
Parameterized Algorithms for Steiner Forest in
Bounded Width Graphs

ANDREAS EMIL FELDMANN, School of Computer Science, The University of Sheffield, Sheffield,
United Kingdom of Great Britain and Northern Ireland
MICHAEL LAMPIS, Université Paris-Dauphine, PSL University, LAMSADE, Paris, France

In this article, we reassess the parameterized complexity and approximability of the well-studied Steiner
Forest problem in several graph classes of bounded width. The problem takes an edge-weighted graph and
pairs of vertices as input, and the aim is to find a minimum cost subgraph in which each given vertex pair lies in
the same connected component. It is known that this problem is APX-hard in general, and NP-hard on graphs
of treewidth 3, treedepth 4, and feedback vertex set size 2. However, Bateni et al. gave an approximation scheme
with a run time of=$ (:2/Y) on graphs of treewidth: . Our main result is a much faster Efficient Parameterized Ap-

proximation Scheme (EPAS) with a run time of 2$ (:2Y log :
Y) ·=$ (1) . If : instead is the vertex cover number of the

input graph, we show how to compute the optimum solution in 2$ (: log:) ·=$ (1) time, and we also prove that
this run-time dependence on : is asymptotically best possible, under ETH. Furthermore, if : is the size of a feed-
back edge set, then we obtain a faster 2$ (:) ·=$ (1) time algorithm, which again cannot be improved under ETH.

CCS Concepts: • Theory of computation→ Fixed parameter tractability; Routing and network design
problems;

Additional KeyWords and Phrases: Steiner Forest, Parameterized Approximation Scheme, Treewidth, Vertex
Cover, Feedback Edge Set

ACM Reference format:
Andreas Emil Feldmann and Michael Lampis. 2025. Parameterized Algorithms for Steiner Forest in Bounded
Width Graphs. ACM Trans. Algor. 21, 4, Article 47 (September 2025), 26 pages.
https://doi.org/10.1145/3748724

1 Introduction
The Steiner Forest problem is one of the most well-studied problems in network design
[Du et al., 2013; Gupta and Könemann, 2011; Hwang and Richards, 1992; Ljubic, 2021]. In this
problem, the input consists of a graph � = (+ , �) with positive edge weights, a set of terminals
' ⊆ + , and a set of demands � ⊆

(
'
2

)
. The objective is to select a subgraph � ⊆ � , minimizing the

total cost of selected edges, while ensuring that for every demand pair {B, C} ∈ � , B and C are in the
same connected component of � . Since edge weights are positive, it is easy to see that the optimal
solution is always a forest. The Steiner Forest problem finds many applications (see surveys

This work was partially supported by ANR project ANR-21-CE48-0022 (S-EX-AP-PE-AL).
Authors’ Contact Information: Andreas Emil Feldmann (corresponding author), School of Computer Science, The University
of Sheffield, Sheffield, United Kingdom of Great Britain and Northern Ireland; e-mail: feldmann.a.e@gmail.com; Michael
Lampis, Université Paris-Dauphine, PSL University, LAMSADE, Paris, France; e-mail: michail.lampis@lamsade.dauphine.fr.

This work is licensed under Creative Commons Attribution International 4.0.

© 2025 Copyright held by the owner/author(s).
ACM 1549-6333/2025/9-ART47
https://doi.org/10.1145/3748724

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

https://orcid.org/0000-0001-6229-5332
https://orcid.org/0000-0002-5791-0887
https://doi.org/10.1145/3748724
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3748724
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3748724&domain=pdf&date_stamp=2025-09-08

47:2 A. E. Feldmann and M. Lampis

[Cheng and Du, 2013; Ljubic, 2021; Tang et al., 2020; Voß, 2006]), for example, in telecommunication
networks (cf. [Voß, 2006]).

Our goal in this article is to reassess the complexity of this fundamental problem from the point
of view of parameterized complexity and approximation algorithms.1 In order to recall the context,
it is helpful to compare Steiner Forest to the even more well-studied Steiner Tree problem,
which is the special case of Steiner Forest where all terminals are required to be connected, i.e.,
� =

(
'
2

)
, and an optimal solution is a tree. Steiner Tree was already included in the seminal list by

Karp [1975] of NP-hard problems from the 1970s. From the approximation point of view, Steiner
Tree (and therefore Steiner Forest) is known to be APX-hard [Chlebík and Chlebíková, 2008], but
both problems admit constant factor approximations in polynomial time for general input graphs,
where the best approximation factors known are ln(4) +Y < 1.39 [Byrka et al., 2013] and 2 [Agrawal
et al., 1991; Ravi, 1994], respectively. Despite this similarity, when considering graph width param-
eters the problems exhibit wildly divergent behaviors from the parameterized complexity point
of view: whereas Steiner Tree is FPT parameterized by standard structural parameters such as
treewidth and can in fact even be solved in single exponential 2$ (:)=$ (1) time [Bodlaender et al.,
2015] when : is the treewidth, Steiner Forest is NP-hard on graphs of treewidth 3, as shown
independently by Gassner [2010] and Bateni et al. [2011].

Steiner Forest is therefore a problem that presents a dramatic jump in complexity in this
context, compared to Steiner Tree, as the hardness result on graphs of treewidth 3 rules out
even an XP algorithm for parameter treewidth. One of the main positive contributions of Bateni
et al. [2011] was an algorithm attempting to bridge this gap using approximation. In particular,
they showed that Steiner Forest admits an approximation scheme for graphs of treewidth : ,
which computes a (1 + Y)-approximation in =$ (:2/Y) time for any Y > 0. Hence, if we allow slightly
sub-optimal solutions, we can at least place the problem in XP parameterized by treewidth. In their
paper, Bateni et al. [2011] remark that because the exponent of the polynomial of this run time
depends on : and Y, “it remains an interesting question for future research whether this dependence
can be removed,” that is, whether a (1 + Y)-approximation can be obtained in the FPT time.

The main result of our article is a positive resolution of the question of Bateni et al. [2011]: we
show that Steiner Forest admits an Efficient Parameterized Approximation Scheme (EPAS)
for treewidth, that is, a (1 + Y)-approximation algorithm with a run time of the form 5 (:, Y)=$ (1) .
In other words, we show that their algorithm can be improved in a way that makes the running
time FPT not only in the treewidth, but also in 1/Y. More precisely, we show the following:

Theorem 1. The Steiner Forest problem admits an EPAS parameterized by the treewidth : with a

run time of 2$ (:2
Y
log :

Y
) · =$ (1) .

Moving on from treewidth, we ask what the most general parameter is for which we may hope
to obtain an FPT exact algorithm for Steiner Forest. We observe that the NP-hardness result of
Bateni et al. [2011] and Gassner [2010] for Steiner Forest on graphs of treewidth 3 actually has
some further implications for some even more restricted parameters: the graphs constructed in
their reductions also have constant treedepth and feedback vertex set size, implying that the problem
remains hard for both of these parameters (which are incomparable in general). More precisely,
known reductions imply the following:

Theorem 2 (Bateni et al. [2011] and Gassner [2010]). The Steiner Forest problem is NP-hard on
graphs of treewidth 3, treedepth 4, and feedback vertex set of size 2.
1We assume that the reader is familiar with the basics of parameterized complexity and approximation algorithms, such as
the classes FPT and APX and the definition of treewidth, as given in standard textbooks [Cygan et al., 2015; Feldmann et al.,
2020; Williamson and Shmoys, 2011]. We give full definitions of all parameters in Section 2.

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

Parameterized Algorithms for Steiner Forest in Bounded Width Graphs 47:3

This leads us to consider even more restricted parameters, such as the size of a vertex cover and
feedback edge set, which are not bounded in this reduction. Indeed, not only do we prove that
Steiner Forest is FPT for both of these parameters, but we are also able to determine the correct
parameter dependence, under the Exponential Time Hypothesis (ETH). For feedback edge set,
the optimal dependence is single exponential:

Theorem 3. The Steiner Forest problem is FPT parameterized by the size : of a feedback edge set
and can be solved in 2$ (:)=$ (1) time. Furthermore, no 2> (:)=$ (1) time algorithm exists, under ETH.

For the parameterization by the vertex cover size, we obtain a slower run time for our FPT
algorithm. Interestingly, we are also able to prove that this is best possible, under ETH. Our lower
bound for Steiner Forest is in contrast to the Steiner Tree problem, for which a faster 2$ (:)=$ (1)

time algorithm exists, even if : is the treewidth [Bodlaender et al., 2015].

Theorem 4. The Steiner Forest problem is FPT parameterized by the size : of a vertex cover and
can be solved in 2$ (: log:)=$ (1) time. Furthermore, no 2> (: log:)=$ (1) time algorithm exists, under
ETH.

We remark that Bodlaender et al. [2023] recently independently showed that Steiner Forest
admits a 2$ (: log:)=$ (1) time algorithm for the size : of a vertex cover (improving an algorithm for
the unweighted version of the problem given in [Gima et al., 2022]). While they develop their own
dynamic program to solve this problem, we rely on an existing algorithm by Bateni et al. [2011] (see
Theorem 5). Accordingly, our description of the algorithm is very short compared to [Bodlaender
et al., 2023]. The more interesting part of Theorem 4, however, is the proof of the lower bound.

1.1 Overview of Techniques
Let us briefly sketch the high level ideas of our results given by Theorems 1, 3, and 4.

EPAS for Treewidth. Our algorithm extends the work of Bateni et al. [2011], so let us briefly recall
some key ideas. Given a rooted tree decomposition, a terminal C is called active for a bag � if there
is a demand {B, C} ∈ � such that C lies in the sub-tree rooted at � while B does not (see Section 2 for
formal definitions). It is a standard property of tree decompositions that every bag is a separator.
Hence, the component of any feasible solution that contains an active terminal must intersect �.
The hardness of the problem now inherently stems from the fact that we have to decide for all active
terminals of a bag, how the corresponding component intersects the bag, and therefore how the
active terminals (whose number is unbounded by :) are partitioned into connected components.
Suppose, however, that someone supplied us with this information, that is, suppose that for each
bag � we are given a set of partitions Π� of its active terminals and we are promised that the
optimal solution conforms to all Π� . By this we mean that if we look at how the optimal solution
partitions the active terminals of � into connected components and call this partition c , then
c ∈ Π� , that is, the optimal partition is always one of the supplied options. In this case, using this
extra information, the problem does become tractable, as shown in Bateni et al. [2011]:

Theorem 5 (Bateni et al. [2011]). For an input graph � on = vertices, let a rooted nice tree
decomposition of width : be given, such that all terminals lie in bags of leaf nodes of the decomposition.
Also, let a set Π� of partitions of the active terminals of each bag � of the decomposition be given.
If ? =

∑
� |Π� | is the total number of partitions, then a minimum cost Steiner Forest solution

conforming to all Π� can be computed in 2$ (: log:) · (?=)$ (1) time.

The above theorem does not seem immediately helpful since one would still need to find a small
collection of partitions Π� in order to obtain an efficient algorithm. Note, however, that the partition

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

47:4 A. E. Feldmann and M. Lampis

sets may conform to an approximate solution as well, which would let the algorithm compute
a solution that it at least as good. The strategy of Bateni et al. [2011] therefore is to construct a
collection of partitions that has size polynomial in = (when :, Y are fixed constants) by stipulating
that when two active terminals are “close” to each other, they should belong in the same set of the
partition of some near-optimal solution. In order to bound the resulting approximation ratio, they
need to provide a charging scheme: starting from an optimal solution, they merge components
which are “close,” to obtain a solution that conforms to the Π� used by the algorithm. They then
show that the resulting solution is still near-optimal by charging the extra cost incurred by a
merging operation to one of the two merged components.

A blocking point in the above is that we need tomake surewe do not “overcharge” any component.
This is accomplished in Bateni et al. [2011] via a partial ordering of the components: we order
the components according to the highest bag of the rooted tree decomposition they intersect, and
whenever two components are merged we charge this to the lower component. As shown in Bateni
et al. [2011], this ensures that no component is charged for more than : merges. Unfortunately, this
also implies that the merging procedure is not symmetric, which severely diminishes the contexts
in which we can apply it.

Let us now describe how our approach improves upon this algorithm. A key ingredient will be
a more sophisticated charging scheme, which will allow us to obtain a better (smaller) collection of
partitions Π� , without sacrificing solution quality. Counter-intuitively, we will achieve this by intro-
ducing a second parameter: the heightℎ of the tree decomposition. Informally, we will now construct
a near-optimal solution by merging two components whenever the connection cost is low compared
to the cost of (a part of) either component (as opposed to the lower component). As shown in Bateni
et al. [2011], this runs the risk of charging many merging operations to a higher component, but by
performing an accounting by tree decomposition level and using the fact that the decomposition
only has ℎ levels, we are able to show that our solution is still near-optimal even though we merge
components muchmore aggressively than Bateni et al. [2011]. In this way, for each bag, we construct
one partition of its active terminals into a number of sets that is polynomial in : +ℎ + 1

Y
+ log=,

in a way that guarantees that this partition is a refinement of a near-optimal solution. That is,
whenever we decide to place two terminals together in our partition, the near-optimal solution
does the same. However, this solution does not necessarily conform to the resulting partitions, as
two terminals of the same component might end up in different sets of the partition for a bag.

