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Abstract. We present a control framework for robot-assisted dressing
that augments low-level hazard response with runtime monitoring and
formal verification. A parametric discrete-time Markov chain (pDTMC)
models the dressing process, while Bayesian inference dynamically up-
dates this pDTMC’s transition probabilities based on sensory and user
feedback. Safety constraints from hazard analysis are expressed in prob-
abilistic computation tree logic, and symbolically verified using a proba-
bilistic model checker. We evaluate reachability, cost, and reward trade-
offs for garment-snag mitigation and escalation, enabling real-time adap-
tation. Our approach provides a formal yet lightweight foundation for
safety-aware, explainable robotic assistance.

Keywords: Robot-Assisted Dressing - Symbolic Runtime Verification
- Probabilistic Model Checking - Human-Robot Interaction - Adaptive
Control.

1 Introduction

As assistive robots become more integrated into daily life, ensuring safety and
reliability during physical human-robot interaction (pHRI) remains a critical
challenge [5,7,9,12]. In tasks such as Robot-Assisted Dressing (RAD) [4, 14],
the robot must perform close-contact assistance in coordination with a human,
where garment dynamics, force disturbances, and user motion introduce runtime
uncertainty. While low-level control strategies (e.g., force thresholds, compliant
motions, and speed modulation) can mitigate immediate issues, they operate
reactively and lack long-term task-level reasoning. This motivates the need for
high-level control strategies that reason over future states and adapt using run-
time feedback.
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This paper presents a high-level control framework for safety-critical human-
robot interaction, combining symbolic verification with runtime adaptation. While
demonstrated through Robo-Assisted Dressing (RAD), the approach is method-
ological and generalisable to other uncertain human-in-the-loop systems.

We propose a high-level control framework that integrates parametric discrete-
time Markov chains (pDTMCs) [13], Bayesian inference [2], and symbolic run-
time verification [17]. Safety and performance requirements, derived from a haz-
ard analysis [8], are formally specified using probabilistic computation tree logic
(PCTL) [6]. Symbolic expressions for these requirements are precomputed using
the probabilistic model checkers PRISM [16] and PARAM [13], and are evaluated
at runtime using parameters updated via Bayesian inference.

The main contributions of our paper are:

— A high-level formal verification framework using a pDTMC model guided by
hazard analysis.

— Integration of runtime Bayesian inference to update model parameters using
sensory data and user feedback.

— Symbolic runtime verification using closed-form expressions generated with
PRISM and PARAM.

— Symbolic evaluation of safety, cost, and reward properties to support dy-
namic adaptation and decision-making.

The RAD case study serves to ground our contribution in a real-world safety-
critical setting, illustrating how the proposed framework supports runtime verifi-
cation and decision-making under uncertainty. The rest of the paper is structured
as follows. Section 2 reviews related work. Section 3 describes the system archi-
tecture. Section 4 defines the pDTMC model and its formal requirements, and
Section 5 presents its symbolic analysis. Section 6 discusses practical insights
and limitations. Section 7 summarises our results and outlines future work.

2 Related Work

This section reviews research at the intersection of probabilistic verification, run-
time adaptation, and uncertainty quantification in robotics, particularly under
pHRI settings.

Probabilistic Verification and Model Checking Probabilistic model checking has
been widely applied in robotics to provide formal guarantees over safety, reacha-
bility, and performance requirements under uncertainty. Tools such as PRISM [16]
support the analysis of Discrete-Time Markov Chains (DTMCs) and verification
of requirements specified in PCTL [6].

Zhao et al. [22] applied probabilistic verification to autonomous systems in
extreme environments, but their approach focused on offline analysis without
runtime adaptation. Similarly, Gleirscher et al. [10,11] verified safety controllers
for collaborative robots but did not incorporate runtime feedback or symbolic
reasoning in human-interactive scenarios.
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Bayesian Inference for Uncertainty Quantification Bayesian learning has been
used to adapt robot behaviour based on noisy perception and dynamic environ-
ments. Zhao et al. [21] proposed a framework that combines Bayesian inference
with formal verification to improve robustness in autonomous systems. Similarly,
Calinescu et al. present a tool for the verification and Bayesian-learned param-
eter inference of probabilistic world models [3]. However, they did not consider
symbolic runtime evaluation or human-in-the-loop feedback.

