12 

A third cause could be that the costs for not travelling by car inferred from the inverse demand function are lower 13 

than one would expect. The elastic demand function predicts, for a given increase in car travelling costs, how many 14 

travellers will opt not to travel by car. The inverse demand function thus predicts, for a given number of travellers that 15 

have opted not to travel by car, the increased car travelling costs that will have instigated such a demand decrease. These 16 

are the costs that travellers are assumed to experience from not travelling by car, but these could well be underestimating 17 

the true mode switch / trip cancellation costs. If the non-car travelling costs were higher, and the same number of 18 

travellers choose not to travel by car, social welfare would decrease. For example, when optimising the toll-price with the 19 

Inverse Demand component scaled by 1.25, i.e. the costs of not travelling by car are 25% greater, the optimal toll-price is 20 

3.173 DKK/min, 1.371 DKK/min less than the original 4.544 DKK/min. 21 

 22 

8 Conclusions and future research 23 

This study has extended the dynamic multi-region Macroscopic Fundamental Diagram (MFD) Stochastic User 24 

Equilibrium (SUE) model introduced in Duncan et al. (2025) to account for elastic demand and departure time choice, 25 

and then integrated the model within a time-based toll-price optimisation framework for maximising social welfare. In 26 

both a simple example multi-region system and a real-life case study we have shown that the modelling and optimisation 27 

framework provides a computationally tractable approach to optimising toll prices, which yield welfare gains and 28 

desirable behaviour changes. 29 

While the developed tolling model is a very promising approach, there are several aspects that require further 30 

consideration.  31 

Calibration of model parameters. Calibration of the regional path choice model parameters requires careful 32 

consideration. For the case study in this paper, we have taken a reasonable Value of Distance (VOD) value from an 33 

official Danish unit price study, and calibrated the other parameters according to observed behaviour under the No 34 

Tolling Scenario (NTS). We have found that this yields a reasonable Value of Time (VOT) value, and represents 35 

behaviour reasonably in the NTS. However, as we do not have available data to calibrate the sensitivity of travellers to 36 

tolls, we have assumed that travellers’ sensitivity to monetary toll is the same as their sensitivity to the assumed monetary 37 

cost of travel distance and time. Studies have found though that travellers can be quite sensitive to having to pay tolls, 38 

and thus our assumption is perhaps underrepresenting travellers’ sensitivity. Further research could therefore try to 39 

explicitly calibrate travellers’ sensitivity to toll, perhaps through a stated preference survey, or a trial tolling experiment, 40 

which is currently being conducted in Denmark. 41 

Non-car travelling costs. To predict how travellers will opt not to travel by car due to tolls, we have adopted a 42 

traditional elastic demand approach, where the Inverse Demand function predicts the costs incurred from opting not to 43 

travel by car. It is convenient as it does not need to know the costs of the alternative options to travelling by car, but that 44 

is also its limitation. Ideally, the car tolling model would be paired with a mode choice model, to contrast the increased 45 

car travelling costs from tolls with the costs for instead travelling by public transport, bicycle, or other modes. This 46 

would more accurately capture travellers’ inclination to mode switch, and the costs of doing so. This is something we 47 

hope to explore in future research. 48 

Heterogeneity of preferences. In this study, we have assumed all travellers have the same preferences. Different 49 

travellers / trip types may, however, have different preferences. For example, wealthy travellers may have a high VOT 50 

and low sensitivity to toll, while leisure trips may have a lower VOT and lower arriving late penalty. This is likely to 51 

have an impact on the optimal toll price, which further research could explore. 52 

Marginal cost of public funds. The marginal cost of public funds is defined as “the factor by which the marginal 53 

resource cost of a public project should be scaled to take into account that the project is financed through distortionary 54 

taxation” (Eliasson, 2009). In this study, as is typically done, we have assumed that this factor is equal to 1. The marginal 55 

cost of public funds is however often supposed to be greater than 1. In Sweden for example it is generally taken to be 1.3 56 

