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ABSTRACT
Tidal dissipation in star-planet systems occurs through various mechanisms, including the precessional instability. This is an
instability of laminar flows (“Poincaré flows") forced by axial precession of a rotating, oblate, spin-orbit misaligned fluid planet or
star, which excites inertial waves in convective regions if the dimensionless precession rate (“Poincaré number" Po) is sufficiently
large. We constrain the contribution of the precessional instability to tidal dissipation and heat transport, using Cartesian
hydrodynamical simulations in a small patch of a planet, and study its interaction with turbulent convection, modelled as rotating
Rayleigh-Bénard convection. The precessional instability without convection results in laminar flow at low values and turbulent
flow at sufficiently high values of Po. The associated tidal dissipation rate scales as Po2 and Po3 in each regime, respectively.
With convection, the Poincaré number at which turbulent flow is achieved shifts to lower values for stronger convective driving.
Convective motions also act on large-scale tidal flows like an effective viscosity, resulting in continuous tidal dissipation (scaling
as Po2), which obfuscates or suppresses tidal dissipation due to precessional instability. The effective viscosities obtained agree
with scaling laws previously derived using (rotating) mixing-length theory. By evaluating our scaling laws using interior models
of Hot Jupiters, we find that the precessional instability is significantly more efficient than the effective viscosity of convection.
The former drives alignment in 1 Gyr for a Jupiter-like planet orbiting within 23 days. Linearly excited inertial waves can be
even more effective for wider orbits, aligning spins for orbits within 53-142 days.
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1 INTRODUCTION

Gaseous planets are expected to have an oblate shape due to centrifu-
gal deformations caused by their axial rotations (or an approximately
triaxial ellipsoidal shape if there are also strong tidal deformations). If
the spin and orbital rotation axes of these planets are also misaligned,
i.e., if they possess a non-zero planetary obliquity, the gravitational
tidal forces – due to, for example, the host star acting on a Hot Jupiter
– cause its spin axis to rotate around a secondary rotation axis (ap-
proximately aligned with the orbit normal vector): they cause the Hot
Jupiter to precess. In recent years, the excitation of obliquities of exo-
planets has received a fair share of attention. Numerous mechanisms
to explain the origin of this excitation have been explored, among
which are planet-disk interactions (Millholland & Batygin 2019; Su
& Lai 2020; Martin & Armitage 2021), mergers of proto-planets (Li
& Lai 2020) and planet-planet scattering (Li 2021). However, the
close proximities of Hot Jupiters, and other short-period exoplanets,
to their host stars yield strong tidal effects. This produces axial pre-
cession on relatively short timescales (of order a year or shorter).
The resulting tidal deformations and tidal flows, and dissipation of
the latter, additionally lead to transfers of angular momentum and
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energy from one body to its companion. This can result in many
long-term effects in exoplanetary and close binary systems, such as
tidal circularisation of orbits (e.g. Nine et al. 2020; Barker 2022),
spin-orbit synchronisation (e.g. Dobbs-Dixon et al. 2004; Lurie et al.
2017), tidal heating (potentially leading to radius inflation, e.g. Bo-
denheimer et al. 2001) and orbital decay, which has potentially been
observed for WASP-12b (e.g. Maciejewski et al. 2016; Patra et al.
2020; Turner et al. 2021). Crucially, the transfer of angular momen-
tum due to tidal interactions may result in the spin and orbital axes
of these Hot Jupiters tending toward alignment (0◦), anti-alignment
(180◦), or perpendicularity (90◦), depending on the tidal mechanism
involved (though the ultimate tidal evolution, if allowed to proceed,
will be towards alignment in isolated two-body systems, e.g. Lai
2012; Ogilvie 2014; Barker 2016b).

The planetary obliquities of four extrasolar wide-orbiting Jupiter-
like objects have been constrained by observations (Bryan et al. 2020,
2021; Palma-Bifani et al. 2023; Poon et al. 2024), and with ever-
improving detection techniques (Barnes & Fortney 2003; Carter &
Winn 2010; Biersteker & Schlichting 2017; Akinsanmi et al. 2020)
it may be possible to measure obliquities due to differences (and
time variability) in the transit signals caused by the oblateness of
transiting Hot Jupiters. Hence, while awaiting further observations
constraining their oblatenesses and obliquities, we can attempt to es-
timate theoretically the orbital period out to which Hot Jupiters can be
tidally (re)aligned. Since the precession periods of these objects are
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expected to be relatively short and therefore the effects of precession
to be strong, we study the efficiency with which a fluid instability of
the flow in precessing objects, known as the precessional instability
(Kerswell 1993), can align these objects. In particular, we will study
whether and how this mechanism is impacted by convection.

The precessional instability is an instability associated with the
𝑙 = 2, 𝑚 = 1, 𝑛 = 0 component of the equilibrium tide, where 𝑙
denotes the spherical harmonic degree,𝑚 the azimuthal wavenumber
and 𝑛 the harmonic of the orbital frequency (𝑛 = 0 implies that this
component is stationary in an inertial frame). The equilibrium or non-
wavelike tide is one of the two components that the tidal response in
a star or planet is usually split into, the other being the dynamical or
wave-like tide (e.g. Zahn 1977; Ogilvie 2013; Ogilvie 2014; Barker
2025). The equilibrium tide is the quasi-hydrostatic fluid bulge, and
associated flow, rotating around the body (e.g. Zahn 1977), while the
dynamical tide consists of waves generated by resonant tidal forcing
(such as inertial waves in convection zones or internal gravity –
or gravito-inertial – waves in radiation zones). Tidal dissipation of
the equilibrium tide is thought to result from its interaction with
turbulence, usually of a convective nature (Zahn 1966; Goldreich
& Nicholson 1977; Zahn 1989; Goodman & Oh 1997; Penev et al.
2007, 2009a; Penev et al. 2009b; Ogilvie & Lesur 2012; Braviner
2015; Duguid et al. 2019, 2020; Vidal & Barker 2020a,b; De Vries
et al. 2023b), or by instabilities of the equilibrium tide itself, such
as the precessional or elliptical instabilities, which can result in the
excitation of waves (e.g. Cébron et al. 2010, 2012; Cébron et al.
2013; Barker & Lithwick 2013; Barker et al. 2016; Barker 2016a;
De Vries et al. 2023a). The 𝑙 = 2, 𝑚 = 1, 𝑛 = 0 component of the
tidal potential, among others, produces what is known as obliquity
tides (Ogilvie 2014). This component has a tidal frequency 𝜔 = −Ω
in the frame rotating with the body (using the sign convention where
each tidal component is proportional to ei(𝑚𝜙−𝜔𝑡 ) ), with Ω its axial
rotation rate or spin. It is static in the inertial frame and causes
bulk precessional motion of the star or planet. These precessional
flows within solid boundaries are described by the laminar flow
solution known as the Poincaré solution (Poincaré 1910). It is this
laminar solution that is unstable to the precessional instability, which
typically grows with a growth rate proportional to the precession
rate, and may allow turbulence to arise (Kerswell 1993).

The properties of the precessional instability are very similar to the
related elliptical instability (Kerswell 2002; Le Bars et al. 2015). The
precessing flow excites pairs of inertial waves through a parametric
resonance, and these inertial waves initially grow exponentially. The
linear instability subsequently saturates, producing small-scale iner-
tial waves which finally collapse to rotating turbulence, after which
the cycle starts anew. This effect has been observed in simulations
of the precessional instability executed in a Cartesian shearing box
model with periodic boundaries (Barker 2016b) and in spheroidal
shells with stress-free boundaries (Lorenzani & Tilgner 2003). Pre-
cession, and the associated precessional instability, produces sus-
tained turbulence in realistic spherical (Tilgner & Busse 2001) or
spheroidal geometries (Lorenzani & Tilgner 2001, 2003). As such, it
is thought that the precessional instability could power a dynamo in,
for example, Earth’s liquid outer core (Malkus 1968; Kerswell 1996;
Tilgner 2005; Wu & Roberts 2008; Le Bars et al. 2015).

The precessional instability can be studied in isolation by con-
sidering a local box approach in which the streamlines are circular,
but vertically sheared. The initial linear instability analysis in this
setup was performed in Kerswell (1993). The fluid in the box rotates
around the spin axis and the rotation of precession is represented by
a secondary rotation perpendicular to the spin axis, with rotation rate
Ω𝑝 = PoΩ. The parameter Po is the Poincaré number and indicates

how fast precession occurs compared to the spin rotation; by analogy
to the elliptical instability, this parameter is sometimes also denoted
by 𝜖 and is usually small. The growth rate of the precessional insta-
bility is proportional to Po (Kerswell 1993). This local approach to
study the precessional instability has been taken in various papers
(e.g. Barker 2016b; Khlifi et al. 2018; Salhi et al. 2019; Pizzi et al.
2022; Kumar et al. 2024). The non-linear energy transfers due to the
evolution of the instability were examined numerically in Pizzi et al.
(2022). They identified two different regimes, one at small Po, in
which large-scale columnar vortices are dominant, and one at higher
Po where inertial waves contribute more significantly. Furthermore,
the precessional instability was studied in tandem with weak mag-
netic fields as well, which show that the precessional flow and its
instabilities can act as a dynamo (Barker 2016b; Kumar et al. 2024).
Finally, the evolution of the precessional instability in isolation, to-
gether with walls in the vertical direction, has been studied in Mason
& Kerswell (2002) and Wu & Roberts (2008). These works found
that the introduction of walls imposes a mode selection constraint on
the precessional instability. This constraint forces a distinct growth
rate on each set of inertial waves that are able to resonate and grow,
and reduces the maximum growth rate (though it typically remains
𝑂 (Po)) compared to expectations from the unbounded analysis in
Kerswell (1993).

The interactions of the precessional instability and convection have
so far been studied using a linear stability analysis in cylindrical ge-
ometry in Benkacem et al. (2022), and using simulations in spherical
geometry in Wei & Tilgner (2013). The former found that the in-
stability is slightly enhanced for weak convection, and is suppressed
for strong convection. The latter also found that the precessional in-
stability is enhanced for weak convection, allowing it to onset for
smaller Po than it could in the absence of convection. Furthermore,
it was found that convection can onset at weaker convective driving
(smaller Rayleigh numbers) when weak precession is present. With
strong precession, they also found that stronger convective driving
was required for it to operate. Finally, in a similar fashion to the
elliptical instability (Lavorel & Le Bars 2010; Le Bars et al. 2010;
Cébron et al. 2010; Cébron et al. 2012; De Vries et al. 2023a), it was
found that precession can cause additional heat transport compared
to convection in isolation.

In this paper, we will study the interactions of the precessional
instability and convection in a local Cartesian box with walls in the
vertical direction. This can be thought to model a small patch of
the convection zone of a star or planet. Imposing walls is beneficial
for controlling the properties of convection (as explained in Duguid
et al. 2019, who studied interactions of convection and oscillatory
tidal flows), even if they may not be expected to be present in real
stars or giant planets. We will examine whether the precessional
instability is suppressed by its interaction with convectively-driven
large-scale vortices, as we have found for the related elliptical insta-
bility (De Vries et al. 2023a). Furthermore, we will examine whether
a turbulent effective viscosity due to convection interacting with the
equilibrium tide arises, and whether it can be used to interpret this
interaction. Next, we will perform a large parameter sweep to de-
termine scaling laws for the resulting tidal dissipation, examining
the effects of varying the Poincaré number, Rayleigh number (which
measures the strength of convective driving), and Ekman number
(which measures the ratio of viscous to Coriolis forces). Finally,
we will apply these scaling laws to compute the tidal dissipation
due to the precessional instability and turbulent effective viscosity
in interior models of Hot Jupiters obtained using the Modules for
Experiments in Stellar Astrophysics (mesa) code. This allows us to
make predictions for planetary (modified) tidal quality factors 𝑄′,
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Figure 1. The location of the local box in the convection zone of a Hot Jupiter.
We indicate the rotation vector 𝛀 in black, the precession vector 𝛀𝑝 in dark
grey and the background flow U0 in green, all in the boundary frame and
not to scale relative to each other. The background flow takes the form of a
shear in 𝑧, the direction of which rotates as a function of time. The precession
vector also rotates as a function of time, always lying in the 𝑥, 𝑦-plane.
The time dependence of the direction of both 𝛀𝑝 and U0 is illustrated by
dark and green dashed circles respectively. The local temperature gradient is
represented by the red (hot) and blue (cold) sides of the box.

and the resulting timescales for significant spin-orbit evolution in hot
and warm Jupiter systems.

In Section 2 we will describe the model used in this work and
discuss some theoretical predictions of the scaling laws for various
quantities of interest. In Section 3 we detail the numerical setup we
employ and verify that we accurately capture both the precessional
and convective instabilities with our simulations. Next, in Section
4 we examine snapshots and time series of the flow to study the
different behaviours that emerge within this system as the control
parameters are varied. Then, in Section 5 we fit the derived scaling
laws to the time-averaged values of the quantities of interest. In
Section 6 we outline the astrophysical implications of our results by
generating interior profiles of a Jupiter-like and a Hot Jupiter planet
using the mesa code, which we use to evaluate the dissipation of the
equilibrium tide and that due to inertial waves. Finally, we conclude
in Section 7.

2 MODEL SETUP

2.1 Governing equations and setup of the problem

We use a local Cartesian model, shown in Fig. 1, building upon
the previous works of Kerswell (1993); Mason & Kerswell (2002);
Wu & Roberts (2008); Barker (2016b); Pizzi et al. (2022); Kumar
et al. (2024) to study the interaction of the precessional instability
with convection, with a focus on studying the resulting tidal dissi-
pation. To study the precessional instability we choose to work in
the “boundary frame". In this frame, the flow inside the body ap-

pears to precess according to an observer located on the boundary of
the body, and is therefore sometimes also referred to as the “mantle
frame". The spin axis points in the 𝑧-direction, and the fluid rotates
in this frame at the rate Ω. The component of the precessional vector
that is parallel to the body’s axial rotation is unimportant for the
precessional instability, so it is set to zero. The precession vector
is given by 𝛀𝑝 = PoΩ(cos(Ω𝑡),− sin(Ω𝑡), 0)𝑇 , with Po = Ω𝑝/Ω
the Poincaré number. The precession vector thus rotates around the
body in the equatorial plane in this frame. The Poincaré number is
a small parameter in most astrophysical systems. On Earth, for ex-
ample, Po ≈ 10−7 due to lunisolar precession. Even so, Kerswell
(1996) estimated that the maximum possible energy injected by the
precessional instability could be sufficient in principle to power the
geodynamo. In Hot Jupiters, with both larger oblateness and closer
proximity to the tide-raising body, and therefore stronger torques,
these values are more likely to be of order Po = O(10−4 − 10−3).
These values are small, but still sufficiently large that the preces-
sional instability could be important for aligning the spins and orbits
of such Hot Jupiters (Barker 2016b). Note that the frequency of the
precessional flow and the frequency of the precession itself differ.
In the boundary frame, ignoring the effects of viscosity and (stable
or unstable) stratification, and considering just the shearing effects
of the precessional flow, the precessional flow that satisfies the in-
compressible equations of motion can be written as (Kerswell 1993):

U0 = Ax = −2PoΩ ©­«
0 0 sin(Ω𝑡)
0 0 cos(Ω𝑡)
0 0 0

ª®¬x, (1)

where x represents the position vector from the centre of the body.
The precessing flow in this frame takes the form of an oscillatory
shear flow in 𝑧, whose direction rotates in the (𝑥, 𝑦)-plane. Alterna-
tively, this can be interpreted as a rotating flow which is sheared in 𝑧.