Runtime Monitoring and Adaptive Control Runtime monitoring techniques are
often used for anomaly detection or logging, whereas runtime verification aims to
formally check execution traces against temporal specifications. Kirca et al. [15]
proposed a runtime monitoring framework for anomaly detection using logs, but
without safety property verification. Li et al. [18] introduced a probabilistic mo-
tion planning approach that models human uncertainty, but it lacks continuous
verification of safety requirements during task execution.

Our Contribution in Context: In contrast to the above, our work integrates
probabilistic model checking, runtime Bayesian inference, and hazard-driven
safety property verification in a human-in-the-loop context. We introduce a
pDTMC model whose transition probabilities are updated at runtime using
Bayesian learning. Precomputed symbolic expressions for PCTL properties are
evaluated on-the-fly through parameter substitution, enabling lightweight run-
time verification without re-invoking the model checker. Our framework bridges
the gap between high-assurance probabilistic verification and adaptive human-
aware control. It enables formal safety reasoning in real time while responding to
user input, physical interaction events and task-level uncertainty during robot-
assisted dressing.

3 System Overview and Modelling Framework

3.1 Robot-Assisted Dressing Context

Robot-Assisted Dressing (RAD) involves a robotic manipulator physically assist-
ing a user in donning garments (e.g., jacket). The task is inherently collabora-
tive, requiring safe human-robot interaction, real-time trajectory execution, and
continuous hazard monitoring to ensure comfort and prevent failure. Dynamic
factors such as user movement, garment deformation, and variable force profiles
can lead to hazards including garment snagging or user discomfort. A robust
RAD system must detect such events and respond appropriately.

In our setup, a validated low-level control system is responsible for executing
motion trajectories, monitoring contact forces, and responding to user-issued
verbal feedback (e.g., reports of pain). These behaviours will be detailed in a
companion paper on reactive control strategies.

This paper focuses on the high-level control framework that operates above
the low-level controller. It models the dressing task as a probabilistic discrete-
time Markov chain (pDTMC), enabling symbolic runtime verification of safety
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and performance requirements. The high-level system continuously updates be-
liefs about task state using Bayesian inference, substitutes these into precom-
puted symbolic expressions, and adaptively refines robot decision-making.

Together, this layered architecture supports both proactive and reactive re-
sponses to runtime uncertainty, advancing safe and adaptive human-robot col-
laboration in dressing assistance.

3.2 Low-Level Control Strategy overview

The low-level control strategies implemented in our RAD system serve as the
foundational layer for real-time hazard mitigation. These strategies were devel-
oped and validated through physical dressing trials involving simulated garment
snags and user-reported discomfort. Full implementation and evaluation details
are provided in our comparison study [19] The two primary strategies are:

— Garment Snagging Control: When excessive interaction forces are de-
tected via integrated force sensors, the system triggers one of three responses:
(a) prompt the user for assistance through a Rasa-based chatbot interface,
(b) initiate autonomous recovery by adjusting the robot’s trajectory, or (c)
abort the task safely if mitigation fails.

— User Discomfort Mitigation: Enables users to express pain or discomfort
through natural language commands. The robot responds by progressively
reducing speed and, if needed, aborting the task.

These low-level mechanisms are essential for reactive safety during dress-
ing and were experimentally validated across multiple dressing trials, showing
effective mitigation of hazards in both user-assisted and autonomous recovery
modes.

The high-level control strategies introduced in this work are designed to
complement these reactive behaviours by offering predictive, symbolic reasoning
capabilities through pDTMC-based runtime verification. Together, the combined
architecture ensures both proactive and reactive safety handling in robot-assisted
dressing.

The high-level control strategy presented in this paper focuses on symbolic
reasoning and runtime verification based on the pDTMC abstraction. While the
low-level controller plays a critical role in reactive execution (e.g., force com-
pliance and trajectory recovery), it is validated through extensive experimental
dressing trials but not formally verified here. A detailed account of the low-level
control mechanisms and their empirical evaluation is provided in our compan-
ion study [19]. Formal verification of continuous low-level dynamics is out of
scope for this work, which concentrates on symbolic guarantees and adaptive
decision-making at the task level.

3.3 High-Level Control Architecture

Figure 1 illustrates the runtime-adaptive control architecture for the RAD sys-
tem. The architecture integrates low-level sensor processing with high-level sym-
bolic reasoning to support safe and responsive operation under uncertainty.
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Fig. 1: High-level control architecture showing runtime adaptation via symbolic

verification. Sensor inputs inform both high-level inference and low-level control
actions.

