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Abstract
While homogeneous cosmologies have long been studied in the group field the-
ory (GFT) approach to quantum gravity, including a quantum description of
cosmological perturbations is highly non-trivial. Here we apply a recent pro-
posal for reconstructing an effective spacetime metric in GFT to the case of a
metric with small inhomogeneities over a homogeneous background. We detail
the procedure and give general expressions for cosmological scalar perturba-
tions defined in terms of the GFT energy-momentum tensor. These include all
the scalar components of standard perturbation theory and hence can be used
to define gauge-invariant quantities. This is a major advantage of the effective
metric approach compared to previous GFT studies limited to volume perturba-
tions. We compute these perturbations explicitly for a particular Fock coherent
state. While it was previously shown that such a state can be interpreted as an
approximately flat homogeneous cosmology at late times, here we find that, in
a very simple example, inhomogeneities do not follow the dynamics of general
relativity in the semiclassical regime. More specifically, restricting ourselves
to a specific coherent state in a simple (free) GFT, we study two types of per-
turbative GFT modes, squeezed and oscillating modes. For squeezed modes
we find perturbation equations with Euclidean signature and a late-time limit
that differs from general relativistic perturbation equations. Oscillating modes
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satisfy different dynamical equations that also differ from those of general
relativity, but show a Lorentzian signature. Considering that our results were
obtained within a number of simplifying assumptions and arguably the simplest
possible example, we discuss how going beyond these assumptions could lead
to a more desirable phenomenology. Overall, our analysis should be under-
stood as a first step in understanding cosmological perturbations within the
effective GFT metric.

Keywords: quantum cosmology, group field theory,
cosmological perturbation theory

1. Introduction

General relativity gives an excellent classical description of the gravitational force; however,
the quest to find a quantum theory of gravity is still ongoing. The quantum behaviour of mat-
ter is well described by quantum field theory and as general relativity relates matter to the
geometry of spacetime, it is generally believed that a fully consistent theory also requires a
quantum description of geometry (though see [1] for an alternative viewpoint). Quantum grav-
ity is also expected to cure the singularities through which classical general relativity predicts
its own incompleteness.

Finding a satisfactory quantum description of gravity is no easy feat. The perhaps nat-
ural approach of applying quantum field theory techniques to a metric perturbation around a
Minkowski background leads to a non-renormalisable theory [2]. Multiple approaches to find-
ing a quantum formulation of gravity have been established [3, 4]; different approaches have
vastly different starting points and it is not necessarily clear how and if they connect to each
other. It is often difficult to carry out explicit calculations within quantum gravity to assess if
and in which way a given theory relates to general relativity in a suitable classical limit. A fre-
quent strategy to circumvent this issue and obtain first insights into the physical viability and
implications of a specific approach is its application to the cosmological setting, where the high
degree of symmetry significantly reduces the relevant number of degrees of freedom. Within
general relativity, homogeneity and isotropy of our cosmos are captured by the Friedmann–
Lemaitre–Robertson–Walker (FLRW)metric; in standard cosmology the Universe is modelled
as a (flat) FLRW spacetime with small inhomogeneous perturbations. In addition to obtaining
a description for the background metric, it is desirable to include a description of cosmological
perturbations within the quantum framework to make further contact with general relativity
and possibly even cosmological observations.

Here, we work within group field theory (GFT) [5, 6], a background-independent approach
to quantum gravity related to loop quantum gravity (LQG) [7–9] and spin foam models [10].
GFTs first appeared in the form of a three-dimensional quantum gravity model [11]; they have
been studied in the context of models related to LQG and spin foam models [6, 12–15] and
developed into their own research field. A GFT is a field theory defined on an abstract group
manifold; hence GFT does not presuppose a spacetime manifold, but spacetime is dynamic-
ally emergent from a large number of GFT quanta, which should be understood as the building
blocks of space. This picture is sometimes illustrated with an analogy to fluid dynamics where
a large collection of water molecules (GFT quanta) leads to the emergence of a fluid (space-
time), which is characterised by different attributes than the single molecules and described by
different dynamical laws [16]. One is then led to the idea of a macroscopic Universe emerging
from a ‘condensate’ of GFT quanta [17–19], described by a coherent many-body quantum
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state similar to those appearing in condensed matter physics. Using this main idea, the applic-
ation of GFT to effective FLRW geometries (modelled by a simple coherent quantum state)
shows a resolution of the Big Bang singularity, which is replaced by a bounce that interpol-
ates between a contracting and an expanding phase [20, 21]. Extensions of this scenario can
introduce additional interesting phenomenological features in the cosmological evolution [22–
24]. Phenomenologically interesting homogeneous cosmologies can be obtained from a broad
range of underlying GFT models. In order to further establish GFT as an approach to quantum
gravity, it is however imperative to study its implications beyond this rather restricted setting
of homogeneous cosmology. A first and natural extension is then to consider inhomogeneous
cosmological perturbations.

A basic idea proposed in previous work on GFT cosmology is that massless scalar fields are
used to define ‘relational’ coordinates. To describe homogeneous cosmology, a single matter
field is sufficient, whereas for a treatment of inhomogeneities one usually includes four matter
fields that can form a relational coordinate system. The concept of relational coordinates has
been widely investigated within general relativity as a means to define local gauge-invariant
observables (see, e.g. [25–28]). The idea is to construct an observable by considering the value
of a quantity of interest at the spacetime point defined by the value of another physical quantity,
which can be a diffeomorphism-invariant definition unlike the standard coordinate-dependent
tensorial quantities. In GFT, models with a single clock field have been applied to homogen-
eous cosmology since the proposal of [20, 21]; models with four (or more) fields have been
introduced more recently [29–35]. We will use the same construction of four massless scalar
fields as relational coordinates. While this is not a realistic model of cosmology, and more
work would be needed to connect to scenarios such as inflation, the initial goal of this line of
research is to establish whether predictions of GFT in this setting are compatible with those
of general relativity with a similar matter content.

Information about the emergent spacetime in GFT can be extracted from expectation val-
ues of relevant operators in suitably semiclassical states, where semiclassicality is a necessary
criterion for emergence of a classical spacetime in the multiparticle limit [17, 36, 37]. Previous
GFT literature predominantly makes use of the volume operator, based on the assumption that
volume eigenvalues of GFT quanta are given by the eigenvalues of the LQG volume operator
[38, 39] for comparable spin-network vertices. In this approach, the main observable used
to compare with the classical cosmology is the total volume as a function of a matter clock.
In this paper, we deviate from this conventional approach and make use of the proposal to
reconstruct an effective metric from GFT operators detailed in [40]. This proposal relies on
the identification of Noether currents in the classical theory with expectation values of cor-
responding GFT operators. As the spacetime metric contains more information than just the
volume of a spacetime region, this new approach potentially gives access to a wider class
of observables (including vector and tensor modes which do not appear in the volume). The
access to additional properties of spacetime is the main point of attractiveness of developing
the effective metric approach to extract semiclassical quantities.

In usual spacetime physics, the action of four massless scalar fields that span a relational
coordinate system exhibits a shift symmetry; the same symmetry is imposed when these fields
are introduced in GFT, leading to the above-mentioned Noether currents. Specifically, this
symmetry allows the definition of a conserved GFT energy-momentum tensor in analogy to
the energy-momentum tensor of standard field theories. The expectation value of the GFT
energy-momentum tensor is then identified with the classical Noether currents arising from the
shift symmetry. In the relational coordinate system the classical Noether currents are related
to the components of the metric, and the conservation law for these currents is the Klein–
Gordon equation for the matter fields. An effective metric can then be reconstructed from the
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expectation values of the operators corresponding to the GFT energy-momentum tensor [40],
where ‘effective’ refers to the fact that the metric is obtained from operator expectation values
over semiclassical states and there is no corresponding metric operator at the quantum level.

In [40] we explored the application of the effective metric proposal to a flat FLRW cosmo-
logy, studying the homogeneous mode of the GFT energy-momentum tensor in a Fock coher-
ent state (defined in a way that is similar to previous GFT literature, e.g. [36, 37]). We showed
that the resulting metric leads to a bounce and can be consistently interpreted as a flat FLRW
metric in the semiclassical regime away from the bounce. However, the effective Friedmann
equation one recovers at late times disagrees with general relativity coupled to four massless
scalar fields, and rather corresponds to the equation expected for only a single massless scalar
field.

Here, we extend this analysis to inhomogeneous modes interpreted as cosmological scalar
perturbations. Our work connects to previous studies of cosmological perturbations in GFT,
which also rely on a relational coordinate system spanned by four massless scalar fields [29,
31–35]. More specifically, the previous works [33–35] study perturbations in a scenario in
which the effective GFT Friedmann equation also agrees with that of general relativity with
a single scalar field. Those works include a fifth matter field that is then assumed to be the
dominant matter content of the Universe, which could justify the GFT Friedmann equation. In
this paper, we work in a setting with four fields all appearing on the same footing, and do not
explicitly address the discrepancy at background level. This issue is also mentioned in [40].

Previous investigations consider the volume operator and its perturbations, which restricts
the perturbative quantities that can be studied; this limitation is absent when using a GFT
effective metric. In our approach, all perturbative quantities (including gauge-invariant ones)
can be reconstructed from the effective metric; in this paper we limit our study to scalar per-
turbations but analogous constructions for vector and tensor modes should be possible. We
give general relations between GFT operator expectation values and scalar metric perturb-
ation variables that arise directly from the effective GFT metric proposal and hold for any
choice of semiclassical GFT state. We then find concrete expressions for scalar perturbation
variables for the state used already in [40]. The perturbative dynamics of these variables agree
neither with those of general relativity with four scalar fields nor with those of general relativ-
ity with one scalar field, as might be suggested by the background dynamics. In particular,
the dominant squeezed GFT modes exhibit exponentially growing behaviour, as one would
expect from Euclidean rather than Lorentzian signature. This is a more fundamental type of
disagreement with the general relativistic dynamics than a choice of matter content as in the
case of the background dynamics. We hope that the analysis presented can serve as a blueprint
for related studies that might consider different state choices or amendments to the underly-
ing GFT model. For instance, one could compare with more sophisticated constructions in the
GFT literature that can lead to phenomenologically more acceptable results for perturbations,
such as [34, 35].

Our results open up an avenue to studying gauge-invariant quantities and more general
perturbation variables, surpassing the limitations of previous work restricted to the perturbed
volume element only. Extending the setup to give phenomenologically more realistic results
then has the potential to connect GFT to observables relevant to cosmological observations.
Within the various assumptions we have made, the GFT effective metric calculations do not
reproduce perturbative dynamics compatible with general relativity; therefore, either our vari-
ous simplifying assumptions (such as limiting to the free theory and the particular choice of
state) are not all justified or the effective metric construction or the particular class of GFT
models is ruled out. The hypothetical opposite result, a calculation showing agreement of GFT
with general relativity after neglecting GFT interactions, for the simplest coherent state choice,

4



Class. Quantum Grav. 42 (2025) 225015 S Gielen and L Mickel

and for an arbitrary choice of (compact) gauge group, should indeed be seen as highly implaus-
ible. Our work should be understood as a first step in the challenging task of gaining further
insights into the phenomenology of GFT.

Let us emphasise some conceptual differences between the approach taken here and that
of standard cosmological perturbation theory [41] or loop quantum cosmology (LQC) [42]. In
these standard approaches, the background and perturbations are treated as separate entities.
For instance, in LQC perturbations can be included by quantising the background and perturb-
ations separately [43], such that the perturbations evolve on an effectively classical background
with LQC corrections, or by working in an effective framework and ensuring that the algebra
of the modified constraints is anomaly-free [44]. In contrast, our effective metric approach in
GFT treats the background and perturbations on the same footing as they simply correspond
to different wavenumbers. As a consequence, the perturbations are fully treated within GFT
and not quantised with different methods or on a pre-existing background. They are also both
determined by a single quantum state, with less freedom to set arbitrary initial conditions.