We use stress-free impermeable walls in the 𝑧-direction to study the
precessional instability, following Mason & Kerswell (2002), which
allows us to study rotating Rayleigh-Bénard convection. This is the
best-studied model of rotating convection, and it allows convection
to be well controlled compared to models with periodic boundaries
in 𝑧 (so-called “homogeneous” convection). We adopt a box with
dimensions [𝑑, 𝑑, 𝑑], i.e., a box where 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 . We will defer
studying different aspect ratios to later work. Gravity points in the
vertical direction, g = 𝑔ẑ, and as a result it is (anti-)aligned with
the rotation axis, i.e. the box is situated near the poles of the body.
The background temperature profile is given by the conduction-state
profile that depends only on 𝑧:

𝑇 (𝑧) = 𝑇0 − Δ𝑇

𝑑
𝑧, (2)

where 𝑇0 is a uniform background temperature that is set to zero
without loss of generality, and Δ𝑇 is the temperature drop across the
vertical extent of the box. The precession vector is often rewritten as
ϵ(𝑡) = PoΩ(cos(Ω𝑡),− sin(Ω𝑡), 0)𝑇 . This precession vector adds a
second Coriolis-like term to the momentum equation. We decompose
the total velocity, temperature and pressure profile into a background
state and a perturbation, as follows: U = U0 + u, 𝑇tot = 𝑇 (𝑧) +
𝜃 and 𝑃tot = 𝑃(𝑧) + 𝑝. Applying these decompositions and non-
dimensionalising the governing equations by scaling lengths with
the vertical domain size 𝑑, times with 𝑑2/𝜅, velocities with 𝜅/𝑑,
temperatures with Δ𝑇 , and pressures with 𝜌0𝜅

2/𝑑2, yields:

Du

D𝑡
+ u · ∇U0 + Pr

Ek
(ẑ + ϵ(𝑡)) × u = −∇𝑝 + RaPr𝜃ẑ + Pr∇2u, (3)
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∇ · u = 0, (4)

D𝜃
D𝑡

− 𝑢𝑧 = ∇2𝜃, (5)

where
D
D𝑡

≡ 𝜕

𝜕𝑡
+U0 · ∇ + u · ∇. (6)

The non-dimensional parameters describing the system are the Ek-
man number, the Rayleigh number and the Prandtl number:

Ek =
𝜈

2Ω𝑑2 , Ra =
𝛼𝑔Δ𝑇𝑑3

𝜈𝜅
, Pr = 𝜈/𝜅, (7)

in addition to the Poincaré number Po.
The dimensional buoyancy frequency 𝑁2 is related to the Rayleigh

number according to 𝑁2 = −Ra Pr 𝜅2/(𝛼𝑔𝑑4), so that when Pr = 1,
the dimensionless value (in thermal time units, where 𝑑2/𝜅 = 1) is
𝑁2 = −Ra. We set Pr = 1 for consistency with the previous works
we will build upon e.g. Cébron et al. (2010); Wei & Tilgner (2013);
Barker et al. (2014); Guervilly et al. (2014). The boundary conditions
in the horizontal directions are periodic, while in the vertical direction
we impose walls that are impermeable, 𝑢𝑧 (𝑧 = 0) = 𝑢𝑧 (𝑧 = 𝑑) = 0,
stress-free (vanishing tangential viscous stresses), 𝜕𝑧𝑢𝑥 (𝑧 = 0) =

𝜕𝑧𝑢𝑥 (𝑧 = 𝑑) = 𝜕𝑧𝑢𝑦 (𝑧 = 0) = 𝜕𝑧𝑢𝑦 (𝑧 = 𝑑) = 0, and perfectly
(thermally) conducting, 𝜃 (𝑧 = 0) = 𝜃 (𝑧 = 𝑑) = 0.

2.2 Known properties of the precessional instability

A linear stability analysis of the precessional instability, in the ab-
sence of convection, but with walls in the vertical direction, has
been performed in Mason & Kerswell (2002). We summarise their
most important results here. The most unstable modes take the form
of inertial wave modes (Mason & Kerswell 2002), which arise in
a rotating local box with two stress-free and impermeable walls
(Greenspan 1968). These two modes, denoted by 𝐴 and 𝐵, must
satisfy 𝜆𝐵 = 𝜆𝐴 ± Ω, since the precessing flow has tidal frequency
magnitude Ω. Here, 𝜆𝐴 and 𝜆𝐵 are the frequencies of the inertial
waves, which must each satisfy the inertial wave dispersion relation:

𝜆 = ±2Ω𝑘𝑧
𝑘

, (8)

where 𝑘𝑧 is the vertical wavenumber, 𝑘 is the wavevector magnitude,
and 𝜆 is the frequency.

Furthermore, due to the introduction of stress-free impermeable
walls at the top and bottom, solutions must be proportional to
cos(𝑛𝜋𝑧) (for 𝑢𝑥 , 𝑢𝑦 , 𝑝) or sin(𝑛𝜋𝑧) (for 𝑢𝑧 , 𝜃), with integer 𝑛. Hence,
the vertical wavenumbers of the two waves, given by 𝑘𝑧 = 𝑛𝜋, must
satisfy (𝑛𝐵 − 𝑛𝐴) mod 2 = 1, i.e. the difference between 𝑛𝐴 and
𝑛𝐵 must be odd. This, in combination with the requirement that
𝑘⊥,𝐵 = 𝑘⊥,𝐴, where 𝑘⊥ is the horizontal wavenumber, implies that
there is a value of 𝑘⊥ that satisfies the resonance conditions on the
frequency for every combination of 𝑛𝐴 and 𝑛𝐵. The precessional
instability, with stress-free walls, thus has a characteristic size for
each mode pair. The particular value of 𝑘⊥ for each pair of modes
also depends on Po, as illustrated in Fig. 3 of Mason & Kerswell
(2002). Some examples of the inviscid growth rates and associated
values of 𝑘⊥ are found in Table 1 of Mason & Kerswell (2002). The
modes with the largest growth rates in the simulations in this work
are those with 𝑛𝐴 = 1, 𝑛𝐵 = 2, due to the introduction of viscosity,

in which case the velocity field – in the absence of stratification and
viscosity – grows according to (Mason & Kerswell 2002):

u = Re{(𝐴0u𝐴e−i𝜆𝐴𝑡 + 𝐵0u𝐵e−i𝜆𝐵𝑡 )e0.3547PoΩ𝑡 }, (9)

where 𝐴0 and 𝐵0 are the complex amplitudes at 𝑡 = 0 of the two
modes and u𝐴 and u𝐵 are the velocity eigenvectors of the two
waves.

The growth rate of the instability is thus 0.3547PoΩ, which can be
compared to the theoretical maximum value of ≈ 0.385PoΩ, which
is a factor of 2/𝜋 smaller than in the triply periodic case (Mason
& Kerswell 2002). The introduction of walls therefore decreases the
growth rate of the precessional instability. Finally, the growth rate
vanishes identically when either of 𝑛𝐴 or 𝑛𝐵 are equal to zero, such
that these modes should be unable to grow due to this instability
mechanism.

2.3 Energetic analysis of simulations

To analyse the flow we derive the kinetic energy equation by taking
the scalar product with u of Eq. (3) and then averaging over the
box. We define the averaging operation on a quantity 𝑋 as ⟨𝑋⟩ =
1
𝑑3

∫
𝑉
𝑋 d𝑉 . We obtain:

d
d𝑡
𝐾 = 𝐼 +𝑊𝐵 − 𝐷𝜈 , (10)

We have defined the mean kinetic energy 𝐾 , the work done by
buoyancy forces𝑊𝐵, and the mean viscous dissipation rate 𝐷𝜈 :

𝐾 ≡ 1
2
⟨|u|2⟩, 𝑊𝐵 ≡ PrRa⟨𝜃𝑢𝑧⟩, 𝐷𝜈 ≡ −Pr⟨u · ∇2u⟩,

(11)

as well as the energy transfer rate from the background precessional
flow 𝐼:

𝐼 ≡ −⟨uAu⟩ = −⟨u · (u · ∇U0)⟩. (12)

To obtain an equation for the thermal (potential) energy when the
stratification is convectively unstable, i.e. Ra > 0, we multiply Eq. (5)
by PrRa𝜃 and average over the box to obtain, in a similar manner:

d
d𝑡
𝑃 = 𝑊𝐵 − 𝐷𝜅 , (13)

where we have defined the mean thermal energy 𝑃 and the mean
thermal dissipation rate 𝐷𝜅 as:

𝑃 ≡ PrRa
1
2
⟨𝜃2⟩, 𝐷𝜅 ≡ −PrRa⟨𝜃∇2𝜃⟩. (14)

The total energy is 𝐸 = 𝐾 + 𝑃, which thus obeys:

d
d𝑡
𝐸 = 𝐼 + 2𝑊𝐵 − 𝐷𝜈 − 𝐷𝜅 = 𝐼 + 2𝑊𝐵 − 𝐷, (15)

where 𝐷 = 𝐷𝜈 + 𝐷𝜅 is the total dissipation rate. In a steady state,
i.e. no change in time of the total energy, it is expected that the (time-
averaged value of the) energy injected together with the buoyancy
work balances the total dissipation. Because of the presence of the
buoyancy work term, the total dissipation is not equivalent to the tidal
dissipation rate. However, the energy injected by the tide must be
dissipated if a steady state is to be maintained. Therefore, to interpret
the tidal energy dissipation rate, we examine the tidal energy injection
rate 𝐼, which equals 𝐷 − 2𝑊𝐵 in a steady state.

A scaling law for the dissipation due to the precessional insta-
bility was proposed in Barker (2016b). They considered a single
most unstable mode whose amplitude saturates when its growth rate
balances its non-linear cascade rate, i.e. 𝜎 ∼ 𝑘𝑢 ∼ 1/𝑡damp, where
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𝑘 is the wavenumber magnitude and 𝑢 is the velocity amplitude.
This implies that the mode attains a velocity amplitude 𝑢 ∼ PoΩ/𝑘 ,
so the resulting tidal dissipation is therefore expected to scale as
𝐷 ∼ 𝑢2/𝑡damp ∼ Po3Ω3𝑘−2. Or more generally:

𝐷 = 𝐼 ∝ Po3. (16)

This scaling is consistent with some local simulations (Barker 2016b;
Pizzi et al. 2022) at sufficiently high (but still Po < 1) values of the
Poincaré number. An energy injection rate that is consistent with a
scaling closer to Po2 at low values of the Poincaré number was also
observed by Barker (2016b). A theoretical basis for the latter scaling
was not identified, but we will examine if it also arises in this work.

Based on our studies in De Vries et al. (2023a) of the elliptical in-
stability and rotating convection, we expect to observe the non-linear
creation of large-scale geostrophic flows from both the convective in-
stability as well as the precessional instability. In this work, we also
decompose the flow into a 2D 𝑧-invariant flow and a 3D 𝑧-dependent
flow, with the energy of the 𝑧-invariant flow 𝐾2𝐷 defined as:

𝐾2𝐷 =
1

2𝑉

∬ (∫
𝑢𝑥 d𝑧

)2
d𝑦d𝑥 + 1

2𝑉

∬ (∫
𝑢𝑦 d𝑧

)2
d𝑦d𝑥. (17)

We have chosen not to include 𝑢𝑧 in the definition of𝐾2𝐷 because the
𝑧-invariant vertical velocity must be zero due to the impermeability
boundary condition, such that the 𝑘𝑧 = 0 mode cannot contribute to
𝐾2𝐷 . The definition of 𝐾3𝐷 then follows as:

𝐾3𝐷 = 𝐾 − 𝐾2𝐷 . (18)

Furthermore, we can expand the energy injection using the definition
of the background flow:

𝐼 = 2PoΩ
(
⟨𝑢𝑥𝑢𝑧⟩ sin(Ω𝑡) + ⟨𝑢𝑦𝑢𝑧⟩ cos(Ω𝑡)

)
. (19)

We can see that, by definition, 𝐼2𝐷 defined similarly to Eq. (17) must
be zero, because every term in Eq. (19) contains the vertical velocity.
Thus, we do not decompose 𝐼 into 𝐼2𝐷 and 𝐼3𝐷 (unlike in De Vries
et al. 2023a, for the elliptical instability).

Finally, we can use the same technique as in Goodman & Oh
(1997); Ogilvie & Lesur (2012); Duguid et al. (2019); De Vries et al.
(2023b) to obtain an estimate of the effective viscosity due to the
convection acting on the precessional flow, which we have strong
reason to believe will arise in these simulations as well. The rate at
which energy of the flow U0 is viscously dissipated with viscosity
𝜈eff , is given by:

2𝜈eff
𝑉

∫
𝑉
𝑒0
𝑖 𝑗𝑒

0
𝑖 𝑗 d𝑉 = 4𝜈effPo2Ω2, (20)

where 𝑒0
𝑖 𝑗

≡ 1
2 (𝜕𝑖𝑈0, 𝑗 + 𝜕 𝑗𝑈0,𝑖) is the strain rate tensor. Upon

equating this expression to 𝐼, we can define the effective viscosity
according to:

𝜈eff = 𝐼/(4Po2Ω2). (21)

The effective viscosity might be expected to be independent of Po;
this would imply that, if the interaction of turbulence acting on the
precessional flow can be parametrised as a turbulent effective vis-
cosity, it should scale as:

𝐷 = 𝐼 ∝ Po2. (22)

Furthermore, the effective viscosity is expected to depend on the
convective velocity (𝑢𝑐), lengthscale (𝑙𝑐) and frequency (𝜔𝑐) accord-

ing to (Duguid et al. 2020):

𝜈eff =


5𝑢𝑐 𝑙𝑐 |𝜔 |

𝜔𝑐
≲ 10−2,

1
2𝑢𝑐 𝑙𝑐

(
𝜔𝑐

𝜔

) 1
2 |𝜔 |

𝜔𝑐
∈ [10−2, 5],

25√
20
𝑢𝑐 𝑙𝑐

(
𝜔𝑐

𝜔

)2 |𝜔 |
𝜔𝑐
≳ 5.

(23)

Using rotating mixing length theory (RMLT) these can be ex-
pressed in terms of the relevant non-dimensional parameters in our
temperature-based Rayleigh-Bénard setup (where we fix Δ𝑇 rather
than the heat flux), omitting prefactors (De Vries et al. 2023b):

𝜈eff ∝


Ra3/2Ek2Pr−1/2𝜅 low frequency,
Ra7/4Ek2Pr−1/4𝜅3/2𝑑−1𝜔−1/2 intermediate frequency,
Ra5/2Ek2Pr1/2𝜅3𝑑−4𝜔−2 high frequency.

(24)

Finally, we will also study the heat transport in these simulations,
to see if we observe modification of the heat transport by precession,
as was found by Wei & Tilgner (2013). To this end, we study the
Nusselt number in the simulations, defined as:

Nu = 1 + RaPr⟨𝜃𝑢𝑧⟩, (25)

which represents the ratio of the total heat flux to the conductive heat
flux, which is identically one in the absence of any flows.

3 NUMERICAL SETUP

We will use two codes in tandem to study the precessional insta-
bility and its interactions with convection, namely dedalus (Burns
et al. 2020) and nek5000 (Fischer et al. 2008). Obtaining agree-
ment between the two codes partly ensures that the dynamics in
the system are being captured accurately, as they are based on dif-
ferent numerical methods. dedalus implements a pseudo-spectral
method. We use Chebsyhev polynomials in 𝑧 and the “real" Fourier
basis, i.e. sines and cosines instead of complex exponentials, in the
𝑥 and 𝑦 directions. We set the number of grid points in the 𝑥, 𝑦 and
𝑧 directions to 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 96, unless otherwise specified.
The choice of Chebyshev polynomials is responsible for our defi-
nition of 𝐾2𝐷 in real space in Eq. (17). Pseudo-spectral methods
converge exponentially with increasing resolution for smooth solu-
tions (Boyd 2001). The precessional instability in a triply periodic
domain has previously been studied by employing so-called shear-
ing waves, with time-dependent wavevectors, but the introduction of
impermeable walls at the top and bottom has made these shearing
waves redundant. We employ a two-stage, second-order, Runge-Kutta
timestepping scheme, identified in dedalus as RK222 (described in
Sec. 2.6 of Ascher et al. 1997). In this scheme the non-linear terms,
advection terms between the background flow and the velocity per-
turbations, and the Coriolis-like term that arises due to the precession
are explicitly calculated, while the other terms – including the usual
Coriolis term – are calculated implicitly. We employ a CFL safety
factor set to 0.5 to ensure that timesteps are small enough to accu-
rately capture the dynamics. For de-aliasing purposes the resolution
is expanded with a factor 3/2 when calculating the non-linear terms,
so as to satisfy the standard 2/3 rule (Boyd 2001).