At the top of the pipeline, the system receives continuous inputs from sensors
(e.g., force, trajectory deviation) and verbal user feedback. These inputs are
processed by an Observation and Inference module that maintains a buffer of
recent events and uses Bayesian inference with observation ageing [1,2] to update
runtime estimates of key transition probabilities (e.g., snag detection, recovery
success).

These updated probabilities are injected into a symbolic Probabilistic Model
comprising a parametric Discrete-Time Markov Chain (pDTMC) and a set of
PCTL-specified safety and reliability requirements. The model is evaluated by
the Verification and Decision layer using closed-form expressions obtained via

PRISM+PARAM [13], enabling rapid runtime checks without re-invoking the model
checker.

The output of this layer informs the Adaptive Controller, which adjusts sys-
tem behaviour based on the verification results. If a safety threshold is violated
(e.g., escalation risk exceeds 0.5), the system proactively transitions to compli-

ant or abortive behaviour. Otherwise, it proceeds with recovery or continues
execution.

Finally, the Low-Level Control layer executes trajectory plans, responds to
snag and pain feedback, and integrates real-time user input. These behaviours
are conditionally triggered based on the decisions verified in the upper layers.
Together, this architecture ensures that the RAD system adapts at runtime to
user-specific conditions while maintaining conformance with formal safety con-

5
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straints. The pDTMC abstraction enables runtime introspection and supports
explainability in decision-making.

3.4 Hazard Analysis and Safety Constraints

The pDTMC model and associated evaluation requirements were informed by
a structured hazard analysis conducted during system design [8]. This analysis
identified the following safety requirements related to task failure, user discom-
fort, and mitigation breakdowns, and derived constraints that the system must
satisfy to maintain safe and reliable operation:

— Limit the risk of task abortion. The system should minimise the likeli-
hood of entering an abort state due to unresolved snags or escalation failures.

— Ensure reliable task completion. The dressing task should succeed in
a high proportion of executions, even under varying user behaviour and
environmental noise.

— Bound the expected cost of silent failures. Escalations that go unde-
tected should not incur high expected penalties, motivating prompt detection
and mitigation.

— Avoid prolonged or delayed recovery. Mitigation pathways should re-
solve issues efficiently, avoiding excessive retries or delays in user or au-
tonomous responses.

These constraints are later formalised in PCTL, and evaluated via symbolic ex-
pressions over transition parameters. This ensures that the RAD system main-
tains compliance with safety and comfort requirements—even in uncertain and
dynamic execution contexts.

4 Snagging Model and Formal Verification

To verify safety-critical behaviour in robot-assisted dressing, we formalise the
high-level control strategy as a pDTMC. This model captures task progression,
garment-snag escalation, and recovery pathways as probabilistic transitions, ab-
stracting from the robot’s low-level motion control.

Model description. The pDTMC models 10 abstract task states (Fig. 2). The
initial dressing task begins in state so (dressingProcess), progressing towards
s3 (dressingComplete). Potential snags are detected in s; (potentialSnag) or
escalated undetected to sp (undetectedEscalation). If mitigation is required,
the system enters s, (mitigationStrategy), choosing between human assis-
tance s; (requestHRI) or autonomous resolution sg (autonomousResolution).
Successful mitigation reaches s; (snagMitigated); failure results in task abor-
tion sg (abortTask). All outcomes eventually transition to sg (moveHome) before
resetting.

Formal definition. The pDTMC is defined as a tuple M = (S, s, P, L, p),
where:
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Fig.2: Abstraction of the pDTMC RAD model. Transition probabilities (p;)
govern state transitions. Timeout conditions (e.g., ¢t = MAX_TIME in sg) ensure
escalation resolution. Rewards (R[) and costs (C[;) are linked to outcome states.

— S is the finite set of states. Each state is represented by:
/ . .
s' = (s, t, time_step, trajectory_complete)

where:

s € ]0,9] is the current task stage.

t € [0,MAX_TIME| tracks time in s¢ (autonomous retries).

time_step tracks progress in sg, s; until trajectory completion.

trajectory_complete is a Boolean flag signalling task end.

— o is the initial state: the dressing process starts with all timers at zero.