This paper is structured as follows. We first outline the main ideas of the GFT framework
and the specific formulation we utilise in this paper in section 2. In section 3.1 we review
the main premise of the effective GFT metric which is built on the idea of a conserved GFT
energy-momentum tensor as first introduced in [40]. We establish the relation between expect-
ation values of the GFT energy-momentum tensor components and the perturbed flat FLRW
metric in section 3.2. Section 4 is dedicated to the analysis of a classical perturbed FLRW
spacetime in a relational coordinate system spanned by four massless scalar fields, which,
while straightforward in principle, is not commonly discussed in the literature. In section 5
we discuss our choice of state that reflects the required symmetries of the cosmological setting
and revise the effective background metric arising from the homogeneous background mode,
where it was shown in [40] that the recovered metric is flat and gives a bouncing Universe.
In section 6 we extend the past analysis to cosmological perturbations. After general consid-
erations, we include detailed calculations for squeezed and oscillating modes. We conclude
in section 7. Possible extensions to our setup are discussed in the appendix. New results are
contained in sections 3.2, 4.2 and 6; other sections briefly review the results of [40] in order
to make this paper as self-contained as possible.

2. Elementary aspects of GFT

GFT is a background-independent approach to quantum gravity in which spacetime emerges
from the excitations of an abstract quantum field defined on a group manifold. The group
manifold is not thought of as spacetime but as a configuration space for discrete gravity and
matter. We direct the interested reader to [5, 6, 45] for reviews as we can only sketch the main
ideas here.

A GFT model for quantum gravity in vacuum can be defined in terms of a group field
φ(gi) (here chosen to be real-valued) and an action S[φ]. The arguments of φ are n group
elements gi (i = 1, . . . ,n) valued in a suitable gauge group, with n usually representing the
expected spacetime dimension. Schematically (see, e.g. [6]) we expand the partition function
perturbatively as

Z=

ˆ
Dφ e−S[φ] =

∑
Γ

λvΓ

sym [Γ]
A [Γ] , (1)

where Γ are Feynman graphs, sym[Γ] is a symmetry factor and A[Γ] a Feynman amplitude.
Here we are assuming a single interaction term in S[φ] with coupling λ, and vΓ is the number
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of interaction vertices in Γ. For a suitably chosen action, A[Γ] represents a discrete quantum
gravity path integral or spin foam amplitude associated to the graph Γ, which is interpreted
as a combinatorially defined discrete spacetime. The boundary states of the graph correspond
to (triangulations of) spatial hypersurfaces. In the example of the Boulatov model [11], the
Feynman graphs represent oriented three-dimensional simplicial complexes and A[Γ] would
be the amplitude defining the Ponzano–Regge model of three-dimensional quantum gravity
[46]. In this case, we have a field φ(g1, g2, g3) defined on SU(2)3, where SU(2) corresponds
to the gauge group for gravity. In general, Z would define a sum over all possible discrete
spacetime histories weighted by path integral-like amplitudes. Just as it would be the case for
a more conventional quantum field theory, the type of kinematical data associated to each Γ
depends on the kinematical data chosen for the group field (in particular, on the choice of
gauge group), while the precise choice of interaction term(s) determines what types of graphs
Γ appear in the sum, and what amplitudes are associated to each Γ.

In the present context, we are interested in models for four-dimensional quantum gravity
coupled to four scalar matter fields. We will later use these matter fields to define a relational
coordinate system. In addition to four group arguments gi (i = 1, 2, 3, 4), which we will here
choose to be elements of SU(2), we therefore couple four scalar fields χA (A= 0, 1, 2, 3) to
the group field φ(gi,χA), which becomes a function φ : SU(2)4 ×R4 → R. Such a field can
be expanded in modes associated to SU(2) representations,

φ
(
gi,χ

A
)
=
∑
J

φJ
(
χA
)
DJ (gi) , (2)

where DJ(gi) represent suitable combinations of Wigner D-matrices and J= (⃗j, m⃗, ι) is a
multi-index representing SU(2) irreducible representations j⃗= ( j1, j2, j3, j4), the correspond-
ing magnetic indices m⃗ with mi ∈ {−ji,−ji + 1 . . . , ji − 1, ji }, and intertwiners ι, which label
the basis of the subspace invariant under SU(2) transformations. Since the multi-index J will
remain abstract in the following, an equivalent construction would be possible for any model
with compact gauge group allowing for a similar mode expansion (for instance, if we chose
U(1) the different J would just be discrete Fourier modes on the circle). In this sense, our form-
alism is very general. One might want to extend the construction to non-compact groups such
as SL(2,C), which is used in some Lorentzian four-dimensional models [47, 48] and could be
seen as the natural gauge group in that context, even though there are also four-dimensional
Lorentzian models based on SU(2) (see, e.g. [33] for a comparison). In the non-compact case,
(2) needs to be replaced by a more complicated expression involving integrals over continuous
representation labels. We will later return to the question of whether the spacetime signature
is indeed encoded in a choice of GFT gauge group.

In general, the GFT action contains a quadratic part and higher order interactions nonlocal
in the group arguments, defined in a specific way to give Feynman graphs the desired combin-
atorial structure to be interpreted as spacetime histories, as we have discussed. The quadratic
part can contain derivatives with respect to the group variables, which are needed to obtain
renormalisable models [49], as well as with respect to the scalar fields. Hence its structure
is relatively similar to that of standard quantum field theory, even though the interpretation
of GFT is very different. The kinetic term encodes the propagator of the theory, which can
be interpreted as a gluing or identification of lower-dimensional building blocks, here usually
pictured as tetrahedra. In general we can assume an action of the form3

3 As a technical subtlety, note that the modes φJ(χA) in (2) are not real-valued but subject to reality conditions. A
simple linear basis change leads to a set of real and independent modes [50], which are the ones appearing in (3).
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S [φ] =
ˆ

d4χ L, L=
∑
J

(
1
2
K(0)
J φ2

J −
1
2
K(2)
J (∂AφJ)

2
)
−V(φ) , (3)

which specifically satisfies the shift symmetry χA → χA+ ϵA. Here, ∂A = ∂
∂χA denotes a deriv-

ative with respect to scalar field arguments and K(0)
J and K(2)

J are mode-dependent constants.
V(φ) contains all higher-order terms and is often of a complicated nonlocal form; in the geo-
metric interpretation these terms are responsible for generating four-dimensional spacetime
histories of the desired combinatorial structure. In applications to cosmology, interactions are
often neglected since they are expected to be subdominant in the very early Universe (see, e.g.
[20, 21]), and we will do the same in the following. The notation K(0)

J and K(2)
J is taken from

[20, 21] where these are thought of as expansion coefficients of a derivative expansion that
could in principle also include higher-order terms, which we assume are not present. Note that
any additional terms in the action would be required to satisfy the shift symmetry with respect
to the scalar fields.

While GFT was originally formulated in terms of a functional integral (1), applications to
cosmology usually start from a canonical quantisation or more general Hilbert space structure,
in which the extraction of effective dynamical equations and study of semiclassical states are
more straightforward. This is somewhat similar to LQC which is derived from the canonical,
not the covariant approach to LQG. A review of different Hilbert space formalisms for GFT
and their foundations can be found in [51]; we will work in the ‘deparametrised’ approach
proposed in [52], which is essentially a conventional canonical quantisation. In this setting,
after a Legendre transform of (3) and a Fourier decomposition with respect to the ‘spatial
fields’ χa with a= 1,2,3, one finds that the Hamiltonian of the theory is4 [52, 53]

H=

ˆ
d3k

(2π)3
∑
J

K(2)
J

2

(
− 1

|K(2)
J |2

πJ,−k
(
χ0
)
πJ,k

(
χ0
)
+ω2

J,kφJ,−k
(
χ0
)
φJ,k

(
χ0
))

, (4)

where πJ =−K(2)
J ∂0φJ is the canonical momentum and we defined ω2

J,k = m2
J + k⃗2 with m2

J =

−K(0)
J

K(2)
J

. Note that m2
J and ω

2
J,k can be negative, depending on the signs of K(0)

J and K(2)
J , which

depend on the choice of GFT model. Again, being as general as possible, we also include the
case m2

J < 0 for which ω2
J,k < 0 at least for small enough |⃗k|.

We proceed by promoting the Fourier modes of φJ and its conjugate momentum πJ to
operators satisfying equal-time commutation relations[

φJ,k
(
χ0
)
,πJ′,k ′

(
χ0
)]

= iδJJ ′ (2π)
3
δ
(⃗
k+ k⃗ ′

)
. (5)

We can then define convenient linear combinations AJ,k, A
†
J,k by

πJ,k
(
χ0
)
=−iαJ,k

(
AJ,k−A†

J,−k

)
, φJ,k

(
χ0
)
=

1
2αJ,k

(
AJ,k+A†

J,−k

)
; αJ,k =

√
|ωJ,k||K(2)

J |
2

,

(6)

4 As pointed out in [53], singling out a clock field, as is necessary to perform the Fourier transform, breaks the initial
rotational symmetry between the four fields.
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which satisfy [
AJ,k

(
χ0
)
,A†

J′,k ′
(
χ0
)]

= δJJ ′ (2π)
3
δ
(⃗
k− k⃗ ′

)
, (7)

with all other commutators vanishing. Evaluating these operators at time zero defines a set
of time-independent creation and annihilation operators by aJ,k = AJ,k(0) and a†J,k = A†

J,k(0).
We find two different types of modes, namely oscillating and squeezed modes, from the
Hamiltonian (4), depending on the sign of ω2

J,k. For modes with ω2
J,k < 0 the Hamiltonian is a

standard harmonic oscillator

HJ,k =− sgn
(
K(2)
J

) |ωJ,k|
2

(
aJ,−ka

†
J,−k+ a†J,kaJ,k

)
, (8)

and the Heisenberg equations of motion ∂0AJ,k =−i [AJ,k,H] give

AJ,k = aJ,ke
i sgn(K(2))|ωJ,k|χ0

, A†
J,k = a†J,ke

−i sgn(K(2))|ωJ,k|χ0

. (9)

On the other hand, for modes with ω2
J,k > 0 we obtain a squeezing Hamiltonian

HJ,k = sgn
(
K(2)
J

) |ωJ,k|
2

(
aJ,kaJ,−k+ a†J,ka

†
J,−k

)
(10)

and the time-dependent expressions for our basic operators are given by

AJ,k =aJ,k cosh
(
|ωJ,k|χ0

)
− i sgn

(
K(2)

)
a†J,−k sinh

(
|ωJ,k|χ0

)
,

A†
J,k =a

†
J,k cosh

(
|ωJ,k|χ0

)
+ i sgn

(
K(2)

)
aJ,−k sinh

(
|ωJ,k|χ0

)
. (11)

Knowledge of these solutions is sufficient to show that the expectation value of the number
operator A†

J,kAJ,k of squeezed modes satisfies a ‘Friedmann equation’ which is asymptotically
equivalent to the one of general relativity with a single massless scalar field while resolving the
classical singularity, in the sense that only very special initial states can ever have vanishing
particle number [36, 54]. Interpreting GFT quanta in a fixed mode J as representing spin-
network excitations of LQG, a definition of the volume operator similar to the one of LQG
would suggest that the total volume is proportional to the number of quanta, and hence a
similar Friedmann equation can be obtained for the volume. In the following analysis we will
use the effective metric approach [40] in which the volume of the Universe is a function of this
effective metric rather than determined by the number operator, so that the effective Friedmann
equation can be different.