We also employ the nek5000 code, which utilises a spectral ele-
ment method with an equal number of regularly-spaced elements E
in each direction, and thus E3 elements in total. Inside each element,
the velocity, temperature, and pressure fields are then expanded us-
ing Legendre polynomials. The associated grid points are the Gauss-

MNRAS 000, 1–26 (2025)



6 N. B. de Vries et al.

Legendre-Lobatto quadrature points, such that the edges of the el-
ements are included in the grid. The number of grid points inside
each element is given by (N +1)3. Due to overlapping grid points on
the boundaries of the elements, the total number of grid points in a
given simulation is E3N3. We work in a Cartesian box with sides of
equal length, with E = 10. We set N = 9 unless otherwise specified.
Due to the grid points adopted within each element in nek5000, the
grid is irregular in all three directions even if the elements them-
selves are uniformly spaced. We have therefore opted to interpolate
to a regular grid to calculate 𝐾2𝐷 , so this quantity is susceptible to
interpolation errors. We will interpolate to a 1003 regular grid for
such integrations, unless otherwise specified. We timestep using an
implicit second-order backward difference scheme for the pressure
and diffusion terms, and a second-order characteristics-based method
to evolve the non-linear, buoyancy and Coriolis terms, as well as the
Coriolis-like term due to the precession and the advection terms of
the background flow and the velocity perturbation. We employ a
CFL safety factor set to 0.3 to ensure sufficiently small timesteps,
although note that characteristics-based timesteppers are allowed to
exceed this value while still guaranteeing accuracy when integrating
the advective non-linear terms. De-aliasing is dealt with by increasing
the order of the polynomials inside each element when calculating
non-linear terms, with a factor that approximately satisfies the 2/3
rule (Boyd 2001).

We use nek5000 in addition to dedalus because results obtained
by both codes independently are necessarily more robust, particu-
larly as the methods implemented are different. This allows for an
additional check on our results.

3.1 Benchmarking

We first perform benchmarking tests to ensure that the precessional
and convective instabilities in isolation are each properly computed
in the simulations. To this end, we performed numerous simulations
with the perturbation non-linearities switched off in both dedalus
and nek5000. We have fitted the growth rate of the kinetic energy
in the simulations 𝐾 = 1

2 ⟨|u|
2⟩, where the brackets represent a

volume-average. The growth rate of the velocity can then be found by
taking half of the kinetic energy growth rate. We compare the growth
rates from simulations to those from the theoretical predictions given
in Eq. (9), and obtained by numerically solving the relevant cubic
dispersion relation, for the precessional and convective instabilities,
respectively. The results of this benchmarking of both instabilities in
isolation, along with the theoretical predictions, are plotted in Fig. 2.
The dedalus simulations portrayed in this figure are executed in a
1-by-1-by-1 box, with a resolution of 323. The nek5000 simulations
are executed in a 1-by-1-by-1 box with a resolution of 103 elements,
each with a polynomial of order 4. Thus, the total number of grid
points is 403.

The most unstable modes of the precessional instability are pre-
dicted to be those with the smallest horizontal wavenumber, ac-
cording to Mason & Kerswell (2002), which are the modes with
𝑛𝐴 = 1, 𝑛𝐵 = 2 and 𝑘⊥ =

√︃
𝑘2
𝑥 + 𝑘2

𝑦 ≈ 18.059. In the 1-by-1-by-1
box the modes with 𝑛𝑥 = 𝑛𝑦 = 2 ⇒ 𝑘𝑥 = 𝑘𝑦 = 4𝜋 have 𝑘⊥ ≈ 17.77,
so the modes with these horizontal wavenumbers almost satisfy the
perpendicular wavenumber requirement of the most unstable modes.
Thus we expect these modes to match the theoretically predicted
growth rate well, except for a small discrepancy, which can be at-
tributed to de-tuning. The unstable horizontal wavenumber is found
to change with Po, however, and for this particular mode decreases as
Po increases (see Fig. 3a in Mason & Kerswell 2002). According to

this figure, the unstable horizontal wavenumber of these modes satis-
fies 𝑘⊥ ≈ 17.77 around Po = 0.1. The secondary effects of viscosity
in shifting the resonances are ignored, which are expected to be much
weaker than the damping we do consider. The growth rate of the mode
with 𝑛𝐴 = 1, 𝑛𝐵 = 2 is given by: 0.3547PoΩ − 𝜈𝑘2. This theoreti-
cally predicted growth rate, where we have chosen 𝑘2 = 𝑘2

⊥ + 𝑛2
𝐵
𝜋2

(which probably slightly overestimates the viscous damping), is plot-
ted in the solid-blue line in the left-hand panel of Fig. 2 along with
the simulation data plotted in black (nek5000) and red (dedalus)
markers. The growth rates obtained from simulations executed with
both dedalus and nek5000 match each other very well. They also
match the theoretically predicted growth rate very well in the in-
terval Po ∈ [0.1, 0.15], where the most unstable wavenumber very
accurately matches the one available within the box. Additionally,
the theory predicts the range of Poincaré numbers below which the
instability is inhibited by viscosity very well. The simulation data
starts deviating from the theoretically predicted growth rate at higher
values of Po, as the most unstable mode changes to modes that can-
not be accurately captured in the box. The discrepancy here can thus,
at least partially, be attributed to de-tuning. Higher-order effects at
large Po may also play a role in causing this discrepancy; see, for
example, the higher-order correction to the precessional instability
growth rate in Naing & Fukumoto (2011), albeit in a triply periodic
box. Therefore we conclude that we have accurately captured the
growth of the precessional instability in isolation in both codes. We
have also reproduced the previously-obtained results from simula-
tions with stress-free impermeable walls at the top and bottom of the
local box (Mason & Kerswell 2002).

We have also run multiple simulations to ensure the convective
instability is captured accurately. The theoretical predictions, as well
as the simulation data at the same Ek = 5 · 10−5 in a 1-by-1-by-1
box, are plotted in the right-hand panel of Fig. 2. To calculate the
theoretical maximum growth rate, we solved the dispersion relation
for rotating convection with stress-free impenetrable walls. The sim-
ulation data from both codes agree well with each other and with the
theoretically predicted growth rates. Thus, we conclude that both the
precessional instability and the convective instability in isolation are
accurately captured by the two codes.

3.2 Parameter variations

To examine the quantities of interest, namely the kinetic energy, en-
ergy injection rate and heat transport efficiency, the latter of which
is represented by the Nusselt number, we will execute multiple pa-
rameter sweeps. We will vary the Rayleigh number, Ekman number
and Poincaré number, to be able to independently vary the con-
vective driving, rotational constraint, and precessional driving, re-
spectively. The Rayleigh number is typically reported instead using
the “supercriticality" 𝑅 = Ra/Ra𝑐 for clarity, where Ra𝑐 is the
critical value for onset of instability (determined numerically by
solving the dispersion relation for rotating convection with stress-
free walls). The range of this ratio studied at Ek = 2.5 · 10−5 is
𝑅 ∈ [0, 15]. We examine Po ∈ [0.01, 1.10], which also includes
the (probably) astrophysically-irrelevant, but fluid-dynamically in-
teresting, case that the precession is faster than the rotation. Finally,
we performed simulations with three different values of the Ekman
number: Ek = [5 · 10−5, 2.5 · 10−5, 10−5]. When varying Ek we set
Ra = 0, i.e. there is no convective instability in this set of simula-
tions. dedalus provides more accurate values of 𝐾2𝐷 and allows
accurate creation of horizontal power spectra without needing inter-
polation, but it was found to run more slowly than nek5000. As a
result, we opt to use the faster nek5000 code to perform most pa-
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Interactions of precession and convection 7

Figure 2. Benchmark simulations of the linear growth rate of the precessional instability and convective instability, each in isolation at Ek = 5 · 10−5 in a
1-by-1-by-1 box using both nek5000 (black) and dedalus (red). Left: growth rate of the precessional instability. The most unstable mode pair, after taking the
viscous reduction into account, is 𝑛𝐴 = 1, 𝑛𝐵 = 2. The theoretical prediction for small Po for this mode is given in blue. The simulation data obtained using
both codes match each other and the theoretical prediction well in the interval Po ∈ [0.1, 0.15], and accurately predict the critical value of Po for inhibition of
the instability by viscosity. Deviation from the predicted maximum growth at higher Po partly arises from effects that are of higher order in Po not captured by
the linear analysis. In addition, the most unstable horizontal wavenumber changes as Po is increased, see Fig. 3a in Mason & Kerswell (2002), and therefore the
mode becomes increasingly more de-tuned. Right: Benchmark simulations of the linear growth rate of convection in isolation at Ek = 5 · 10−5 in a 1-by-1-by-1
box. The growth rates in the simulations match each other and the theoretical growth rate of convection well.

rameter sweeps, while executing selected simulations for interesting
cases using dedalus. We have checked that the two codes also pro-
duce the same results in select non-linear simulations with the same
parameters. A table of all simulations performed can be found in
Appendix A.

4 ANALYSIS OF ILLUSTRATIVE SIMULATIONS

4.1 Snapshots of the vertical vorticity

We present snapshots of the vertical vorticity 𝜔𝑧 obtained from
simulations using nek5000 with Ek = 2.5 · 10−5 in Fig. 3. This is
the same Ekman number as utilised in Mason & Kerswell (2002) in
the strongly precessing case, after correcting for the factor of two
which is present in our definition of the Ekman number and absent in
theirs. The snapshots in Figs. 3a and 3b are taken from a simulation
of the precessional instability, in the absence of convection, with
Po = 0.1, Ra = 0. Based on the previous results in Mason & Kerswell
(2002); Barker (2016b); Pizzi et al. (2022) we expect the flow in these
simulations to be bursty in nature, similar to the elliptical instability.
This bursty behaviour is indeed observed in these two snapshots.
In Fig. 3a we plot the vorticity at time 𝑡 = 0.344, given in thermal
time units. This coincides with a burst in energy injection and kinetic
energy of the precessional instability. These bursts are associated with
the most unstable linear modes, with a horizontal form consisting of
two full sinusoids in both horizontal directions, and a combination
of the modes with 𝑛𝑧 = 1 and 𝑛𝑧 = 2 in the vertical direction.
After the burst in energy injection has occurred, the most unstable
linear modes break down and instead a large-scale flow emerges.
This large-scale flow is portrayed in a snapshot taken at 𝑡 = 0.37 in
Fig. 3b. It does not look like the vortices we normally expect from
inertial wave breakdown (Barker 2016a); instead, it appears to be a
large-scale sheared flow, the direction of which oscillates in time, and
is likely related to the rotating shear introduced by the background
flow. This large-scale flow inhibits growth of the most unstable linear

modes of the precessional instability, and continues to do so until it
is slowly viscously dissipated. Afterwards, the most unstable linear
modes re-emerge in the flow and the cycle starts anew; the flow is
maintained in this fashion throughout the entirety of this simulation.

The flow with Po = 0.2, Ra = 0 in Figs. 3c and 3d features much
stronger vorticities than in the simulation with Po = 0.1, Ra = 0.
Note the change in colour scale in the middle and bottom panels
compared to the one in the top panels. In Fig. 3c we plot a snapshot
taken at 𝑡 = 0.06, after the initial instability has saturated. We
observe the formation of vortices in this simulation, as opposed
to the more layer-like large-scale shear flow in Fig. 3b. In these
simulations, a “secondary transition" occurs as the values of the
vorticity, and associated with it the kinetic energy and energy
injection, suddenly increase. This is visible by the larger values of
the vorticity in the snapshot in Fig. 3d, taken at 𝑡 = 0.072. The
vortex in this snapshot appears to dominate the flow more than in
Fig. 3c. Upon examining the vertical vorticity as a function of depth,
it was found that this vortex extends to the bottom of the box, but
it is sheared, as we might expect from the precessional shear flow,
and so the bottom of the vortex is located towards the middle of the
horizontal plane in this particular snapshot. The direction of this
shear, which we might consider to be the vortex axis, is precessing
in time, on a timescale slightly longer than the precession period
in this simulation. As a result, the strong vortex is not completely
𝑧-invariant, such that the 2D energy according to our definition does
not fully capture the energies in these vortices. The development
of this large scale vortex can be thought of as a modification to
the background flow U0 that arises from the non-linear interaction
with the inertial waves generated by the precessional instability.
This modification occurs on large scales in our simulations, and can
impact the precessional instability itself. The exact shape and impact
on the precessional instability depends on the chosen boundary
conditions and geometry, as the modification is by definition forced
to conform to these.

We will now use these snapshots to get an idea of how convection
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8 N. B. de Vries et al.

(a) 𝑡 = 0.344, Po = 0.1, Ra = 0. (b) 𝑡 = 0.37, Po = 0.1, Ra = 0.

(c) 𝑡 = 0.062, Po = 0.2, Ra = 0. (d) 𝑡 = 0.07, Po = 0.2, Ra = 0.

(e) 𝑡 = 0.05, Po = 0.1, Ra = 2Ra𝑐 . (f) 𝑡 = 0.05, Po = 0.1, Ra = 6Ra𝑐 .

Figure 3. Snapshots of the vertical vorticity 𝜔𝑧 of the flow in simulations executed using nek5000 with Ek = 2.5 · 10−5. The top left and top right panels,
both obtained from the same simulation, show snapshots taken during a burst of the energy injection and during the period of large-scale flow after the burst,
respectively. The middle panels, both taken from a simulation with stronger precessional driving than the top panels, show vortices in the flow instead. A rapid
“secondary transition" appears to occur in this simulation, indicated by a large increase in vorticity and kinetic energy from the panel on the left to the one on the
right. The bottom left panel shows a simulation with weak convective driving; the bursty behaviour of the precessional instability appears absent and instead the
convection appears to dominate this flow. In the bottom right panel a snapshot of the simulation with stronger convective driving is shown. This flow strongly
resembles that of the middle right panel, but it is unclear whether the vortex is driven by convection or precession.
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Interactions of precession and convection 9

modifies the behaviour of the flow. We start by examining a snapshot
of the simulation with Po = 0.1, Ra = 2Ra𝑐 in Fig. 3e. This snap-
shot was taken at 𝑡 = 0.05, after saturation of the initial instability
and transients have died down. The flow in this snapshot is repre-
sentative of the flow at all times in this simulation. The flow shows
large-scale up and down flows, which appear somewhat sheared in
the horizontal directions, and very small-scale but not vortex-like
behaviour in the horizontal plane. These small-scale features appear,
by eye, to be consistent with the size of the convectively unstable
linear modes. We attribute this behaviour to the convective motions,
but note that this close to onset the convection is unable to form a
convective large-scale vortex, both with and without precession, as
previously observed in Guervilly et al. (2014) without precession.
The precessional instability appears to be weak or absent compared
to these convective motions, as there is no clear evidence of its oper-
ation in the flow. Finally, we turn to even stronger convective driving
in Fig. 3f, with Po = 0.1, Ra = 6Ra𝑐 taken at 𝑡 = 0.05. Again, the
initial transients have died down at this point in the simulation. The
flow has saturated in a way that is very similar to the one in Fig. 3d.
We again observe a vortex in the flow, but the areas around the vortex
appear to be more noisy. This noise is presumably associated with
the convective eddies present in the simulation. It is unclear whether
the vortex is of a convective nature, generated by the precessional
instability, or both. We will examine the time series of the energy
injection to examine whether the precessional instability is operating
in these simulations with strong convection present.

There appear to be signatures of the grid scale present in both
Figs. 3d and 3f. These are prominent here, but are much less pro-
nounced and usually absent in the velocity snapshots that we have
used to compute these vorticity snapshots. The prominence of the
features here is likely an artefact of how we have computed the vor-
ticity on this grid, and the colour scale we have used to plot these
particular results. A further discussion of the well-resolvedness of
our simulations can be found in Appendix A1.

4.2 Time series of quantities of interest

We have so far observed quite diverse flows emerging in the flow
snapshots, even when considering just the non-linear evolution of
the precessional instability in isolation. To better understand the
differences between these flows, we now examine time series of our
quantities of interest,𝐾, 𝐾2𝐷 , 𝐼 and 𝑢𝑧 . The latter of these is obtained
by calculating the rms vertical velocity. These time series, obtained
using nek5000, are portrayed in Fig. 4. The times at which the
snapshots in Fig. 3 are taken from these simulations have been marked
with vertical dotted-black lines. All simulations have been executed
with Ek = 2.5 ·10−5. In Fig. 4a the simulation with Po = 0.1, Ra = 0
is presented. This simulation corresponds to the snapshots in the top
two panels of Fig. 3, showing the bursty behaviour. The peaks of
the kinetic energy and energy injection correspond to flows that
look similar to Fig. 3a, while those flows found in Fig. 3b occur
during the troughs. The linearly unstable modes are associated with
bursts in both total energy followed by bursts in the 2D energy with a
slight delay. Furthermore, we observe that the energy injection is also
bursty, and primarily associated with the 3D energy as one would
expect. The vertical velocity appears to follow the kinetic energy
quite closely in all panels of this figure.