At this point, an astute reader may be wondering that since we consider both the width : and the
height ℎ of the decomposition as parameters, we are effectively parameterizing by treedepth, rather
than treewidth. This is correct, but we then go on to invoke a result of Bodlaender and Hagerup
[1998] which states that any tree decomposition can be rebalanced to have height$ (log=) without
severely increasing its width. Hence, the family of partitions we now have has size polynomial in
: + 1

Y
+ log=. However, we are not done yet, since at this point we can only guarantee that our

partitions are refinements of a near-optimal solution. To complete the algorithm, we work from this
family of partitions to obtain a collection of partitions conforming to our near-optimal solutions
using X-nets (this is similar to the approach of [Bateni et al., 2011]). This leads to a running time
of the form (log=)$ (:2

Y
)=$ (1) , which by standard arguments of parameterized complexity is in

fact FPT and can be upper-bounded by a function of the form 2$ (:2
Y
log :

Y
) · =$ (1) . To summarize,

our high-level strategy is to show that the approach of Bateni et al. [2011] can be significantly
improved when the input decomposition has small width and height, but then we observe that
our new scheme is efficient enough in the height that even if we replace ℎ by a bound that can be
obtained for any graph, we still have an algorithm with an FPT running time, that is, significantly
faster than that of Bateni et al. [2011].

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

Parameterized Algorithms for Steiner Forest in Bounded Width Graphs 47:5

Vertex Cover. For the parameterization by the vertex cover size, as mentioned we obtain an
FPT exact algorithm with dependence 2$ (: log:) . A similar algorithm was recently independently
obtained by Bodlaender et al. [2023] via dynamic programming. However, our algorithm is sig-
nificantly simpler, because our strategy is to show how to construct a tree decomposition and a
collection of partitions Π� such that we only need one partition of the active terminals for each
bag. As a consequence, ? =$ (=) and Theorem 5 implies the algorithm of Theorem 4, without the
need to formulate a new dynamic program.

Our main result for this parameter is that under ETH the run-time dependence is asymptotically
optimal. Note that this also implies that the run time of the dynamic program given by Theorem 5
cannot be improved with regard to the dependence on the treewidth. To show this, we present a
reduction from 3-SAT, where the goal is to compress an =-variable formula into a Steiner Forest
instance such that the graph has vertex cover size $ (=/log=). The intuition on why it is possible
to achieve such a compression is the following: suppose we have an instance with vertex cover
of size : and a demand between two vertices of the independent set. Then, the simplest way to
satisfy such a demand is to connect both vertices to a common neighbor in the vertex cover. This
encodes a choice among : vertices, and hence, it is sufficient to encode the assignment for log(:)
binary variables. The strategy of our reduction is to set up some choice gadgets which allow us
to encode the assignments to the original formula taking advantage of the fact that each choice
can represent a logarithmic number of variables. Hence, we can obtain a construction of slightly
sub-linear ($ (=/log=)) size. We then of course need to add some verification gadgets, representing
the clauses, to check that the formula is indeed satisfied. But even though the number of such
gadgets is linear in =, we make sure that they form an independent set, and hence, the total vertex
cover size remains sufficiently small to obtain our lower bound. We note that this compression
strategy is similar to techniques recently used to obtain slightly super-exponential lower bounds
for vertex cover for other problems [Lampis and Vasilakis, 2023; Lampis et al., 2023], but the
constructions we use are new and tailored to Steiner Forest.

Feedback Edge Set. For the parameterization by the size : of a feedback edge set, instead of relying
on the dynamic program given by Theorem 5, we go an entirely different route in order to obtain
the faster 2$ (:)=$ (1) time FPT algorithm of Theorem 3. First off, it is not hard to reduce the Steiner
Forest problem to an instance in which all vertices have degree at least 2. We then consider paths
with internal vertices of degree 2, with endpoints that are vertices incident to the feedback edge
set or vertices of degree at least 3. We call these paths topo-edges and argue that there are only
$ (:) of these. We then guess for which topo-edges the two endpoints lie in different components
of the optimal Steiner Forest solution, which can be done in 2$ (:) time. If a topo-edge has both
its endpoints in the same component of the optimum, we show that it can be easily handled. For
the remaining topo-edges, we can decide which edges along the path do not belong to the optimal
solution by a reduction to the polynomial-time solvable Min Cut problem.

1.2 Related Work
Bateni et al. [2011] show that one of the consequences of their XP approximation scheme is a
PTAS for Steiner Forest on planar graphs, by using the common technique pioneered by Baker
[1994] approximation of reducing this problem to graphs for which the treewidth is bounded as
a function of Y. Because their algorithm is not FPT, their PTAS has a running time of the form
=5 (Y) . By using our algorithm from Theorem 1, we can improve this run time to 5 (Y)=$ (1) , i.e., we
obtain on EPTAS for planar graphs. However, Eisenstat et al. [2012] already showed that a (1 + Y)-
approximation algorithm with a run time of 5 (Y) · = log3 = exists for Steiner Forest on planar
graphs. While they build on the work of Bateni et al. [2011], and in particular also reduce to graphs

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

47:6 A. E. Feldmann and M. Lampis

of treewidth bounded as a function of Y, interestingly they do not obtain an EPAS parameterized
by treewidth. Instead they use a different route and show that given a graph � of treewidth : , in
5 (:, Y) · = log2 = time it is possible to compute a Steiner Forest solution in � whose cost is at
most cost(�★) + Y cost(�), i.e., there is an additive error that depends on the cost of � compared
to the optimum solution �★. If the input graph � is planar, then a result by Borradaile et al. [2009]
implies that from � a so-called banyan [Bartal and Gottlieb, 2021; Rao and Smith, 1998] can be
computed. A banyan is a subgraph� ′ of� with cost bounded by 6(Y) cost(�★), and which contains
a near-optimal approximation of every Steiner forest (cf. [Eisenstat et al., 2012, Lemma 2.1]). By
applying the framework of Bateni et al. [2011] on � ′ instead of � , it is then possible to obtain a
graph � of treewidth bounded by a function of Y, for which the algorithm of Eisenstat et al. [2012]
computes a (1 +$ (Y))-approximation for the input.

If it would be possible to compute a banyan for bounded treewidth graphs, then the algorithm
of Eisenstat et al. [2012] would also imply an EPAS for treewidth. However, to the best of our
knowledge, and as explicitly stated by Bartal and Gottlieb [2021], banyans are only known for planar
graphs [Borradaile et al., 2009; Eisenstat et al., 2012], Euclidean metrics [Rao and Smith, 1998],
and doubling metrics [Bartal and Gottlieb, 2021] (in fact, the latter are so-called forest banyans,
which have weaker properties). Thus, it is unclear how to obtain an EPAS for Steiner Forest
parameterized by the treewidth via the algorithm of Eisenstat et al. [2012]. We leave open whether
a banyan exists for bounded treewidth graphs, which could give an alternative algorithm to the
one given in Theorem 1. However, a further remark is that the cost of the banyan for planar
graphs obtained by Borradaile et al. [2009] has exponential dependence on 1/Y, which implies
a double exponential run-time dependence on 1/Y for the EPTAS for planar graphs. If a banyan
can be obtained for bounded treewidth graphs by generalizing the techniques of Borradaile et al.
[2009] to minor-free graphs, then the resulting EPAS parameterized by treewidth would also have
double exponential run time in 1/Y. In this case, however, our EPAS given by Theorem 1 would be
exponentially faster.

A different parameter that is often studied in the context of Steiner problems is the number
? = |' | of terminals. The classic result of Dreyfus and Wagner [1971] presents an FPT algorithm for
Steiner Tree with a run time of 3?=$ (1) . For unweighted graphs, this was improved [Björklund
et al., 2007; Nederlof, 2009] to 2?=$ (1) , while the fastest known algorithm for weighted graphs can

compute the optimum in (2 + Y)?=$ (
√

1
Y
log 1

Y
) time [Fuchs et al., 2007] for any Y > 0. The algorithm

of Dreyfus and Wagner [1971] can be generalized to solve Steiner Forest in 2$ (?)=$ (1) time (cf.
[Chitnis et al., 2021]). A somewhat dual parameter to the number of terminals is the number @ of
non-terminals (so-called Steiner vertices) in the optimum solution. For this parameter, a folklore
result states that Steiner Tree (and thus also Steiner Forest) is W[2]-hard (cf. [Cygan et al.,
2015; Dvořák et al., 2021]). However, an EPAS with a run time of 2$ (@2/Y4)=$ (1) was shown to exist
for Steiner Tree [Dvořák et al., 2021]. For Steiner Forest, it is not hard to see that such an EPAS
parameterized by @ cannot exist unless P=NP (cf. [Dvořák et al., 2021]), but if 2 denotes the number
of components of the optimum solution, there is an EPAS with a run time of (22)$ ((@+2)2/Y4)=$ (1)

[Dvořák et al., 2021]. Similar results have been found for related Steiner problems in directed graphs
[Chitnis et al., 2021]. For further results in the area of parameterized approximations, we refer to
the survey [Feldmann et al., 2020].

2 Preliminaries
As mentioned, we assume that the reader is familiar with the basics of parameterized complexity,
such as the class FPT [Cygan et al., 2015], and approximation algorithms such as a PTAS [Williamson
and Shmoys, 2011]. A Parameterized Approximation Scheme (PAS) is an algorithm that

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

Parameterized Algorithms for Steiner Forest in Bounded Width Graphs 47:7

computes a (1 + Y)-approximation for a problem in 5 (:, Y)=6 (Y) time for some functions 5 and
6, while an EPAS is a (1 + Y)-approximation algorithm running in time 5 (:, Y)=$ (1) (that is, the
running time is FPT in : + 1

Y
). The distinction between a PAS and an EPAS is similar to the one

between a PTAS and an EPTAS.
By F : � → R+, we denote an edge-weight function, so that the cost of a solution � to the

Steiner Forest problem is cost(�) =∑
4∈� (�) F (4). We will use �★ to denote an optimal solution,

and for U ≥ 1, we will say that a solution � is U-approximate if cost(�) ≤ U cost(�★). For D, E ∈ + ,
we use dist(D, E) to denote the shortest-path distance from D to E in � according to the weight
functionF .

Definition 6. Given a graph � = (+ , �), a tree decomposition is a pair (), {�8 }8∈+ ())), where)
is a tree and each node 8 ∈ + ()) of the tree is associated with a bag �8 ⊆ + , with the following
properties:

(1)
⋃

8∈+ ()) �8 =+ , i.e., all vertices of � are covered by the bags,
(2) for every edge DE ∈ � of � there exists a node 8 ∈ + ()) of the tree for which D, E ∈ �8 , and
(3) for every vertex E ∈ + of � the nodes {8 ∈ + ()) | E ∈ �8 } of the tree for which the bags

contain E induce a (connected) subtree of) .

The width of the tree decomposition is max8∈+ ()) {|�8 | − 1} and the treewidth of � is the minimum
width over all its tree decompositions.

A rooted tree decomposition is nice if for every 8 ∈ + ()) we have one of the following:

(1) 8 has no children2 (8 is a leaf node),
(2) 8 has exactly two children 81 and 82 such that �8 = �81 = �82 (8 is a join node),
(3) 8 has a single child 8′ where �8 = �8′ ∪ {E} for some E ∈ + (8 is an introduce node), or
(4) 8 has a single child 8′ where �8 = �8′ \ {E} for some E ∈ + (8 is a forget node).

Given a rooted tree decomposition) of a graph � , for a node D of) let � be the bag associated
with it. Then, +� is the set of vertices of all bags in the subtree rooted at D. The set �� ⊆ ' denotes
the active terminals of the bag �: for any demand pair {B, C} ∈ � , if B ∈ +� and C ∉ +� then B ∈ �� .
For any Steiner Forest solution � , if a connected component � of � contains an active terminal,
then we say that � is an active component for �. For a fixed solution � , we denote the set of all
active components for � by C� . Observe that according to our definitions, for a given bag � the
number of active terminals in �� is not bounded, but the number of active components is bounded
by |C� | ≤ |� |, because active components must intersect the bag.