For a wide class of possible choices of coefficientsK(0)
J andK(2)

J in the GFT action, includ-
ing the particularly well-motivated case of a Laplacian operator acting on all group arguments,
a single J mode will dominate at late times where the semiclassical limit can be related to gen-
eral relativity [55]. Because of this reason and for technical simplicity, we therefore restrict
to the analysis of a single Peter–Weyl mode with J= J0 as is common in cosmological GFT
studies [33, 36]. If the dominant mode is of squeezed type (as it is when squeezed modes
are present at all), the emergence of Friedmann dynamics compatible with general relativity
is hence a very general result of GFT cosmology. An extension of the analysis to multiple
modes is straightforward in principle. Notice again that either the single-mode truncation or
a general multi-mode analysis would be possible for many choices of gauge group other than
SU(2), which makes these results even more general and less sensitive to the details of the
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GFT model. The statement that such a wide range of GFT models agrees with general relativ-
ity may appear ‘too good to be true’ from a conceptual point of view, but it only applies to
homogeneous and isotropic flat cosmology. Classically, the correct Friedmann equations can
be obtained even from Newtonian dynamics [56], and hence the agreement does not mean that
all such models reduce to general relativity at low energies. This strongly motivates going bey-
ond purely homogeneous spacetimes and including inhomogeneities, where one would expect
a possible agreement with general relativity to be much more sensitive to the details of the
GFT, as our later results will indeed indicate.

In the case of a non-compact gauge group (which we will not investigate here), restriction
to a single mode is not strictly possible for continuous representations, since these modes are
not normalisable. One could choose a sharply peaked Gaussian and obtain qualitatively similar
results, as suggested by [47].

Oscillating modes do not lead to an expanding background cosmology and are often not
considered, but in a multi-mode analysis only a single squeezed mode is required to obtain
an expanding background. At the level of perturbations, oscillating modes might then become
relevant, at least for a certain time period and depending on initial conditions. Therefore we
include them in our later analysis.

3. Effective GFT metric for a perturbed FLRW spacetime

In [40] we presented a new proposal for defining an effective spacetime metric in GFT, using
symmetries of the GFT action and their relation to symmetries of spacetime fields. We will
briefly review this construction in section 3.1, before considering its specific application to the
scenario of an FLRWmetric with small inhomogeneities in section 3.2. The application to the
FLRW background was already presented in [40] and our focus is on extending the analysis
to perturbations.

3.1. General construction

The construction of the effective metric relies on using four massless scalar fields as a coordin-
ate system. Such matter reference frames have long been considered in the quantum gravity
literature [57, 58] and were previously employed to study perturbations within GFT [29, 31,
33, 34].While someGFT studies [33, 34] include a fifth scalar field that is assumed to dominate
the four reference or coordinate fields, so that the matter content can often be approximated
as just a single field, we assume that the reference fields constitute the only matter content.
Within classical general relativity, our matter action reads

Sχ =

ˆ
d4x Lχ =−1

2

ˆ
d4x

∑
A

√
−ggµν∂µχA∂νχA . (12)

Using these fields as coordinates means that we identify each χA with a spacetime coordin-
ate xµ by demanding that hypersurfaces of constant χA coincide with hypersurfaces where
the respective coordinate is constant. We then have ∂µχA = δAµ, where A= 0,1,2,3 denotes a
label of the fields (and is not a spacetime index). As before we use a= 1,2,3 to denote the
spatial fields and 0 for the clock field. For such a relational coordinate system to be locally
well-defined, the fields have to satisfy a non-degeneracy condition with respect to any other

9



Class. Quantum Grav. 42 (2025) 225015 S Gielen and L Mickel

well-defined coordinate system5,

det
(
∂µχ

A
)
6= 0 . (13)

The relational coordinate system defines a special case of the harmonic gauge □xµ = 0
by virtue of the Klein–Gordon equation □χA = 0 satisfied by each of the fields. While the
harmonic gauge has a residual gauge freedom, fixing the relational coordinate system as we
do here fixes the gauge completely. Using an Arnowitt–Deser–Misner decomposition of the
metric, we obtain the following relations between the canonical momenta of the scalar fields
πA = ∂Lχ /∂(∂0χ

A) defined from (12) and the lapse N and shift Na:

π0 =

√
|q|
N

, πa =−Na
√
|q|
N

=−Naπ0 . (14)

These expressions show that the lapse and shift are fully determined by the spatial metric qab
together with the scalar field momenta. This can be seen as an explicit gauge-fixing of the
general coordinate freedom of general relativity which would permit an arbitrary choice of N
and Na.

The action (12) is invariant under constant shifts of each of the fields χA 7→ χA+ ϵ (ϵ ∈ R),
which by virtue of Noether’s theorem implies the existence of a current jµ. There is a separate
current for each χA, which we can label as ( jµ)A, satisfying a conservation law

∂µ ( j
µ)

A
= 0 , ( jµ)A =−

√
−ggµν∂νχA . (15)

In the relational setup (with ∂µχA = δAµ) these currents ( j
µ)A can be interpreted as a symmetric

matrix field jAB = ( jB)A, directly related to the metric via

jAB =−
√
−ggAB . (16)

Hence, in a theory of general relativity coupled to four reference scalars, the spacetime metric
can be directly recovered from Noether currents associated to shift symmetries in the matter
fields.

The GFT action (3) has an equivalent translational symmetry χA → χA+ ϵ, here appearing
as a translational symmetry on the GFT configuration space. Again, this symmetry is associ-
ated with a conserved Noether current, namely the GFT energy-momentum tensor TAB defined
by

TAB =− ∂L
∂ (∂Aφ)

∂Bφ+ δABL=
∑
J

(
K(2)
J ∂AφJ ∂BφJ

)
+ δABL . (17)

The components of TAB can be promoted to operators and satisfy the conservation law
∂ATAB = 0, both classically and quantum-mechanically, as shown in [40]. This agrees with the
expected classical conservation law ∂AjAB = 0 for spacetime Noether currents. The proposal
of [40] is to identify the conserved quantities that arise from the same symmetries in GFT
with those of spacetime physics: we view TAB as the GFT version of the classical current jAB.
(We emphasise that this type of identification holds only in the relational coordinate system.)

5 In the case of only a single scalar field χ used as a clock, the equivalent condition is ∂0χ ̸= 0: the clock field is not
allowed to turn around and evolve backwards.

10
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Hence, TAB encodes the spacetime metric in GFT through (16). The conservation law for TAB

translates into the conservation law of jAB, which is equivalent to the Klein–Gordon equation
for the fields χA. We denote the quantum version of the GFT energy-momentum tensor as T AB

and for sufficiently semiclassical states (such that an interpretation in terms of an effective
macroscopic spacetime is justified) we then propose the identification jAB = ξ 〈T AB〉, where
ξ ∈ R, to obtain an effective spacetime metric. The constant ξ, which is not fixed by the gen-
eral argument based on conservation laws, can be chosen to simplify some expressions and
we will set ξ = sgn(K(2)). Note that the metric gAB is not directly represented as an operator
in GFT, but only emerges after taking expectation values. In the following analysis, the role of
a semiclassical state will be played by the usual Fock coherent state or ‘condensate’ used in
GFT cosmology.

The quantised GFT energy-momentum tensor T AB is a function of the annihilation and
creation operators Ak, A

†
k (where we have dropped the J label as we focus on a single J mode

case in what follows) and explicitly reads

: T 00
k : =

ˆ
d3γ

(2π)3

sgn
(
K(2)

)
4
√

|ωγ ||ωk−γ |

[
2β+k,γ : A†−γAk−γ : +β−k,γ

(
: A†−γA

†
γ−k : + : AγAk−γ :

)]
,

: T 0b
k : =

ˆ
d3γ

(2π)3
1
2

√
|ωk−γ |
|ωγ |

γb

(
: A†γ−kAγ :− : A†−γAk−γ :− : Ak−γAγ : + : A†γ−kA

†
−γ :

)
,

: T a ̸=b
k : =

ˆ
d3γ

(2π)3

sgn
(
K(2)

)
2
√

|ωγ ||ωk−γ |
γa (γb− kb)

(
: A†−γAk−γ : + : A†γ−kAγ :

+ : A†−γA
†
γ−k : + : AγAk−γ :

)
,

: T aa
k : =

ˆ
d3γ

(2π)3

sgn
(
K(2)

)
4
√

|ωγ ||ωk−γ |

[
2
(
β−k,γ − 2γa (ka− γa)

)
: A†−γAk−γ :

+
(
β+k,γ − 2γa (ka− γa)

)(
: A†−γA

†
γ−k : + : AγAk−γ :

)]
, (18)

where β±
k,γ =−m2 + γ⃗ · (⃗k− γ⃗)± |ωγ ||ωk−γ |. In these expressions we employ a normal-

ordering procedure at the level of the time-independent operators ak, a
†
k , such that vacuum

expectation values are finite. We drop the normal ordering symbol for the GFT energy-
momentum tensor operators in the following, and it should be understood that we always use
the normal ordered version of the operators, such that 〈T AB

k 〉 stands for 〈: T AB
k :〉.

In summary, the idea is to identify the expectation values of components of the quantum
GFT energy-momentum tensor with the classically conserved current, i.e. we propose that
we can identify 〈T AB〉= sgn(K(2))jAB for suitable semiclassical states. One can then recon-
struct an effective metric from (16). In the following we apply this to a perturbed flat FLRW
spacetime.

3.2. Application to an FLRW metric with small inhomogeneities

While the proposal of an effective spacetime metric in GFT is completely general, in this paper
wewant to specialise to the casemost relevant in cosmology, namely a perturbed FLRWmetric.
This means that we need to calculate the components of the symmetric tensor jAB (16) resulting
from the classically conserved currents for a perturbed FLRW metric, remembering that these
are defined only in the relational coordinate system spanned by four massless scalar fields.

11
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Making the identification of these classical currents with GFT expectation values 〈T AB〉 and
inverting the expressions then gives us expressions for metric quantities in terms of operator
expectation values in GFT. Since this identification is in a sense a definition of a spacetime
metric, in this part we do not require any knowledge of the specific form of T AB or any choice
of state and the expressions below are of a kinematical nature. The choice of state and the
choice of GFT model will then later determine whether our proposal is sensible, considering
also the resulting effective equations of motion for the perturbation variables (see section 6 for
the analysis for a Fock coherent state). We should be able to show that our perturbations of
FLRW are indeed small in a well-defined sense, and they should satisfy equations related to
classical dynamics of perturbations in some form.

Using standard conventions of cosmology [41], the general perturbed FLRW metric reads
(here and below i, j = 1,2,3 denote spatial indices)

ds2 =−N(t)2
(
1+ 2Φ̃(t, x⃗)

)
dt2 + 2N(t)a(t)

(
∂iB(t, x⃗)−BVi (t, x⃗)

)
dtdxi

+ a(t)2 ((1− 2ψ (t, x⃗))δij+ 2∂i ∂jE(t, x⃗)

−
(
∂iE

V
j (t, x⃗)+ ∂jE

V
i (t, x⃗)

)
+ 2ETij (t, x⃗)

)
dxidxj,

(19)

whereN denotes the background lapse, a the scale factor, and we have carried out a decompos-
ition of metric perturbations into scalar (ψ , Φ̃, E, B), vector (BVi , E

V
i ) and tensor (ETij) compon-

ents. The vector components have vanishing divergence and the tensor component is transverse
and traceless:

δij∂jB
V
i = 0, δij∂jE

V
i = 0, δik∂kE

T
ij = 0, δijETij = 0 . (20)

For the metric (19) and the matter action for four massless scalar fields (12), we can then
obtain the classically conserved currents in the relational coordinate system, given by (16)6,
as

j00 =
a3

N

(
1− Φ̃− 3ψ +∇2E

)
, j0a = a2

(
BVa − ∂aB

)
,

ja̸=b =aN
(
2∂a∂bE− ∂aE

V
b − ∂bE

V
a + 2ETab

)
,

jaa =− aN
(
1+Φ̃−ψ +∇2E− 2∂2

aE+ 2∂aE
V
a − 2ETaa

)
(no sum over a) . (21)

We have left the lapse function N general, but it should be understood that the identification of
the jAB components with the GFT energy-momentum tensor is only possible in the coordinate
system spanned by the four scalar fields with N= a3/π0 and Na =−πa/π0 from (14), where
π0 and πa are the momenta of the clock and rod fields, respectively. For scalar perturbations
the momenta of the spatial fields are given by πa =−a2∂aB.