In Fig. 4b we plot the time series of the simulation executed with
Po = 0.2, Ra = 0. Note the different 𝑥-axis range compared to
Fig. 4a. As we expect from the middle panels in Fig. 3, the bursty
behaviour is absent. Instead, the simulation goes through a regime
of lower kinetic energy and energy injection from 𝑡 = 0.03 − 0.06

and then the flow goes through a rapid secondary transition into a
regime with the kinetic energy, energy injection and vertical velocity
maintained at strongly elevated levels. We will denote this regime as
the “continuously turbulent" regime, in contrast to the bursty regime
at lower values of Po.

We now turn to examine the modification of these flows and corre-
sponding time series due to the introduction of convection. In Fig. 4c
the time series of the simulation with Po = 0.1, Ra = 2Ra𝑐 is shown.
This simulation indeed shows the absence of the bursty behaviour,
but has a kinetic energy roughly on the same order of magnitude as
the one above. The precessional instability appears to not be operat-
ing in this figure, as we concluded from the snapshot. The continuous
energy injection is similar to the energy injection in De Vries et al.
(2023b) in simulations that featured only convection acting on the
(elliptical) background flow like an effective viscosity. We therefore
attribute this behaviour to the convection acting like an effective vis-
cosity in damping the precessional flow as well. In Fig. 4d we show
the simulation with parameters Po = 0.2, Ra = 2Ra𝑐 . Even though
the convection is present we again observe the secondary transition,
likely indicating the operation of the precessional instability in this
simulation. The kinetic energy and energy injection appear to saturate
at slightly lower values compared to Fig. 4b.

The time series corresponding to the simulation with Po =

0.1, Ra = 6Ra𝑐 is shown in Fig. 4e. We observe a mixture of the con-
tinual “convective energy injection" behaviour and the precessional
instability’s secondary transition. A transition akin to the preces-
sional instability’s secondary transition does arise like in Fig. 4b, but
it is much more gradual. So, neither from the snapshot of the flow,
nor from the time series can we properly conclude whether this is
due to the precessional instability, or a property of convection mod-
ified by precession. If it is indeed the precessional instability then
the convection allows the secondary transition to appear at smaller
values of Po. This can potentially enhance the energy injection and
thus dissipation significantly, and is therefore important to examine
further. Finally, we examine the time series of the simulation with
Po = 0.2, Ra = 6Ra𝑐 in Fig. 4f. We again notice a secondary transi-
tion, which occurs much faster than in the case of the top right and
middle right panels, even though Po for all three simulations is the
same. The energy and energy injections prior to this transition are
larger due to the convective driving. We thus conclude that convec-
tion does not disrupt operation of the precessional instability; instead,
it appears that convection allows the precessional instability to attain
its continuously turbulent regime for lower values of Po. This is pos-
sibly caused by the increased value of the energy or 2D energy – and
thus presence of a vortex in the flow – due to convection. An analysis
of these 2D energies in the simulations executed using Dedalus is
presented in Appendix B. To understand the key processes operating
in the flow, we now turn to analyse power spectra obtained using
Dedalus.

4.3 Horizontal energy spectra of the flow

We start by examining the horizontal energy spectra of the bursty
simulation with Po = 0.1, Ra = 0 in Fig. 5, for which the
corresponding time series can be found in Fig. B1a. The horizontal
energy spectrum is obtained at the mid-plane of the simulation,
i.e. 𝑧 = 0.5, and is captured over one burst and decay period, the
boundaries of which are denoted by dotted vertical lines in Fig. B1a
at 𝑡 = 0.106 and 𝑡 = 0.140. We have averaged these spectra every five
output steps, with a time between outputs of 𝑡 = 0.001. The times
corresponding to each spectrum are shown in the legend. Energy is
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(a) Po = 0.1, Ra = 0. (b) Po = 0.2, Ra = 0.

(c) Po = 0.1, Ra = 2Ra𝑐 . (d) Po = 0.2, Ra = 2Ra𝑐 .

(e) Po = 0.1, Ra = 6Ra𝑐 . (f) Po = 0.2, Ra = 6Ra𝑐 .

Figure 4. Time series of the precessional instability and convection with Ek = 2.5 · 10−5, executed using nek5000. Vertical dotted-black lines correspond to
the times at which the snapshots in Fig. 3 are taken. The top left and right panels show the precessional instability in isolation. Note the different 𝑥-axis ranges
between the two panels. The simulation in the top left panel produces the expected bursty behaviour, while the top right panel with stronger precessional driving
features a secondary transition to a continuously turbulent state. The introduction of convection inhibits the bursty behaviour in the figure on the middle left,
displaying a continuous energy injection instead. The simulation on the middle right with stronger precessional driving than the one on the middle left shows
similar behaviour to the panel on the top right. The simulation on the bottom left with strong convective driving shows evidence for a secondary transition that is
more gradual than in the top right panel, so convection might allow the precessional instability to become continuously turbulent at lower values of the Poincaré
number. Finally, the simulation on the bottom right also shows the secondary transition, but stronger convective driving appears to allow the transition to occur
sooner.
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Figure 5. Horizontal energy spectra taken at 𝑧 = 0.5 of the simulation with
Po = 0.1, Ra = 0 from 𝑡 = 0.106 to 𝑡 = 0.140, corresponding to the interval
between the vertical dotted lines in Fig. B1a. The simulation goes through
a burst and decay period in this interval. In the spectra this is indicated by
the increase and subsequent decrease in the main energy injection spike in
the wavenumber bin with 𝑘⊥ = 6𝜋, while the 2D energy, here located in the
smallest wavenumber bin, lags slightly behind this spike. The spectra clearly
do not match the Kolmogorov scaling as 𝑘−5/3

⊥ in dashed-black and therefore
this case is not turbulent.

preferentially injected by the precessional instability into the modes
near 𝑘⊥ = 18.059, binned into the wavenumber bin with 𝑘⊥ = 6𝜋.
In all of the averaged energy spectra in this figure this injection is
represented by the large spike in energy. The period under study
starts with a significant fraction of the kinetic energy in the 𝐾2𝐷
modes compared to the total energies, which is represented in the
energy spectrum in dark blue by the bin with the lowest horizontal
wavenumber containing comparable energy to the wavenumbers
where energy is injected. As the simulation evolves, the energy
increases due to a burst in energy injection. This is represented by a
large increase in the energy located in the primary energy injection
spike plotted in progressively lighter blues, also adding energy in
the smallest wavenumber bin corresponding to the large-scale flow.
Towards the end of the burst energy is being transferred to smaller
and smaller scales, as indicated by the widening of these spectra.
After the burst finishes the energy starts decreasing again in the
spectra plotted in progressively darker reds. Once these energies
have decayed sufficiently, another burst can occur again and the cycle
starts anew. Finally, we have plotted the turbulent Kolmogorov-like
scaling of 𝑘−5/3

⊥ in the dashed-black line in the figure for reference,
but we note that no parts of the spectra agree with this line, as we
might expect, since the flow does not appear turbulent at any stage
from the snapshots.

Next, we turn our attention to the spectra of the simulation with
Po = 0.2, Ra = 0 in Fig. 6, corresponding to the interval between
the vertical dotted lines in Fig. B1d from 𝑡 = 0.013 to 𝑡 = 0.026, in
which we capture the final stages of the initial instability followed
by the secondary transition. We have averaged the spectra in this
figure over two output steps, again with a time between outputs of
𝑡 = 0.001. During the linear instability we again retrieve the primary
peak of the most unstable linear modes in the wavenumber bin with
𝑘⊥ = 6𝜋, as well as a secondary peak in the bin with 𝑘⊥ = 12𝜋.

Figure 6. Horizontal energy spectra taken at 𝑧 = 0.5 of the simulation with
Po = 0.2, Ra = 0 from 𝑡 = 0.013 to 𝑡 = 0.026, corresponding to the interval
between the vertical dotted lines in Fig. B1d. The simulation goes through
the end of the linear growth phase and the short low-energy turbulent phase
followed by the secondary transition. The energy at the end of the linear
growth phase, in the two spectra plotted in darkest blues, is predominantly
located in the bin with the linearly most unstable wavenumbers, as well as
integer multiples of this bin, possibly pointing to triadic resonances. In the
spectrum taken from 𝑡 = 0.019 to 𝑡 = 0.02 plotted in lightest red, the flow
is dominated by 𝐾2𝐷 . The flow shown in this and subsequent spectra is
continuously turbulent due to the secondary transition, agreeing well with the
Kolmogorov scaling as 𝑘−5/3

⊥ in dashed-black at intermediate wavenumbers
for the times indicated by the spectra plotted with progressively darker red
colours.

As the instability saturates, plotted in progressively lighter blues,
energy is moved to smaller and smaller scales, as well as into the
largest-scale modes. The energy starts aligning to a more traditional
turbulent shape while the energy in the lowest wavenumber bin
keeps growing; the clear peak in the linear modes has vanished in
the spectrum taken from 𝑡 = 0.019 to 𝑡 = 0.02 plotted in the lightest
red, and the 𝐾2𝐷 dominates the flow in this and all subsequent
spectra. This seems to allow the secondary transition to occur,
with energy subsequently being distributed across scales. We have
again plotted the Kolgomorov scaling as 𝑘−5/3

⊥ in dashed-black.
It appears that the intermediate scales in this simulation agree
well with this prediction. Thus, we can be reasonably justified in
calling this regime the “continuously turbulent" regime. We can
use these energy spectra to examine whether the flow is spatially
well-resolved, using the rule of thumb that the largest energy in one
bin must be at least a factor of 103 larger than the energy at the
de-aliasing scale, which is clearly satisfied in these spectra. As the
simulation continues evolving, it eventually achieves a statistically
steady state, with spectra resembling the dark red spectrum in Fig. 6.
We can also conclude that this simulation is well-resolved as the
energy in the smallest wavenumber bin in these spectra is O(107)
and the one in the largest wavenumber bin is O(102).

Finally, we turn to study the effect convection has on these flows
by examining the energy spectra of the simulation with Po = 0.1,
Ra = 4Ra𝑐 in Fig. 7. The time we examine is denoted by the interval
between the start of the simulation and the vertical dotted-black line
in Fig. B1f, from 𝑡 = 0 to 𝑡 = 0.027. We average the spectra over
four output steps, with an output step every 𝑡 = 0.001. The spectra
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Figure 7. Horizontal energy spectra taken at 𝑧 = 0.5 of the simulation
with convection and the precessional instability interacting, with Po = 0.1,
Ra = 4Ra𝑐 from 𝑡 = 0.0 to 𝑡 = 0.027, corresponding to the interval between
the start of the simulation and the vertical dotted line in the Fig. B1f. The
simulation goes through the linear growth phase and the gradual transition
to a higher energy state. No clear evidence of the precessional instability
is present. Again, we find good agreement with the Kolmogorov scaling as
𝑘
−5/3
⊥ in dashed-black for the intermediate wavenumbers.

appear turbulent from the start of the simulation, as we would expect
from sufficiently strongly driven convection. There is a hint of en-
ergy injection by the precessional instability into the bin containing
the precessionally unstable wavenumbers in the dark blue spectrum.
As the simulation evolves the energy goes up predominantly in the
smallest wavenumber bin and maintains roughly the same shape. The
spectrum shows that this simulation is also well-resolved. As the sim-
ulation evolves and achieves a statistically steady state, the spectra
resemble the dark red spectrum in Fig. 7, with the energy in the small-
est wavenumber bin saturating at O(107), but with lower energies
than the simulation in Fig. 6, while the energy in largest wavenumber
bin saturates at O(100). We have also compared the energy spectra of
this simulation with the ones from the purely convective simulation
with Po = 0, Ra = 4Ra𝑐 (not shown). These spectra look very similar
to the ones in Fig. 7, so we have omitted them. There is, however,
one crucial difference, the energy in the purely convective spectra
stops growing. Most notably, the energy in the smallest wavenumber
bin does not continue to grow like in Fig. 7, instead stagnating at an
energy of ≈ 106, i.e. this bin saturates at lower energies.

We conclude that the energy spectra support the hypothesis that the
2D energy is – at the very least – related to the secondary transition to
the continuously turbulent regime. We also find that convection as-
sists in achieving this energy in a rapid manner in certain simulations
that would otherwise be bursty in the absence of convection, such that
even simulations with small values of the Po can achieve the contin-
uously turbulent regime. However, the precessional instability must
also be sufficiently strong to achieve this growth, as otherwise the
precessional instability appears to be erased in favour of the turbulent
“effective viscosity" regime.

5 SCALING LAWS FOR THE QUANTITIES OF INTEREST

We now turn to obtain scaling laws of the time-averaged values of the
energy injection, 𝐼, rms vertical velocity, 𝑢𝑧 , and Nusselt number,

Nu, as functions of the Rayleigh, Ekman and Poincaré numbers.
We time-average these quantities starting from a suitable time in
the simulations after a steady state has been reached. Because the
continuously turbulent regime appears to be the final steady state in all
simulations which feature it, we have taken time-averages only over
this part of such simulations, neglecting any part of these simulations
prior to the secondary transition.

5.1 Scaling laws as a function of the Poincaré number

We have identified three different qualitative regimes as a function
of Po and Ra. In the absence of convection and at low Po the flow
is laminar, alternating between the most unstable mode and the 𝑧-
invariant large-scale flow. The results in Barker (2016b) indicate that
the energy injection associated with this behaviour might be consis-
tent with a scaling like Po2, as they appear to scale similarly to the
laminar dissipation of the background flow U0; see the bottom left
panel of Fig. 7 in Barker (2016b). Note that their measured dissi-
pation, and the energy injection in our setup, does not include the
laminar dissipation, such that this only gives a tentative indication
how the energy injection in our simulations might scale with Po in
the laminar regime, without explaining the mechanism behind it. If,
however, convection is present at low Po, the flow appears much
more turbulent due to convective action. The bursty behaviour has
disappeared and a continuous energy injection is present because
of the action of turbulent convection on the precessional flow. We
would expect to see this behaviour scale as Po2 also and, more im-
portantly, also depend on the Rayleigh number based on the results
in Duguid et al. (2019, 2020); De Vries et al. (2023b). Finally, re-
gardless of the presence of convection, these simulations indicate a
continuously turbulent regime at high Poincaré numbers. We would
expect the energy injection in this regime to scale as Po3. Even
stronger convection might also suppress this regime or result in an
effective viscosity whose rate of energy injection overshadows that
of the precessional instability.

The time-averaged values of the energy injection rate 𝐼 as a func-
tion of Po with fixed Ek = 2.5 · 10−5 are plotted in Fig. 8. In this
figure numerous parameter sweeps at different values of the Rayleigh
number are plotted; the runs executed using nek5000 are plotted us-
ing circles, while the runs executed using dedalus are plotted using
diamonds. The simulations we have executed using dedalus always
show very good agreement with their nek5000 counterparts, thus
validating the results obtained using both codes. The simulations
executed at Ra = 0 in blue circles start at Po = 0.06 because the
precessional instability is not unstable below this value of Po with
this value of the Ekman number. The data points in Fig. 8 are fit-
ted using either of the obtained Po2 or Po3 scalings. We will define
𝐷 ≡ 𝜁Ω3Po3 and 𝐷lam ≡ ΥΩ2Po2, with 𝜁 and Υ the proportionality
or efficiency “factors" of both scaling laws respectively. We have
defined 𝐷lam for the dissipation scaling as Po2 reported in Barker
(2016b); Pizzi et al. (2022). Note that we reserve the proportionality
factor Υ for the precessional laminar scaling laws exclusively, and
will not use this factor when fitting the effective viscosity. Further-
more, we have chosen an arbitrary scaling of this laminar energy
injection as Ω2 for ease of comparison with the energy injection due
to the effective viscosity, but, since there is no theoretical basis for
this scaling, we will allow Υ to depend on Ω. Lastly, 𝜁 can also
depend on the Rayleigh number.