— P:S xS —[0,1] is the parametric transition matrix governed by symbolic
parameters p; to pig, representing task observations and control uncertain-
ties. All model transitions are defined by the PRISM model in Appendix A
of the full version of this paper on arXiv [20].5

— L: S — AP labels each state with atomic propositions (e.g., dressingComplete),

enabling property specification such as P<g1[F abortTask].
— p: S — Ry assigns rewards and costs to terminal states, capturing success
and failure outcomes. These are:
o R, = BASE REWARD S3 =20 - base reward constant for success-

ful dressing (used in symbolic analysis).

5 For each state s € S, the outgoing transition probabilities are either mutually exclu-
sive or explicitly normalized to ensure that the total probability of leaving a state
does not exceed 1. This guarantees that P(s,s’) <1, preserving the validity
of the DTMC semantics.

s'esS
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e R,, =R S7 =10 for snag mitigation.
e Cy, =C 52 =10 for undetected escalation.
o (5, =C 58 =75 for task abortion.

In our symbolic analysis, Rs, is set to 20 as previously described; however, in
the simulation, we further examine the effect of time by modelling this reward
as a decayed value, as detailed below.

Reward decay. Although cumulative reward properties are not symbolically
supported by PRISM+PARAM, we model a decaying reward in the PRISM simula-
tion model to discourage long delays in dressing completion:

R83 — e—DECAY_RATE‘time_step . BASE_REWARD_S?)

with DECAY_RATE set to 0.5. This decay reward is applied during simulation-
based evaluation only and is excluded from the symbolic analysis in Section 5,
which uses the constant BASE_REWARD_S3.

Model features. The pDTMC supports runtime verification and adaptive rea-
soning through:

— Symbolic transitions: Parametric probabilities capture runtime uncer-
tainty in detection, recovery, and escalation.

— Progress tracking: trajectory_complete and time_step govern dressing
task duration and allow symbolic evaluation of task timing.

— Reward/cost abstraction: Terminal states encode outcomes for reward-
guided or risk-sensitive control.

— Time-bounded retries: Timeout in sg prevents infinite loops in autonomous
recovery.

This model provides the formal basis for the symbolic evaluation in Section 5,
and is structured to support runtime adaptation via parameter updates (see
Discussion, Section 6).

4.1 Specification of Safety and Reliability Requirements

The safety and performance requirements identified through hazard analysis
(Section 3.4) are formalised using Probabilistic Computation Tree Logic (PCTL)
[6]. These requirements are used to evaluate the symbolic pPDTMC model and
guide runtime decision-making.

PCTL enables the specification of probabilistic reachability, time-bounded,
and reward-bounded behaviours in discrete-time systems. For example, P<g1[F' s =
8] specifies that the probability of eventually aborting the task should be no
greater than 10%. Although PRISM+PARAM currently supports only reachabil-
ity requirements in symbolic form, we approximate cost-based constraints using
reachability proxies (see Section 5.3).

Finally, the following requirements formalise the core constraints derived
from the hazard analysis [8]:
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(H1) Limit the risk of task abortion
Pgo_l[FS = 8] (1)

“The probability of reaching the task abort state s = 8 must remain below
10%.”
— (H2) Ensure reliable task completion

Psoo[F s = 3] (2)

“The dressing task should complete successfully in at least 90% of execu-
tions.”
— (H3) Bound undetected escalation cost

EzxpectedCostsg = Cga - P—2[F's =2] < MAX C2 (3)

“The expected cost of undetected escalation (reaching s = 2) must remain
within limit set by the maximum cost allowed M AX (C2.” This is evaluated
symbolically via a proxy expression.

— (H4) Timely mitigation success reward

ExpectedRewards; = Rgy - Pmax—+[F s = 7] (4)

“The system should maximise the probability of successfully mitigating snags.”
The expected reward is derived symbolically based on p7; and ps.
— (H5) Encourage time-bounded completion

P20.95 [FSMAX_TIME_TRAJ s = 3] (5)

“The dressing task should complete within the designated trajectory time in
at least 95% of cases.” This is used in simulation.

These formal specifications provide a rigorous basis for symbolic evaluation
and runtime adaptation. Requirements (H1)—(H4) are fully captured by symbolic
expressions derived via PRISM+PARAM, enabling lightweight verification through
parameter substitution. Time-bounded and cumulative reward constraints are
approximated or evaluated using proxy expressions where symbolic support is
unavailable.