The conserved current (21) for a flat FLRWUniverse (i.e. taking into account homogeneous
background quantities only) thus takes the form

jAB =

(
π0 0
0 − a4

π0
δab

)
, (22)

6 In appendix A.2, we will generalise this to k-essence models for the scalar fields, which affects the form of the
currents.

12
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where we recall that π0 > 0. Notice that the signs of the components are fixed by the Lorentzian
signature of (19); in the case of a Euclidean signature, all entries would be positive.

The T AB operators constructed in (18) are defined in terms of Fourier modes of the spa-
tial fields and we therefore relate them to the Fourier modes of jAB. For any classically per-
turbed quantity we have f(t, x⃗) = f̄(t)+ δf(t, x⃗). The background quantity is given by f̄(t) =
1
V0

´
d3x f(t, x⃗) = fk=0(t), where V0 is the coordinate volume of the Universe or of a patch of

the Universe (‘fiducial cell’) used to define it. Hence, the k⃗= 0 mode determines the homo-
geneous part, so that we have δfk=0(t) = 0. By (22), the conjugate momentum of the clock
field and scale factor are then determined by the k⃗= 0 mode of the diagonal components of
〈T AB

0 〉:

π0 =sgn
(
K(2)

)
〈T 00

0 〉 , a4 =−〈T 00
0 〉〈T aa

0 〉 . (23)

If the off-diagonal components of 〈T AB〉 vanish and all spatial diagonal components 〈T aa
0 〉 are

identical, the effective metric can consistently be interpreted as flat FLRW. We will find this
to be the case for the state we consider below.

The non-zero k-modes correspond tometric perturbations. In general, the 〈T AB
k 〉 can include

scalar, vector, and tensor modes according to the decomposition in (21). For our choice of state
(see (46) below) wewill see that the operator expectation values can consistently be interpreted
as containing only scalar perturbations and we hence neglect vector and tensor perturbations in
the expressions that follow. A more complete analysis that reveals which types of state choices
can give rise also to vector and tensor perturbations is left for future work. (In particular, it
would be of significant interest to include tensor modes and compare these with the linearised
form of general relativity or its modifications.)

Assuming only scalar perturbations, the identification jABk = sgn(K(2))〈T AB
k 〉 together

with (21) written in Fourier space leads to

sgn
(
K(2)

)
〈T 00

k̸=0〉=− a3

N

(
Φ̃+ 3ψ + k2E

)
, sgn

(
K(2)

)
〈T 0a

k̸=0〉=−ia2kaB,

sgn
(
K(2)

)
〈T aa

k̸=0〉=aN
(
−Φ̃+ψ + k2E− 2k2aE

)
(no sum over a) ,

sgn
(
K(2)

)
〈T a̸=b

k ̸=0 〉=− 2aNkakbE , (24)

and therefore 1
3 sgn(K

(2))tr〈T aa
k̸=0〉= aN(−Φ̃+ψ + k2

3 E). (Here and in the following tr
represents a trace over the a index, i.e. tr〈T aa

k ̸=0〉= δab〈T ab
k̸=0〉.) Inverting the above gives

the following expressions for effective scalar perturbations (we choose a,b so that ka 6= 0,
kb 6= 0)7:

7 There is a consistency condition on E, which could also be obtained from

E=
sgn

(
K(2)

)
2aN

(
k2b − k2a

) (
⟨T aa

k̸=0⟩− ⟨T bb
k ̸=0⟩

)
, a ̸= b ,

and the resulting expression might differ from the one obtained in (25). For the state discussed in section 5, the two
expressions agree, see (57) for explicit expressions for squeezed modes and (70) for oscillating modes.
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sgn
(
K(2)

)
Φ̃ =−

⟨T 00
k ̸=0⟩N
4a3

−
tr⟨T aa

k ̸=0⟩
4aN

, sgn
(
K(2)

)
E=− 1

2aN

⟨T a ̸=b
k ̸=0 ⟩
kakb

,

sgn
(
K(2)

)
ψ =−

⟨T 00
k ̸=0⟩N
4a3

+
tr⟨T aa

k ̸=0⟩
12aN

+
k2

kakb

1
6aN

⟨T a ̸=b
k ̸=0 ⟩ , sgn

(
K(2)

)
B=

i
a2

⟨T 0a
k ̸=0⟩
ka

.

(25)

These relations are independent of the specific GFT and rely only on the identification of
expectation values of the GFT energy-momentum tensor 〈T AB〉 with components of a per-
turbed FLRW metric in a relational coordinate system. In particular, they do not depend on
a specific choice of GFT state, assuming a state that only contains scalar perturbations8. By
making a particular choice of state and computing the corresponding effective metric, one
can check explicitly whether the state admits an interpretation as a slightly inhomogeneous
Universe, by verifying that the background quantities represent an FLRW Universe and the
non-zero k modes represent small perturbations. The choice of state detailed in section 5 and
used already in [40] should be understood as a naive first guess.

This illustrates the nature of the effective GFT metric proposal: in itself, for any suitably
semiclassical state an effective metric can be reconstructed; the task is to interpret its form
physically. In sections 5 and 6 we will compare the effective metric to a perturbed flat FLRW
metric, which reflects our belief that our state describes said metric in the semiclassical limit.
How to interpret a general metric without assuming a classical counterpart from the beginning
is less clear.

4. Classical analysis

Following the philosophy of constructing an effective metric in GFT as described above, defin-
ing a suitable state gives us explicit expressions formetric perturbations, subject to equations of
motion derived from the GFT dynamics. In order to be able to compare the resulting equations
to our expectations from classical cosmology, in this sectionwe obtain the dynamical equations
for classical cosmological perturbations in a relational coordinate system spanned by four
massless scalar fields, as well as for a single massless scalar field that serves as a clock. We
include the details of the general relativistic system for ease of reference, and we will compare
the dynamical equations obtained within GFT to the expressions below in section 6.

In classical spacetime physics, the energy-momentum tensor of four massless scalar fields
(defined by an action (12)) is

Tµν =
∑
A

[
gµα∂αχ

A∂νχ
A− 1

2
δµν
(
gαβ∂αχ

A∂βχ
A
)]
. (26)

Let us emphasise that his object has nothing to dowith the GFT energy-momentum tensor (17),
which is an abstract field-theoretic quantity not defined on any spacetime. In the gauge where
the scalar fields are used as coordinates ∂µχA = δAµ we find

Tµν =
∑
A

[
gµAδAν −

1
2
δµν g

AA

]
. (27)

8 This assumption means in particular that all six off-diagonal components of ⟨T AB
k ⟩ can be written in terms of two

scalar functions, which is again a consistency check for the proposal.
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While originating from a different motivation, models which include three massless scalar
fields with homogeneous gradients have been investigated within models of solid inflation
[59], including a study of perturbations and differences to more standard cases considered
within cosmology.

4.1. Background

At the background level of the perturbed FLRW metric (19), we obtain the following expres-
sions for the energy density and pressure (no sum over i in the second expression):

−T0
0 = ρ=

1
2

(
1
N2

+
3
a2

)
=

π2
0

2a6
+

3
2a2

, Ti i = P=
1
2

(
1
N2

− 1
a2

)
=

π2
0

2a6
− 1

2a2
.

(28)

The contribution of the spatial coordinate fields, coming from their nonvanishing gradient
energy, appears as an additional term that would be equivalent to negative spatial curvature

(P=− 1
3ρ)

9. For certain initial conditionswhere π2
0
a4 � 1, the contribution of the spatial fields to

the energy density can become negligibly small for a certain period of time, effectively recov-
ering the standard cosmological background scenario with a single massless scalar field. This
limit can be achieved for sufficiently early times, depending on the value of π0, but at late times
the gradient energy will always dominate. In general, we have an equation of state parameter

w= P/ρ= 1−a4/π2
0

1+3a4/π2
0
∈ (− 1

3 ,1), and similarly for the sound speed c2s = P ′/ρ ′ =
1−a4/(3π2

0)

1+a4/π2
0

∈
(− 1

3 ,1).
The resulting first and second Friedmann equations read (with κ= 8πG)

H2 =

(
a ′

a

)2

=
κ

6

(
1+ 3

a4

π2
0

)
,

a ′ ′

a
=
κ

6

(
1+ 9

a4

π2
0

)
, (29)

where the terms proportional to a4

π2
0
arise due to the spatial fields and would not appear in

the case of a single (clock) scalar field. An alternative way of writing the second Friedmann
equation is H ′ = κ a4

π2
0
. Again it is clear that the contributions from gradient energy will always

dominate at late times; the solutions for a will actually diverge as |χ0 −χf|−1/2 at some finite
value χ0 = χf.

4.2. Perturbations

In the following, we give the results for the perturbative analysis for the gauge-fixed system
with four massless scalar fields. We are interested in the dynamics of perturbations of a system
with four fields to compare with the GFT equations; a more detailed classical analysis of the
general-relativistic system is not the focus of the current work.

The harmonic gauge conditions □xµ = 0 for our choice of lapse N= a3/π0 read (these
equations agree with the ones given in [33])

a2∇2B+π0

(
Φ̃+ 3ψ −∇2E

) ′
= 0 ,

∇⃗
[
−π0 (2HB+B ′)+ a2

(
−Φ̃+ψ +∇2E

)]
= 0 .

(30)

9 These background terms agree with the simplest solid inflation model where F=−X/2 in the construction of [59].
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These can be used to eliminate ∇2B for example, and combined to give

π2
0

(
−Φ̃− 3ψ +∇2E

) ′ ′
= a4∇2

(
−Φ̃+ψ +∇2E

)
. (31)

The components of the perturbed Einstein tensor δGµ
ν for our lapse choice are given by

δG0
0 =

6π2
0

a6
H
(
HΦ̃+ψ ′

)
+

2π0

a4
H∇2B− 2

a2
∇2ψ − 2π2

0

a6
H∇2E ′ , (32)

δG0
i = − 2π2

0

a6
∂i

(
HΦ̃+ψ ′

)
, (33)

δGi
i =

2π2
0

a6
(
2H ′ − 3H2

)
Φ̃+

2π2
0

a6
HΦ̃ ′ +

2π2
0

a6
ψ ′ ′

+
(
∇2 − ∂2

i

)(π0

a4
(2HB+B ′)+

1
a2

(
Φ̃−ψ

)
− π2

0

a6
E ′ ′
)
,

(34)

δGi
̸=j =∂i ∂j

(
−π0

a4
(2HB+B ′)− 1

a2

(
Φ̃−ψ

)
+
π2
0

a6
E ′ ′
)
. (35)

Our choice of coordinate system naturally limits us to the harmonic gauge, in fact, it com-
pletely fixes the gauge and eliminates the residual gauge freedom. In particular, there are no
perturbations in the scalar fields in the relational coordinate system where ∂µχA = δAµ. For the
perturbed energy-momentum tensor for four massless scalar fields in the relational coordinate
system we find

δT0
0 =

π2
0

a6
Φ̃− 1

a2
(
3ψ −∇2E

)
, δT0

i =
π0

a4
∂iB= δTi0 ,

δTi̸=j =− 2
a2
∂i ∂jE , δTi i =−π

2
0

a6
Φ̃+

1
a2
(
−ψ +

(
∇2 − 2∂2

i

)
E
)
.

(36)

Note that, unlike in the single field case (42), δT0
i 6= 0 due to the sum over spatial fields in (27).