If for every bag � a set of partitions Π� of�� is given, a Steiner Forest solution � is conforming
to all Π� , if for each bag � there exists a partition c ∈ Π� such that any two active terminals in
�� are in the same set (∈ c if and only if they are part of the same active component � of � ,
i.e., (⊆ + (�) and (′ ∩ + (�) = ∅ for any (′ ∈ c with (′ ≠ ((note that this implies |c | ≤ |� |).
One technicality of Theorem 5 is that the algorithm needs a nice tree decomposition as input, for
which the terminals only appear in bags that are leaf nodes of the decomposition. Given any tree
decomposition, these conditions are not hard to meet (cf. [Bateni et al., 2011, Lemma 6]). However,
for our algorithms, we are going to rely on tree decompositions with certain additional properties.
Hence, we will need to revisit the conditions needed for the algorithm of Theorem 5 when using it
for our purposes.

We will also consider the following parameters: The treedepth of a graph � can be defined
recursively as follows: (i) the treedepth of 1 is 1, (ii) the treedepth of a disconnected graph is the
maximum of the treedepth of any of its components, (iii) the treedepth of a connected graph � is
2Here, we do not demand the leaf nodes to be empty, as is often assumed for this definition.

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

47:8 A. E. Feldmann and M. Lampis

1 +minE∈+ (�) td(� − E). A feedback vertex set is a set of vertices whose removal leaves a forest. A
vertex cover is a set of vertices such that its removal leaves an edge-less graph. A feedback edge set
is a set of edges whose removal leaves a forest. In a connected graph with = vertices and< edges,
the minimum feedback edge set always has size< − = + 1.

As part of our approximation algorithm, we will use the notion of X-nets, defined as follows.
A well-known fact is that a X-net exists for any metric and any X ≥ 0, and it can be constructed
greedily in polynomial time.

Definition 7. Given a metric (-, dist), a X-net is a subset # ⊆ - of points, such that

(1) any two net points D, E ∈ # are far from one another, i.e., dist(D, E) > X , and
(2) for any node D ∈ - there is some net point E ∈ # close by, i.e., dist(D, E) ≤ X .

3 An Efficient Parameterized Approximation Scheme for Treewidth
In this section, we describe the main result of this article which is an EPAS for Steiner Forest
parameterized by treewidth. We begin by giving two preliminary tools (Lemma 8 and Lemma 9)
which facilitate the algorithm by ensuring that the given tree decomposition has logarithmic height
and that the instance has aspect ratio (ratio of the weights of the heaviest over the lightest edge)
bounded by a polynomial in =.

We then go on to Section 3.1 where we introduce a second parameter, the height ℎ of the
decomposition. Our goal is to fix an almost-optimal solution �Y and describe an algorithm that
produces a partition Z� of the active terminals for each bag � of the decomposition, where Z� is
a refinement of the partition implied by �Y (Lemma 10). In other words, we seek a partition Z�
of �� such that if two terminals C1, C2 are in the same set of Z� , then they are also in the same
component of �Y . Of course, it is trivial to achieve this by giving a Z� where each active terminal is
in its own set, so the interesting part here is how we group terminals together in a way that in
the end allows us to bound |Z� | by a polynomial of : + ℎ + 1

Y
+ log=, while still ensuring that �Y is

almost optimal.
The partition Z� of Lemma 10 is not yet conforming, because two terminals which are in distinct

sets of Z� may still be in the same component of �Y , and thus, we cannot applyTheorem 5 at this point.
Therefore in Section 3.2, given Z� we focus on how to obtain every possible partition of the set of
active terminals, which could be conforming with an almost-optimal solution. By an appropriate use
of X-nets, similar to Bateni et al. [2011], we are able to “guess” (that is, brute-force) a choice of a small
number of net points per active component. Since the number of choices for each point is at most
|Z� | and we choose roughly $ (:2/n) points in total, the total number of produced partitions (and
hence the running time given byTheorem 5) is of the form (log= +: + 1

n
)$ (:2/n)=$ (1) , which is FPT.

Let us now recall a result of Bodlaender andHagerup [1998]which states that a tree decomposition
of logarithmic height can always be obtained.

Lemma 8 ([Bodlaender and Hagerup, 1998]). Given a tree decomposition of width : of a graph �
on = vertices, there is a polynomial time algorithm computing a nice tree decomposition of � of width
$ (:) and height $ (: log=).

Proof. It is shown in Bodlaender and Hagerup [1998] that any tree decomposition of width
: can be transformed in polynomial time into a tree decomposition of width $ (:) and height
$ (log=) where the tree of the decomposition has maximum degree 3. It is now not hard to make
this decomposition nice by replacing all nodes with two children by Join nodes, and by inserting
between any node and its parent a sequence of $ (:) new nodes so that the symmetric difference
between any node and its parent contains at most one vertex. �

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

Parameterized Algorithms for Steiner Forest in Bounded Width Graphs 47:9

We also need to reduce the aspect ratio of the given graph to a polynomial. This can be done
using a standard technique, where however we need to make sure that the treewidth of the given
graph remains bounded. Note that the aspect ratio of the resulting graph� ′ in the following lemma
is polynomially bounded in the size of the original graph, but not necessarily in the size of � ′

(because � ′ may have significantly fewer vertices).

Lemma 9. Given Y > 0, an instance of Steiner Forest on a graph � with = vertices, and a (nice)
tree decomposition) of width : and height ℎ for � , in polynomial time we can compute an instance
on a graph � ′ with at most = vertices and a (nice) tree decomposition) ′ of width at most : and
height ℎ for � ′, such that the ratio of the longest to the shortest edge in � ′ is at most 2=/Y, and any
U-approximation for � ′ can be converted into an (U + Y)-approximation for � .

Proof. The first step is to compute a 2-approximation �2 for Steiner Forest in � , using the
polynomial time algorithm of Agrawal et al. [1991]. The new graph � ′ is obtained from � by first
removing all edges of length more than cost(�2) and then contracting every edge of length less
than Y

2= cost(�2), where = is the number of vertices of � . If a contracted edge was incident to a
terminal, then the new vertex is declared a terminal and the demands are updated correspondingly
(note that this may introduce trivial demands from the new terminal to itself if a demand pair is
connected by a path of edges being contracted). We modify the tree decomposition) to obtain) ′

as follows: whenever we contract the endpoints of an edge E1E2 into a new vertexF , we replace all
occurrences of E1 and E2 in) by F . It is not hard to see that this keeps a valid decomposition of
the same height and can only decrease the width. Furthermore, if the original decomposition was
nice, the new decomposition can easily be made nice, if we contract every bag � with a unique
child �′ whenever � = �′ (which were introduce or forget nodes previously). Also, clearly the ratio
between longest and shortest edge in � ′ is at most 2=/Y.

It remains to show that an U-approximate solution � ′U in � ′ is not distorted by much when con-
verting it from� ′ to� . Starting with � ′U , the conversion is simply done by iteratively uncontracting
those edges that were contracted to obtain� ′ from� : if the solution becomes infeasible after uncon-
tracting some edge 4 we just add it to the solution to make it feasible again. Let � denote the solution
obtained for� from � ′U , and note that less than = edges are added to � ′U in this process, as � is a forest
in � . This means that cost(�) < cost(� ′U) + Y

2 cost(�2) since every contracted edge has length less
than Y

2= cost(�2). Now consider an optimum solution �★ in� . It can be converted into a solution of
cost at most cost(�★) in� ′ by contracting all edges of length less than Y

2= cost(�2), since �★ cannot
contain any of the removed edges of length more than cost(�2) ≥ cost(�★). Thus, the optimum of� ′

has cost at most cost(�★), and because � ′U is an U-approximation in� ′ we get cost(� ′U) ≤ U cost(�★).
At the same time, cost(�2) ≤ 2 cost(�★), which together with the previous inequality gives
cost(�) < U cost(�★) + 2 Y2 cost(�

★) = (U + Y) cost(�★), which concludes the proof. �

For simplicity, in the following we will scale the edge lengths of any given graph so that the
shortest edge has length 1. In particular, after applying Lemma 9, the longest edge has length at
most 2=/Y.

3.1 Tree Decompositions with Bounded Height
In this section, we informally assume that the height ℎ of the given tree decomposition is bounded
as well as the width : . Our aim is to prove the following statement, where we restrict ourselves to
input graphs of polynomial aspect ratio, which we may do according to Lemma 9 (keeping in mind
that = is the number of vertices of the original input graph).

Lemma 10. Let an instance of Steiner Forest on a graph� with at most = vertices be given together
with a tree decomposition) of width : and height ℎ for � . For any Y > 0, if the ratio between the

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

47:10 A. E. Feldmann and M. Lampis

longest and shortest edge of � is at most 2=/Y, then there exists a (1 + Y)-approximation �Y with the
following properties. There exists a polynomial time algorithm, which for every bag � of) outputs a
partition Z� of the active terminals �� , such that each set of Z� belongs to the same component of �Y
and |Z� | =$ (:4ℎ2

Y2
log =

Y
).

To prove Lemma 10, we first identify the solution �Y , after which we will show how to compute
the partitions Z� .

3.1.1 A Near-Optimal Solution. The high-level idea to obtain a (1 + Y)-approximate solution �Y
is to connect components of the optimum solution �★ that lie very close to each other. In particular,
if the distance between two components � and �′ of �★ is of the form 5 (:, ℎ, Y) cost(�) for some
small enough function 5 , then we may hope to add a shortest path between � and �′ and charge
this additional cost to� , in order to obtain a (1+ Y)-approximation. Unfortunately, this approach is
not viable, since the number of components that are very close to � may be very large, meaning
that the function 5 in the distance bound would have to linearly depend on the number of vertices
in order to result in a (1 + Y)-approximation. This in turn would mean that the size of the partition
Z� would depend polynomially on the number of vertices, making it unsuitable for an FPT time
algorithm. This issue lies at the heart of the problem and is the reason for why it is non-trivial to
obtain an approximation scheme parameterized by the treewidth. To get around this issue, we will
measure the distance between components using a modified cost function, which we define next.

Given a bag � of the rooted tree decomposition) , we denote by)� the subtree of) rooted at
the node associated with �, and by �� =� [+�] the graph induced by the vertices +� lying in bags
of)� . We also define the graph �↓

�
⊆ �� as the graph spanned by all edges of �� , except those

induced by �, i.e., the edge set of �↓
�
is

� (�↓
�
) = {DE ∈ � (��) | D ∉ � ∨ E ∉ �}.

The cost of a component � of some Steiner Forest solution restricted to �↓
�
only counts the edge

weights of � in �↓
�
, and is denoted by

cost↓
�
(�) =

∑
4∈� (�)∩� (�↓

�
)

F (4).

Based on these definitions, we fix an optimal solution �★ and construct a solution �Y by initially
setting �Y = �★, and then connecting components by exhaustively applying the following rule,
where we say that two components � and �′ share a bag � if + (�) ∩ � ≠ ∅ and + (�′) ∩ � ≠ ∅:

Rule 1: if �,�′ are components of �★ sharing a bag � with dist(�,�′) ≤ Y
:ℎ

· cost↓
�
(�) but � and

�′ are in different components of �Y , then add a shortest path of length dist(�,�′) between
� and �′ to the solution �Y .

Lemma 11. The cost of the solution �Y obtained by Rule 1 from �★ is at most (1 + Y) cost(�★).

Proof. It suffices to prove that the cost of all paths added to �★ in order to obtain �Y according to
Rule 1 is at most Y · cost(�★). For this, we use a charging scheme that charges new paths to compo-
nents of �★. In particular, we charge a path of length dist(�,�′) ≤ Y

:ℎ
· cost↓

�
(�) to component � .

Fix a component � of �★ and a bag � with + (�) ∩ � ≠ ∅. We define charge(�, �) to be the cost
we charge to � for operations involving other components of �★ that share �. It is not hard to see
that charge(�, �) ≤ Y

ℎ
· cost↓

�
(�), because there are at most : other components of �★ that share �.

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

Parameterized Algorithms for Steiner Forest in Bounded Width Graphs 47:11

For ℓ ∈ {0, . . . , ℎ − 1}, let Bℓ be the set of bags of the tree decomposition that appear at distance
exactly ℓ from the root, i.e., they lie on level ℓ of the tree. We now observe that∑

�∈Bℓ

charge(�, �) ≤
∑
�∈Bℓ

Y

ℎ
· cost↓

�
(�) ≤ Y

ℎ
cost(�),

where the last inequality follows because if we have two bags �, �′ ∈ Bℓ , then � (�↓
�
) ∩ � (�↓

�′) = ∅:
note that every edge of � (�↓

�
) must be incident on a vertex E that appears in a descendant of �, but

not in �. By the properties of tree decompositions, notably by the fact that � is a separator of � , E
cannot appear in �′ or any of its descendants. Therefore, none of its incident edges are contained
in � (�↓

�′). Because
∑

�∈Bℓ
cost↓

�
(�) is the sum of costs of � over disjoint sets of edges, the sum is a

lower bound on the total cost of � .
To conclude, we observe that the total charge of � is

charge(�) ≤
ℎ−1∑
ℓ=0

∑
�∈Bℓ

charge(�, �) ≤ Y cost(�).