Parameter value ranges. The symbolic expressions for reachability and
reward properties are defined over symbolic parameters p2-pl0, which repre-
sent key transition probabilities within the pDTMC. For the purpose of sym-
bolic analysis and heatmap visualisation, these parameters were evaluated over
plausible ranges informed by system design, empirical dressing trials, and prior
work [19]. These ranges are summarised in Table 1, and provide a safe operat-
ing envelope for runtime adaptation. During execution, these probabilities are
dynamically updated using Bayesian inference, allowing the system to respond
to real-time sensor data and user feedback.
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Table 1: Parameter Ranges Used in Symbolic Evaluation

Parameter|Description and Range

D2 Probability of detecting a potential snag. Range: [0.0, 1.0]

P3 Probability of remaining in escalation monitoring without trig-
gering mitigation. Range: [0.0, 1.0]

Pa Probability of escalation after a detected snag. Range: [0.4,0.9]

Ps Probability of selecting human-assisted recovery. Range:
[0.5,1.0]

D6 Probability of selecting autonomous recovery. Range: [0.0, 0.5]

p7 Success probability of autonomous recovery. Range: [0.0, 1.0]

D8 Failure probability of human intervention. Range: [0.0,1.0]

Do Probability of escalation failure leading to task abort. Range:
[0.0,0.3]

P10 Probability of returning to idle/home state. Range: [0.9, 1.0]

4.2 Symbolic Model Checking using PRISM+PARAM

We perform symbolic verification of the pDTMC model using the PRISM+PARAM
toolchain [13]. This enables closed-form algebraic expressions to be extracted for
PCTL reachability requirements such as P_[F's = 2] and P_7[F's = 7]. These
symbolic expressions are parametrised over key transition probabilities (e.g., po,
D3, P7, Ps), enabling analysis of system behaviour under uncertainty and variable
conditions. Each expression captures the probability of reaching a safety-critical
or goal state as a function of the system’s current configuration. In our evaluation
(Section 5), these expressions are visualised over bounded parameter ranges to
assess risk and performance.

While the symbolic engine supports reachability queries, cumulative reward
properties of the form P_-[C < T are not currently supported. To address this,
we reformulate cost and reward analysis using proxy expressions—multiplying
the reachability probability by a fixed reward or cost scalar (e.g., see Equation 3).

4.3 Runtime Verification using Bayesian Learning

To enable adaptive decision-making, the RAD system performs runtime verifi-
cation by updating the transition probabilities of the pDTMC using Bayesian
learning. This approach applies observation ageing [1,2], giving more weight to
recent observations while discounting older data, allowing the system to respond

to changes in user behaviour or task context.
(k)

The updated estimate of transition probability Dij after k observations is

computed as: & !
S ok v ©)
R R >

is the prior estimate, ¢y controls the influence of the prior, and

©)
i
w; = a~ 1) applies exponential ageing to past observations. The decay factor

Here, p

« > 1 controls how quickly older data are discounted. The variable xg) denotes
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the observed occurrence (typically binary: 1 for a transition observed from state
i to j at time step [, and 0 otherwise). The symbolic expressions derived of-
fline for reachability and reward properties (e.g., P—2[F' s = 7]) are evaluated at
runtime by substituting dynamically updated probabilities (e.g., p7, ps). This en-
ables lightweight, real-time runtime verification to guide decision-making during
dressing without invoking a model checker.

4.4 How the Adaptation Mechanism Operates

During execution, the RAD framework monitors real-time sensor data (e.g., gar-
ment force feedback, joint velocities) and user responses to update transition
probabilities within the symbolic pDTMC model. These updated probabilities
are substituted into precomputed symbolic expressions for key safety and per-
formance requirements, allowing the framework to assess evolving risk and make
informed decisions at runtime.

If a safety threshold is violated—e.g., the probability of task abortion exceeds
a bound—the framework responds on two levels:

1. Low-Level Control Actions: The controller immediately enters a compli-
ant mode, reducing speed and applied force or halting movement to mitigate
user discomfort or mechanical risks.

2. High-Level Adaptation: The symbolic pDTMC model is used to track
evolving task context. Bayesian learning updates transition probabilities
(e.g., likelihood of snag, success of user or autonomous recovery), enabling
dynamic substitution into symbolic expressions (e.g., P=7[F's = 2]). This
supports real-time risk evaluation without rechecking the model.