From the perturbed Einstein equations δGµ
ν = κδTµν and the harmonic gauge conditions (30)

one can derive equations of motion for all metric perturbation variables. First of all, we have

0= Gi
̸=j−κδTi̸=j =∂i∂j

(
−π0

a4
(2HB+B ′)− 1

a2

(
Φ̃−ψ

)
+
π2
0

a6
E ′ ′ +

2κ
a2
E

)
=∂i∂j

(
− 1
a2

∇2E+
π2
0

a6
E ′ ′ +

2κ
a2
E

) (37)

and hence

E ′ ′ − a4

π2
0

∇2E+ 2κ
a4

π2
0

E= 0 . (38)

Then, from δG0
0 − δGi

i = κδT0
0 −κδTi i (with sum over i), elimination of ∇2B from the har-

monic gauge condition and use of the background equation (29), we have

Φ̃ ′ ′ − 4HΦ̃ ′ − a4

π2
0

∇2Φ̃ = 0 . (39)
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Furthermore we can obtain ψ and B from the (0, 0) and (0, i) components of the Einstein
equations:

−2∇2ψ + 3κψ =−3κΦ̃+ 2
π2
0

a4
HΦ̃ ′ +κ∇2E , −2π0

a2

(
HΦ̃+ψ ′

)
= κB , (40)

again after eliminating ∇2B and using the background equations to replace H2.
Starting with (31) and using (38) and (39) and δG0

0 = κδT0
0, we can also obtain

ψ ′ ′ − a4

π2
0

∇2ψ+ 2κ
a4

π2
0

(
ψ+Φ̃

)
= 0 , (41)

which is almost an equation for ψ alone.
In the following we will also want to compare with the corresponding equations for the

case of a single massless scalar field χ used as a clock, ∂µχ = δ0µ. In this case, the perturbed
energy-momentum tensor is

δT0
0 =

π2
0

a6
Φ̃ , δT0

i = 0, δTi0 =
π0

a4
∂iB , δTi̸=j = 0 , δTi i =−π

2
0

a6
Φ̃ , (42)

and we find the following equations of motion for the perturbations:

E ′ ′ − a4

π2
0

∇2E= 0 , Φ̃ ′ ′ − 4HΦ̃ ′ − a4

π2
0

∇2Φ̃ = 0 , ψ ′ ′ − a4

π2
0

∇2ψ = 0 . (43)

The ψ equation follows from (31) (which which is a gauge condition and therefore holds
independently of the matter content) in combination with the equations for E and Φ, and the
(0, 0) and (0, i) parts of the Einstein equations with (42).

In this case of a single field, where the background solution is a= a0 exp(Hχ), one can
obtain the explicit solution in Fourier space

E(χ) = c1 (k)J0

(
a20

2H|π0|
|k|e2Hχ

)
+ c2 (k)Y0

(
a20

2H|π0|
|k|e2Hχ

)
, (44)

where J0 and Y0 are Bessel functions of the first and second kind, respectively, and c1(k) and
c2(k) are initial condition parameters. These solutions have also been derived in [33]. These
modes oscillate rapidly with growing χ while their amplitude falls off as e−Hχ, or as 1/a.

For completeness, we also report the form of two gauge-invariant variables commonly used
in the literature, namely the curvature perturbation on equal density hypersurfaces ζ and the
comoving curvature perturbationR. The latter satisfies ∂iR= ∂iψ +HδT0

i/(ρ+P) and they
take on the following form in the relational coordinate system10:

−ζ := ψ +
H
ρ ′ δρ= ψ +

1
3

π2
0
a4 Φ̃−

(
3ψ −∇2E

)
1+ π2

0
a4

, R= ψ +
π0

a2
HB

1+ π2
0
a4

, (45)

where δρ=−δT0
0 is the perturbed energy density.

10 Note that the use of the symbols ζ andR is not consistent across the literature. We use the same convention as, e.g.
[60, 61], but the opposite of [62].
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As for the background, the above reduces to the single field case in the limit π2
0
a4 � 1. In

particular, in this limit we find −ζ → ψ + Φ̃
3 and R→ ψ. We do not use these expressions

further in this paper given that the dynamics of perturbations will be found to disagree with
general relativity, but in future work one can use the effective scalar perturbations obtained as
described in section 6 to study gauge-invariant quantities from GFT explicitly, which was not
possible prior to the proposal of an effective GFT metric.

5. Emergent FLRW universe from a coherent state

To obtain explicit expressions for the operator expectation values, enabling us to concretely
reconstruct an FLRWmetric as well as its perturbations from the identifications (23) and (24),
we have to make a choice of state. We use the same state as in [40], which was chosen based
on the condition of semiclassicality, such that the expectation values 〈T AB〉 can indeed be
related to an effective metric, as well as the requirement that it must incorporate properties of
the cosmological spacetime. Fock coherent states satisfy the requirement of relatively small
uncertainty in operator expectation values throughout the evolution [36] (see also [37] for
a more in-depth analysis of a broader class of semiclassical GFT states). We work with a
Fock coherent state |σ〉 which is an eigenstate of the (time-independent) annihilation operator
aJ,k|σ〉= σJ(⃗k)|σ〉:

|σ〉= e−||σ||2/2 exp

(∑
J

ˆ
d3k

(2π)3
σJ

(⃗
k
)
a†J,k

)
|0〉 , (46)

where |0〉 is the GFT Fock vacuum and ||σ||2 =
∑

J

´
d3k

(2π)3 |σJ(⃗k)|
2. To reflect the homogeneity

of the FLRW metric in the quantum state, we choose a sharply peaked Gaussian for σ(⃗k),

σJ

(⃗
k
)
= δJ,J0

A+ iB
cσ

e−
(⃗k−⃗k0)

2

2s2 , (47)

where A, B ∈ R, s determines the peakedness of the state, and we set the homogeneous
mode as the initially dominantly excited Fourier mode, i.e. k⃗0 = 0. The normalisation factor

cσ =
(

s
2
√
π

)3/2
is fixed for convenience regarding later calculations. The state reflects our

restriction to a single Peter–Weyl mode; in the more general case of multiple modes, the initial
conditions, namelyA, B and s, could be J−dependent. While the Gaussian is strongly peaked
on the background mode, it has a finite width, such that inhomogeneous modes with k⃗ 6= 0 will
always be excited. A strictly homogeneous state is reached in the limit of s→ 0, corresponding
to an infinitely peaked state, whichwould introduce divergences that are avoided for 0< s� 1.
In standard cosmological approaches, one treats the perturbations and the background inde-
pendently, where the background is either classical or a quantum state for a minisuperspace
model, and the state for perturbations is defined separately. This is conceptually different to our
proposed state, which does not allow to excite solely the homogeneous background. Since we
have chosen σ(⃗k) to be sharply peaked on the background mode k⃗= 0, modes with low |⃗k|will
have the dominant contribution to the expectation value of the energy-momentum tensor (18)
in addition to the background mode11.

11 For squeezed modes, this statement no longer holds for (very) large values of |χ0|, as large |⃗k|modes have a larger
growth rate ωk.
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The effective FLRW metric resulting from the homogeneous mode k⃗= 0 was discussed in
detail in [40]; here we include only a brief recap of these results. Inhomogeneous modes are
discussed in detail in section 6.

From the identifications sgn(K(2))〈T AB
k=0〉= jABk=0 the explicit form of the effective FLRW

metric follows from (22). For our choice of state (46), convolutions appearing in the operator
expressions (18) can be simplified with the saddle-point approximation (which we will also
use to calculate expressions for the k⃗ 6= 0 modes)

ˆ
d3x e−

(⃗x−µ⃗)2

s2 g (⃗x)≈ g(µ⃗)
ˆ

d3x e−
(⃗x−µ⃗)2

s2 = g(µ⃗)
(√
πs
)3
. (48)

This approximation holds for sharply peaked Gaussians such that g(⃗x) can be considered
approximately constant in the region |⃗x− µ⃗|⩽ s and is applicable for our state choice due
to σ(⃗k) being highly peaked. As investigated in [40] using such an approximation naturally
limits the time span for which our analytic expressions are sufficiently accurate.

The dynamics of T AB depend on the type of modes we are considering—squeezed (11)
or oscillating (9). As we are interested in recovering an expanding Universe, our focus lies
on squeezed modes, which have a growing number of quanta over time. We also report the
contribution to an effective metric from oscillating modes for completeness.

Through the identification (22) the signs of the components of the conserved current are
directly related to the metric signature: all entries of the conserved current will either have
the same sign (Euclidean case) or the spatial diagonal will have the opposite sign of the j00

entry (Lorentzian case). The initial conditions A, B in (47) determine the signature of the
effective metric we reconstruct; the Lorentzian case is found for B2 >A2, whereas B2 <A2

results in a Euclidean metric12. Here we are interested in the Lorentzian case and therefore
restrict ourselves to initial conditions with B2 >A2. In connection to earlier discussions, we
can note that the effective metric signature is determined by initial conditions in the state rather
than any particular features of the underlying GFT model, such as a choice of gauge group. A
similar dependence on initial conditions rather than definitions of the GFTmodel was observed
in [33].

Comparison with the conserved current for the FLRW case as given in (23) then gives the
following identifications for the momentum of the clock field and the scale factor in the case
of squeezed modes m2

J0 = m2 > 0 (the expectation values 〈T AB
0 〉 follow from the k⃗→ 0 limit

of our later more general expression (57))

π0 = sgn
(
K(2)

)
〈T 00

0 〉= |m|
(
B2 −A2

)
,

a4 =−sgn
(
K(2)

)
π0〈T aa

0 〉= m2
(
B2 −A2

)((
A2 +B2

)
cosh

(
2|m|χ0

)
−2sgn

(
K(2)

)
AB sinh

(
2|m|χ0

))
=
m2

2

(
B2 −A2

)((
A− sgn

(
K(2)

)
B
)2

e2|m|χ
0

+
(
A+ sgn

(
K(2)

)
B
)2

e−2|m|χ0
)
.

(49)

Importantly, the off-diagonal components 〈T 0a
0 〉 and 〈T a̸=b

0 〉 vanish exactly due to the anti-
symmetry of the integrals, giving a spatially flat metric.

12 The special case of B2 =A2 corresponds to vanishing momentum of the clock field and is therefore excluded.
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From the above we obtain the following effective Friedmann equation:

H2 =

(
a ′

a

)2

=
1

4
m2

1−
4
(
A2 −B2

)2((
A− sgn

(
K(2)

)
B
)2 e2mχ0

+
(
A+ sgn

(
K(2)

)
B
)2 e−2mχ0

)2


=

1

4
m2

(
1−

π4
0

a8

)
−→

late times

1

4
m2.

(50)

In addition to a constant Hubble rate at late times, the effective metric gives a bouncing
Universe, with the bounce occurring at a4 = π2

0 , or equivalently, 〈T aa
0 〉2 = 〈T 00

0 〉2. The Ricci

scalar at the bounce reads Rbounce = 6m
2

π0
, thus resolving the singularity of the classical scen-

ario. Singularity resolution through a bounce is a common feature of GFT cosmology models
with a single scalar matter field (see, e.g. [20, 21, 36, 54]), but in these past works the Hubble
rate is derived from the time evolution of a total volume proportional to the number operator,
which is different from our proposal using the effective GFT metric. Recovering a constant
Hubble rate in the late-time limit is in agreement with all the Friedmann equations previously
obtained for GFT models as well as with the general relativistic Friedmann equation for a
single massless scalar field if we fix m2 = 2

3κ. However, the Friedmann equation in general
relativity with four massless scalar fields in (29) is different, since the gradients of the spatial
fields contribute. Hence, there is a mismatch with what one might expect from the underlying
cosmological model already at the background level. This mismatch is discussed already in
the introduction of this paper as well as in [40], which focused on the background dynamics.
Another difference with past GFT work (and other scenarios such as LQC) is that the bounce
is not associated to a maximal value of the energy density in the scalar field, but can occur
at either high or low curvatures. Indeed, the Ricci scalar at the bounce depends on the initial
condition set by π0.