Therefore, summing over all components of �★, the total cost of the edges we have added according
to Rule 1 is at most Y · cost(�★). �

3.1.2 Partitioning Active Terminals. We are now ready to prove Lemma 10 for the near-optimal
solution �Y constructed above, for which we will compute the partitions Z� for all bags �. We will
use the following two claims for the active terminals �� of the given bag �.

Claim 12. If there exist C1, C2 ∈ �� such that dist(C1, C2) ≤ Y
:ℎ

dist(C1, �), then C1, C2 are in the same
component of �Y .

Proof. Let �1 be the component that contains C1 in the optimal solution �★ from which �Y is
constructed. We observe that cost↓

�
(�1) ≥ dist(C1, �), because �1 must contain a path from C1 to

� (as C1 is active) and all the edges of this path are contained in � (�↓
�
). If C2 is contained in �2 in

�★, we therefore have, dist(�1,�2) ≤ dist(C1, C2) ≤ Y
:ℎ

dist(C1, �) ≤ Y
:ℎ

cost↓
�
(�1). Since�2 must also

intersect �, Rule 1 implies that �1 and �2 are contained in the same component of �Y . �

Claim 13. Let � ⊆ �� and 3 ≥ 0 be such that (i) there exists 1 ∈ � such that for all C ∈ � we have
dist(C, �) = dist(C, 1) and 3 ≤ dist(C, �) ≤ 23 , (ii) for all distinct C, C ′ ∈ � we have dist(C, C ′) > Y

:ℎ
3 ,

(iii) |�| ≥ 8:2 (:+1)ℎ2

Y2
. Then, there exists a component of �Y that contains all terminals of �.

Proof. Consider an active component � for � of the optimum solution �★. We claim that
cost↓

�
(�) ≥ |+ (�) ∩�| · Y

2:ℎ3 . To see this, let �↓
1 , . . . ,�

↓
ℓ
be the components of � when restricting

� to �↓
�
. Each component �↓

8
is a Steiner tree for the terminals in + (�↓

8
) ∩�. Now consider a

minimum spanning tree* on the metric closure derived from�↓ for this vertex set+ (�↓
8
) ∩�. It is

well known that such aminimum spanning tree is a 2(1− 1
?
)-approximation of the optimum Steiner

tree [Kou et al., 1981] on ? terminals, and thus cost(�↓
8
) ≥ 1

2(1− 1
?
) cost(*) where ? = |+ (�↓

8
) ∩�|.

The distance between any two terminals of + (�↓
8
) ∩� in the given graph � is more than Y

:ℎ
3 by

property (ii) of the claim, and because the distance between such terminals can only be more in�↓,
every edge of* has cost more than Y

:ℎ
3 . This means that cost(*) ≥ (? − 1) · Y

:ℎ
3 , and we therefore

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

47:12 A. E. Feldmann and M. Lampis

get cost(�↓
8
) ≥ ?−1

2(1− 1
?
) ·

Y
:ℎ
3 =

?

2 ·
Y
:ℎ
3 . Summing over all (vertex disjoint) components�↓

8
, we obtain

the claimed inequality cost↓
�
(�) ≥ |+ (�) ∩�| · Y

2:ℎ3 .
Because each terminal of � belongs to an active component of �★, of which there are at most

: +1, there must exist an active component� with |+ (�) ∩�| ≥ |� |
:+1 , which by the above inequality

and property (iii) of the claim gives cost↓
�
(�) ≥ |� |

:+1 ·
Y

2:ℎ3 ≥ :ℎ
Y
· 43 . Now note that by property

(i), for all C, C ′ ∈ � we have dist(C, C ′) ≤ 43 , as we can use a path through 1. So, if �′ is any of
the other active components of �★ also containing a terminal of �, we have dist(�,�′) ≤ 43 . We
therefore obtain dist(�,�′) ≤ Y

:ℎ
cost↓

�
(�), and according to Rule 1, � and �′ are part of the same

component of �Y . In other words, all active terminals of � are in components of �★ that lie in the
one component of �Y containing � . �

Intuitively, Claim 12 allows us to place terminals of � which are very close to each other into
the same set of the partition Z� , as placing one terminal in a component forces the placement of
the other. Thanks to this claim we can work with an appropriate net. If we find a large collection
of such net points which also are roughly the same distance from the bag and closest to the same
vertex of the bag, Claim 13 allows us to group them all together in the partition Z� . Armed with
these tools, we can now prove the main lemma.

Proof of Lemma 10. To compute the partition Z� in polynomial time, we first partition the active
terminals �� ∩� contained in the bag �. For this, we simply add a set {C} for each C ∈ �� ∩� to Z� ,
which adds at most |� | ≤ : + 1 sets to Z� . Let now � = �� \ � be the remaining active terminals.

To partition �, let 3 = minC ∈��\� dist(C, �) and � = maxC ∈��\� dist(C, �) be the minimum
and maximum distances of these active terminals from the bag �. Then, partition �� \ � into
|� | ≤ : + 1 sets �1, �2, . . . , � |� | , depending on the vertex of � that is closest to each C ∈ �

(breaking ties arbitrarily). That is, for each �8 , there exists 1 ∈ � such that for all C ∈ �8 we
have dist(C, �) = dist(C, 1). Consider now a set �8 and further partition it into A =

⌈
log2

�
3

⌉
sets

�8,0, �8,1, . . . , �8,A−1, where�8, 9 contains all C ∈ �8 such that dist(C, �) ∈ [293, 29+13). Now (greedily)
compute an (Y

:ℎ
293)-net#8, 9 of�8, 9 . We observe that#8, 9 satisfies the first two conditions of Claim 13

for 293 , so if |#8, 9 | ≥ 8:2 (:+1)ℎ2

Y2
, then we add �8, 9 as a set of our partition Z� , remove the terminals

of #8, 9 from � and continue the algorithm for the remaining terminals. Repeat the previous step
for all 8, 9 for which #8, 9 is sufficiently large. This contributes at most (: + 1)

⌈
log �

3

⌉
sets to Z� .

Suppose now that we are left with a set of terminals � such that the procedure above fails to
construct a sufficiently large net #8, 9 to apply Claim 13. For every index pair 8, 9 , each remaining
terminal C ∈ �8, 9 is close enough to some net point C ′ ∈ #8, 9 such that we can apply Claim 12. We
therefore create a set in the partition Z� for each C ′ ∈ #8, 9 , placing into such a set those terminals of
�8, 9 that are closest to C ′ (breaking ties arbitrarily). Since we cannot apply Claim 13 to the remaining
sets �8, 9 , each of the at most (: + 1)

⌈
log �

3

⌉
nets #8, 9 has size less than 8:2 (:+1)ℎ2

Y2
, which implies

|Z� | ≤ $ (:4ℎ2

Y2
log �

3
).

Clearly, the above procedure can be implemented in polynomial time, and the fact that every set
of Z� is contained in the same component of �Y follows from Claim 12 and Claim 13. Finally, any
path in a graph with at most = vertices has less than = edges, so that �

3
< 2=2/Y, given that the

ratio of the longest to the shortest edge is 2=/Y (note that 3 > 0 by definition). Hence, the claimed
bound of |Z� | ≤ $ (:4ℎ2

Y2
log =

Y
) follows. �

3.2 Tree Decompositions with Logarithmic Height
Given a tree decomposition) of logarithmic height, using Lemma 10 we are ready to compute a
set of partitions Π� of FPT size for each bag �, such that a near-optimal solution conforms to Π� .

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

Parameterized Algorithms for Steiner Forest in Bounded Width Graphs 47:13

In particular, by Lemma 8, we may assume that the height of) is ℎ =$ (: log=), which means that
the bound on Z� in Lemma 10 translates to $ (:6

Y2
log3 =

Y
). As in the previous section, we need to

apply Lemma 9 in order to bound the aspect ratio of the graph, so that = denotes the number of
vertices of the original input graph, while now the graph � has at most = vertices, but the ratio
between the longest and shortest edge is at most 2=/Y. We begin by describing how to obtain the
near-optimal solution, after which we will identify the partition sets Π� .

3.2.1 A Near-Optimal Solution. Bateni et al. [2011] construct a near-optimal solution by mod-
ifying the optimum. We will use similar techniques to obtain our near-optimal solution, but we
construct it by instead modifying the (1 + Y)-approximate solution �Y given by Lemma 10. In
particular, we construct a near-optimal (1 + Y)2-approximation �̃Y from �Y . The main idea to obtain
�̃Y is to connect components of �Y if they are very close to one another. As before however, doing
this naively would incur too much cost for the additional connections.

To make sure that the cost incurred by connecting components of �Y is not too large, Bateni et al.
[2011] introduced a partial order on the components based on the structure of a given rooted tree
decomposition) . Let �1,�2 be two components of �Y that share a bag � of) , i.e., + (�1) ∩ � ≠ ∅
and + (�2) ∩ � ≠ ∅. Since �1 and �2 are connected subgraphs of the input graph, a basic property
of tree decompositions implies that there are (connected) subtrees)1 and)2 of) induced by the
respective bags containing vertices of �1 and �2. Because these components both contain vertices
of �, the node associated with � is part of both)1 and)2, and therefore, the roots of both subtrees
lie on the path from this node to the root of) . This defines an order on �1 and �2, and we write
�1 ≤ �2 if the root of)1 is farther from the root of) than the root of)2 is. This order is defined for
any two components of �Y that share a bag, and thus, we obtain a partial order on the components
of �Y , where any components that do not share a bag are incomparable.

Using the defined order, Bateni et al. [2011] connect components of the optimum solution that
are very close to each other. In order to obtain smaller partition sets, we modify the distance bound
used in this procedure compared to Bateni et al. [2011]. In particular, for any value G > 0, let
bGc2 = 2

⌊
log2 G

⌋
denote the largest power of 2 that is at most G . Now, starting with �̃Y = �Y , we

connect components by exhaustively applying the following rule:

Rule 2: if �,�′ are components of �Y with � ≤ �′ and dist(�,�′) ≤ Y
:
bcost(�)c2 but � and �′ lie

in different components of �̃Y , then add a shortest path of length dist(�,�′) between � and
�′ to the solution �̃Y .

A crucial but subtle observation is that for a component � of �Y there can be many components
�′ ≤ � at distance at most Y

:
bcost(�)c2 to� , which however are not connected to� in the resulting

solution �̃Y according to Rule 2. This makes it non-trivial to find small partition sets Π� . Contrary
to this, however, an important property of the order on the components is that for any component
� of �Y , there are at most : other components �′ for which � ≤ �′, as we will argue for the
following lemma to bound the cost of �̃Y . In particular, the lemma implies that �̃Y is a near-optimal
(1 + Y)2-approximation, given that �Y is a (1 + Y)-approximation.

Lemma 14. The cost of the solution �̃Y obtained by Rule 2 from �Y is at most (1 + Y) cost(�Y).

Proof. Consider a component � of �Y and the highest (closest to the root) node of) for which
the bag � contains a vertex of � . Any component �′ with � ≤ �′ also intersects �, and as this
bag has size at most : + 1, there can be at most : such components �′. As a consequence, we can
charge the additional cost of connecting a component � with components �′ for which � ≤ �′ to
the cost of � . In particular, if C denotes the set of all components of �Y , then the cost incurred by

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

47:14 A. E. Feldmann and M. Lampis

connecting components according to Rule 2 is at most∑
�∈C

∑
�′∈C:�≤�′

Y

:
bcost(�)c2 ≤

∑
�∈C

∑
�′∈C:�≤�′

Y

:
cost(�) ≤

∑
�∈C

Y cost(�) = Y cost(�Y).

Thus, adding the cost of connecting components of �Y according to Rule 2, the cost of the resulting
solution is cost(�̃Y) ≤ cost(�Y) + Y cost(�Y) = (1 + Y) cost(�Y). �

3.2.2 Partitioning Active Terminals. Given the construction of the (1 + Y)2-approximate solution
�̃Y above, the next step is to find a set of partitions Π� of the active terminals �� for each bag �,
such that �̃Y conforms with all sets Π� . In the following, fix a bag � of the given tree decomposition
) . The technique used by Bateni et al. [2011] is to guess a small net for each active component of
bag �,3 so that every terminal of �� close to a net point must be part of the same component in the
approximate solution, after taking the order on the active components as defined previously into
account. Next, we choose a net on the terminals of each active component and bound its size.