For example, if repeated snagging is observed under specific motion trajec-
tories, the estimated probability of transitioning from sy (dressingProcess)
to s1 (potentialSnag) increases. Similarly, success rates of user-assisted or au-
tonomous mitigation are reflected in the transition probabilities to s; and sg.
Rather than storing full execution histories, the Bayesian update loop maintains
a compact belief over transition likelihoods. This integration of symbolic runtime
evaluation and adaptive control ensures that the framework responds promptly
to immediate safety threats while gradually improving high-level decision-making
in dynamic, user-specific contexts.

5 Evaluation

To assess the robot-assisted dressing system under uncertainty, we adopt a sym-
bolic evaluation approach using the PRISM+PARAM toolchain. Our evaluation fo-
cuses on three core aspects: (i) the reachability of critical failure or successful
mitigation states, (i) the expected cost of failure, and (iii) the expected reward
of mitigation success. Rather than relying on simulation-based numerical ex-
periments, we symbolically evaluated the parametric DTMC model across key
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parameters that influence the system’s decision-making behaviour—such as the
reliability of snag detection, human and autonomous recovery, and escalation
outcomes. These symbolic expressions allow for offline design analysis and en-
able runtime reasoning via parameter substitution. Each symbolic property is
visualised using annotated heatmaps and contour plots.

5.1 Symbolic Analysis of Snag Mitigation

We analysed the probability of successfully mitigating a snag (i.e., reaching state
s = 7) in the pDTMC model (Figure 2) using PRISM+PARAM. The property of
interest is the symbolic reachability expression P =?[F's = 7|, which quanti-
fies the probability of eventually reaching the successful mitigation state under
varying system conditions.

A closed-form symbolic expression was derived, capturing the joint influence
of snag detection, escalation, and recovery through both autonomous and human
intervention. To aid interpretability, we introduce the following terms:

— « = ps.py — snag detection and escalation,
— B = p5.ps — failed recovery attempts via human mitigation,
— 0}, = p¥ — recursive retries of autonomous recovery (limited to 40 steps).

A simplified excerpt of the symbolic expression extracted using PRISM+PARAM
is shown below. This highlights the compound effects of detection (o = ps - p4),
human failure (8 = ps - ps), and recursive autonomous retries (35, = p%):

10000 8% - a® — 20000 8 - ps - a® + - - +
100863 o>+ -+ 108 -+ -

~ 10000 87 - 0% — 200003 - ps -0 + -+
2003% p3 - pa+ - +40ps + 1

(7)

s=T7

The symbolic expression captures nested recovery paths and enables com-
parison of mitigation effectiveness. The full expression is provided in Appendix
B of the arXiv version [20].

Figure 3 shows the evaluated symbolic expression over a range of human
and autonomous recovery capabilities. A safety threshold contour at P = 0.5
distinguishes high-risk scenarios (top-left) from safer operating regions (bottom-
right). The Safe Zone is defined where the probability of reaching sate s =
7 (snag mitigation) exceeds 0.6. This typically occurs when the autonomous
mitigation success probability (p7) is high, or the human intervention failure
probability (pg) is low.

The results highlight an important compensation effect: strong performance
in one recovery pathway (human or autonomous) can offset weaknesses in the
other. For example, even when p7 is low, maintaining a low pg (i.e., reliable
human intervention) preserves high overall success rates. Conversely, increasing
p7 improves robustness against human failure.
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Fig. 3: Probability of successful mitigation (s7) varying autonomous mitigation
success probability (p7) and human failure probability (ps). Lighter regions in-
dicate higher success.

Our findings reinforce the benefit of hybrid, adaptive recovery strategies in
which human-in-the-loop support and autonomous recovery dynamically com-
pensate for each other. Our symbolic reachability analysis provides both an
interpretable quantitative basis for design decisions and an analytical founda-
tion for runtime adaptation.

5.2 Symbolic Analysis of Snag Escalation Failure

We now analyse the second key reachability property of interest P_;[F' s = 2.
This property quantifies the probability of reaching state so, representing an
undetected escalation of a detected snag—a critical failure scenario in the robot-
assisted dressing task.

Using PRISM+PARAM, we symbolically evaluated this property while varying
two key parameters: (1) the probability of detecting a potential snag, p2, and (2)
the probability of remaining in the monitoring state without triggering mitiga-
tion, p3. These directly govern the likelihood of silent escalation, with all other
transitions held constant to isolate their effect.

The symbolic expression extracted from PRISM+PARAM was algebraically sim-
plified and normalised. It captures both direct and indirect contributions to s,
reachability via recursive monitoring cycles. A normalised version was evalu-
ated over a grid of ps and p3 values, revealing the influence of detection and
monitoring performance.