(Hansson, 1984; Eliasson, 2009). Further research could explore results when taking the marginal cost of public funds 57 

into account in the social welfare objective function. And/or considering different redistribution of revenue policies such 58 

as equity schemes, assessing their impact on behaviour and optimal toll price. 59 
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Future research also includes integration within a car ownership model, properly calibrating a departure time choice 1 

model in the case study, evaluating different tolling schemes (e.g. distance-based, fixed price), and considering other 2 

externalities within the social welfare function such as emissions, noise pollution, and reduced accidents (Rich & 3 

Nielsen, 2007). It would also be interesting to explore how the results from toll optimisation with the aggregate region-4 

based traffic model in this study compares with results from a transport simulation model such as Matsim. The detail in 5 

these models allows responses to tolls to be captured with a high level of realism, and therefore it would be useful to 6 

validate our approach by comparing with these models. Beyond toll-price optimisation, one could use the traffic model to 7 

explore other policy schemes, such as behaviour changes / emissions under different low emission zone policy 8 

specifications, or public transport fare optimisation. 9 
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11 Appendix 4 

11.1 Appendix A – Nomenclature 5 

Table 2 details the main nomenclature used in this paper. Note that the nomenclature for the model parameters are 6 

detailed in Appendix D. 7 

 8 

Term Description 

Dynamic multi-region MFD SUE model 

𝑅 Set of regions 

𝑛𝑟 Accumulation in region 𝑟 

𝑊𝑟(𝑛𝑟) Production-MFD function for region 𝑟 given accumulation 𝑛𝑟 

𝑣𝑟(𝑛𝑟) Speed-MFD function for region 𝑟 given accumulation 𝑛𝑟 (space-mean speed) 

𝑀 Set of regional OD movements 

𝑃𝑚 Set of regional paths for OD movement 𝑚 

𝑁𝑚 Number of regional paths for OD movement 𝑚 

𝑁 Total number of regional paths 

𝑅𝑚,𝑝 Set of regions in regional path 𝑝 of OD movement 𝑚 

Ψ Set of indexed time-slices 

𝜀 Time-slice duration 

𝑑𝑚
𝜏  Travel demand for OD movement 𝑚 departing during time-slice 𝜏 

𝑓𝑚,𝑝
𝜏  Vehicle flow departing during time-slice 𝜏 travelling regional path 𝑝 of OD movement 𝑚 

𝐹 Set of all demand-feasible non-negative regional path flow vector solutions 

𝑙𝑚,𝑝,𝑟 Mean regional trip length of region 𝑟 when travelling regional path 𝑝 of OD movement 𝑚 

𝑡𝑚,𝑝,𝑟
𝜏  Mean travel time to cross region 𝑟 when entering the region during time-slice 𝜏 travelling 

regional path 𝑝 of OD movement 𝑚 

𝒕∗(𝒇) Region travel time vector solution to the traffic propagation fixed-point problem 

𝑛̅𝑚,𝑝,𝑟
𝜏′→𝜏  Average accumulation in region 𝑟 during time-slice 𝜏 from the flow departing during time-

slice 𝜏′ travelling regional path 𝑝 of OD movement 𝑚 

Ψ𝑚,𝑝,𝑟
𝜏  Set of active time-slices that some time is spent in traversing region 𝑟 by any vehicle 

departing during time-slice 𝜏 travelling regional path 𝑝 of OD movement 𝑚 

𝑡𝑚̅,𝑝,𝑟
𝜏  Average travel time experienced to cross region 𝑟 when departing during time-slice 𝜏 

travelling regional path 𝑝 of OD movement 𝑚 

𝑇̅𝑚,𝑝
𝜏   Experienced travel time of regional path 𝑝 of OD movement 𝑚 when departing during time-

slice 𝜏 under the NTS  

𝑐𝑚,𝑝,𝑟
𝜏  Generalised travel cost to cross region 𝑟 when departing during time-slice 𝜏 travelling 

regional path 𝑝 of OD movement 𝑚 

𝐶𝑚,𝑝,𝑟
𝜏  Generalised travel cost of regional path 𝑝 of OD movement 𝑚 when departing during time-

slice 𝜏 

𝑄𝑚,𝑝
𝜏  Probability regional path 𝑝 of OD movement 𝑚 is chosen when departing during time-slice 𝜏 