In the case of oscillating modes, σ(⃗k) needs to be especially peaked, so that contributions
from squeezing modes can be neglected in the integral and only the region near γ⃗ = 0 (which
consists entirely of oscillating modes) contributes. We then obtain

π0 = |m|
(
A2 +B2

)
,

a4 =− |m|2
(
A2 +B2

)((
A2 −B2

)
cos
(
2|m|χ0

)
− 2sgn

(
K(2)

)
AB sin

(
2|m|χ0

))
.

(51)

The sign of π0 is independent of the initial conditions. The sign of a4 is not fixed and fluctu-
ates throughout the evolution, such that a single oscillating mode would lead to a metric with
variable signature; see the discussion above (49). Phenomenologically, oscillating modes can
introduce a possible modulation to the evolution of the background scale factor if they appear
in conjunction with at least one squeezed mode.

This concludes the discussion of the cosmological background metric, as reconstructed
from the k⃗= 0 mode of the GFT energy-momentum tensor for a suitable state. For a squeezed
Peter–Weyl mode, we recover an effective expression for the scale factor that leads to an effect-
ive Friedmann equation with a bounce. In the following we will extend the analysis to inhomo-
geneous modes.

6. Cosmological perturbations

We now focus on the k⃗ 6= 0 modes of the GFT energy-momentum tensor T AB (18) for the
state (47) introduced in section 5. Recall that even though the state is highly peaked on the
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homogeneous mode, inhomogeneous modes will always be excited. In the following we exam-
ine the dynamics that arise for cosmological perturbations if we identify these inhomogeneous
modes with components of the perturbed FLRWmetric (19). Perhaps unsurprisingly given that
we are working in a simple approximation to the full GFT and with the simplest possible state,
we find a mismatch with the dynamics of general relativity. Still, the following can be seen
as a guidance to construct perturbative quantities and may give hints which adjustments could
lead to an agreement with general relativity at late times.

All components of the GFT energy-momentum tensor (18) depend on the same operator
combinations; in particular, each term is a product of time-dependent ladder operators Ak and
A†
k . From the state choice (46) with (47) and the linear dependence of Ak ,A

†
k on the time-

independent creation and annihilation operators (see (9) and (11)) we find that each of the

terms in the expectation values for 〈T AB
k 〉 will be proportional to e−

γ⃗2

2s2 e−
(⃗k−γ⃗)2

2s2 . Similarly to
the background dynamics, we can then employ the saddle-point approximation (48) to obtain
explicit dynamics for the 〈T AB〉 components. For this, we rewrite the exponentials appearing
in the integrals as

e−
k⃗2−2⃗k·γ⃗+2γ⃗2

2s2 = e
− 1

s2

(
γ⃗− k⃗

2

)2

e−
k⃗2

4s2 , (52)

so that the saddle-point approximation implies γ⃗ ≈ k⃗
2 . This approximation, which requires s�

1, will not hold for all times or for large values of k. Note furthermore that for our choice of σ(⃗k)
(47) we have Ak|σ〉= A−k|σ〉 (and similarly for A†

k ) for oscillating as well as squeezed modes,
due to ωk = ω−k. For squeezed modes the operator expectation values (18) then simplify to

〈T 00
k 〉 ≈

sgn
(
K(2)

)
4|ωk/2|

c2σ
[
k2〈: A†

k/2Ak/2 :〉− 2m2
(
〈: A†

k/2
2 :〉+ 〈: Ak/22 :〉

)]
,

〈T 0b
k 〉 ≈ kb

4
c2σ
[
〈: A†

k/2
2 :〉− 〈: Ak/22 :〉

]
,

〈T a̸=b
k 〉 ≈ −

sgn
(
K(2)

)
|ωk/2|

kakb
8
c2σ
[
2〈: A†

k/2Ak/2 :〉+ 〈: A†
k/2

2 :〉+ 〈: Ak/22 :〉
]
,

〈T aa
k 〉 ≈

sgn
(
K(2)

)
4|ωk/2|

c2σ

[
−
(
4m2 + k2a

)
〈: A†

k/2Ak/2 :〉+
k2 − k2a

2

(
〈: A†

k/2
2 :〉+ 〈: Ak/22 :〉

)]
,

(53)

where the factor c2σ enters from the integral over the exponential in the saddle-point approx-
imation (48) and is cancelled by our choice of state (47) in later expressions. We use equality
signs in the expressions that follow; it should be understood that statements below rely on the
applicability and sufficient accuracy of the saddle-point approximation.

For oscillating modes we have different expressions of β± in (18) and therefore the follow-
ing components differ from the squeezed case:

〈T 00
k 〉 ≈

sgn
(
K(2)

)
4|ωk/2|

c2σ

[
4|m2|〈: A†

k/2Ak/2 :〉+
k2

2

(
〈: A†

k/2
2 :〉+ 〈: Ak/22 :〉

)]
,

〈T aa
k 〉 ≈

sgn
(
K(2)

)
4|ωk/2|

c2σ

[(
k2 − k2a

)
〈: A†

k/2Ak/2 :〉+
(
2|m2| − k2a

2

)(
〈: A†

k/2
2 :〉+ 〈: Ak/22 :〉

)]
.

(54)
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As detailed in the previous section, recovering a Lorentzian or Euclidean FLRW back-
ground metric with a single Peter–Weyl mode is only possible in the case of a squeezed mode.
Since there is no split between background and perturbations in our formalism, perturbations
are then also of squeezing type in the single-mode case, J= J0. In the more general case, where
a minimum of two J modes are excited, one of them can be of the oscillating type, as this will
not alter the background dynamics at late times. For completeness we then also consider the
perturbations arising from oscillating modes.

From the relation of perturbation variables to operator expectation values as given in (25)
we can establish equations of motion for effective perturbations arising from the GFT effective
metric in terms of the dynamics of operator expectation values independent of the explicit state
choice. From the identifications in (25) we obtain the following equations of motion for E and
B, as well as for the combination Φ̃−ψ, which gives a particularly convenient form,

B ′ ′ + 4HB ′ + 2
(
H ′ + 2H2

)
B= i sgn

(
K(2)

) 〈T 0a〉 ′ ′

kaa2
,

E ′ ′ + 8HE ′ + 4
(
H ′ + 4H2

)
E=−

sgn
(
K(2)

)
π0

2kakba4
〈T a̸=b〉 ′ ′ ,(

Φ̃−ψ
) ′ ′

+ 8H
(
Φ̃ ′ −ψ ′

)
+ 4
(
H ′ + 4H2

)(
Φ̃−ψ

)
=−

sgn
(
K(2)

)
π0

6kakba4
(
2kakbtr〈T aa〉 ′ ′ + k2〈T a̸=b〉 ′ ′

)
.

(55)

We proceed to analyse squeezed and oscillating modes separately, due to their differing late
time limits, where we explicitly compute the expressions of effective scalar perturbations for
squeezed and oscillating modes in sections 6.1 and 6.2, respectively. The classical analysis for
four massless scalar fields and a single field was carried out in section 4.Wewill focus on com-
paring the dynamics of the scalar perturbation E as obtained from the quantum theory to those
of general relativity, due to its comparative simplicity. As the effective Friedmann equation
derived in (50) has the late time limit of general relativity with a single scalar field without
a contribution from spatial gradients, we compare the effective GFT perturbation equations
to the single field case as well. In principle, one could carry out a comparative analysis for
all scalar perturbation variables, however, as we will find a considerable mismatch between
effective GFT dynamics and general relativity, focusing on E should suffice at this stage. The
full analysis would presumably become more relevant once agreement with general relativity
has been established in the late-time regime.

6.1. Squeezed modes

The inhomogeneous squeezed modes, which we recall have ω2
k > 0, have similar dynamics

to the background mode with additional k−dependent terms. In particular, all components of
〈T AB

k 〉 grow exponentially. To obtain explicitly their dynamics from (53) it is useful to define
the following expressions
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〈: A†
k/2Ak/2 :〉=

e−
k2

4s2

2c2σ

((
A− sgn

(
K(2)

)
B
)2

e2|ωk/2|χ0

+
(
A+ sgn

(
K(2)

)
B
)2

e−2|ωk/2|χ0
)

=:
1
c2σ

nk
(
χ0
)
,

〈: A†
k/2

2
:〉+ 〈: Ak/22 :〉=

2
c2σ

e−
k2

4s2
(
A2 −B2

)
=:

1
c2σ

ck , (56)

in terms of which the expectation values for the GFT energy-momentum tensor (53) read

⟨T 00
k ⟩=

sgn
(
K(2)

)
2|ωk/2|

(
k2

2
nk
(
χ0
)
−m2ck

)
, ⟨T a̸=b

k ⟩=−
sgn
(
K(2)

)
8|ωk/2|

kakb
(
2nk
(
χ0
)
+ ck

)
,

⟨T aa
k ⟩=

sgn
(
K(2)

)
2|ωk/2|

[
−
(
2m2 +

k2a
2

)
nk
(
χ0
)
+

(
k2 − k2a

4

)
ck

]
,

⟨T 0b
k ⟩=

i sgn
(
K(2)

)
4|ωk/2|

kbn
′
k

(
χ0
)
.

(57)

It then follows that 1
3 tr〈T

aa
k 〉= sgn(K(2))

2|ωk/2|

[
−
(
2m2 + k2

6

)
nk(χ

0)+ k2

6 ck

]
, which will be a use-

ful expression in the following analysis. For our choice of state, nk(χ0) can be related to the
expectation value of the number operator Nk = A†

kAk (not to be confused with the lapse func-

tion), i.e. nk(χ
0)

c2σ
= 〈Nk/2〉. This relation is valid as long as σ(⃗k) (47) is symmetric in k and we

are within the range of validity of the saddle-point approximation. In particular, the exact form
of σ(⃗k) is irrelevant, as long as it is sufficiently peaked on the k⃗= 0 mode.

To analyse the dynamics of the energy-momentum tensor components, we first note that
nk(χ

0) satisfies the equation of motion

nk
(
χ0
) ′ ′

= 4ω2
k/2nk

(
χ0
)
. (58)

As nk(χ0) fully governs the dynamics of the squeezed energy-momentum tensor, the 〈T AB
k 〉

satisfy similar dynamics, namely

〈T 00
k 〉 ′ ′ =4ω2

k/2〈T
00
k 〉+ sgn

(
K(2)

)
2|ωk/2|m2ck ,

〈T a̸=b
k 〉 ′ ′ =4ω2

k/2〈T
a̸=b
k 〉+ sgn

(
K(2)

) kakb
2

|ωk/2|ck ,

〈T aa
k 〉 ′ ′ =4ω2

k/2〈T
aa
k 〉− sgn

(
K(2)

)
|ωk/2|

(
k2 − k2a

2

)
ck ,

〈T 0b
k 〉 ′ ′ =4ω2

k/2〈T
0b
k 〉 ,

(59)

fromwhich it follows that 1
3 tr〈T

aa
k 〉 ′ ′ = 4

3ω
2
k/2tr〈T

aa
k 〉− sgn(K(2))|ωk/2| k

2

3 ck. They also satisfy
(ka 6= 0)

〈T 00
k 〉 ′ =−i

k2

ka
〈T 0a

k 〉, 〈T a̸=b
k 〉 ′ = ika〈T 0b

k 〉, 〈T aa
k 〉 ′ = i

(
4m2 + k2a

) 〈T 0b
k 〉
kb

, (60)
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where the index b on the right-hand side of the last expression can refer to any space compon-
ent of the energy-momentum tensor. Note in particular that due to the exponential growth of
nk(χ

0), the constant terms in the expressions can be neglected at late times, leading to closed
second-order equations for the 〈T AB

k 〉 that are exactly those of the number operator.
The comparison of (21) and (57) allows an identification regarding the nature of the per-

turbations focusing on the matching of factors of ka; we see that the 〈T AB〉 resulting from our
state choice are consistent with purely scalar perturbations. We first note that the overall factor
of kb in 〈T 0b〉 is consistent with vanishing vector modes BVa = 0. Similarly, from 〈T a̸=b〉 we
find ETa ̸=b = 0 and ∂aEVb + ∂bEVa = 0 (a 6= b); we also get ∂aEVa = 0 from 〈T aa〉. Finally, we
conclude that ETaa = 0 by noticing that the k2a terms in 〈T aa〉 give exactly the k2aE term in jaa,
using the identification sgn(K(2))〈T a̸=b〉= ja̸=b. The possibility of obtaining vector and tensor
perturbations from the effective GFT metric we construct here is should be clarified in future
studies; in what follows we focus solely on scalar perturbations.