At low values of Po the data points obtained with different values
of the Rayleigh number agree well with the Po2 scaling. Indeed,
even the dataset obtained at Ra = 0 agrees with this crude scaling
with Υ = 3.5, which we have plotted in dashed-black. Although it
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Figure 8. Time-averaged energy injection 𝐼 with fixed Ek = 2.5 · 10−5. The simulations executed using nek5000 are presented with circles, the ones executed
using dedalus with diamonds. The laminar dissipation regime scaling as Po2 in the absence of convection and the effective viscosity regime also scaling as Po2

for simulations with convection present are found Po ≲ 0.1. The transition regime of the purely precessional case is found around Po = 0.16. The continuously
turbulent regime that all simulations agree with at moderately large values of Po has been fitted with a solid-black line scaling as Po3. Note that as the Poincaré
number is increased beyond Po ≈ 0.35 the energy injection plateaus, then appears to decrease, followed by a second increase around Po ≈ 1.

should be stressed that this parameter sweep primarily agrees with
this scaling law for a different reason than those parameter sweeps
where convection is present. The energy injection rate at Ra = 2Rac,
represented with yellow circles and fitted in solid-red, is lower than
at Ra = 0; the convection has prevented the precessional instability
from operating, even though the energy injection from the convection
acting on the background flow is actually lower than that of the
precessional instability in isolation with Ra = 0. The energy injection
in this regime increases with convective driving. A final point of
note is that both the purple circles with Ra = 4Rac, with fit in solid-
grey, and the light blue circles with Ra = 6Rac, with solid-blue fit,
deviate from their respective fits as Po2 for Po ≥ 0.10 and Po ≥ 0.06
respectively. Instead, they then seem to agree with a fit as Po3 in solid-
black, providing a tentative hint for the continuously turbulent scaling
we have predicted previously. Finally, the two burgundy circles with
Ra = 15Rac with associated solid-pink fit, do not agree with the solid-
black fit. This is because the energy injection due to the convection
interacting with the background flow is larger than the solid-black
fit on this interval of Po, because the convective driving for these
parameters is quite strong.

The majority of the data points at Po ≳ 0.15 do not agree with
the fits as Po2. Instead, a strong jump in energy injection in both
the purely precessional simulations with Ra = 0 and the simulation
with the weakest convective driving considered with Ra = 2Ra𝑐 is
present. Both of these scalings first deviate weakly from their Po2

fits, associated with the turbulent state without a secondary transition.
Then, when the secondary transition is present in the simulations,
the energy injection jumps up abruptly as a function of Po and aligns

with the solid-black fit scaling as Po3. This abrupt jump occurs at
different values of the Poincaré number, as previously observed in
the Ra = 4Ra𝑐 and Ra = 6Ra𝑐 parameter sweeps. The abrupt jump
occurs at Po = 0.16 for the Ra = 2Ra𝑐 parameter sweep and at
Po = 0.17 for the Ra = 0 parameter sweep. Thus we also observe
in this figure that the secondary transition to the turbulent state is
facilitated by the convection such that it occurs at lower Po for larger
Ra.

Once the turbulent scaling has been reached all simulations are,
within the error bars, consistent with the solid black fit scaling as
Po3 with 𝜁 = 0.09 up to and including Po ≈ 0.35. At larger values
of the Poincaré number higher-order effects seem to arise, and the
energy injection seems to plateau or possibly decrease slightly as
a function of Po, deviating from the solid-black fit. At even larger
values of Po > 0.5 the energy injection does again increase a little
bit, but the specific reason for this is unclear. It could be due to,
for example, further higher-order effects, boundary layer effects, or
possibly even the horizontal wavenumber decreasing sufficiently, as
Po is increased, such that it is now no longer de-tuned as it selects
a different mode available in the simulation. Finally, although all
data points are consistent with the solid-black fit within error bars a
trend does appear to arise as a function of the Rayleigh number. The
energy injection rate decreases as the Rayleigh number is increased
(which we will show in more detail in Sec. 5.3). This decrease is
expected to continue with increasing values of the Rayleigh number
until the turbulent energy injection of the precessional instability is
overshadowed by the energy injection due to the effective viscosity.
This has already happened to the burgundy circle with Ra = 15Ra𝑐
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Figure 9. Same as Fig. 8, instead showing the time-averaged rms vertical
velocity 𝑢𝑧 . The vertical velocity in the absence of convection agrees with
two different fits in the laminar (dashed-black line), and continuously turbulent
regimes (solid-black line), respectively. Both fits are consistent with scaling as
Po. The velocities in the presence of convection match the convective velocity
(i.e., with Po = 0), until the continuously turbulent precessional regime arises
in the simulation (Po ≳ 0.16), at which point they align with the continuously
turbulent scaling in the absence of convection. The vertical velocity plateaus
around Po ≈ 0.30.

at Po = 0.25 where the energy injection agrees with the Po2 fit in
solid-pink, even though it is in the continuously turbulent regime and
visual inspection of the time series of this simulation (not shown)
reveals the secondary transition.

Having examined the time-averaged energy injection we now ex-
amine the vertical velocity. We examine the time-averaged rms ver-
tical velocity 𝑢𝑧 in Fig. 9. The velocities largely follow the same
patterns as the energy injection: at low Poincaré numbers the con-
vection dominates and the vertical velocity is therefore independent
of Po. The vertical velocities instead scale with the Rayleigh num-
ber. As Po is increased these values start deviating from the purely
convective result, with clearly noticeable departure from Po ≳ 0.06
for Ra = 4Ra𝑐 and Ra = 6Ra𝑐 . At even larger values of Po these
data points instead start aligning with what appears to be a linear
scaling with Po in solid-black. This scaling was predicted in Sec. 2.3
to derive the energy injection rate. The solid-black fit again tends to
agree with the results in the continuously turbulent regime after the
abrupt jump at all values, up until Po ≈ 0.30, after which it appears
to plateau again. Note that the burgundy data points corresponding to
the parameter sweep with Ra = 15Ra𝑐 only agree in the continuously
turbulent regime; in the convectively dominated regime the veloci-
ties of this sweep are much larger than predicted by the Po scaling in
solid-black. The purely precessional results with Ra = 0 in blue data
points at low Po are consistent with a different fit than the one shown
in solid-black. This fit, plotted in dashed-black, also scales as Po.
The vertical velocities associated with this fit are about one order of
magnitude smaller than those in the continuously turbulent regime.

The Nusselt number in the convective, Ra ≠ 0, simulations is plot-
ted in Fig. 10. For these convective parameter sweeps the Nusselt
number follows the same general behaviour as the vertical veloc-
ity. Nu starts at the convective value for small Po, and then remains
almost constant until it starts to transition into the continuously turbu-
lent precessional regime. In the continuously turbulent precessional
regime Nu is higher than in the absence of precession for most of the
studied Rayleigh numbers, as also found in Wei & Tilgner (2013). In

Figure 10. Same as Fig. 8, instead showing the time-averaged Nusselt num-
ber, Nu. The parameter sweep with Ra = 0 has not been plotted as the
Nusselt number is then one by definition. Nu appears to decrease slightly in
the effective viscosity regime as the 2D energy gets stronger with stronger
precessional driving for the Ra = 2Ra𝑐 case. Then it jumps or increases to
match the continuously turbulent regime, where the Nusselt number appears
to collapse onto a linear scaling consistent with Po like the vertical velocity.
Nu plateaus around Po ≈ 0.35.

the case of Ra = 4Ra𝑐 and particularly in the case of Ra = 6Ra𝑐 this
transition is very gradual. The Nusselt number in simulations with
Ra = 2Ra𝑐 prior to the transition to the fully turbulent regime ex-
hibits a downward trend. This is likely a result of the large-scale flow
forming a vortex and becoming more energetic in these simulations
as Po is increased. After the abrupt jump the results seem to agree
roughly with a linear scaling with Po in the solid-black fit, just like the
convective velocity. The Nusselt number once again deviates from
this scaling from Po ≈ 0.35 onwards. Note that the results obtained
at Ra = 15Ra𝑐 do not agree with the solid-black fit, as the inherent
Nu due to convection is larger than any effects of the precessional
instability in this parameter sweep. However, we do notice a slight
increase of the convective heat transport in this parameter sweep with
increasing values of Po. We suspect this is because the convection
is inhibited less by rotation due to the introduction of precession,
which results in an effective rotation axis inclined with respect to the
direction of gravity. This weakens the Taylor-Proudman constraint
(along 𝑧), and thus allows for more efficient vertical heat transport.

5.2 Scaling laws as a function of the rotation rate

To start our examination of the effects of varying the rotation rate on
the precessional instability – in the absence of convection – we have
performed parameter sweeps as a function of Po with three different
values of the Ekman number, Ek = [5 · 10−5, 2.5 · 10−5, 10−5], ob-
tained by varying the rotation rate. The results are plotted in Fig. 11a.
These three parameter sweeps are indicated in blue, orange and pur-
ple triangles, respectively. The dedalus simulations are plotted in
yellow diamonds. The solid-black and dashed-black fits from Fig. 8
are reproduced in this figure. The energy injection increases as the
Ekman number decreases, but the same general behaviour is main-
tained across all three parameter sweeps. All three parameter sweeps
feature a laminar energy injection that appears to be consistent with a
fit scaling as Po2. The energy injection of all three parameter sweeps
starts deviating slightly from the laminar scaling and then abruptly
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jumps to one consistent with Po3 scaling. The value of Po at which
this abrupt jump occurs decreases with decreasing Ekman number.

In Fig. 11b the 𝑥-axis of Fig. 11a has been rescaled in such a way
that the jump occurs at roughly the same value for all three parameter
sweeps at different values of the Ekman number. The best agreement
(by eye) was found by rescaling the 𝑥-axis to Ek−4/10Po. This rescal-
ing seems to indicate that the continuously turbulent regime of the
precessional instability appears to emerge when Ek−4/10Po ≳ 11.
Both the effects of changing the viscosity and the rotation rate to
alter the Ekman number in these simulations has been tested, and it
was found that it is the Ekman number that governs this transition,
with the same location of the transition being found independently
of varying the viscosity or rotation rate. The energy injection rate,
however, depends on the tidal frequency, and thus it depends on the
rotation rate and not the Ekman number. In astrophysical systems,
with values of Po that are not too small and very small values of
the Ekman number, we might thus expect to be in the continuously
turbulent regime for the precessional instability in isolation.

In Fig. 11c the 𝑦-axis of Fig. 11a has been rescaled instead, to
test the scaling of the energy injection with the rotation rate (tidal
frequency). The energy injection rate of all three parameter sweeps
was rescaled by dividing each by their respective rotation rate cubed;
the predicted scaling of the energy injection in the continuously
turbulent regime. Upon rescaling, the data points which are located
in the continuously turbulent region collapse and agree remarkably
well with the fit of the energy injection rate in solid-black as given in
Fig. 8, with 𝜁 = 0.09. The data points located in the laminar regime
in this panel do not collapse under this rescaling, and the dashed-
black fit corresponding to the laminar regime is omitted in this figure.
Finally, in Fig. 11d the energy injection rate is rescaled by dividing
by Ω5/2 for each parameter sweep. This differs from the choice made
previously in which the energy injection in the laminar regime scales
as Ω2. However, the data points collapse more uniformly and better
agreement with the fit in dashed-black is achieved when the 𝑦-axis
is rescaled by Ω5/2 instead. For consistency, the original definition
in which the energy injection scales as Ω2 in the laminar regime is
maintained and thus the proportionality factor is Υ = 0.025Ω1/2. All
three parameter sweeps in the laminar regime agree very well with
the Po2 fit in dashed-black. The energy injection rate associated with
the precessional instability in isolation, in this setup, therefore scales
as:

𝐼 =

{
0.025Ω5/2Po2 for Ek−4/10Po ≲ 11,
0.09Ω3Po3 for Ek−4/10Po ≳ 11.

(26)

The scaling for the turbulent regime is diffusion-free and can there-
fore be readily extrapolated to planetary conditions. The transition
between the two regimes, however, depends on the diffusivities, as
does the scaling in the laminar regime. Care should therefore be taken
when applying these results to planetary conditions, as the behaviour
may be different at planetary diffusivities.

5.3 Scaling laws as a function of the Rayleigh number

The final aim of this work is to constrain the impact that convection
has in decreasing the turbulent energy injection, as well as constrain-
ing the energy injection due to the turbulent effective viscosity of
convection acting on the precessional flow. To this end, we plot the
results we have obtained in three large parameter sweeps as a function
of the Rayleigh number with Po = [0.04, 0.10, 0.25]. The fitting of
the precessional instability is complicated by the convection acting
on the tidal flow like an effective viscosity and extracting energy from

the precessional flow in our simulations, such that at high values of
the Rayleigh number we expect the energy injection of the effective
viscosity to overshadow that of the precessional instability.

The behaviour of the three parameter sweeps presented as a func-
tion of the Rayleigh number is plotted in Fig. 12. There is a clear
difference between the parameter sweeps with Po = 0.04 and 0.10
with Po = 0.25. The energy injection in the former two increases as
the Rayleigh number is increased, while the energy injection in the
latter appears to decrease as Ra is increased. This behaviour is ex-
pected from Fig. 8; in the effective viscosity regime larger Rayleigh
numbers increase the energy injection, whereas in the continuously
turbulent regime larger Rayleigh numbers decrease the energy injec-
tion. The parameter sweep with Po = 0.04 in blue squares portrays
only the effective viscosity, as the precessional instability is expected
to be unable to operate at this value of the Poincaré number, unless
the convective driving is very strong, in which case the precessional
instability is likely to be overshadowed by the effective viscosity re-
gardless. Therefore, we have fitted this parameter sweep using the
scalings of the effective viscosity in Eq. (24). In particular we have
used the scalings of the high and intermediate frequency regimes in
solid-red and solid-black, respectively. The energy injection agrees
well with the high frequency prediction when Ra ≳ 3Ra𝑐 , until
the convective driving becomes too strong, such that the simula-
tions enter the intermediate frequency regime, agreeing well with
the solid-black fit instead of the solid-red fit. From the fits we have
obtained, we find the following scalings for the intermediate and high
frequency regimes:

𝜈eff =

{
0.091Ra7/4Ek2Pr−1/4𝜅3/2𝑑−1𝜔−1/2 intermediate frequency,
0.380Ra5/2Ek2Pr1/2𝜅3𝑑−4𝜔−2 high frequency,

(27)

with 𝜔 = Ω. We assume that the fits for 𝑢𝑐 and 𝑙𝑐 as obtained previ-
ously in De Vries et al. (2023b) still apply. This is a valid assumption
in the absence of precession, but as seen in Fig. 9, the convective
velocities do increase as Po is increased. Upon reproducing the low
frequency regime scaling from Eq. (23) for completeness (since we
do not observe it here), and reproducing the frequencies at which
these regimes apply, we find that the effective viscosity is described
well by:

𝜈eff =


5𝑢𝑐 𝑙𝑐 |𝜔 |

𝜔𝑐
≲ 10−2,

0.78𝑢𝑐 𝑙𝑐
(
𝜔𝑐

𝜔

) 1
2 |𝜔 |

𝜔𝑐
∈ [10−2, 5],

11.5𝑢𝑐 𝑙𝑐
(
𝜔𝑐

𝜔

)2 |𝜔 |
𝜔𝑐
≳ 5.

(28)

It appears that the scalings are fairly consistent between the elliptical
(in De Vries et al. 2023b) and precessional background flows, but the
specific flow appears to introduce different prefactors, even when its
form is already taken into account in the definition of the effective
viscosity in Eq. (21).

Furthermore, there appear to be two different behaviours of the
parameter sweep with Po = 0.10 in Fig. 12 and as such we have not
performed any fits to this set. Instead, we have plotted two vertical
dotted lines to indicate the boundaries between the three regimes
that appear to be present in this sweep. In the leftmost third of the
figure the sweep follows the effective viscosity, when the convection
is unstable, following the exact same pattern as the sweep in blue
squares. In the middle third the energy injection no longer follows
the same behaviour as the blue squares and instead appears to be
weakly decreasing with increasing Rayleigh number. This agrees
with the observations in Fig. 8; the convective driving has allowed
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(a) 𝐼 as a function of Po at different Ek. (b) Same as Fig. 11a, but rescaling the 𝑥-axis with Ek4/10.

(c) Same as Fig. 11a, but rescaling the 𝑦-axis with Ω3. (d) Same as Fig. 11a, but rescaling the 𝑦-axis with Ω2.5.

Figure 11. The time-averaged energy injection 𝐼 as a function of the Poincaré number at different values of the Ekman number, in the absence of convection.
The chosen values of the Ekman number are Ek = [5 · 10−5, 2.5 · 10−5, 10−5 ] in blue, orange and purple triangles respectively. The dedalus results are plotted
in yellow diamonds. The continuously turbulent scaling in solid-black and the laminar scaling in dashed-black from Fig. 8 are reproduced in the top-left panel. It
shows that the transition to the continuously turbulent regime decreases with increasing Po, while the energy injection itself increases with increasing Ω. Good
agreement of the location of the transition in all three cases is found when rescaling the 𝑥-axis with Ek−4/10 in the top-right panel. In the bottom-left panel we
have rescaled the 𝑦-axis with Ω3, and find that all three parameter sweeps collapse to the solid-black fit of the continuously turbulent regime. In the bottom-right
panel we rescale with Ω5/2 instead and find that now the parameter sweeps collapse to the laminar scaling in dashed-black.

the precessional instability to achieve the continuously turbulent
regime. The orange squares in this middle third between the two
dashed lines follow the same behaviour as the parameter sweep with
Po = 0.25 in yellow squares. Finally, the energy injection due to
the convection acting as an effective viscosity on the background
flow overtakes the energy injection of the continuously turbulent
precessional instability in the right-most part of the figure, and the
two orange squares again follow the same trend as the blue squares.