Lemma 15. Let # ⊆ �� ∩� be an Y
:
bcost(�)c2-net of the metric induced by the active terminals of

some active component � . The size of the net can be bounded by |# | ≤ b4:/Yc.4

Proof. Let * be a minimum spanning tree of the metric closure of # . It is well known that a
minimum spanning tree is a 2(1− 1

?
)-approximation to an optimum Steiner tree [Kou et al., 1981]

on ? terminals, and thus, we have cost(�) ≥ 1
2(1− 1

|# |)
· cost(*), as� in particular is a Steiner tree

for # . The distance between any pair of net points in # is more than Y
:
bcost(�)c2 ≥ Y

2: cost(�),
and given that the spanning tree* has |# | −1 edges, we get cost(*) > Y

2: cost(�) (|# | −1). Putting
these two inequalities together, we get cost(�) > Y (|# |−1)

4: (1− 1
|# |)

cost(�) = Y |# |
4: cost(�), which implies

|# | ≤ b4:/Yc as |# | is an integer. �

Following the algorithm of Bateni et al. [2011], the next step would be to guess such an
Y
:
bcost(�)c2-net for each of the at most : + 1 active components � of the bag �. By Lemma

15, the total number of net points for these at most : + 1 nets is at most b4:/Yc (: + 1) =$ (:2/Y).
Since however there may be up to = active terminals, guessing these nets for all active components
can result in =$ (:2/Y) many possible choices, which leads to an XP time algorithm. To circumvent
this, we instead consider the partition Z� of the active terminals as given by Lemma 10, and guess
which of the sets of Z� contains a net point. We will argue that since the size of Z� is $ (:6

Y2
log3 =

Y
),

there are only (:
Y
log =

Y
)$ (:2/Y) possibilities, leading to a faster algorithm.

More concretely, to compute a set of partitions Π� that �̃Y conforms to, our algorithm considers
every sequence (((1, X1), ((2, X2), . . . , ((ℓ , Xℓ), d) of at most : + 1 pairs ((9 , X 9) and partitions d of
the index set {1, . . . , ℓ}, where each (9 is a subset of the parts of Z� such that |(9 | ≤ b4:/Yc, and
X 9 ∈ {2@ | @ ∈ N0 ∧ 0 ≤ @ ≤ log2 (2=2/Y)} is an integer power of 2 between 1 and 2=2/Y, where = is
the number of vertices of the original input graph in accordance with Lemma 9. From every such
sequence, the algorithm attempts to construct a partition of the active terminals, and if it succeeds
adds it to the set Π� . As we will show, in this process the algorithm will successfully construct one
partition c of �� that �̃Y conforms to.

Before describing how a partition of the active terminals arises from such a sequence, we
bound the number of these sequences, which determines the running time. By Lemma 10, |Z� | =
$ (:6

Y2
log3 =

Y
) if the tree decomposition) has logarithmic height, so that there are at most

3Bateni et al. [2011] refer to these nets as groups.
4A slightly worse bound follows from Bateni et al. [2011, Lemma 19].

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

Parameterized Algorithms for Steiner Forest in Bounded Width Graphs 47:15(|Z� |
b4:/Y c

)
= (:

Y
log =

Y
)$ (:/Y) possible choices for each (9 . Clearly, there are $ (log =

Y
) choices for

each X 9 , and ℓ ℓ = :$ (:) possible partitions d , given that ℓ ≤ : + 1. Since a sequence contains ℓ sets
(9 , the total number of sequences is bounded by (:

Y
log =

Y
)$ (:2/Y) .

Each sequence may give rise to a partition c ∈ Π� of the active terminals as follows: First, let
c = {.1, . . . , .|d | }, i.e., c has the same number of sets as the partition d . Let * 9 =

⋃
* ∈(9

* denote
the set of active terminals in (9 , and let d (9) be the part of d containing 9 . We distinguish between
active terminals C ∈ �� that lie in some set* 9 and those that do not:

—if C ∈ * 9 for some 9 ∈ [ℓ] then C ∈ .d (9) (i.e.,* 9 ⊆ .d (9)), and
—otherwise, if ?C ∈ {1, . . . , ℓ} denotes the smallest index for which dist(C,*?C) ≤ Y

:
X?C , then

C ∈ .d (?C) .

If this c is a partition of �� , we add c to Π� , and otherwise, we dismiss the current sequence.
Clearly, c can be constructed in polynomial time, given a sequence.

Lemma 16. The (1 + Y)2-approximate solution �̃Y conforms to the set Π� of partitions constructed
above.

Proof. Consider the (1 + Y)-approximate solution �Y of Lemma 10 from which �̃Y is constructed
according to Rule 2, and the partition Z� of �� as given by Lemma 10. Let the active components of
�Y be �1, . . . ,�ℓ indexed according to their order, i.e., � 9 ≤ � 9 ′ if and only if 9 ≤ 9 ′. For each active
component� 9 , we fix an Y

:

⌊
cost(� 9)

⌋
2-net # 9 of size at most b4:/Yc according to Lemma 15. Now,

consider the sequence (((1, X1), ((2, X2), . . . , ((ℓ , Xℓ), d), where

—(9 contains exactly those sets of Z� that contain at least one net point of # 9 ,
—X 9 =

⌊
cost(� 9)

⌋
2, and

—d is the partition of the index set corresponding to the components of �̃Y , i.e., d (9) = d (9 ′) if
and only if � 9 and � 9 ′ lie in the same component in �̃Y .

Recall that after applying Lemma 9 to the input, the ratio between the shortest and longest edge
is at most 2=/Y, where = is the number of vertices of the original input graph. Since we assume
that the length of the shortest edge is 1, the cost of any component lies between 1 and 2=2/Y, given
that a component is a tree with less than = edges. Therefore,

⌊
cost(� 9)

⌋
2 ∈ {2@ | @ ∈ N0 ∧ 0 ≤ @ ≤

log2 (2=2/Y)}, which means that the algorithm will consider the above sequence in some iteration.
We now turn to c = {.1, . . . , .|d | } constructed for this sequence and show that it is a partition of

�� and that �̃Y conforms to it. For this, note that no set of Z� contains net points of several active
components of �Y , since by Lemma 10 all active terminals in the same set of Z� also belong to the
same component of �Y . Thus, the sets (9 as defined above (and also the corresponding sets * 9)
are pairwise disjoint. This means that, due to the definition of d , any two terminals C ∈ * 9 and
C ′ ∈ * 9 ′ end up in the same set of c if and only if C and C ′ belong to the same component of �̃Y
(as* 9 ⊆ .d (9)).

Now consider a terminal C ∈ �� , which does not lie in any* 9 , and let @ be the index of the active
component�@ of �Y containing C . As X@ =

⌊
cost(�@)

⌋
2, #@ is an Y

:
X@-net of�@ ∩�� . Also, we chose

(@ so that #@ ⊆ *@ . Hence, we get dist(C,*@) ≤ dist(C, #@) ≤ Y
:
X@ , and the definition of ?C implies

?C ≤ @. Now �?C is either equal to �@ , or �@ is connected to the component �?C in the approximate
solution �̃Y according to Rule 2: on one hand, we have �?C ≤ �@ due to the order of the indices, and
at the same time by Lemma 10 we have*?C ⊆ + (�?C) ∩�� , which implies

dist(�@,�?C) ≤ dist(C,�?C) ≤ dist(C,*?C) ≤
Y

:
X?C =

Y

:

⌊
cost(�?C)

⌋
2 .

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

47:16 A. E. Feldmann and M. Lampis

Hence, we can conclude that C lies in the same component as �?C in �̃Y .
In conclusion, adding* 9 to .d (9) and C to .d (?C) for each terminal C not lying in any* 9 , partitions

the terminals according to the components of �̃Y . Hence, c is a partition of the active terminals ��

that is added to Π� , and �̃Y conforms to it. �

Using all of the above, we can finally prove our main theorem, stating that there is an EPAS for
Steiner Forest parameterized by the treewidth.

Proof of Theorem 1. The first steps of our algorithm are to preprocess the given tree decom-
position using Lemma 8 so that it is nice and its height is $ (: log=), and the input graph using
Lemma 9 so that the aspect ratio is bounded (which means that = denotes the number of vertices in
the original input graph). We then compute the partition sets Π� for all bags � using the above
procedure, resulting in partition sets of size (:

Y
log =

Y
)$ (:2/Y) = 2$ (:2

Y
log :

Y
) ·=> (1) . Here, we are

using a well-known Win/Win argument: if :2/Y <
√
log=, then (log=):2/Y = => (1) ; otherwise,

log= ≤ :4/Y2, therefore (:
Y
log =

Y
)$ (:2/Y) = (:

Y
)$ (:2

Y
) .

Since each partition of a set Π� can be computed in polynomial time, and the number of bags of
the nice tree decomposition is $ (:=), this takes 2$ (:2

Y
log :

Y
) · =$ (1) time. Next, we apply Theorem 5

to compute a solution that is at least as good as �̃Y conforming to all Π� , in 2$ (:2
Y
log :

Y
) · =$ (1) time.

Hence, we obtain a (1 + Y)2-approximation � . According to Lemma 9, � can be converted into
a ((1 + Y)2 + Y)-approximation to the original input graph. Since for any Y′ > 0 we may choose
Y = Θ(Y′) so that ((1 + Y)2 + Y) ≤ 1 + Y′, we obtain an EPAS as claimed. �

4 Vertex Cover
In this section, we consider the parameterization by the size of a vertex cover, which is a set (⊆ +
of vertices such that every edge is incident on at least one of the vertices of (. We first present an
easy FPT algorithm based on the dynamic program given by Theorem 5, and then prove that its
run-time dependence on the parameter is asymptotically optimal.

4.1 FPT Algorithm
Our goal in this section is to establish Theorem 4. Let (⊆ + be a given vertex cover of size : for
the input graph � . Rather than specifying a new algorithm, we will instead show how to construct
a tree decomposition with all required properties of Theorem 5 in order to run the corresponding
dynamic program. For this the tree decomposition (), {�8 }8∈+ ())) needs to be nice.

We may assume without loss of generality that the vertex cover (contains no terminal: using
a standard preprocessing procedure, we can replace any terminal C ∈ (of the vertex cover by a
Steiner vertex E and then connect C with E using an edge of cost 0. Note that (is still a vertex
cover for the preprocessed graph and that the complement set � =+ \ (of the vertex cover is an
independent set containing all terminals. To use Theorem 5, we will first construct a (trivial) nice
tree decomposition for � and then add (to each bag.

Note that a terminal C ∈ ' can be part of several demand pairs of the Steiner Forest instance.
Consider the demand graph � with vertex set ' and an edge for each demand pair. Any subset of
' that induces a maximal connected component of � is called a group. Note that every group of
terminals must lie in the same connected component of any Steiner Forest solution. For each
group '′ ⊆ ', we create one leaf node of the tree decomposition for each terminal C ∈ '′ and let
the corresponding bag contain C . We then add a forget node for each such leaf node, which we add
as parent to the leaf with an empty bag. These forget nodes are then connected in a binary tree by
adding join nodes with empty bags (unless the group only contains one terminal in which case

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

Parameterized Algorithms for Steiner Forest in Bounded Width Graphs 47:17

we skip this step). We proceed in the same way for the Steiner vertices of the independent set � ,
that is, if we consider � \ ' to be a group as well we obtain a nice tree decomposition for � \ ' in
which each bag of a leaf node contains one vertex of � \ '. All these trees are then connected using
join nodes with empty bags, to obtain a tree decomposition (of width 0) for the independent set � .
Finally, we simply add the vertex cover (to every bag, which results in a nice tree decomposition
(of width :) for the graph � , such that every terminal lies in a bag of a leaf node (as (∩ ' = ∅).

In the obtained tree decomposition, let+� be the vertices of� contained in all bags in the subtree
rooted at the node associated with �. By construction, +� either contains no terminals (if � is a
bag of the tree decomposition for � \ '), fully contains some groups of ' (if � is the bag of the
root of a tree decomposition for a group '′ ⊆ ', or if � is a bag of a join node used to connect
the tree decompositions for groups in the last step), or contains some strict subset of only one
group of ' (if � is a bag of a non-root node of a tree decomposition for a group '′ ⊆ '). If no
terminals lie in +� , then clearly there are no active terminals for bag �. However, this is also the
case if +� fully contains some groups of '. Hence, in both these cases, the set Π� of permutations
of active terminals is empty. Whenever +� contains a strict subset of only one group '′ ⊆ ', the
active terminals �� of � are only from this set, i.e., �� ⊆ '′. Thus, we can add the trivial partition
c = {��} as the only partition of Π� , since all terminals of '′ belong to the same component of
any solution, including the optimum.

Clearly, the optimal solution conforms with these sets Π� of permutations, and the total number
? of permutations is at most the number of groups, which is at most =/2. Hence, by Theorem 5, we
obtain the algorithm of Theorem 4.