The simplified symbolic expression is given by:

100 P; - Py + 98 Py — 99

P 8
88 P, — 100 ®)
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This captures the trade-off between detection (p2) and monitoring (ps). While
the numerator increases linearly with p, and p3 the denominator introduces a
non-linear effect governed solely by ps. As po improves, the denominator ap-
proaches zero from below, causing a steep drop in failure probability—a clearly
reflected in the heatmap gradient (Figure 4). The PRISM+PARAM-generated
expression is valid for 88py — 100 > 0; outside this range, results are clipped to
[0, 1] for validity.

Probability of Undetected Snag Escalation (State s =2)

1
High Risk Zone
P=05

Undetected Escalation Probability (ps)
Probability of Undetected Escalation

Safe Zone
P<0.5

htS
o
.

0.4 0.6 0.8 1.0
Snag Detection Probability (p2)

Fig. 4: Reachability probability of undetected snag escalation (sq2) as a function
of detection probability p, and undetected escalation probability ps. Lighter
regions indicate higher failure probability. Dashed contour lines highlight key risk
thresholds: P = 0.5 (Safety Threshold) and P = 0.8 (Critical Risk). Annotated
zones mark high-risk and safe regions.

Figure 4 illustrates the reachability landscape for undetected snag escalation,
based on the symbolic property P_+[F s = 2]. The heatmap shows how the failure
probability varies over a grid of snag detection probabilities (p2) and escalation
persistence probabilities (ps).

The “Safe Zone" (P < 0.5) occurs in the lower-right corner, where detection
is strong (p2 — 1) and escalation is unlikely (p3s — 0). The “High Risk Zone"
(P > 0.5) appears in the upper-left corner, where detection is weak (ps — 0)
and escalation is persistent (p3 — 1).

The red dashed contours highlight two thresholds: the safety threshold at
P = 0.5, and the critical risk boundary at P = 0.8, making conditions where
the likelihood of silent failure is dangerously high. Notably, the steep gradient
along the py axis reveals that even modest gains in detection capability can
substantially reduce failure risk.
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These findings highlight the system’s high sensitivity to snag detection accu-
racy and provide actionable insights for both formal verification and runtime
adaptation. Prioritising high py values can significantly lower the probability
of silent escalation, thereby improving overall safety.

5.3 Proxy Cost Analysis of Undetected Snag Escalation

To evaluate the cost implications of undetected snag escalation, we adopt a
proxy formulation based on the symbolic reachability expression for state s = 2
(undetected escalation). Specifically, we compute Equation 3, where Cgs is a
fixed penalty associated with entering the failure state. This formulation provides
a lightweight approximation of the impact by scaling the symbolic reachability
with the defined failure cost. It enables efficient evaluation during runtime and
captures the increasing cost of failure under unsafe parameter regimes.

Expected

high

Alert Zone
Cost = 0.3

Undetected Escalation Probability (ps)
150D pajdadxy

i
900

7

0.4 0.6
Snag Detection Probability (p2)

Fig. 5: Expected cost of undetected snag escalation, computed as Cgo- P—7[F s =
2], over varying detection probability (p2) and escalation persistence (ps). The
Alert Zone (Cost > 0.3) highlights failure-prone conditions; the Safe Zone (Cost
< 0.3) reflects robust detection and recovery.

Figure 5 visualises this cost landscape. The “Alert Zone" (Cost > 0.3) arises
when snag detection is weak (p2 — 0) and the likelihood of persistent, undetected
escalation is high (p3 — 1). The hatched area clearly marks this high-risk region.

Conversely, the “Safe Zone" (Cost < 0.3) occupies the lower-right corner of
the heatmap, where effective detection significantly reduces escalation risk and
associated penalty. Compared to the raw reachability view in Figure 4, this proxy
formulation adds interpretability by contextualising risk in cost terms.
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Our proxy formulation allows the system to perform low-overhead runtime
checks against unsafe conditions using a single symbolic expression and sup-
ports proactive adaptation in safety-critical human-robot interactions.

5.4 Symbolic Analysis of Mitigation Success

This analysis focuses on the expected reward associated with successful snag mit-
igation, represented by reaching state s7 in the pDTMC model. Since cumulative
reward properties cannot currently be symbolically evaluated in PRISM+PARAM,
we compute the expected reward using a scaled reachability formulation from
Equation 4, where Rg7 is a fixed reward assigned to successful mitigation. The
symbolic reachability expression P_s[F's = 7] was derived in Section 5.1 and
captures the combined effect of detection, escalation, and mitigation strategies
(both human and autonomous).