Finally, we examine the energy injection in the parameter sweep
with Po = 0.25 plotted in the yellow squares, as well as purple di-
amonds from the same simulations executed using dedalus. Good
agreement is again found between the dedalus and nek5000 re-
sults. In this continuously turbulent regime, a continuous downward
trend is present until Ra = 15Rac, where the energy injection of
the turbulence acting like an effective viscosity again overtakes the
precessional turbulence. We have fitted all yellow squares bar this
last data point, by modifying the fit obtained for the continuously
turbulent regime in Eq. (26) according to:

𝐼 = 0.09Ω3Po3 (1 + ΞRaPr−1Ek2)−1, (29)

with Ξ the fitting parameter to be determined. We have opted for
RaPr−1Ek2 instead of Ra to maintain the essence of 𝑁2/Ω2 in this
fit, which is a dimensionless and diffusion-free ratio that most often
arises in the linear stability analysis of Benkacem et al. (2022), for
example. The proportionality factor 𝜁 = 𝐼/Ω3Po3 thus depends on
the convective driving, here represented by the Rayleigh number.
Upon fitting this to the data, we find:

𝐼 = 0.09Ω3Po3 (1 + 14RaPr−1Ek2)−1. (30)

This fit is plotted in solid-burgundy in Fig. 12. No clear theoretical
basis for this prescription has been identified, but it agrees very
well with the data. Moreover, the parameter sweep is narrow, and is
hindered by the presence of the effective viscosity in the simulations.
We therefore caution the reader that this prescription may not be the
correct one outside of the explored parameter regime. However, it
clearly demonstrates the qualitative result that the energy injection
due to the continuously turbulent precessional instability decreases
as the convective driving is increased.
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Figure 12. Time-averaged energy injection 𝐼 as a function of the Rayleigh number at different values of the Poincaré number. The parameter sweeps executed
using nek5000 with Po = [0.04, 0.10, 0.025] are plotted in blue, orange and yellow squares respectively. The dedalus results with Po = 0.25 are plotted in
purple diamonds. The agreement between results obtained using both codes is very good. Results with Po = 0.04 portray the effective viscosity for all simulation
values plotted, and we have therefore fitted them using the prescriptions of the effective viscosity given in Eq. (24) in the high and intermediate frequency
regimes in solid-red and solid-black respectively. We again observe good agreement for Ra > 3Ra𝑐 . The parameter sweep with Po = 0.10 is split into three parts
by the vertical dotted-black lines. In the left third, when Ra ≠ 0 the results follow the same pattern as the blue squares, and thus portray the effective viscosity.
In the middle third the results instead follow the same pattern as the yellow squares and thus portray the convectively enabled continuously turbulent regime.
Finally, in the right third the energy injection due to the effective viscosity is larger than that of the continuously turbulent precessional instability and thus the
results portray the effective viscosity regime again. The results with Po = 0.25 show that the convection does indeed decrease the energy injection due to the
continuously turbulent precessional instability, which is fitted in the solid-burgundy line.

6 ASTROPHYSICAL APPLICATIONS

6.1 Simple estimates of the tidal dissipation

Here we will attempt to obtain simple estimates for the tidal quality
factor𝑄′

2,1,0 due to the precessional instability using the scaling laws
obtained in Sec. 5. We choose to work with the scaling of the energy
injection rate 𝐼 ∝ 𝜁Po3 for the precessional instability because the
Ekman number in Jupiter and Jupiter-like planets is expected to be
so small (Guillot et al. 2004), such that the condition in Eq. (26) is
satisfied if the Poincaré number is indeed O(10−4) in Hot Jupiters
(Barker 2016b). In addition, using the parameters in Guillot et al.
(2004) we find that the convective modification of the precessional
dissipation according to Eq. (30) is negligible. The tidal dissipation
due to the precessional instability, after re-introducing dimensional
units and multiplying by the volume of the planet, is given by:

𝐷 = 𝜁𝑀1𝑅
2
1Ω

3Po3, (31)

where 𝑀1 is the planetary mass, and 𝑅1 is the planetary radius. We
have chosen to equate the size of our Cartesian box with the planetary
radius in this expression. Although crude, it provides a first estimate
of tidal dissipation rates, in the absence of global (spheroidal shell)
simulations with convection, which is broadly consistent with our
simulations. Next, the energy stored in the tidal response (𝐸0) is (to
within an 𝑂 (1) factor):

𝐸0 ∼
𝐺𝑀2

1
𝑅1

𝜖2, (32)

with 𝐺 the gravitational constant and 𝜖 the tidal amplitude due to
tides raised by a body 𝑀2 inside the planet, given by:

𝜖 =
𝑀2
𝑀1

(
𝑅1
𝑎

)3
=

(
𝑀2

𝑀1 + 𝑀2

) (
𝑃dyn
𝑃orb

)2
, (33)

with 𝑃orb the orbital period and 𝑃dyn = 2𝜋

√︂
𝑅3

1
𝐺𝑀1

the dynamical or
free-fall period of the body, which for Jupiter is ≈ 2.8 hours. The
tidal quality factor 𝑄′

2,1,0 is then given by (Barker 2016b):

𝑄′
2,1,0 ∼ 3

2𝑘2

Ω𝐸0
𝐷

≈ 1
𝜁Po3

3
2𝑘2

(
𝑀2

𝑀1 + 𝑀2

)2 𝑃2
dyn 𝑃

2
rot

𝑃4
orb

. (34)

The rotation period 𝑃rot = 2𝜋/Ω is equal to the tidal period for
this component of the tide. We can find the Poincaré number using
Po = 𝑃rot/𝑃p, where 𝑃p is the precession period given by (e.g. Kopal
1959; Eggleton & Kiseleva-Eggleton 2001):

𝑃p ≈ 0.2 yrs
(
𝑃rot
1 d

) (
𝑃orb
1 d

)2 (
𝑀1 + 𝑀2
𝑀2

)
(1 − 𝑒2)3/2

cos 𝑖
, (35)

with 𝑖 the inclination or obliquity of the body’s spin axis to its or-
bital rotation axis, and 𝑒 the orbital eccentricity. We have substituted
characteristic values for Jupiter: 𝑟2

𝑔 ≈ 0.26, 𝑘2 ≈ 0.56, the latter
being obtained through Juno observations (e.g. Durante et al. 2020)
and theoretical calculations (Lai 2021; Dewberry & Lai 2022). We
set 𝑃orb = 𝑃rot = 1 day, to mimic spin-orbit synchronisation already
having occurred. We have chosen not to insert values of the eccen-
tricity and inclination but instead included them in the expression for
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completeness. For the Poincaré number we find:

Po ≈ 0.01
(

1 d
𝑃orb

)2 (
𝑀2

𝑀1 + 𝑀2

)
cos 𝑖

(1 − 𝑒2)3/2 . (36)

Next, we rewrite Eq. (34) by substituting Po using Eq. (36), to find:

𝑄′
2,1,0 ≈ 2·105 0.09

𝜁

(
𝑀1 + 𝑀2
𝑀2

) (
𝑃rot
1 d

)2 (
𝑃orb
1 d

)2
(
(1 − 𝑒2)3/2

cos 𝑖

)3

.

(37)

Our simple estimate therefore indicates that a Jupiter-like planet on
a short-period orbit results in a low tidal quality factor of 𝑄′ ∼ 105,
of the same magnitude as was found for the elliptical instability
(De Vries et al. 2023b).

6.2 Detailed computations of the tidal dissipation

To provide a more detailed estimate of the tidal dissipation and
associated tidal quality factor due to the precessional instability, as
well as the effective viscosity, in a (Hot) Jupiter-like planet, we require
models for its internal structure, i.e. profiles of pressure and density
(and other quantities) as functions of radius. As in De Vries et al.
(2023b); Lazovik et al. (2023), we use a modified version of the test
suite case make_planets of the mesa code (Paxton et al. 2011, 2013,
2015, 2018, 2019; Jermyn et al. 2023) with the mesasdk (Townsend
2022) to generate 1D interior profiles of giant planets, as also used
previously (e.g. Müller et al. 2020; Müller & Helled 2023).

We summarise here the parameters used to generate these models.
The initial Jupiter model has a radius of 2𝑅𝐽 and a mass of 1𝑀𝐽 ,
of which 10 Earth-masses are located in an inert core with density
10 g cm−3. The model is evolved for 4.5 Gyr to mimic the age
of Jupiter and employs a constant surface irradiation of 5 · 104 erg
cm−2 s−1, similar to what Jupiter receives from the Sun, which is
deposited at a column depth of 300 g cm−2 (about 0.7 bar). A Hot
Jupiter model was also created with the same parameters except that
we increased the surface heating to represent the irradiation of a one-
day planet around a Sun-like star of 109 erg cm−2 s−1. Furthermore,
we incorporate additional interior heating with uniform rate 0.05 erg
cm−3 s−1 throughout the fluid envelope, which can be thought to
represent the impact of tidal heating or Ohmic dissipation (or other
mechanisms) that could possibly inflate a number of Hot Jupiters.
This allows us to determine the effects of the increased radius (and
stronger convection) of a puffy Hot Jupiter on the tidal dissipation
rates. The mesa code by default treats convection using non-rotating
mixing-length theory (MLT), for which we use the Cox prescription
(Cox & Giuli 1968).

Details of the calculations of the relevant quantities from these
models can be found in De Vries et al. (2023b). We summarise the
methods here. The convective velocities and lengthscales (mixing-
lengths) obtained using mesa are calculated using flux-based non-
rotating MLT. Thus, we must convert these convective velocities
and lengthscales to RMLT by introducing a correction scaling with
the convective Rossby number. We will denote quantities calculated
using non-rotating MLT with tildes. The converted RMLT versions
of the effective viscosity are thus:

𝜈eff ∝



5𝑢̃𝑐 𝑙𝑐R̃o4/5
𝑐

|𝜔 |
𝜔𝑐
≲ 10−2,

0.5𝑢̃𝑐 𝑙𝑐R̃o3/5
𝑐

(
𝑢̃𝑐/𝑙𝑐
𝜔

) 1
2 |𝜔 |

𝜔𝑐
∈ [10−2, 5],

25√
20
𝑢̃𝑐 𝑙𝑐

(
𝑢̃𝑐/𝑙𝑐
𝜔

)2
|𝜔 |
𝜔𝑐
≳ 5.

(38)

The Rossby numbers in both models were found to be much smaller
than one, and hence convection is highly rotationally constrained,
which justifies the use of RMLT (over MLT) in giant planets (see
De Vries et al. 2023b). Likewise, it was found that the fast tides
regime is the relevant one in both models, except for the final percent
or so of the radius, which approaches the surface stable layer.

6.3 Tidal dissipation rates in Jupiter and Hot Jupiters

Using the radial profiles of 𝜈eff obtained in De Vries et al. (2023b)
we compute the resulting damping of the precessional flow and the
associated tidal quality factors𝑄′ in our planetary models. We follow
the procedure outlined in Sec. 2.1 of Barker (2020), which follows
e.g. Ogilvie & Lin (2004); Ogilvie (2013); Ogilvie (2014). Only the
degree 𝑙 matters for this calculation, such that the tidal quality factor
associated with the effective viscosity is the same regardless of the
value of the order 𝑚, and thus should be the same for the convection
acting on the precessional flow with 𝑙 = 2, 𝑚 = 1, 𝑛 = 0 as the
𝑙 = 𝑚 = 𝑛 = 2 tidal flow in Duguid et al. (2019, 2020); De Vries
et al. (2023b). We therefore only compute this quantity using an
imposed tidal potential given by Ψ2,2,2 and apply this to find𝑄′

2,1,0,
which should be the same as𝑄′

2,2,2. The only modification compared
to Barker (2020) is that we account for the rotational dependence of
𝜈eff and 𝜔𝑐 as described above, otherwise we employ their Eq. (27)
to obtain 𝜈eff (𝑟) in the various different frequency regimes. The
resulting tidal quality factor is (Ogilvie 2014):

𝑄′
𝑙,𝑚,𝑛

=
3(2𝑙 + 1)𝑅2𝑙+1

1
16𝜋𝐺

|𝜔| |𝐴|2
𝐷𝜈

, (39)

where 𝐴 ∝ 𝜖 is the amplitude of the tidal perturbation (so that
the ratio 𝐷𝜈/|𝐴|2 and hence 𝑄′

𝑙,𝑚,𝑛
are independent of the tidal

amplitude). We have already determined an expression for 𝑄′
2,1,0

from the precessional instability in Eq. (37).
To further put our results in context, we will also compute the tidal

quality factor resulting from the dissipation of linearly-excited iner-
tial waves in convective regions by applying the frequency-averaged
formalism of Ogilvie (2013) to our planetary models. We follow the
approach outlined in Section 3.1 of Barker (2020), fully accounting
for the planetary structure. This prediction for ⟨𝑄′

𝑙,𝑚,IW⟩ provides a
tidal frequency-independent “typical level of dissipation" due to iner-
tial waves according to linear theory. This is thought to be representa-
tive of the dissipation of inertial waves excited by linear tidal forcing,
i.e. not via the precessional instability. The frequency-averaged esti-
mate of the tidal dissipation and associated tidal quality factor𝑄′

2,1,0,
due to linearly-excited inertial waves for obliquity tides is, however,
unreliable, because the tidal frequency of −Ω also resonates with
what is known as the spin-over mode (Ogilvie 2013). This mode
should not be dissipated viscously in a spherical body, even though
the frequency-averaged formalism predicts a large dissipation asso-
ciated with the spin-over mode resonance. The frequency-average
of the tidal dissipation consequently massively overestimates the re-
sulting dissipation (Ogilvie 2014). When shifting into the precessing
frame, where this resonance vanishes, as in Lin & Ogilvie (2017),
the associated viscous dissipation purely due to this mode also dis-
appears. The tidal dissipation associated with the 𝑙 = 2, 𝑚 = 1, 𝑛 = 0
component calculated this way depends on the size of the convective
region, but generally turns out to have a similar order of magnitude as
the frequency-averaged dissipation of the 𝑙 = 2,𝑚 = 2, 𝑛 = 2 compo-
nent (Lin & Ogilvie 2017). Therefore, we opt not to plot ⟨𝑄′

2,1,IW⟩,
as it is unreliable (see also Damiani & Mathis 2018). Instead we point
to ⟨𝑄′

2,2,IW⟩, which we will denote as ⟨𝑄′
IW⟩ going forwards, to give
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us an idea of the magnitude of the frequency-averaged dissipation
due to linearly-excited inertial waves due to the obliquity tide.

We show 𝑄′ in Fig. 13 as a function of the tidal period for the
precessional instability in black. We have incorporated𝑄′ due to the
precessional instability together with our estimates for 𝑄′ obtained
for the elliptical instability in De Vries et al. (2023b). We set 𝑒 = 0,
such that we consider a circular orbit, and cos 𝑖 = 1, when consider-
ing the precessional instability. The latter implies that the spin and
orbit are aligned, in which case the precessional instability does not
operate. However, this is representative of the𝑄′ at small inclinations
when cos 𝑖 ≈ 1, while providing a lower bound on 𝑄′

2,1,0 due to the
precessional instability. We show two predictions for the precessional
instability, one with 𝑃orb = 1 day and the other with 𝑃orb = 3 days.
When considering tidal dissipation due to the effective viscosity act-
ing on the precessional background flow in the RMLT regime, i.e.,
when considering 𝑄′

2,1,0 for 𝜈RMLT, the tidal frequency is set by the
spin frequency, and thus only the tidal frequency corresponding to
the rotation rate used to compute this curve should be considered for
this background flow. The convective damping of the precessional
flow by an effective viscosity in the Jupiter model in Fig. 13a is an
inefficient tidal dissipation mechanism in giant planets and leads to
large 𝑄′ and thus large tidal timescales. The low tidal frequency
regime in dashed-blue and dashed-magenta for MLT and RMLT,
respectively, indicate their strongest dissipation when the tidal fre-
quency is large. If RMLT applies, as is expected,𝑄′ is still O(109) if
we neglect the frequency reduction of 𝜈eff for fast tides, thus the dis-
sipation (and resulting tidal evolution) is weak. The combination of
low, intermediate and high tidal frequency regimes for 𝜈eff with the
fitted prefactors in Eq. (23) dubbed 𝜈FIT in solid-blue and solid-red,
indicates that the high tidal frequency regime significantly impacts
the effective viscosity, particularly when 𝑃tide is small. Thus, we find
weak tidal dissipation due to convection acting as an effective vis-
cosity on the precessional flow throughout the entire range of tidal
frequencies considered.