4.2 Run-Time Lower Bound
Our goal here is to present a reduction showing that the algorithm we have given for Steiner
Forest parameterized by vertex cover is essentially optimal, assuming the ETH. Recall that the ETH
is the hypothesis that 3-SAT on instances with = variables cannot be solved in time 2> (=) . We will
give a reduction that given a 3-SAT instance q , produces an equivalent Steiner Forest instance
with vertex cover at most $ (=/log=). We stress that our reduction works even for unweighted
instances. Note that our goal is to obtain an instance with vertex cover : = $ (=/log=), because
in this case an algorithm with parameter dependence :> (:) would lead to a run time of 2> (=) ,
establishing the lower bound.

Theorem 17. If there exists an algorithm which, given an unweighted Steiner Forest instance on
= vertices with vertex cover : , finds an optimal solution in time 2> (: log:)=$ (1) , then the ETH is false.

Proof. We present a reduction from 3-SAT. Before we proceed, we would like to add to our
formula the requirement that the variable set comes partitioned into three sets in a way that each
clause contains at most one variable from each set. It is not hard to show that this does not affect
the complexity of the instance much, as we demonstrate in the following claim.

Claim 18. Suppose that there exists an algorithm that takes as input a 3-SAT instance q on =
variables and a partition of the variables into three sets of equal size, such that each clause contains at
most one variable from each set and decides if q is satisfiable in time 2> (=) . Then, the ETH is false.

Proof. Suppose we start with an arbitrary 3-SAT formulak on = variables G1, . . . , G= . Under the
ETH, it should be impossible to decide if k is satisfiable in time 2> (=) . We will edit k to produce
the partition of the variables into three sets. For each variable G8 , we introduce two new variables
G ′8 , G

′′
8 and add to the formula the clauses (G8 → G ′8) ∧ (G ′8 → G ′′8) ∧ (G ′′8 → G8). The variables ofk

can now be partitioned into three sets - = {G1, . . . , G=}, - ′ = {G ′1, . . . , G ′=}, and - ′′ = {G ′′1 , . . . , G ′′= }.

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

47:18 A. E. Feldmann and M. Lampis

Furthermore, because of the clauses we added it is not hard to see that in any satisfying assignment
G8 , G

′
8 , and G

′′
8 must be given the same value. We then repeat the following: as long as there exists

a clause that contains more than one variable from - , arbitrarily pick a literal of this clause that
contains G8 ∈ - and replaces in it G8 by G ′8 or G ′′8 , in a way that the clause contains at most one
variable from each group. The new formula we have constructed in this way is equisatisfiable tok ,
has =′ =$ (=) variables and $ (= +<) clauses, and its variables are partitioned into three sets so
that each clause contains at most one variable from each set. Therefore, the new formula cannot be
solved in time 2> (=′) under the ETH. �

In the remainder, we will then assume that we are given a formula q on 3= variables which are
partitioned into three sets of size = as specified by the previous claim. Without loss of generality,
suppose that = is a power of 4 (this can be achieved by adding dummy variables). Note that this
ensures that log=

2 and
√
= are both integers.

We construct an equivalent instance of Steiner Forest as follows: Let ! =

⌈
=

log2 =

⌉
. We begin by

constructing 8 choice gadgets, i.e., for 8 ∈ {1, . . . , 3 log=} we make:

—2! left vertices, labeled ℓ89 , for 9 ∈ {0, . . . , 2! − 1}.
—2! right vertices, labeled A 89 , for 9 ∈ {0, . . . , 2! − 1}.
—
√
= middle vertices, labeled<8

9 , for 9 ∈ {0, . . . ,
√
= − 1}.

—We connect all middle vertices to all left and right vertices, that is, for all 9 ∈ {0, . . . , 2! − 1}
and 9 ′ ∈ {0,

√
= − 1} we connect ℓ89 and A

8
9 to<

8
9 ′ .

—For each 9 ∈ {0, . . . , 2! − 1} we add a demand from ℓ89 to A
8
9 .

Notice that the graphwe have constructed so far contains 3 log= choice gadgets, each of which has
4! +

√
= =$ (=/log2 =) vertices, so the graph at the moment contains $ (=/log=) vertices in total.

Before we proceed, let - = -0 ∪ -1 ∪ -2 be the set of 3= variables of q that was given to us
partitioned into three sets of size =. We partition - into 3 log= groups -1, . . . , -3 log= in a way
that (i) |-8 | ≤ d=/log=e for all 8 ∈ {1, . . . , log=} and (ii) for all 8 ∈ {1, . . . , log=} we have -8 is
contained in one of -0, -1, -2 . This can be done by taking the = variables of -0 and partitioning
them arbitrarily into groups -1, . . . , -log= of size as equal as possible (therefore at most d=/log=e),
and we proceed similarly for -1, -2 . Rename the variables of q so that for each 8 we have that
-8 = {G (8,0) , . . . , G (8,d=/log=e−1) }.

To give some intuition, we will now say that, for 8 ∈ {1, . . . , 3 log=}, the choice gadget 8 rep-
resents the variables of the set -8 . In particular, for each 9 ∈ {0, . . . 2! − 1}, we will say that
the way that the demand ℓ89 → A 89 was satisfied encodes the assignment to the log=

2 variables
{G (8, 9 log=2) , . . . , G (8, (9+1) log=2 −1) }. More precisely, in our intended solution the demand ℓ89 → A 89 is sat-
isfied by connecting both terminals to a common middle vertex<8

9 ′ . We can infer the assignment
to the log=

2 variables this represents simply by writing down the binary representation of 9 ′, which
is a number between 0 and

√
= − 1, hence a number with log=

2 bits. Note that this way we represent
2! · log=2 ≥

⌈
=

log=

⌉
variables, that is, we can represent the assignment to all the variables of the group.

Armed with this intuition, we can now complete our construction. For each clause 2 , we construct
two new vertices, 21, 22 and add a demand from 21 to 22. For each literal contained in 2 , suppose
that the literal involves the variable G (8, 9 log=2 +U) for 8 ∈ {1, . . . , 3 log=}, 9 ∈ {0, . . . , 2! − 1}, U ∈

{0, . . . , log=2 − 1}. We then connect 21 to ℓ89 . Furthermore, if G (8, 9 log=2 +U) appears positive in 2 , we
connect 22 to all<8

9 ′ such that the binary representation of 9 ′ has a 1 in position U . If on the other

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

Parameterized Algorithms for Steiner Forest in Bounded Width Graphs 47:19

hand G (8, 9 log=2 +U) appears negative in 2 , we connect 22 to all<8
9 ′ such that the binary representation

of 9 ′ has a 0 in position U . In other words, we connect 22 to all the middle vertices to which ℓ89 could
be connected and are consistent with an assignment that satisfies 2 using the current literal. After
repeating the above for all literals of each clause, the construction is complete. We set the target
cost to be � = 2< + 12! log=.

Before we argue about the correctness of the reduction, let us observe that if the reduction
preserves the satisfiability of q , then we obtain the theorem, because the instance we constructed
has vertex cover : = $ (=/log=) and size polynomial in the size of q . Indeed, as we argued the
choice gadgets have$ (=/log=) vertices in total, and all further edges we added have an endpoint in
a choice gadget. If there was an algorithm solving the new instance in time :> (:)=$ (1) , this would
give a 2> (=) algorithm to decide q .

Regarding correctness, let us first observe that if q is satisfiable, we can obtain a valid solution
using the intuitive translation from assignments to choice gadget solutions we gave above. In
particular, for each 8 ∈ {1, . . . , 3 log=} and 9 ∈ {0, . . . , 2! − 1}, we consider the assignment to
variables {G (8, 9 log=2) , . . . , G (8, (9+1) log=2 −1) } as a binary number, which must have a value 9 ′ between
0 and

√
= − 1. We then connect both ℓ89 , A

8
9 to<

8
9 ′ . Repeating this satisfies all demands internal to

choice gadgets and uses 3 log= ·4! = 12! log= edges. Consider now a clause 2 and the demand from
21 to 22. Since we started with a satisfying assignment, 2 must contain a true literal, say involving
the variable G (8, 9 log=2 +U) . We select the edge from 21 to ℓ89 . Furthermore, we observe that 22 must be a
neighbor of all vertices<8

9 ′ such that the bit in position U of the binary representation of 9 ′ agrees
with the value of G (8, 9 log=2 +U) . Since ℓ

8
9 is already connected to such a<8

9 ′ , we select the edge from
that vertex to 22 to satisfy the demand for this clause. We have therefore spent 2< further edges
for the clause demands and have used a budget of exactly �.

For the converse direction, suppose we have a solution of cost �. We first observe that each
vertex A 89 must be connected to a middle vertex<8

9 ′ , since all right vertices are terminals, but such
vertices only have edges connecting them to middle vertices. Recall that, for each 8, 9 , the left vertex
ℓ89 must be in the same component of the solution as A 89 , since there is a demand between these two
vertices. Hence, each ℓ89 is in the same component of the solution as some<8

9 ′ . We now slightly
edit the solution as follows: suppose there exists a vertex ℓ89 which is not directly connected in the
solution to any middle vertex<8

9 ′ . Since this vertex is in the same component as one such vertex
<8

9 ′ , we add to the solution the edge connecting them, and since this creates a cycle, remove from
the solution another edge incident on ℓ89 . Doing this repeatedly ensures that each ℓ89 is connected to
a middle vertex<8

9 ′ in the solution without increasing the total cost.
We now observe that since each ℓ89 and each A 89 is connected to at least one middle vertex<8

9 ′ in
the solution, this already uses a cost of 3 log= ·4! = 12! log=. Furthermore, for each clause we have
constructed two terminals, each of which must use at least one of its incident edges, giving an extra
cost of 2<. Since our budget is exactly 2< + 12! log=, we conclude that each terminal constructed
for a clause is incident on exactly one edge, and each ℓ89 and each A 89 is connected to exactly one
middle vertex. Crucially, these observations imply the following fact: if for some 8, 9, 9 ′ we have
that ℓ89 and<

8
9 ′ are in the same component of the solution, then the edge connecting ℓ89 and<

8
9 ′ is

part of the solution. To see this, observe that any path connecting ℓ89 and<
8
9 ′ that is not a direct

edge would need to have length at least 3. However, no clause terminal can be an internal vertex of
such a path, since clause terminals have degree 1 in the solution. Furthermore, if we remove clause
terminals from the graph, left and right vertices also have degree 1 in the remaining solution, so

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

47:20 A. E. Feldmann and M. Lampis

such vertices also cannot be internal in the path. Finally, middle vertices are an independent set, so
it is impossible for all internal vertices of a path of length at least 3 to be middle vertices.

Armed with the observation that ℓ89 and<
8
9 ′ are in the same connected component of the solution

if and only if they are directly connected, we are ready to extract a satisfying assignment from the
Steiner forest. For each 8, 9 , if ℓ89 is connected to<8

9 ′ we write 9 ′ in binary and assign to variable
G (8, 9 log=2 +U) , for U ∈ {0, . . . , log=2 − 1} the value in position U of the binary representation of 9 ′. We
claim that this assignment must be satisfying. Indeed, consider the clause 2 , and the terminals 21, 22
which represent it. Since these terminals have a demand, they must be in the same component.
Because 21 has at most three neighbors which are in different choice gadgets (as each clause contains
variables from distinct groups), we can see that 21 must be connected to some ℓ89 and 22 to some<8

9 ′

in the solution, such that ℓ89 and<
8
9 ′ are in the same component, and are therefore directly connected.

But if ℓ89 is directly connected to<8
9 ′ , this means that the assignment we extracted from ℓ89 gives a

value to a variable G (8, 9 log=2 +U) which satisfies the clause 2 , hence we have a satisfying assignment. �

5 Feedback Edge Set
A feedback edge set of a graph is a set of edges that when removed renders the graph acyclic. It is
well known that if � is a connected undirected graph on = vertices and< edges, then all minimal
feedback edge sets of� have size : =<−= + 1. Indeed, such a set can be constructed in polynomial
time by repeatedly locating a cycle in the graph and selecting an arbitrary edge of the cycle to
insert into the feedback edge set.

In this section, we will consider Steiner Forest parameterized by the feedback edge set of the
input graph, which we will denote by : . Unlike the vertex cover section, here our main result is
positive: we show that Steiner Forest can be solved optimally in time 2$ (:)=$ (1) , that is, in time
single-exponential in the parameter. Since we are able to achieve a single-exponential dependence,
it is straightforward to see that this is optimal under the ETH.

Theorem 19. If there is an algorithm solving Steiner Tree in time 2> (:)=$ (1) , where : is the
feedback edge set of the input, then the ETH is false.