We can then use the above results and the relations found in (25) to write down explicit
expressions for the scalar metric perturbations arising from squeezed modes

E=
1

16|ωk/2|
π0

a4
(
ck+ 2nk

(
χ0
))
,

B=− 1
4|ωk/2|

1
a2

nk
(
χ0
) ′
,

ψ =
1

16|ωk/2|

(
2
m2

π0
ck−

(
k2
(
π0

a4
+

1
π0

)
+

4m2π0

a4

)
nk
(
χ0
))

,

Φ̃ =− 1
16|ωk/2|

((
k2π0

a4
− 2m2

π0

)
ck+

(
k2
(
−π0

a4
+

1
π0

)
− 12m2π0

a4

)
nk
(
χ0
))

. (61)

Note that the overall sign factors in the explicit expressions for 〈T AB〉 cancel with the sign in
the identification jAB = sgn(K(2))〈T AB〉, leading to simpler expressions.

From these effective expressions we can make some basic observations regarding the beha-
viour of perturbations arising from squeezed modes:

• The initial spectrum of perturbations at the bounce, where we have a4 = π2
0 , can be com-

puted as a function of k⃗. Since nk(χ0) and ck as defined in (56) scale as e−
k⃗2

4s2 , when |⃗k| � s
perturbations are exponentially small at the bounce. The parameter s regulates the peaked-
ness of the state (46) and can be made arbitrarily small. On the other hand, we see that
modes for which |⃗k|⩽ s are of the same order as the background k⃗= 0. This differs from
standard cosmological perturbation theory, where all perturbations are assumed to be small
with respect to the background, and is a finite-width effect of the state we are considering:
the situation of standard cosmology corresponds to the case of s→ 0 to obtain the back-
ground mode, and the inclusion of a separate spectrum for perturbation modes. In practice,
only modes above a minimal |⃗k| are observable, and very long-wavelength modes outside of
that window could be absorbed into a redefinition of the background. Since in our case the
equations of motion are linear and different k⃗modes are decoupled, this would not introduce
any nonlinear averaging effects.

• As the Universe expands, nk(χ0) increases and hence the perturbations grow in time. Even
the combination nk(χ

0)/a4 grows (recall that at late enough times a4 ∝ e2mχ
0
and nk(χ

0)∝
e2|ωk/2|χ0

), such that all perturbations grow and take their minimum value at the bounce. This
fact can be reconciled with linear perturbation theory by recalling that the free GFT and the
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saddle-point approximation are applicable for a finite time only and furthermore, the per-
turbations are initially exponentially suppressed in k, i.e. the faster growing modes start with
smaller initial amplitudes. At late times, the terms proportional to k2

π0
nk(χ

0) will be domin-

ant in the expressions for Φ̃ and ψ (assuming that the saddle-point approximation is still
applicable). However, an approximation of the form Φ̃≈ ψ ≈− 1

16|ωk/2|
k2

π0
nk(χ

0) would be
invalid, as it violates (31), which is derived directly from the harmonic gauge conditions. The
harmonic gauge conditions are equivalent to the conservation law ∂0T 0B+ i

∑
a kaT aB = 0,

which was shown to hold exactly at operator level in [40].

• In the k⃗→ 0 limit,ψ and Φ̃ tend towards constants, asψ ∼ 1
4|ωk/2|

(
m2

2π0
ck− m2π0

a4 nk(χ
0)
)
and

Φ̃∼ 1
4|ωk/2|

(
m2

2π0
ck+

3m2π0
a4 nk(χ

0)
)
and from the effective scale factor (49) and the definition

of nk(χ0) (56), we can see that |ωk/2| → |m| and nk(χ0)/a4 ≈ const. These perturbations also
satisfy the super-horizon limit of the harmonic gauge condition (31), Φ̃ ′ ′ + 3ψ ′ ′ = 0. In the
strict k⃗→ 0 limit, E and B do not appear in the metric where they are always multiplied by
the wavenumber (or, equivalently, only enter as spatial gradients, see (21)).

We proceed to analyse the concrete form of equations of motion for the perturbation variable E
arising for squeezed GFT modes and compare them to their classical counterparts. Using (55)
and (59), the dynamics of E can be written as

E ′ ′ + 8HE ′ + 4
(
H ′ + 4H2 −ω2

k/2

)
E+

|ωk/2|
4

π0

a4
ck = 0 . (62)

In the late-time limit we can neglect the ck term as it falls off as a−4, and approximate H ′ ≈ 0
and H2 ≈ m2

4 (see section 5). If we also insert ω2
k/2 =

k2

4 +m2, we find

E ′ ′ + 8HE ′ − k2E≈ 0 . (63)

This can be simplified further by considering an explicit late-time expression for E′. At late
times, we can assume that E≈ π0

8|ωk/2|a4
nk(χ

0), again neglecting the ck term, and nk(χ
0) ′ ≈

2|ωk/2|nk(χ0) (see (56)), leading to

E ′ ∼−4HE+ 2|ωk/2|E . (64)

For small wavenumbers k2

4 � m2 we furthermore have |ωk/2| ∼ 2H, such that E ′ ∼ 0 and the
equation of motion for E simplifies to

E ′ ′ − k2E= 0 . (65)

Comparing to (43), the corresponding equation in general relativity coupled to a single mass-
less scalar field, our effective equation (65) has a Euclidean signature instead of the Lorentzian

one, and is missing a factor of π2
0
a4 . It furthermore resembles the general relativistic single field

case (43) more closely than that of four massless scalar fields (38), which is similar to the
results for the effective Friedmann equation as discussed in section 5.

In previous work in GFT cosmology (using different methods and assumptions) the signa-
ture of perturbations was found to depend on initial conditions, where both the Lorentzian and
Euclidean case could be recovered [33]. It is evident that alterations to the setup we present
here are necessary to recover agreement with Lorentzian general relativity. The presence of a
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Euclidean signature for effective metric perturbations may not appear particularly surprising,
given that our original GFT action (3) treats all four matter fields on the same footing and
hence does not distinguish between ‘space’ and ‘time’ directions. A possibility which we will
discuss in appendix A.1 would hence be to start from a different coupling of matter degrees of
freedom in the original GFT action.

In the general relativistic perturbation equations, the factor π2
0/a

4 more generally reads
a2/N2 where N is the lapse, and would hence be absent in the case of conformal time N∼ a.
The lapse is however determined by our choice of coordinate system and the expression of the
conjugate momentum of the clock field, such that one would have to consider alternativematter
actions to obtain a different form of N. As a particular example, one might want to consider
k-essence models that include a more general function of the kinetic term in the Lagrangian
for the four massless scalar fields. The challenge is then to obtain a model in which N∼ a
and H2 ∼ const. at late times; we discuss an extension of our setup to k-essence models in
appendix A.2. We note that the issue of a missing dynamical factor of a4/π2

0 was found in
previous results on GFT perturbations [33] and could be resolved through a more advanced
construction [34, 35], as we will discuss again in the conclusions.

A discussion similar to the one we included for E above could be carried out for the other
three scalar perturbation variables. As these will generally suffer from similar deviations, we
leave this analysis for future work. This concludes the analysis of squeezed modes.

6.2. Oscillating modes

We now follow the equivalent procedure for oscillating modes ω2
k/2 < 0 (see section 2). From

the definition ω2
k = m2 + k⃗2 this will only hold form2 < 0 and for sufficiently small wavenum-

bers: in the saddle-point approximation we only consider the frequency ωk/2, which only cor-
responds to an oscillating mode for k2 < 4|m2|. For the operator expectation values in (53)
and (54), we obtain

⟨: A†
k/2Ak/2 :⟩=

1
c2σ

e−
k2

4s2

(
A2 +B2

)
=:

1
c2σ

dk ,

⟨: A†
k/2

2 :⟩+ ⟨: Ak/22 :⟩=
2e−

k2

4s2

c2σ

((
A2 −B2

)
cos
(
2|ωk/2|χ0

)
− 2sgn

(
K(2)

)
AB sin

(
2|ωk/2|χ0

))
=:

1
c2σ

fk
(
χ0
)
,

(66)

which leads to

〈T 00
k 〉 =

sgn
(
K(2)

)
4|ωk/2|

[
4|m2|dk+

k2

2
fk
(
χ0
)]
,

〈T 0b
k 〉 = − ikb

2
e−

k2

4s2

[
sgn
(
K(2)

)(
A2 −B2

)
sin
(
2|ωk/2|χ0

)
+ 2AB cos

(
2|ωk/2|χ0

)]
=

i sgn
(
K(2)

)
kb

8|ωk/2|
fk
(
χ0
) ′
,

〈T a̸=b
k 〉 = −

sgn
(
K(2)

)
8|ωk/2|

kakb
[
2dk+ fk

(
χ0
)]
,

〈T aa
k 〉 =

sgn
(
K(2)

)
4|ωk/2|

[(
k2 − k2a

)
dk+

(
2|m|2 − k2a

2

)
fk
(
χ0
)]
, (67)
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with tr〈T aa
k 〉= sgn(K(2))

2|ωk/2|

(
k2dk+

(
3|m|2 − k2

4

)
fk(χ

0)
)
. The dynamics of oscillating modes are

governed by fk(χ
0), which satisfies

fk
(
χ0
) ′ ′

=−4|ωk/2|2fk
(
χ0
)
. (68)

This leads to the following equations of motion for the GFT energy-momentum tensor:

〈T 00
k 〉 ′ ′ =− 4|ω2

k/2|〈T
00
k 〉+ sgn

(
K(2)

)
4|ωk/2||m2|dk,

〈T a̸=b
k 〉 ′ ′ =− 4|ω2

k/2|〈T
a̸=b
k 〉− sgn

(
K(2)

)
|ωk/2|kakbdk,

〈T aa
k 〉 ′ ′ =− 4|ω2

k/2|〈T
aa
k 〉+ sgn

(
K(2)

)
|ωk/2|

(
k2 − k2a

)
dk , 〈T 0b

k 〉 ′ ′ =−4|ω2
k/2|〈T

0b
k 〉 .
(69)

Note that this mimics the dynamical equations of squeezed modes (59), with an opposite sign,
which hints at the possibility to recover a Lorentzian signature in the perturbation equations.