The precessional instability on a 1 day orbit in solid-black on
the other hand, is an efficient dissipation mechanism, particularly
when the tidal frequency, and thus for the precessional instability
the rotation rate of the planet, is high. Note that according to our
calculations the precessional instability results in values of 𝑄′ that
are similar to those due to the elliptical instability. The precessional
instability on a 3 day orbit in dashed-black is weaker than the 1 day
orbit prediction, but would still predict more effective dissipation
than the (irrelevant) slow tides MLT effective viscosity for almost all
of the parameter range considered.

The most efficient mechanism in this model, except for the very
highest tidal frequencies, is the frequency-averaged dissipation due
to inertial waves shown in solid-cyan, which produces 𝑄′ = O(103)
for our chosen rotation period. Since the rotation period is known,
we would thus predict a typical value

𝑄′ ≈ 2 · 103
(
𝑃rot
10hr

)2
(40)

for tidal dissipation due to inertial waves in the Jupiter model. Note
that the inertial wave mechanism only applies when |𝜔 | ≤ |2Ω|, such
that this mechanism is only valid when 𝑃tide ≥ 𝑃rot

2 .
The Hot Jupiter model in Fig. 13b, on the other hand, has a larger

radius, stronger convection, and is rotating somewhat more slowly,
so it has much higher effective viscosities and is impacted to a lesser
extent by rotation. As a result, all mechanisms are more efficient. The
elliptical and precessional instabilities are predicted to be particularly
efficient for short orbital periods, e.g. 1 day orbit prediction for
𝑄′ = O(103) when the tidal period – and thus rotation period for the

precessional instability – is 1 day. The increase in dissipation here
due to the precessional instability (and elliptical instability) stems
from the large radius of the Hot Jupiter, resulting in 𝜖 ≈ 0.095, also
increasing the value of Po. Radius inflation and internal heating, as
well as the marginally decreased rotation rate, allow the convective
damping of equilibrium tides to operate more efficiently than in the
Jupiter-like model in the top panel. However, once again the inertial
wave mechanisms are predicted to be substantially more dissipative
than the effective viscosity acting on equilibrium tides. For the linear
dissipation of inertial waves in the Hot Jupiter model we find:

𝑄′ ≈ 2 · 103
(
𝑃rot
1d

)2
, (41)

which is predicted to be dominant for 𝑃tide ≳ 2 days.
To estimate how quickly a precessing planet may align its spin and

orbit, we define an alignment timescale 𝜏𝑖 , like the one in Barker
(2016b), as an e-folding timescale, i.e. the time in which the quantity
under consideration decreases1 by a factor of e:

𝜏𝑖 ≈
8
9

𝑄′
2,1,0𝑟

2
𝑔

2𝜋

(
𝑀1 + 𝑀2
𝑀2

)2 𝑃4
orb

𝑃rot𝑃2
dyn

(1 − 𝑒2)−1/2. (42)

We substitute in characteristic values for Jupiter and the Sun. For the
computations using the Jupiter model, we have set 𝑃tide = 𝑃rot =

10 hrs. We have computed values of𝑄′ from Eq. (37) at the specified
tidal periods for the precessional instability. This yields 𝑄′

2,1,0 ≈
3 · 104 upon setting the inclination to 𝑖 = 30◦ and the eccentricity to
zero. The timescale is then estimated to be:

𝜏𝑖 ≈ 6 · 102 yrs
(𝑄′

2,1,0

3 · 104

) (
𝑃orb
1 d

)4 (
10 h
𝑃rot

) (
2.8 h
𝑃dyn

)2
. (43)

Using Eq. (43) we provide estimates of the orbital period for which the
alignment timescale is 1 Gyr in Table 1. A 1 Gyr timescale is chosen
because it allows sufficient time for spin-orbit alignment of the Hot
Jupiter to occur, and thus potentially be observable, while its (Sun-
like) host star is on the main sequence. We produced these estimates
for both the Jupiter-like and Hot Jupiter-like models. The computa-
tions are done using either a fixed rotation period or by setting the
rotation period equal to the orbital period, i.e. 𝑃rot = 𝑃tide = 𝑃orb.
These are referred to as non-synchronised and synchronised, re-
spectively. In the former case, we have set for the Jupiter model
𝑃rot = 𝑃tide = 10 hrs, and used Jupiter’s dynamical period. For
the Hot Jupiter-like model we have used 𝑃rot = 𝑃tide = 1 d, and
computed the dynamical period to be 𝑃dyn ≈ 6.8 hrs.

These estimates of orbital periods are obtained in a rather crude
way as both cases omit evolution of the rotation period in tandem
with evolution of the planetary obliquity, and are therefore for illus-
trative purposes only. The efficiencies of all mechanisms based on
inertial waves increase as the rotation rate is increased. As a result,
the non-synchronised case can be thought of as an upper bound on the
dissipation and critical orbital period (lower bound on𝑄′), while the
synchronised case represents a plausible lower bound. They indicate
the upper bounds that planets with orbital periods up to 11 days for
the Jupiter model, or 23 days for the inflated Hot Jupiter model, can
achieve spin-orbit alignment within 1 Gyr due to the precessional
instability. The estimated values of 𝑄′ for the effective viscosity
mechanism are taken from the solid-red lines in Fig. 13, estimating
𝑄′ ∼ 9 · 1013

(
10 hrs
𝑃tide

)
for the Jupiter model, and 𝑄′ ∼ 4 · 109

(
1 d
𝑃tide

)
1 Or increases, depending on the sign of 𝑄′

2,1,0, which depends on the sign
of the tidal frequency, and the sign in the relevant equation.

MNRAS 000, 1–26 (2025)



20 N. B. de Vries et al.

10
-1

10
0

10
1

10
2

10
0

10
5

10
10

10
15

(a) Tidal quality factor 𝑄′ in the Jupiter model
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(b) Tidal quality factor 𝑄′ in the Hot Jupiter model

Figure 13. Tidal quality factor 𝑄′ as a function of tidal period for a myriad of mechanisms. In both panels, MLT and RMLT predictions for 𝑄′ due to
convective damping of equilibrium tides, using an effective viscosity with no tidal frequency reduction (low frequency regime), are shown in dashed-blue
and dashed-magenta respectively. The frequency-reduced effective viscosities in solid-blue and solid-red for MLT and RMLT respectively indicate that the
frequency reduction for fast tides significantly reduces the effectiveness of the dissipation. The elliptical instability in solid-green and dashed-green lines and
the precessional instability in solid-black and dashed-black for two different orbital periods, and the (linear) frequency-averaged inertial wave dissipation in
solid-cyan, are also plotted. Note that the inertial wave mechanism only applies when |𝜔 | ≤ |2Ω |, such that this mechanism is only valid when 𝑃tide ≥ 𝑃rot/2.
Inertial waves are considerably more dissipative than equilibrium tide damping by turbulent viscosity, whether they are linearly or non-linearly (i.e. via elliptical
or precessional instabilities) excited. The elliptical and precessional instabilities are predicted to be dominant for the shortest tidal periods, and linear excitation
of inertial waves is dominant for longer periods. The Hot Jupiter model has smaller 𝑄′ (hence more efficient dissipation) for all dissipation mechanisms due to
the larger radius and slower rotation.

for the Hot Jupiter model. The rotation and tidal periods are suffi-
ciently low such that the effective viscosity is likely still in the RMLT
fast tides regime. The resulting orbital periods for which the effective
viscosity can achieve significant tidal evolution are extremely small in
the non-synchronised case because the tidal frequencies are high. For
the Hot Jupiter model in the synchronised case spin-orbit alignment
can be achieved out to the same orbital distance as for the preces-
sional instability due to the high values of the effective viscosity itself
in this model, as well as the low tidal frequencies. This can only be
achieved, however, if another mechanism is able to first synchronise
the spin and orbit at these orbital periods, because the effective vis-
cosity is unable to achieve spin-orbit synchronisation in a planet with
rapid initial rotation, and thus high tidal frequency. The frequency-
averaged inertial wave dissipation based on Eqs (40) and (41) appears
to be the most effective mechanism according to these estimates. Be-
cause this mechanism is most efficient when the rotation of the body
is fast, the orbital period estimates for the non-synchronised case are
particularly high. However, even the lower-bound synchronised esti-
mate indicates alignment for Hot/Warm Jupiters with orbital periods
up to 53 days. Although we caution that for such Warm Jupiters, the
radius inflation is likely to lessened, and thus the Jupiter model might
be more applicable. Furthermore, we caution that, as the orbital pa-
rameters evolve, the Poincaré number changes, and thus the regime
the flow is in could change. According to Eq. (36) the Poincaré num-
ber drops if the orbital separation gets larger, the planetary obliquity
increases or the eccentricity gets larger, which has not been taken
into account in these estimates.

7 DISCUSSION AND CONCLUSION

7.1 Conclusions

We have simulated the precessional instability in a local Cartesian
model and its interaction with rotating Rayleigh-Bénard convection.
The precessional instability excites inertial waves in convective re-

Table 1. Table of orbital periods in days at which the estimates of the align-
ment timescales in Eq. (43), in Jupiter-like or Hot Jupiter-like planets, are 1
Gyr. The tidal dissipation mechanisms are the precessional instability (PI),
effective viscosity of convection (eff. viscosity) and frequency-averaged iner-
tial waves (IW). In the non-synchronised (non-sync) Jupiter-like estimates we
have used 𝑃tide = 𝑃rot = 10 hrs, while for the non-synchronised Hot Jupiter-
like model we have used 𝑃rot = 𝑃tide = 1 d. For the synchronised models
(sync) we have set 𝑃rot = 𝑃tide = 𝑃orb. We have taken values of 𝑄′ from
Eqs. (37),(40) and (41), as well as Fig. 13. We have set an initial inclination
𝑖 = 30◦ and the eccentricity to zero.

PI eff. viscosity IW
Jupiter alignment non-sync 11 d 0.16 d 74 d
Hot Jupiter alignment non-sync 23 d 3.8 d 142 d
Jupiter alignment sync 6.9 d 0.06 d 26 d
Hot Jupiter alignment sync 14 d 14 d 53 d

gions of planets and stars, and can potentially drive turbulence. Our
goal was to explore this instability as a possible mechanism of tidal
dissipation in convective regions of giant planets, which could play
an important role for spin-orbit evolution in planetary (and stellar)
systems. Hence, we have attempted to quantify and obtain scaling
laws for the (tidal) energy transfers from the precessional flow, and
its resulting dissipation, both with and without convection, as well
as to understand the dynamics of the flow.

The precessional instability in isolation in our model displays two
main types of behaviour. In simulations with small values of the
Poincaré number, bursty behaviour is observed, consisting of alter-
nating periods of energy injection into the most unstable linear modes
and periods where oscillating large-scale flows dominate. The forma-
tion of large-scale vortices is not observed in these cases. Meanwhile,
at larger values of Po we observe a slightly more turbulent state with
a large-scale vortex forming, which, when sufficiently powerful, al-
lows a rapid secondary transition to a continuously turbulent state
in which the flow itself is characterised by (sheared) vortices. We
expect that this transition has been seen before by Mason & Kerswell
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(2002) using the same setup, who describe a transition to a strongly
energetic state in their 3D simulations at sufficiently large values of
Po. This phenomenon therefore appears to be important in this local
model of the precessional instability.

We have furthermore identified that the introduction of convection
replaces these two regimes. At small values of Po, a predominantly
convective regime is found, where the energy injection rate resembles
that associated with convection acting on the laminar precessional
flow as an effective viscosity. For sufficiently large Poincaré num-
bers, an abrupt secondary transition to the continuously turbulent
regime of the precessional instability is again observed. However,
the presence of convection lowers the critical Poincaré number that
is required to achieve the continuously turbulent regime, in which
case the secondary transition is much more gradual. On the other
hand, convection also reduces the energy injection in the continu-
ously turbulent regime of the precessional instability, resulting in a
lower energy injection with increasing Ra. Convection therefore al-
lows a slightly weakened version of the continuously turbulent regime
to be reached at lower values of Po.

We fit the energy injection scalings of the precessional insta-
bility in isolation as functions of Po. The energy injection rate in
the laminar regime scales as ΥΩ2Po2, with a proportionality factor
Υ = 0.025Ω1/2. In the continuously turbulent regime, the energy
injection rate, and hence tidal dissipation rate, scales as 𝜁Ω3Po3,
with 𝜁 = 0.09. The scaling law Ω3Po3 was also identified for the
precessional instability in triply periodic box simulations (Barker
2016b; Pizzi et al. 2022). In our simulations of precessional instabil-
ity in isolation, the condition to achieve the continuously turbulent
regime can be described by Ek−4/10Po ≳ 11. Based on this con-
dition, we might expect that the continuously turbulent regime is
the correct one for Hot Jupiters, with very small values of the mi-
croscopic Ekman number and not too small values of the Poincaré
number. When considering the presence of convection, the laminar
regime is replaced by the energy injection rate of the convection act-
ing like an effective viscosity scaling as 4Ω2Po2, which also depends
on the Rayleigh number. In both the continuously turbulent regime
and the laminar regime, the vertical velocity scales linearly with Po,
although with different proportionality factors. The velocities are en-
hanced over the convective velocities in the absence of precession.
The Nusselt number is enhanced by the precession (this was previ-
ously observed in a different model by Wei & Tilgner 2013), except
at very small Rayleigh numbers. The Nusselt number also scales
linearly with Po in the continuously turbulent regime, as long as the
inherent convective heat transport is not too large to overshadow this
scaling. Fits to the sustained energy injection in the laminar regime
in convective simulations as a function of the Rayleigh number show
good agreement with the intermediate and high frequency regimes
of the effective viscosity damping the background precessional flow.
The prefactors of these regimes are very close to those previously
found for the background elliptical (or oscillatory simple shear) flow
in Duguid et al. (2020); De Vries et al. (2023b). Furthermore, we
have attempted to fit the modification of the energy injection due
to the presence of convection in the continuously turbulent regime.
A proportionality factor that depends on the convective driving as2

𝜁 = 0.09(1 + 14RaPr−1Ek2)−1 is consistent with the data. This il-
lustrates that convective driving reduces the energy injected by the
precessional instability, even though no theoretical basis for this par-
ticular form of modification has yet been found.

2 Note that RaPr−1Ek2 is related to 𝑁2/Ω2, which is a dimensionless and
diffusion-free ratio important for the precessional instability.

By computing an expression for the (modified) tidal quality factor
𝑄′ due to the precessional instability and applying it to the mesa
models computed in De Vries et al. (2023b), we predict that the
precessional instability is efficient for very short orbital and tidal
periods (with 𝑄′ ∼ 103 in Hot Jupiters for periods of order one
day), but that its efficiency falls off rapidly with increasing (tidal
and orbital) periods. We have also computed ⟨𝑄′

IW⟩ arising from
the frequency-averaged dissipation due to linearly excited inertial
waves (as opposed to their “non-linear excitation" by the preces-
sional instability) in “realistic models" of giant planets (following
Ogilvie 2013; Barker 2020). We find that inertial waves are by far
the most efficient mechanism studied here, either those excited by
the precessional instability for short orbital and tidal periods, or by
the linear frequency-averaged dissipation. Based on our Hot Jupiter
model, we predict an upper bound of 23 days for the orbital period of
Hot/Warm Jupiters that should be aligned (i.e., to have zero planetary
obliquities) on timescales shorter than 1 Gyr due to the precessional
instability. We also find an upper bound for these same planets to be
aligned within 1 Gyr due to the linear frequency-averaged inertial
wave mechanism out to even longer orbital periods of up to 142 days,
but we caution that the evolution of the spin period has not been
taken into account in this calculation. Lower bounds for these orbital
periods assuming spin-orbit synchronisation are 14 days due to the
precessional instability and 53 days due to the frequency-averaged in-
ertial wave mechanism respectively. Hence, inertial waves (whether
they are excited by precessional instability or are directly tidally
forced) are likely to be the dominant contributors of tidal spin-orbit
alignment in giant planets (see also De Vries et al. 2023b; Lazovik
et al. 2023).