Tolling 

𝜅𝑚,𝑝,𝑟
𝜏  Toll paid in for travelling in region 𝑟 when travelling regional path 𝑝 of OD movement 𝑚 and 

departing during time-slice 𝜏 

𝜔𝑟
𝜏 Time-based toll-price for travelling in region 𝑟 during time-slice 𝜏 

Κ𝑚,𝑝
𝜏  Total average time-based toll experienced when travelling regional path 𝑝 of OD movement 

𝑚 and departing during time-slice 𝜏 

Elastic demand 

𝑄𝑚,𝑝
𝜏,𝑁𝑇𝑆

 Probability regional path 𝑝 of OD movement 𝑚 is chosen when departing during time-slice 𝜏 
under the NTS 

𝐶𝑚,𝑝
𝜏,𝑁𝑇𝑆

 Generalised travel cost of regional path 𝑝 of OD movement 𝑚 when departing during time-

slice 𝜏 under the NTS 
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𝐶̃𝑚
𝜏  Level of service (expected travel cost) of OD movement 𝑚 when departing during time-slice 

𝜏 

𝐶̃𝑚
𝜏,𝑁𝑇𝑆

 Level of service (expected travel cost) of OD movement 𝑚 when departing during time-slice 

𝜏 under the NTS 

𝑑̃𝑚
𝜏  Elastic demand for OD movement 𝑚 departing during time-slice 𝜏 

Departure time choice 

𝑌𝑚
𝜏′→𝜏 OD movement 𝑚 utility of departing during time-slice 𝜏 in the TS given the traveller departed 

during time-slice 𝜏′ under the NTS 

𝑃𝐴𝑇𝑚
𝜏,𝑁𝑇𝑆

 OD movement 𝑚 aggregate preferred arrival time when departing during time-slice 𝜏 in the 

NTS 

𝐴𝑇𝑚
𝜏  OD movement 𝑚 aggregate arrival time when departing during time-slice 𝜏 in the TS 

𝑇̅𝑚,𝑝
𝜏,𝑁𝑇𝑆

 Experienced travel time of regional path 𝑝 of OD movement 𝑚 when departing during time-

slice 𝜏 under the NTS  

𝑇̅𝑚
𝜏  Average experienced travel of OD movement 𝑚 when departing during time-slice 𝜏 

𝑇̅𝑚
𝜏,𝑁𝑇𝑆

 Average experienced travel of OD movement 𝑚 when departing during time-slice 𝜏 under the 

NTS 

Κ𝑚
𝜏  Average toll experienced when departing during time-slice 𝜏 travelling OD movement 𝑚 

𝜋𝑚
𝜏′→𝜏 Probability time-slice 𝜏 is chosen for travellers travelling OD movement 𝑚, given they depart 

during time-slice 𝜏 under the NTS 

𝑑̃𝑚
𝜏,𝐷𝑇𝐶

 Demand for OD movement 𝑚 departing during time-slice 𝜏, after elastic demand and 

departure time choice 

Social welfare 

𝑍𝑆𝑊 Social welfare objective function 

𝑍𝐼𝐷 Inverse demand component of the social welfare objective function 

𝑍𝐿𝑜𝑆 Level of service component of the social welfare objective function 

𝑍𝑇𝑅 Toll revenue component of the social welfare objective function 

Table 2. Nomenclature used in this paper. 1 

 2 

11.2 Appendix B – Impact of scaling the producer component of the social welfare objective 3 

function 4 

Here we shall explore the implications if we were to suppose that the toll revenues received by the governing authority 5 

are not fully reinvested or do not benefit society in an equivalent manner to the disbenefit from paying the tolls. We do 6 

this by scaling the producer component of the social welfare objective function in (20) by 𝜆 (i.e. 𝑍𝑇𝑅 = 𝜆𝑍𝑇𝑅, 𝜆 ∈ [0,1]).  7 

Table 3 displays the optimal toll-price and gain in social welfare for different values of 𝜆. As expected, the maximum 8 

gain in social welfare from tolling lessens as the value of the toll revenues to society is diminished. These maximum 9 

gains come from lower toll-prices, where after a certain point there is no benefit to society from tolling.  10 