Proof. The proof follows from the sparsification lemma of Impagliazzo et al. [2001] composed of
the standard reduction proving that Steiner Tree is NP-complete. We sketch the details. Suppose
we are given a 3-SAT formula q with = variables and< clauses. The sparsification lemma shows
that in order to disprove the ETH it is sufficient to show that we can decide if q is satisfiable in time
2> (=) under the restriction that< = Θ(=). We edit q to obtain an equisatisfiable formula q ′ where
every variable appears at most three times (for each variable G appearing 5 > 3 times, we replace
each occurrence of G with 5 fresh variables G1, . . . , G 5 and add the clauses (G1 → G2) ∧ (G2 →
G3) ∧ . . . (G 5 → G1)). By equisatisfiable we mean that q ′ is satisfiable if and only if q is. The new
formula q ′ has =′ =$ (=) variables and<′ =$ (=) clauses. We now execute the chain of reductions
showing that Steiner Tree is NP-hard (e.g., from [Karp, 1975]), which produce an instance on a
graph � = (+ , �) with |� | =$ (<′), therefore, |� | =$ (=). The new instance has feedback edge set
size : < |� |, therefore an algorithm solving the new instance in time 2> (:) |+ |$ (1) would falsify the
ETH. �

Let us now proceed to the detailed presentation of the algorithm. Suppose that we are given a
budget 1 and we want to decide if there exists a Steiner Forest solution � such that cost(�) ≤ 1.
We start by applying a simple reduction rule.

Rule 3: Suppose we have a Steiner Forest instance on graph � with weight function F and
budget 1, such that a vertex D ∈ + has degree 1. If D ∉ ', then delete D. If D ∈ ', let E be the

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

Parameterized Algorithms for Steiner Forest in Bounded Width Graphs 47:21

unique neighbor of D. Then, set 1′ := 1 −F (DE), delete D from the graph and the demand
{D, E} from � if it exists, and replace, for each G ∈ + \ {D, E} such that {D, G} ∈ � the demand
{D, G} with the demand {E, G}.

Lemma 20. Rule 3 is safe.

Proof. If D ∉ ', then no optimal solution contains the edge DE , so it is safe to delete D. If D ∈ ',
then all feasible solutions contain the edge DE . �

Observe that if we apply Rule 3 exhaustively, then the minimum degree of the graph is 2. As we
show next, relatively few vertices can have higher degree.

Lemma 21. Suppose we have a Steiner Forest instance with feedback edge set of size: andminimum
degree at least 2. Then, � contains at most 2: vertices of degree at least 3.

Proof. We observe that if our graph has a feedback edge set of size : , then< = : + = − 2 , where
2 is the number of connected components of � . This implies that

∑
E∈+ 3 (E) = 2< = 2: + 2= − 22 .

Let +2 be the set of vertices of degree exactly 2 and +3 =+ \+2 be the set of vertices of degree at
least 3. We have

∑
E∈+ 3 (E) ≥ 2|+2 | + 3|+3 | = 2= + |+3 |. We conclude that |+3 | ≤ 2: − 22 . �

In the remainder, we will assume that we have a Steiner Forest instance � = (+ , �) with a
feedback edge set � ⊆ � of size : , to which Rule 3 can no longer be applied. We will say that a
vertex E is special if E is incident on an edge of � or E has degree at least 3. By Lemma 21, we know
that � contains at most 4: special vertices.

We define a topological edge (topo-edge for short) as follows: a path % in � is a topological edge
if the two endpoints of % are special vertices and all internal vertices of % are non-special. Note that
by this definition, all edges of � form topo-edges, since the endpoints of such edges are special. We
observe the following:

Lemma 22. Suppose we have a graph � with feedback edge set of size : and minimum degree at
least 2. Then, � contains at most 5: topological edges.

Proof. Let +B be the set of special vertices and +C =+ \+B . If we have more than 5: topological
edges in � , then

∑
E∈+B 3 (E) ≥ 10: . This is because each topological edge contributes at least 2

in the sum
∑

E∈+B 3 (E). On the other hand, if 2 is the number of connected components of � , we
have 2= + 2: − 22 = 2< =

∑
E∈+ 3 (E) =

∑
E∈+B 3 (E) +

∑
E∈+C 3 (E) =

∑
E∈+B 3 (E) + 2|+C |. However,

|+C | ≥ = − 4: by Lemma 21 and the fact that at most 2: vertices are incident on � . Hence,
2= + 2: − 22 ≥ ∑

E∈+B 3 (E) + 2= − 8: . This implies that
∑

E∈+B 3 (E) < 10: . Hence, it is impossible to
have more than 5: topological edges. �

We are now ready to state the main algorithmic result of this section.

Theorem 23. There is an algorithm that solves Steiner Forest on instances with = vertices and a
feedback edge set of size : in 2$ (:)=$ (1) time.

Proof. Call the set of special vertices +B and let +C =+ \+B . For the rest of this proof and for the
sake of the analysis, fix an optimal solution �★.

To begin, we guess which of the 5: topological edges according to Lemma 22 are fully used in the
optimal solution. To be more precise, we will say that a topo-edge % is fully used in �★ if all edges
of the path % are contained in �★. This gives 25: possibilities. In the remainder, we will assume that
we have correctly guessed the set of topo-edges which are fully used in �★.

We now observe that for any two vertices D, E ∈ +B we have enough information to deduce
whether D, E are in the same connected component of �★. More precisely, we construct an auxiliary

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

47:22 A. E. Feldmann and M. Lampis

graph �B with vertex set +B that contains an edge between two vertices D, E ∈ +B if there exists a
fully used topo-edge whose endpoints are D, E . We now claim that two vertices D, E ∈ +B are in the
same component of �★ if and only if D, E are in the same connected component of�B . Indeed, if two
vertices D, E are in the same component of �B , then clearly there is a path connecting them in �★
going through fully used topo-edges; conversely, if D, E are in the same component of �★ and the
path connecting them goes through the special vertices D1 = D,D2, . . . , Dℓ = E (and all other vertices
are non-special), then the path D1, . . . , Dℓ also exists in�B , as the topo-edge connecting D8 , D8+1 must
be fully used.

Because of the above, we can now assume that we have a partition d of+B such that D, E are in the
same set of d if and only if D, E are in the same connected component of �★. Notice that this implies
that we can remove from the instance all demands {D, E} ∈ � such that D, E ∈ +B : if D, E are in the
same set of d the demand is automatically satisfied by our guess of the fully used topo-edges; while
ifD, E are in distinct sets of d , we know that our guess is incorrect and we reject the current instance.
Every remaining demand of our instance is therefore incident on at least one non-special vertex.

What remains is to decide for topo-edges which are not fully used, which of their incident edges
belong in �★. Note that this is trivial for topo-edges consisting only of a single edge, since fully
using such a topo-edge is equivalent to placing the corresponding edge in the solution. We therefore
focus on topo-edges which contain at least one internal (non-special) vertex.

For this we proceed in several steps. First, suppose we have a non-fully-used topo-edge % whose
endpoints are adjacent to D, E ∈ +B such that D, E are in the same component of �★. We edit the
instance so that demands with one endpoint in the interior of % also have their other endpoint in
% . More precisely, for each demand {G,~} ∈ � such that G is an internal vertex of % and ~ ∉ % ,
we remove {G,~} from � and replace it with the demands {G,D} and {~,D}. It is not hard to see
that this is safe, because any path satisfying the demand {G,~} would have to go either through D
or through E , but D, E are in the same component of �★ thanks to other, fully used topo-edges, so
routing the demand through D or E is the same.

Consider then a topo-edge % whose endpoints D, E are in the same component of �★ and where
all demands with one endpoint in an internal vertex of % have the other endpoint in % . We simplify
the instance by branching: select an edge 4 ∈ % , delete 4 from the instance, and apply Rule 3
exhaustively on internal vertices of % , until all such vertices are removed. Since we have guessed
that % is not fully used, at least one of the instances we produced is equivalent to the original, that
is, at least one choice of edge to delete indeed deletes an edge not used by the optimal solution. It
may seem that since we are branching on = possibilities, this branching will lead to a running time
of =: . However, we observe that after removing any edge of % and exhaustively applying Rule 3, we
obtain instances which have (i) the same graph, as all internal vertices of % have been deleted and
all other vertices are unchanged, (ii) the same set of demands, as all demands with one endpoint
in an internal vertex of % have either been removed or replaced with the demand {D, E} (which
is satisfied by the fully used topo-edges, so can be removed) and other demands are unchanged.
Hence, among the at most = instances this branching produces, it suffices to select the one with
the maximum remaining budget and solve that, to decide if the original is a Yes instance. In other
words, the branching procedure of this paragraph is a polynomial-time reduction rule which allows
us to eliminate all topo-edges whose endpoints are in the same component of �★.

In the remainder, we thus assume that every topo-edge % that is not fully used has endpoints
D, E ∈ +B which are in distinct components of �★. Next, we deal with the case of “internal” demands.
Suppose that there exists a topo-edge % with endpoints D, E ∈ +B that contains an internal demand,
that is, there existF1,F2 ∈ % \ {D, E} such that {F1,F2} ∈ � . Then, all edges in the path fromF1 to
F2 in % must belong in �★, because every other solution that connectsF1 toF2 would put D, E in
the same component. We can therefore contract all the edges of the path fromF1 toF2 and adjust

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

Parameterized Algorithms for Steiner Forest in Bounded Width Graphs 47:23

our budget and our demands accordingly: we decrease our budget by the total cost of the edges
of the path fromF1 toF2, we remove all demands that have both endpoints in that path, and for
demands that have one endpoint in that path, we replace that endpoint by the vertex that results
from the contraction of the path.

We now arrive at the case where the endpoints of each topo-edge are adjacent to vertices from
distinct components of �★ and demands with one endpoint in the interior of a topo-edge have the
other endpoint outside of the topo-edge or in +B .

We distinguish several cases:

(1) There exists a topo-edge % adjacent to D, E ∈ +B , an internal vertexF ∈ % \ {D, E} and a vertex
F ′ ∈ +B such that {F,F ′} ∈ � . IfF ′ is in the same component of �★ as D (respectively E), we
include in the solution all edges in the path in % fromF to D (respectively E), contract the
selected edges and update our budget and demands accordingly, as above. IfF ′, D, E are in
distinct components of �★, then we conclude that the current guess is incorrect and reject
the instance. Correctness of these actions follows if we assume that the partition d of +B we
have computed corresponds to the connected components of �★, because in the latter case
any solution that connectsF toF ′ will placeF ′ in the same component as one of D, E , and
in the former case, we are forced to use the selected path, as otherwise D, E would end up in
the same component of �★.

(2) There exist two topo-edges %1, %2 adjacent to D1, E1 ∈ +B and D2, E2 ∈ +B , respectively, and
vertices F1 ∈ %1 and F2 ∈ %2 such that {F1,F2} ∈ � . If D1, E1, D2, E2 are in four distinct
components of �★, we reject the current guess, as it is impossible to placeF1,F2 in the same
component without also placing some of D1, E1, D2, E2 in the same component.

(3) If D1, D2, E1, E2,F1,F2 are as previously but D1, E1, D2, E2 are in three distinct components of �★,
we can assume without loss of generality that D1, D2 are in the same component. We replace
the demand {F1,F2} with the demands {F1, D1} and {F2, D2} and reduce to a previous case.

Finally, if none of the previous cases apply we have arrived at an instance where all remaining
demands {F1,F2} ∈ � satisfy that F1,F2 belong in two distinct topo-edges %1, %2, which are
incident on D1, E1 ∈ +B and D2, E2 ∈ +B , respectively, such that D1, D2 are in the same component of
�★, and so are E1, E2, but the component of D1, D2 is distinct from the component of E1, E2. We will
find the best way to satisfy such demands by solving an auxiliary problem.

Fix two sets�1,�2 of the partition d of+B which we have computed and consider every topo-edge
% with one endpoint in �1 and the other in �2. We construct a new instance of Steiner Forest
on a graph �2 by taking the union of all such topo-edges and then contracting all vertices of �1

into a single vertex 21 and all vertices of �2 into a single vertex 22. We include in the new instance
all demands with at least one endpoint on one of the internal vertices of the topo-edges we used;
note that such demands also have the second endpoint in �2. Let �1 be the instance induced from
the original graph if we delete all internal topo-edge vertices which appear in �2. Note that every
demand of the original instance appears in either �1 or �2.

We will now state two claims:

Claim 24. If the optimal Steiner Forest solution on the instance �2 constructed above has cost 12,
then we have the following:� has a solution of cost at most 1 consistent with the guess d if and only if
�1 has a solution consistent with the guess d of cost at most 1 − 12.

Claim 25. The optimal solution to �2 can be computed in polynomial time by a reduction to the
Min Cut problem.