To examine reward trade-offs, we fix parameters ps = 0.9, p, = 0.7, and
ps = 0.65, and vary:

— ps: the failure probability of human intervention,
— pr: the success probability of autonomous recovery.

The symbolic expression is evaluated over this 2D parameter space, and the
expected reward is computed accordingly.

Expected Reward of Snag Mitigation (State s=7)

High

Low Reward
Reward < 5.0

=7)

Expected Reward (s

0.2+ Optimal Reward
Reward = 6.0

0.0 0:2 014 0.‘6 0.‘8 10
Autonomous Mitigation Success Probability (p7)

Human Intervention Failure Probability (ps)

Low

Fig. 6: Expected reward for mitigation success (s = 7) evaluated from the sym-
bolic expression over human intervention failure (ps) and autonomous recovery
success (pr). The Optimal Reward zone arises when both modalities are reliable;
Low Reward emerges when both pathways are likely to fail.

Figure 6 illustrates the resulting expected reward surface. A clear “Optimal
Reward" zone emerges in the bottom-right corner (ps — 0, p; — 1), where both
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mitigation pathways are highly effective. In contrast, the “Low Reward” region
appears when both autonomous and human strategies are likely to fail (p; — 0,
pg — 1). Contour lines at reward thresholds R = 5.0 (Lower Bound) and R = 6.0
(Optimal Reward) delineate these regions.

These findings reinforce the hybrid design principle: strong performance in
either the human-in-the-loop or autonomous recovery pathway can compensate
for the other’s limitations, enabling robust, reward-aware adaptation in safety-
critical scenarios.

6 Discussion

Our approach demonstrates how hazard-informed modelling, symbolic verifi-
cation, and Bayesian adaptation can be combined to support safe, adaptive
decision-making in human-robot collaboration. The symbolic evaluation pre-
sented in this work offers several critical insights into the safety and adaptability
of RAD systems operating under uncertainty. It also shows how requirements
like snag escalation and mitigation success can be interpreted as algebraic func-
tions of runtime-updated parameters such as p», ps3, p7, and pg, from our model
example. Analysis of such functions allow the controller to identify and avoid
unsafe regions of the parameter space proactively. Our approach addresses a fun-
damental challenge in pHRI: managing runtime uncertainty with provable safety
assurances.

A key benefit is that runtime verification does not require re-running a model
checker. Once symbolic expressions are precomputed, parameter substitution en-
ables real-time evaluation with minimal computational overhead. This facilitates
explainable decision-making and supports runtime assurance. One current limi-
tation is that symbolic evaluation is based on an abstract model that does not
fully capture the continuous dynamics of low-level controllers. Further work will
integrate these physical dynamics to bridge the gap between symbolic guarantees
and physical execution.

Future validation will adopt a hybrid pipeline. Simulators such as Gazebo
or Isaac Sim will enable safe parameter tuning and support transfer learning
for physical deployment. Our current symbolic analysis provides a feasibility
baseline.

7 Conclusion and Future Work

This paper introduced a high-level control framework for safety-critical human-
robot interaction that integrates symbolic verification with runtime adapta-
tion. Although we demonstrated the framework using a Robot-Assisted Dressing
(RAD) scenario, the contribution is methodological in nature and applicable to
a wide range of human-in-the-loop systems with probabilistic behaviour and
runtime uncertainty.
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Our pDTMC-based framework enables fast runtime evaluation of PCTL
properties using precomputed symbolic expressions and dynamically updated
transition probabilities via Bayesian inference. This supports real-time adap-
tation and safety assurance. Results identify safe parameter regimes and alert
zones requiring mitigation.

Future work includes closer integration of the symbolic model with low-level
control. Due to RAD’s complexity, we focus on snagging mitigation, but full
assurance requires broader scenario modelling. We will explore a multi-model
RAD world [3] to support system-level verification. The framework can extend to
robot-assisted undressing (RAUD), which may involve different constraints (e.g.,
constrained-to-unconstrained transitions) and hazards (e.g., visibility or balance
loss), requiring adapted models and PCTL properties. Finally, our approach can
generalise to pHRI systems with inherent uncertainty and variability. Future
work will focus on validating its generality and effectiveness through extensive
case studies and experimental evaluations.
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