Such analysis could be useful to governing authorities, as if they have some perception of how beneficial the 11 

reinvested tolls might be back to society then they could correct their social welfare function accordingly, as we have 12 

done. An alternative analysis could be to assess, given our optimised toll price with 𝜆 = 1, how beneficial do our 13 

reinvested tolls need to be to society for the tolling to be beneficial. This is done by calculating the social welfare 14 

function with the outputs from the traffic model with the optimal toll-price when maximising with 𝜆 = 1, but scaling 15 

down the producer component by 𝜆′. Table 4 displays the results from doing exactly such. As can be seen, the gains 16 

reduce quicker than when also optimising the toll-price accordingly (i.e. comparing with the results in Table 3). The 17 

conclusion is that as long as the toll revenues are reinvested to benefit society 90.1% as much as the disbenefit from 18 

paying them, then tolling at a price 4.544 DKK/min will be worth it. This value can be calculated analytically by 19 

computing (−𝑍𝐼𝐷 − 𝑍𝐿𝑜𝑆)/𝑍𝑇𝑅 (i.e. solving 𝑍𝑆𝑊 = 0 = 𝑍𝐼𝐷 + 𝑍𝐿𝑜𝑆 + 𝜆
′𝑍𝑇𝑅). 20 

 21 

𝜆 0.8 0.85 0.9 0.95 1 

Optimal Toll-

Price 

[DKK/min] 

0 0.523 1.650 3.094 4.544 

Daily Gain in 

Social 

Welfare from 

NTS [DKK] 

0 89,612 661,455 1,735,618 3,212,034 
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Net Benefit to 

Revenue 

Ratio 

- 0.02 0.04 0.07 0.10 

Table 3. Toll-price optimisation results for different values of 𝜆 scaling the producer component of the social welfare objective 1 
function. 2 

 3 

𝜆′ 0.9 0.925 0.95 0.975 1 

Daily Gain in 

Social 

Welfare from 

NTS [DKK] 

-35,477 776,401 1,588,279 2,400,157 3,212,034 

Table 4. Given the optimal toll-price from 𝜆 = 1, gain in social welfare for different values of 𝜆′ scaling the producer component of 4 
the social welfare objective function. 5 

 6 

11.3 Appendix C – Demonstration of optimising multiple toll-prices 7 

Fig. 25 displays a multi-region system that depicts a city centre and peripheral regions, inspired by similar multi-region 8 

systems in e.g. Zheng & Geroliminis (2020), Sirmatel & Yildirimoglu (2023). The idea is to model a morning commute 9 

where there are simplified demand movements. Demand travels within R1, from R2 to R1, and between each of the three 10 

outer periphery regions (R3-5). To travel between each pair of outer regions there are three regional paths as demonstrate 11 

in Fig. 25 between R5 and R4: one going through the city centre (RP1), one through middle region (RP2), and one 12 

remaining in the periphery regions (RP3). The city centre and middle regions (R1 & R2) will be toll to travel in between 13 

7-9am, each with a different toll-price. We will not give all the details of the specifications of the set-up and model, but 14 

essentially we have tried to create a set-up that is somewhat realistic. The demand profile is bell-shape-like representing 15 

the morning peak, and the city centre is heavily congested during the peak hours. The purpose of the tolls are to reduce 16 

congestion in the city centre, by encouraging travellers to diverting away from the city centre, depart earlier or later, or 17 

not travel by car at all.  18 

Fig. 26A displays the toll-prices and social welfare objective function value at each iteration of the L-BFGS-B 19 

algorithm, solving with the D-MR-MFD-SUE with elastic demand and departure time choice model. As shown, the 20 

algorithm successfully identifies the toll-prices that maximise social welfare, which are 1.31 DKK/min and 2.51 21 

DKK/min for R1 and R2, respectively. Fig. 26B displays the social welfare objective function surface. As can be seen the 22 

surface is smooth and has a unique maximum. 23 

Regarding behaviour, Fig. 27A displays the change in demand departing at each 30-minute time-slice across the 24 

morning, which shows demand now departs earlier, or not at all by car. Fig. 27B displays the change in regional path 25 

choice probabilities for OD movement R5→R4, where some diverting away from the city centre can be observed. These 26 

changes in behaviour lead to the congestion in R1 reducing dramatically during the peak hours, as displayed in Fig. 27C. 27 