Let us explain why the claims are sufficient to conclude our algorithm. We consider every pair
of sets �1,�2 ∈ d (of which there are $ (:2)) and for each such pair the claims imply that we can

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

47:24 A. E. Feldmann and M. Lampis

decompose the instance into two instances �1,�2, such that �2 can be solved in polynomial time,
and using the optimal value we calculate for�2 we can reduce solving� to solve�1. Repeating this
for all pairs results in an instance with no demands. Putting everything together, we have that for
one of 25: possible guesses (on which topo-edges are fully used) we apply a series of polynomial-
time reduction rules that allow us to decompose the instance into $ (:2) polynomial-time solvable
sub-problems. We therefore obtain an exact algorithm running in 2$ (:)=$ (1) time. �

Proof of Claim 24. If �1 has a solution of cost 1 − 12 consistent with d , then we can form a
solution for � by taking the union of the solution for �1 with an optimal solution for �2. This will
have cost at most 1. Furthermore, recall that all demands of � appear in either �1 or �2. Demands
that appear in �1 are clearly satisfied by the new solution in � , while demands that appear in �2

are satisfied because the solution in �1 is consistent with d , so it contains paths between any two
D, E ∈ �1 for each �1 ∈ d .

For the converse direction, suppose � has a solution of cost 1 consistent with d . We observe
that this solution restricted to �2 is a feasible solution (which furthermore places 21, 22 in distinct
components), hence must have cost at least 12. Therefore, the solution restricted to edges of �1 has
cost at most 1 − 12. Because all topo-edges included in �2 are topo-edges which are not fully used
(according to the guess that gave us d), the solution we construct in �1 is still consistent with d
and satisfies all demands. �

Proof of Claim 25. Before we begin, we perform a basic simplification step. If the instance
contains a Steiner vertex E of degree 2 (that is, a vertex not incident on any demand), with neighbors
D1, D2, then we remove E from the instance and add an edge D1D2 with weight equal to F (ED1) +
F (ED2). It is not hard to see that the new instance is equivalent (E would only be used in a solution
if both its incident edges are used), and we now know that all vertices of degree 2 are terminals.

Recall that we have a graph �2 with two special vertices 21, 22 such that the graph consists of a
collection of parallel paths with endpoints 21, 22, and furthermore, every demand is between two
internal vertices of distinct paths. For the purposes of the larger algorithm, we are interested in
computing the best solution where 21, 22 are in distinct components, but for the sake of completeness
let us briefly note that �2 can be solved to optimality without this constraint, as the best solution
where 21, 22 are in the same component is just a minimum cost spanning tree of �2 (here we are
using the fact that all internal vertices of all paths are terminals).

In order to compute the best solution that places 21, 22 into distinct components, we will reduce
the problem to Min Cut. Let # be a sufficiently large value, for example, set # to be the sum of
all edge weights of the instance. We construct a Min Cut instance on the same graph but with
weight functionF ′ (4) = # −F (4). Furthermore, for allF1,F2 such that {F1,F2} ∈ � we add an
edgeF1F2 and setF ′ (F1F2) = =2# .

Our claim is now that if �2 is a set of edges that gives a minimum weight 21 − 22 cut in the new
instance, then the complement of �2 is a minimum cost Steiner Forest solution for �2 that places
21, 22 in distinct components.

To prove the claim, suppose that �2 is a minimum-weight 21 − 22 cut in the new graph. We
observe that �2 cannot include any of the edges we added between the endpoints of demands
(F1,F2) ∈ � , as such edges have a very high cost (deleting every other edge would be cheaper).
Furthermore, because all edges have positive weight and the cut �2 is minimal, removing �2 from
the graph must leave exactly two connected components, one containing each of 21, 22. Hence, for
each (F1,F2) ∈ � , if we keep in the graph all edges not in �2 ,F1,F2 are in the same component,
and we have a feasible Steiner Forest solution for all the demands. In the other direction, consider
an optimal Steiner Forest solution that places 21, 22 in distinct components, and let � ′2 be the set

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

Parameterized Algorithms for Steiner Forest in Bounded Width Graphs 47:25

of edges of �2 not included in the solution. � ′2 must be a valid 21 − 22 cut, because it contains at
least one edge from each topological edge connecting 21 to 22 (otherwise 21, 22 would be in the
same component); and as each demand (F1,F2) ∈ � is satisfied, therefore,F1,F2 are either in the
component of 21 or in the component of 22. We have therefore established a one-to-one mapping
between optimal minimum cuts and optimal Steiner Forest solutions and conclude the claim
by observing that by minimizing the weight of �2 in the Min Cut instance, we are maximizing
the weight of non-selected edges in the Steiner Forest instance (thanks to the modified weight
function), hence we are selecting an optimal Steiner Forest solution. �

References
Ajit Agrawal, Philip Klein, and Ramamoorthi Ravi. 1991. When trees collide: An approximation algorithm for the generalized

Steiner problem on networks. In Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, 134–144.
Brenda S. Baker. 1994. Approximation algorithms for NP-complete problems on planar graphs. Journal of the ACM 41, 1

(1994), 153–180.
Yair Bartal and Lee-Ad Gottlieb. 2021. Near-linear time approximation schemes for Steiner tree and forest in low-dimensional

spaces. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, 1028–1041.
MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Dániel Marx. 2011. Approximation schemes for Steiner

forest on planar graphs and graphs of bounded treewidth. Journal of the ACM 58, 5 (2011), 1–37.
Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. 2007. Fourier meets Möbius: Fast subset convolution.

In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, 67–74.
Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. 2015. Deterministic single exponential time

algorithms for connectivity problems parameterized by treewidth. Information and Computation 243 (2015), 86–111.
Hans L. Bodlaender, Matthew Johnson, Barnaby Martin, Jelle J. Oostveen, Sukanya Pandey, Daniel Paulusma, Siani Smith,

and Erik Jan van Leeuwen. 2023. Complexity framework for forbidden subgraphs IV: The Steiner forest problem.
arXiv:2305.01613. Retrieved from https://arxiv.org/abs/2305.01613

Hans L. Bodlaender and Torben Hagerup. 1998. Parallel algorithms with optimal speedup for bounded treewidth. SIAM
Journal on Computing 27, 6 (1998), 1725–1746. DOI: https://doi.org/10.1137/S0097539795289859

Glencora Borradaile, Philip Klein, and Claire Mathieu. 2009. An O (n log n) approximation scheme for Steiner tree in planar
graphs. ACM Transactions on Algorithms 5, 3 (2009), 1–31.

Jarosław Byrka, Fabrizio Grandoni, Thomas Rothvoss, and Laura Sanità. 2013. Steiner tree approximation via iterative
randomized rounding. Journal of the ACM 60, 1 (2013), 1–33.

Xiuzhen Cheng and Ding-Zhu Du. 2013. Steiner Trees in Industry . Vol. 11. Springer Science & Business Media.
Rajesh Chitnis, Andreas Emil Feldmann, and PasinManurangsi. 2021. Parameterized approximation algorithms for bidirected

Steiner network problems. ACM Transactions on Algorithms 17, 2 (2021), 1–68.
Miroslav Chlebík and Janka Chlebíková. 2008. The Steiner tree problem on graphs: Inapproximability results. Theoretical

Computer Science 406, 3 (2008), 207–214.
Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michał Pilipczuk, and

Saket Saurabh. 2015. Parameterized Algorithms. 4. Vol. 5. Springer.
Stuart E. Dreyfus and Robert A. Wagner. 1971. The Steiner problem in graphs. Networks 1, 3 (1971), 195–207.
Ding-Zhu Du, J. M. Smith, and J. Hyam Rubinstein. 2013. Advances in Steiner Trees. Vol. 6. Springer Science & Business

Media.
Pavel Dvořák, Andreas E. Feldmann, Dušan Knop, Tomáš Masařík, Tomáš Toufar, and Pavel Veselý. 2021. Parameterized

approximation schemes for Steiner trees with small number of Steiner vertices. SIAM Journal on Discrete Mathematics
35, 1 (2021), 546–574.

David Eisenstat, Philip Klein, and Claire Mathieu. 2012. An efficient polynomial-time approximation scheme for Steiner
forest in planar graphs. In Proceedings of the 33rd Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 626–638.

Andreas Emil Feldmann, Karthik C. Karthik C. S, Euiwoong Lee, and Pasin Manurangsi. 2020. A survey on approximation
in parameterized complexity: Hardness and algorithms. Algorithms 13, 6 (2020), 146.

Bernhard Fuchs, Walter Kern, D. Molle, Stefan Richter, Peter Rossmanith, and Xinhui Wang. 2007. Dynamic programming
for minimum Steiner trees. Theory of Computing Systems 41, 3 (2007), 493–500.

Elisabeth Gassner. 2010. The Steiner forest problem revisited. Journal of Discrete Algorithms 8, 2 (2010), 154–163.
Tatsuya Gima, Tesshu Hanaka, Masashi Kiyomi, Yasuaki Kobayashi, and Yota Otachi. 2022. Exploring the gap between

treedepth and vertex cover through vertex integrity. Theoretical Computer Science 918 (2022), 60–76. DOI: https://doi.
org/10.1016/J.TCS.2022.03.021

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

https://arxiv.org/abs/2305.01613
https://arxiv.org/abs/2305.01613
https://doi.org/10.1137/S0097539795289859
https://doi.org/10.1016/J.TCS.2022.03.021
https://doi.org/10.1016/J.TCS.2022.03.021

47:26 A. E. Feldmann and M. Lampis

Anupam Gupta and Jochen Könemann. 2011. Approximation algorithms for network design: A survey. Surveys in Operations
Research and Management Science 16, 1 (2011), 3–20.

Frank K. Hwang and Dana S. Richards. 1992. Steiner tree problems. Networks 22, 1 (1992), 55–89.
Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which problems have strongly exponential complexity?

Journal of Computer and System Sciences 63, 4 (2001), 512–530. DOI: https://doi.org/10.1006/JCSS.2001.1774
Richard M. Karp. 1975. On the computational complexity of combinatorial problems. Networks 5, 1 (1975), 45–68.
Lawrence T. Kou, George Markowsky, and Leonard Berman. 1981. A fast algorithm for Steiner trees. Acta Informatica 15

(1981), 141–145. DOI: https://doi.org/10.1007/BF00288961
Michael Lampis, Nikolaos Melissinos, and Manolis Vasilakis. 2023. Parameterized max min feedback vertex set. In 48th

International Symposium on Mathematical Foundations of Computer Science (MFCS ’23)(LIPIcs). Schloss Dagstuhl—Leibniz-
Zentrum für Informatik, 1–15. DOI: https://doi.org/10.4230/LIPICS.MFCS.2023.62

Michael Lampis and Manolis Vasilakis. 2023. Structural parameterizations for two bounded degree problems revisited. In
31st Annual European Symposium on Algorithms (ESA ’23) (LIPIcs). Schloss Dagstuhl—Leibniz-Zentrum für Informatik,
1–16. DOI: https://doi.org/10.4230/LIPICS.ESA.2023.77

Ivana Ljubic. 2021. Solving Steiner trees: Recent advances, challenges, and perspectives. Networks 77, 2 (2021), 177–204.
Jesper Nederlof. 2009. Fast polynomial-space algorithms using Möbius inversion: Improving on Steiner tree and related

problems. In International Colloquium on Automata, Languages, and Programming. S. Albers, A. Marchetti-Spaccamela,
Y. Matias, S. Nikoletseas, and W. Thomas (Eds.), Springer, 713–725.

Satish B. Rao and Warren D. Smith. 1998. Approximating geometrical graphs via “spanners” and “banyans”. In Proceedings
of the 13th Annual ACM Symposium on Theory of Computing, 540–550.

R. Ravi. 1994. A primal-dual approximation algorithm for the Steiner forest problem. Information Processing Letters 50, 4
(1994), 185–189.

Hao Tang, Genggeng Liu, Xiaohua Chen, and Naixue Xiong. 2020. A survey on Steiner tree construction and global routing
for vlsi design. IEEE Access 8 (2020), 68593–68622.

Stefan Voß. 2006. Steiner tree problems in telecommunications. In Handbook of Optimization in Telecommunications.
Mauricio G. C. Resende and Panos M. Pardalos (Eds.), Springer, 459–492.

David P. Williamson and David B. Shmoys. 2011. The Design of Approximation Algorithms. Cambridge University Press.

Received 2 September 2024; revised 4 July 2025; accepted 5 July 2025

ACM Transactions on Algorithms, Vol. 21, No. 4, Article 47. Publication date: September 2025.

https://doi.org/10.1006/JCSS.2001.1774
https://doi.org/10.1007/BF00288961
https://doi.org/10.4230/LIPICS.MFCS.2023.62
https://doi.org/10.4230/LIPICS.ESA.2023.77

	Abstract
	1 Introduction
	1.1 Overview of Techniques
	1.2 Related Work

	2 Preliminaries
	3 An Efficient Parameterized Approximation Scheme for Treewidth
	3.1 Tree Decompositions with Bounded Height
	3.2 Tree Decompositions with Logarithmic Height

	4 Vertex Cover
	4.1 FPT Algorithm
	4.2 Run-Time Lower Bound

	5 Feedback Edge Set
	References