7.2 Future work

Future work should study in more detail the modification of convec-
tion by precession. Both a linear stability analysis of convection in the
presence of precession, as well as an analysis of the precessional in-
stability in the presence of stratification would be worthwhile. Next,
a more detailed analysis of convective quantities such as the Nusselt
number and convective velocity in non-linear simulations would be
interesting, to more clearly constrain the effect that precession has
on convective motions, although it appears that precession acts pri-
marily to enhance convection in this setup. Additionally, simulations
using local models with different aspect ratios should be performed.
Boxes that are larger in the horizontal direction allow larger energies
in the convectively generated vortices and possibly also in the pre-
cessional vortices. This higher energy ceiling in the simulation may
result in the secondary transition taking longer, or possibly multi-
ple transitions will occur during one simulation. The continuously
high energies in the vortices appears to have been important in the
suppression of the elliptical instability (De Vries et al. 2023a), but
their effects on the precessional instability are unclear. Furthermore,
we have not probed the effects of stable stratification in non-linear
simulations. Finally, a larger parameter sweep at larger values of the
rotation rate, and thus smaller values of the Ekman number that are
closer to astrophysical values, would be useful. This would reduce
the effective viscosities, both because the tidal frequency would in-
crease and the convective velocities and lengthscales would decrease.
If the effective viscosity is less powerful, while the energy injection
is larger due to larger rotation rates, the energy injection due to the
precessional instability can be probed at larger Rayleigh numbers
because it would no longer be overshadowed by the energy injection
due to the effective viscosity. This would allow the effects of con-
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vection on the energy injection by the precessional instability to be
constrained in a broader region of parameter space.

In our model, the local box is located at the poles of the planet.
It is important to examine the effects of different latitudes on the in-
teractions of the precessional and convective instabilities. However,
the precessional instability makes this particularly difficult, as the
precessional flow would clash with the impenetrable boundaries at
lower latitudes in boxes that are angled such that gravity still points
in the 𝑧-direction. As such, global simulations that are sufficiently
turbulent and rapidly rotating to capture regimes similar to those we
have explored would probably be the only method of achieving this.
Thus, we propose simulations similar to Wei & Tilgner (2013), but fo-
cussing on the tidal dissipation. Such a study with global simulations
(in oblate spheroids or triaxial ellipsoids, for example) would further
shed light on the modification of the background flow by interactions
with the inertial waves excited by the precessional instability, and
the effect of this modification on the resulting turbulence and tidal
dissipation. Such global simulations also have the advantage that the
inertial waves are no longer constrained by the (artificial) aspect ra-
tio of the box. Furthermore, one might find that the inertial waves,
excited by the precessional instability, can lead to wave attractors
if one studies them in spherical shells (e.g. Hollerbach & Kerswell
1995; Noir et al. 2001), which can be thought of as mimicking a giant
planet with a dilute core that is sufficiently stably stratified.

There are strong magnetic fields present in Jupiter, and there are
observations tentatively indicating that a number of Hot Jupiters also
possess strong magnetic fields (Cauley et al. 2019). Therefore it is
important to study the effects of magnetic fields in our simulations,
as they could have significant effects on tidal dissipation. Magnetic
fields may prevent LSV formation (Mak et al. 2017) by the preces-
sional instability, and therefore allow continuous operation of the re-
sulting energy transfers (Barker & Lithwick 2014). The precessional
instability seems to achieve the continuously turbulent regime even
at small values of Po when magnetic fields are introduced (Barker
2016b), but it would be interesting to see if this is maintained if
convection is also present. Furthermore, since our results point to a
reduction in the energy injected by the precessional instability in the
presence of convection, but the results in Barker (2016b) point to en-
hanced energy injection in the presence of magnetic fields, magnetic
fields could remedy this weakening of the precessional instability as
a tidal dissipation mechanism. Furthermore, it would be important to
study the precessional instability as a dynamo mechanism (Malkus
1968; Kerswell 1996; Tilgner 2005; Wu & Roberts 2008; Le Bars
et al. 2015) with convection also present, to study whether it is still
efficient as a dynamo mechanism. On the other hand, our results, like
those of Wei & Tilgner (2013), also point to more vigorous convec-
tion in the presence of precessional flows, and it would be useful to
study whether precession could act to enhance rotating convection
as a dynamo mechanism.

A final avenue of future work is related to the analysis of tidal
dissipation rates using planetary models. It would be worthwhile to
modify the equation of state in the interior models obtained with
mesa in a manner akin to Müller et al. (2020), which would allow
us to obtain an extended dilute core, and to measure the impact of
such a core on tidal dissipation rates. Furthermore, a stably stratified
dilute core might provide an important additional contribution to tidal
dissipation by permitting the excitation of internal (inertia-)gravity
waves (e.g. Fuller et al. 2016; André et al. 2019; Pontin et al. 2020;
Pontin 2022; Pontin et al. 2023; Lin 2023; Dewberry 2023; Pontin
et al. 2024; Dhouib et al. 2024) as well as modifying the efficiency of
inertial wave excitation in the overlying convective envelope (Pontin
2022; Pontin et al. 2024). Finally, studying how 𝑄′ evolves with

planetary and orbital evolution for each of the mechanisms explored
in Sec. 6 would be worthwhile, research which has been started in
the investigation of Lazovik et al. (2023). For self-consistency, one
might also consider evolving irradiation fluxes in tandem with the
structural evolution.
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APPENDIX A: TABLE OF SIMULATIONS

The parameters of the simulations performed using dedalus, as
well as the associated resolutions of those simulations, are given in
Table A1. We have verified that the quantities computed here are
independent of the resolution chosen such that for the reported quan-
tities the simulations are all well-resolved. The resolutions reported
show the number of grid points in the simulations. Because we utilise
a real Fourier basis, however, we only have wavenumber modes up
to 𝑁𝑥/2, 𝑁𝑦/2 in the 𝑥 and 𝑦 directions, respectively. The grid is ex-
panded by a factor of 3/2 for de-aliasing purposes when computing
non-linear terms and those with spatially variable coefficients. Like-
wise, a table of the parameters for the simulations performed using
nek5000, as well as the associated resolutions, is given in Table A2.
We utilise polynomials of order N = 9 in all directions, inside 10
elements in all directions, thus resulting in a resolution of 903 for
most simulations. For de-aliasing purposes we increase the polyno-
mial order to 14 when calculating the non-linear terms, satisfying
the 3/2 rule.

A1 Resolution of snapshots

To ensure that the simulations executed in nek5000 are well-resolved,
without resorting to interpolating the data to generate energy spectra,
we verified that the following criterion:

𝑘max𝑙𝑑 > 1, (A1)

with

𝑙𝑑 = (𝜈3/𝐷𝜈)1/4, (A2)

is satisfied. The quantity 𝑙𝑑 represents the Kolmogorov lengthscale,
the scale at which viscosity dominates the flow, while 𝑘max =

(2𝜋/𝐿𝑥)𝑁𝑥 is the maximum wavenumber in one direction avail-
able in the simulation. This is a conservative estimate because the
spectrum is steeper than the Kolmogorov spectrum, as shown in
Fig. 6 and Fig. 7, with less power in smaller-scale modes near the
dissipation scale. Wavevectors are not employed in nek5000, and
as such we have treated it is a regular grid for the purposes of this
calculation, with 𝑁𝑥 = 90. We find for the simulations in Fig. 3d
and Fig. 3f that the ratios are 1.8 and 1.6 respectively, and the cri-
terion is also satisfied for all other simulations. Thus we conclude
that these simulations are indeed well-resolved, even though arte-
facts of the grid scale appear in the figures. The well-resolvedness
of the simulations executed in dedalus, and the agreement between

Table A1. Table of parameters used in the dedalus simulations to study
the precessional instability. The Poincaré numbers of all simulations at each
employed combination of Rayleigh and Ekman numbers are shown. All sim-
ulations in this table were executed using a resolution 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 96
and with box size 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 1. These resolutions are the resolutions
prior to expanding the grid with a factor 3/2 for de-aliasing.

dedalus Po
Ek = 2.5 · 10−5, 𝑅 = 0 0.15,0.17,0.18,0.20,0.25
Ek = 2.5 · 10−5, 𝑅 = 2 0.25
Ek = 2.5 · 10−5, 𝑅 = 4 0.0,0.10,0.15,0.25,0.40
Ek = 2.5 · 10−5, 𝑅 = 6 0.25

Table A2. Same as Table A1 for the nek5000 simulations. All simulations in
this table were executed using a resolution of 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 = 90, obtained
by using polynomials of order 9 in all directions in a cube of 10 elements in all
directions. We expand the polynomials to order 14 for de-aliasing purposes.

nek5000 Po
Ek = 5 · 10−5, 𝑅 = 0 0.12, 0.14, 0.15, 0.16, 0.18, 0.20, 0.22, 0.24,

0.25, 0.26, 0.28, 0.30
Ek = 2.5 · 10−5, 𝑅 = 0 0.06, 0.08, 0.10, 0.12, 0.14, 0.15, 0.16, 0.17,

0.18, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50,
0.60, 0.80, 1.00, 1.10

Ek = 10−5, 𝑅 = 0 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, 0.11, 0.12,
0.13, 0.14, 0.15, 0.16, 0.18, 0.20, 0.25, 0.30

Ek = 2.5 · 10−5, 𝑅 = 1.5 0.04, 0.10, 0.25
Ek = 2.5 · 10−5, 𝑅 = 2 0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0.10, 0.12,

0.14, 0.15, 0.16, 0.18, 0.20, 0.25, 0.30, 0.35,
0.40, 0.45, 0.50

Ek = 2.5 · 10−5, 𝑅 = 3 0.04, 0.10, 0.25
Ek = 2.5 · 10−5, 𝑅 = 4 0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0.10, 0.15,

0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50
Ek = 2.5 · 10−5, 𝑅 = 5 0.04, 0.10, 0.25
Ek = 2.5 · 10−5, 𝑅 = 6 0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0.10, 0.15,

0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50
Ek = 2.5 · 10−5, 𝑅 = 8 0.04, 0.10, 0.25
Ek = 2.5 · 10−5, 𝑅 = 10 0.04, 0.10, 0.25
Ek = 2.5 · 10−5, 𝑅 = 15 0.04, 0.10, 0.25

the simulations in nek5000 and dedalus, further demonstrates the
validity of our nek5000 time series results.

APPENDIX B: EXAMINATION OF THE 2D ENERGY

To shed more light on whether and, if so, how, the convective insta-
bility allows the precessional instability to achieve the continuously
turbulent regime at lower values of the Poincaré number we exam-
ined 𝐾2𝐷 obtained using dedalus simulations. We again note that
the vortices in the snapshots in Fig. 3 do not appear to be 𝑧-invariant,
and thus 𝐾2𝐷 does not fully capture the energy in these vortices.
To be able to better compare and study the values of 𝐾2𝐷 and its
importance in these simulations relative to 𝐾 , we plot normalised
values of the total kinetic energy 𝐾 , the 2D energy 𝐾2𝐷 , as well as
their ratio in Fig. B1. We have normalised all these simulations by
the same value, namely the largest value of the total kinetic energy
reached in this set of six simulations, which is found in the simulation
with Po = 0.2, Ra = 0.

In Fig. B1a the simulation with Po = 0.1, Ra = 0 is plotted.
The expected bursty behaviour is evident in the values of 𝐾 , and the
behaviour closely resembles that of the simulation executed using
nek5000 in Fig. 4a. The 2D energy follows closely behind the burst
in total kinetic energy, and is maintained more strongly after the burst
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(c) Po = 0.18, Ra = 0.
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(d) Po = 0.2, Ra = 0.
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(e) Po = 0, Ra = 4Ra𝑐 .
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(f) Po = 0.1, Ra = 4Ra𝑐 .

Figure B1. Normalised energy time series of the precessional instability and convection with Ek = 2.5 · 10−5, executed using dedalus. Vertical dotted lines
correspond to the ends of the intervals of the spectra shown in Figs. 5, 6 and 7. The energies are normalised by the largest energy attained in this group of six
simulations, which occurs in the simulation in the middle right panel. The expected bursty behaviour is observed in the top left panel, as well as dominance of
𝐾2𝐷 in the absence of the bursts of the precessional instability. The top right panel features an absence of bursty behaviour and a very gradual increase in energy
until the secondary transition is reached. The middle left panel, with stronger precessional driving than the top right panel, attains the secondary transition faster,
and the deciding factor when the secondary transition occurs appears to be the value of 𝐾2𝐷 . The precessional driving in the simulation in the middle right panel
is even stronger, such that the secondary transition is achieved very rapidly. In the bottom left panel, a purely convective simulation is shown, which achieves
rapid saturation with weaker fluctuations compared to the precessional cases, and a clear dominance of the 𝐾2𝐷 energy. In the convective and precessional
simulation in the bottom right panel, the energy far exceeds that of the convective simulation and the precessional instability in isolation with Po = 0.1; thus the
combination indeed allows for larger energies to be achieved.

than the 3D energy, such that after the burst the ratio of the total to the
2D energy attains the largest values, while during the bursts this ratio
dips. The 2D energy appears to peak at normalised values ofO(10−3)
in this simulation. In Fig. B1b the simulation with Po = 0.17, Ra = 0
is plotted; this simulation was found, when examining the nek5000
simulations (not shown), to transition into the continuously turbulent

regime after many rotation times in the lower energy turbulent state
and we observe the same here. Prior to the secondary transition, the
bursty behaviour has disappeared. It has been replaced by the flow
containing a vortex, like the one in Fig. 3c.𝐾2𝐷 keeps growing in this
simulation, and the secondary transition starts once 𝐾2𝐷 has attained
a normalised value of ≈ 10−2. In Fig. B1c we plot the simulation
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with Po = 0.18, Ra = 0. This simulation goes through the secondary
transition faster, because the 𝐾2𝐷 energy increases faster and more
steadily than in the Po = 0.17, Ra = 0 case. The transition again
occurs roughly when the normalised value of 𝐾2𝐷 exceeds 10−2.
Next, in Fig. B1d we plot the simulation with Po = 0.2, Ra = 0; the
𝐾2𝐷 energies attain large values more rapidly than the simulations
at lower values of the Poincaré number, and again the transition
happens faster than at lower values of Po. We also note that the
final saturation energies increase with increasing Poincaré number,
because the energy injection increases with Po.

Next we examine these same quantities in the presence of convec-
tion in the bottom panels of Fig. B1. In Fig. B1e the simulation with
Po = 0, Ra = 4Ra𝑐 is plotted; we can see that the energies saturate
rapidly at values around the required transition value, with𝐾2𝐷 dom-
inating the flow from the start as we would expect. The flow saturates
and attains its final statistically steady state very rapidly. Further-
more, it displays much fewer high frequency fluctuations than the
cases where the precession is present. Finally, we examine Fig. B1f
in which we have plotted the simulation with Po = 0.1, Ra = 4Ra𝑐 .
A much higher energy state is achieved in this simulation compared
to both simulations with precession and convection in isolation for
these same parameters. The transition to the high energy state again
appears more gradual than the secondary transitions of the preces-
sional instability in isolation. This gradual transition arises roughly
when the normalised value of 𝐾2𝐷 exceeds 10−2. The ratio of 𝐾2𝐷
to 𝐾 is maintained at a larger value compared to the purely pre-
cessional simulations that have gone through a turbulent transition,
although the value is smaller than the one of the purely convective
case. Therefore, if the convection reaches a certain energy, and the
precessional instability is able to operate, then the convection assists
the precessional instability in achieving the continuously turbulent
regime.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–26 (2025)


	Introduction
	Model setup
	Governing equations and setup of the problem
	Known properties of the precessional instability
	Energetic analysis of simulations

	Numerical setup
	Benchmarking
	Parameter variations

	Analysis of illustrative simulations
	Snapshots of the vertical vorticity
	Time series of quantities of interest
	Horizontal energy spectra of the flow

	Scaling laws for the quantities of interest
	Scaling laws as a function of the Poincaré number
	Scaling laws as a function of the rotation rate
	Scaling laws as a function of the Rayleigh number

	Astrophysical applications
	Simple estimates of the tidal dissipation
	Detailed computations of the tidal dissipation
	Tidal dissipation rates in Jupiter and Hot Jupiters

	Discussion and conclusion
	Conclusions
	Future work

	Table of simulations
	Resolution of snapshots

	Examination of the 2D energy