 28 

 29 
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Fig. 25. City centre and periphery multi-region system. 1 

 2 

 3 

Fig. 26. A: Convergence of the toll-price optimisation algorithm to the optimal solution. B: Social welfare objective function surface. 4 

 5 

 6 

Fig. 27. Changes in behaviour between NTS and TS across the morning. A: Change in travel demand. B: Change in choice probability 7 
for the three regional paths travelling R4→R5. C: Change in accumulation in the regions. 8 

 9 

11.4 Appendix D – Observed data and setting of model parameters 10 

Table 5 gives an overview of all the model parameters we specified in the case study, including the data we observed and 11 

method we adopted to determine them.  12 

A B 

C 

A B 
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 1 

Component of the 

model 

Mathematical 

form 
Parameter Interpretation 

Observed Data and 

Method of Determination 

Underlying region 

speed-MFD functions 

Exponential 

function 

𝑎 Free-flow speed 

Calibrated by fitting the 

function to a set of speed-

accumulation datapoints, 

obtained using a set of 

GPS traces of cars, and 

loop detector data to 

estimate the penetration 

rate (see Section 5.2 in 

Duncan et al. (2025)) 

𝑏 Curve 

ℎ Minimum speed 

Motorway region 

speed-MFD functions 

Piecewise-

exponential 

form 

𝑎 Free-flow speed 

𝑛𝑐𝑟𝑖𝑡  Critical accumulation 

𝑏 
Curve pre-critical 

accumulation 

𝑐 
Curve post-critical 

accumulation 

ℎ Minimum speed 

Regional path choice 

model 
C-Logit 

𝜃 

Logit scaling 

parameter measuring 

level of stochasticity in 

regional path choice / 

sensitivity to 

differences in regional 

path utility 
Calibrated through 

maximum likelihood 

estimation using a set of 

GPS traces of cars (see 

Section 6 in Duncan et al. 

(2025)) 

𝛼𝑙/𝑡𝑡 

Relative value of 

distance to time, 

measuring how much 

further a driver is 

willing to travel to 

save 1 minute of travel 

time 

𝜈 

C-Logit commonality 

scaling parameter, 

measuring sensitivity 

to regional path 

similarity 

Elastic demand 
Power law 

function 
𝛾 

Demand elasticity 

parameter for car, 

measuring demand 

sensitivity to changes 

in the LoS for car 

Parameter value has been 

taken from the Danish 

national transport model, 

which has been estimated 

based on a Danish 

national travel survey. The 

model framework is 

described in Rich & 

Hansen (2016). 

Departure time 

choice model 

Multinomial 

Logit 

𝜇 

Logit scaling 

parameter measuring 

level of stochasticity in 

departure time choice / 

sensitivity to 

differences in 

departure time utility 

Determined through 

manual experimentation, 

balancing sensitivity to 

changes in departure time-

slice utilities (e.g. with 

tolls) against reproducing 

the original demand 

profile before in 

Rasmussen et al. (2021) 

(demand from an 

operational Danish 

national transport model 

calibrated against the 

national travel survey) 

𝛼𝑡𝑡 
Value of time, 

measuring monetary 

Determined by taking the 

value of distance from the 

official Danish transport 
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worth of 1 minute of 

travel time 

economic unit price 

catalogue 

(Transportministeriet, 

2024) and combining with 

our estimated relative 

value of distance to time 

(see for  
𝛼𝑙/𝑡𝑡  above) 

𝛼𝑒𝑎𝑟𝑙𝑦
𝜏

𝛼𝑡𝑡
 

Relative value of 

arriving early 

compared to value of 

time, measuring how 

much more travel time 

a driver is willing to 

accept to avoid 

arriving 1 minute early 

Values taken from Small 

(1982), a study that 

estimates how commuters 

trade off schedule delays 

(arriving early/late) 

against travel time and 

cost, based on a travel 

survey  𝛼𝑙𝑎𝑡𝑒
𝜏

𝛼𝑡𝑡
 

Relative value of 

arriving late compared 

to value of time, 

measuring how much 

more travel time a 

driver is willing to 

accept to avoid 

arriving 1 minute late 

Table 5. Overview of all model parameters. 1 
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