From (25) and (67) we find the following expressions for perturbation variables in the case
of oscillating modes:

E=
π0

16|ωk/2|a4
(
fk
(
χ0
)
+ 2dk

)
,

B=− 1
8|ωk/2|a2

fk
(
χ0
) ′
,

ψ =− |m2|
4π0|ωk/2|

dk+
1

8|ωk/2|

(
π0|m2|
a4

− k2

4

(
1
π0

+
π0

a4

))
fk
(
χ0
)
,

Φ̃ =− 1
8|ωk/2|

[(
2|m2|
π0

+
k2π0

a4

)
dk+

(
k2

4

(
1
π0

− π0

a4

)
+

3|m2|π0

a4

)
fk
(
χ0
)]
. (70)

Importantly, there are no growing terms in the perturbations, so that terms proportional to
dk cannot be neglected at late times. The only applicable late-time limit is that the amp-
litude of terms proportional to a−4 decreases. In particular, this implies that E and B decay,
whereas ψ and Φ̃ oscillate around a set value. Similarly to the case of squeezed modes, a
late-time approximation in which Φ̃∼ ψ violates the harmonic gauge condition (31) out-
side the super-horizon limit. In the k⃗→ 0 limit, the harmonic gauge condition reduces to

−Φ̃ ′ ′ − 3ψ ′ ′ = 0 and is satisfied by the approximations Φ̃∼− |m2|
4π0|ωk/2|

dk− 3|m2|π0

8|ωk/2|a4
fk(χ

0)

and ψ ∼− |m2|
4π0|ωk/2|

dk+
|m2|π0

8|ωk/2|a4
fk(χ

0). In the late-time, superhorizon limit, we then find that

ψ ∼ Φ̃ are constants.
Using (55) together with (69) we find the following equation of motion for E in the case of

oscillating modes

E ′ ′ + 8HE ′ + 4
(
4H2 +H ′ + 4|ω2

k/2|
)
E=

|ωk/2|π0

2a4
dk . (71)

The late-time limit is different from the squeezed case; in particular, the right-hand side is of the
same order as E and cannot be ignored. Hence the late-time limit for background quantities is
less straightforward in the case of oscillating modes. As we discussed in section 5, oscillating
modes do not lead to a bouncing Universe at the background level, so that we would assume
that oscillating modes appear only in conjunction with at least one squeezed mode that gives
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desirable background dynamics. In such a case, we would have 4H2 ∼ m2
sq and H

′ ∼ 0, where
m2

sq would be the value of m2 for the squeezed background mode, which is different from
the value appearing in ω2

k/2. While we recover a Lorentzian signature, the discrepancy of the

a4/π2
0 factor remains. Lastly, as no terms can be neglected at late times, E′ cannot be simplified

and we are left with additional terms compared to general relativity (38). As an additional
point of comparison, we noted below (44) that in the case of general relativity with a single
massless scalar field, the amplitude of E falls off as 1/a with increasingly rapid oscillations.
This is clearly very different from the 1/a4 fall-off with a constant oscillation frequency that
we observe in the explicit solution (70).

This concludes the analysis of scalar perturbations within our proposal to extract an effect-
ive metric from GFT for a first naive state choice. We have obtained explicit expressions
for scalar perturbations in the squeezed and oscillating case. In both cases, we find that the
equation of motion for the effective perturbation variable E shows deviations from the gen-
eral relativistic dynamics in the form of having the wrong signature (squeezed modes), having
additional terms (oscillating modes), and a missing dynamical factor of a4/π2

0 (both cases).
In a model with at least two modes, one oscillating and one squeezed, one could imagine
that the squeezed mode is very highly peaked on the background mode and leads to a boun-
cing Universe, while the perturbative modes are suppressed, and the oscillating mode gives
the dominant contribution to cosmological perturbations. Still, in order to match the general
relativistic dynamics at late times, alterations to the proposed setup, e.g. in form of a more
complicated state choice, are required. Below we will discuss some possible directions for
obtaining more phenomenologically acceptable results in our general setting.

7. Conclusion

In this paper we extended the analysis of an effective metric for an FLRW background as
studied in [40] to cosmological perturbations. For the FLRW background, previous work had
shown the promising result of an exactly flat metric and a bouncing Universe. The effective
Friedmann equation derived for this case showed agreement with general relativity coupled
to a single massless scalar field, while the GFT model includes four such fields. The study
of GFT perturbations then has two main objectives: firstly, to establish whether the effective
metric proposal allows a consistent reconstruction of perturbation variables, and secondly to
investigate whether their effective dynamics can be interpreted from the perspective of general
relativity (in suitable limits).

We began with a brief summary of the basics of GFT and the fundamental ideas behind
the effective metric proposal and its application to homogeneous cosmology. As in most of
the literature on GFT cosmology, we neglect interactions between GFT quanta. The free the-
ory then contains two types of modes, oscillating and squeezed modes, which exhibit different
dynamics. Throughout the paper we work in a relational coordinate system given by four mass-
less scalar fields. The proposal is then to identify the GFT energy-momentum tensor with an
effective spacetime metric, given that both define conserved Noether currents associated to the
same symmetries. By giving explicit expressions for the general relativistic Noether currents
for a perturbed FLRW metric, we were able to reconstruct expressions for all scalar metric
perturbations explicitly for the first time in the GFT literature. This is a significant improve-
ment on previous work in which only the spatial volume and its perturbations could be studied.
We established general expressions and equations of motion for scalar perturbation variables
in terms of the effective operator dynamics, which are independent of a specific state choice.
These could be used for any GFT state beyond the example we consider here, or for more
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general models with alternative operator dynamics, e.g. for a different GFT action. While the
proposal for an effective GFTmetric is very general, in the sense that an effective metric can be
associated to any state that is sufficiently semiclassical, the particular choice of state governs
the specific form of such a metric and its symmetries.

For our analysis, we chose a Fock coherent state highly peaked on the homogeneous k⃗=
0 mode. Fock coherent states are commonly used in the GFT literature as they satisfy the
requirement of semiclassicality; peaking around the homogeneous mode reflects the goal of
obtaining an FLRW metric with small perturbations. This state was used in [40] to obtain
the effective background metric, and its non-zero k⃗ modes are interpreted as perturbations. In
[40] we had shown that the effective Friedmann equation for squeezed modes corresponds (at
late times) to what is expected for general relativity coupled to a single massless scalar field.
GFT is not a direct quantisation of classical general relativity; a GFT action is constructed via
symmetries, renormalisation arguments and connection to discrete quantum gravity models.
Our introduction of a specific simple coherent state and the truncation to the free theory are also
significant simplifications. Hence, while obtaining a reasonable Friedmann equation gives a
first hint, it does not yet give strong evidence that the resulting low-energy theory is consistent
with general relativity.

To obtain explicit expressions for perturbative quantities we made use of the saddle-point
approximation, which restricts the validity of our results to perturbations with sufficiently
small wavenumbers and to a finite time. For our state choice small wavelength perturbations
are initially exponentially suppressed and the assumption of negligible interactions in the GFT
action limits our results to regions close (enough) to the bounce. We considered the case of
oscillating and squeezed modes separately, where for both mode types the dynamics of per-
turbations are naturally very similar to those for the respective background mode. Our choice
of state leads to expressions for the expectation values of the GFT energy-momentum tensor
components 〈T AB〉 that are compatible with the interpretation of recovering only scalar per-
turbations, even though in principle the components of 〈T AB〉 contain all perturbation types.

The effective perturbations we found for squeezed modes grow in time, excluding a consist-
ent interpretation as small deviations from a homogeneous background at a certain point in the
evolution. Comparing the equation of motion for the perturbation variable E to those obtained
in general relativity for either one or four massless scalar fields revealed several discrepan-
cies. Firstly, the dynamics of the effective perturbation have a Euclidean signature instead of a
Lorentzian one. Secondly, they resemble the general relativistic dynamics one might expect for
conformal time, whereas we are working in a harmonic gauge given by the relational coordin-
ate system, which would lead to a relative factor a4/π2

0 . Finally, the late-time limit of the
effective dynamics for E resemble (save for the aforementioned discrepancies) those of gen-
eral relativity with a single matter field, which is similar to what we found for the effective
Friedmann equation. To recover a bouncing Universe at the background level, we saw that at
least one squeezed mode needs to be excited; for our state choice we then inevitably encounter
perturbations that are of squeezing type. Oscillating modes, on the other hand, remain finite
in amplitude throughout the evolution of the Universe. While for these modes we recovered
a Lorentzian signature in the dynamical equations for the effective perturbation E, we again
encountered the same discrepancy regarding a dynamical factor of a4/π2

0 , moreover, addi-
tional terms that are not present in general relativity arise. Note that since a single oscillating
mode does not lead to an expanding Universe at the background level, one needs to consider
a minimum of two J modes (one squeezed, one oscillating) in order to have perturbations of
oscillating type in a phenomenologically feasible Universe.

The GFT literature includes models for Euclidean as well as for Lorentzian gravity. As
we discussed in our earlier review of GFT, the desired spacetime signature can (but does not
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need to) be built into a choice of gauge group; to determine the relation between such details
of the model and the emergent spacetime signature, one needs to have access to an effective
spacetime geometry. The work of [40], as well as other results in GFT cosmology [33], indic-
ated that in GFT the metric signature is not fundamentally included in the quantum theory and
instead emerges at an effective level. In our case, at the background level the metric signature
(read off from effective metric coefficients) is determined by initial conditions, whereas for
the perturbations it is determined by the type of dynamical equation and depends on the mode
type. Since we are working in a free GFT, the model presented here has no coupling between
the background and perturbations, and the dynamics of the various k⃗modes of the GFT energy-
momentum tensor are independent of one another. This is a reflection of the linearity of the
theory and stands in contrast to general relativity, where the perturbation equations explicitly
depend on the scale factor and the Hubble rate. This might suggest that the proposed setting is
more suitable for studying perturbations around a flat spacetime, the study of which we leave
to future investigations.

All previous approaches to cosmological perturbations in GFT were limited to considering
the perturbation of the volume element and thus the combination k2E− 3ψ. The exceptional
advantage of having access to a reconstructed metric in our setting lies in the fact that we can
retrieve any combination of perturbative quantities, in particular, we can construct effective
gauge-invariant perturbations. This is of particular interest as gauge-invariant quantities are
those that can be related to observations. Moreover, future work based on more elaborate state
choices could include tensor or vector modes, which could again be read off from the effective
metric.

In a previous study [33] based on volume perturbations, the dynamics of perturbations sim-
ilarly lack a factor of a4/π2

0 , whereas the signature is determined by initial conditions. The
model is also built on a free GFT action with a single group field, but includes a fifth mat-
ter field that is assumed to dominate the relational fields. One hence assumes agreement with
general relativity coupled to a single scalar field, which is found at late times in the k⃗→ 0
limit, similar to the long-wavelength limit of the dynamics for E we find here in the case of
squeezed modes. The dynamical discrepancies in the perturbation equations at finite k⃗ could
then be resolved in [34] using a GFT model with two types of group field (‘spacelike’ and
‘timelike’), which enter the GFT action in a different manner. In this work the choice of state
is not a simple coherent state, but includes entanglement between the perturbations of the dif-
ferent GFT fields. This choice of state and a simplified form of GFT dynamics assumed in
the analysis allow for the introduction of a free function that can be chosen to achieve agree-
ment with general relativity at late times, including fixing the signature to Lorentzian. The
mismatch we find between effective GFT dynamics and those of general relativity is similar
to those of [33], so the follow-up work of [34] might suggest that this can be improved in a
more complicated GFT and with a different choice of state.

In the appendix we propose some avenues for extending our results or their interpretation
in terms of a corresponding classical theory. Beyond this, our results for cosmological per-
turbations can be extended in many different directions:

• Alternative state choices. The state we considered here is characterised by a single k⃗-
dependent function that determines both background and perturbations. One might want
to consider states that more closely resemble the approach in standard cosmology, e.g. one
could consider a background mean field only used to define background quantities, plus a
small k⃗-dependent contribution for the perturbations, which can exhibit an entirely different
spectrum. This would be similar to previous studies of perturbations in GFT [30, 33, 34].
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• Improved GFT dynamics. The dynamics of perturbations are derived from dynamics of the
GFT energy-momentum tensor, which are determined by the GFT action. Including the
effect of interactions in the GFT action, which we have neglected here, might lead to effect-
ive dynamics that are closer to those of general relativity. This would be consistent with the
origin of GFT in discrete gravity models, where the precise form of interaction is important
to determine the ‘gluing’ of lower-dimensional building blocks to form spacetime. Viewed
from that angle it would seem unreasonable to expect that a truncation to a simple quadratic
action that does not know about interactions is already able to capture general-relativistic
dynamics (such a result would also suggest that almost any GFT action of a particular class
reduces to general relativity, which might again seem unrealistic). Of course, adding inter-
actions will substantially complicate matters and potentially require new (perturbative and
nonperturbative) methods.

• Including additional group fields. One might consider extensions similar to [34], where two
GFT fields are included, whose interplay leads to dynamical equations that agree with GR
in a certain limit. Such extensions would change the form of the T AB and symmetry require-
ments of the energy-momentum tensor would likely impose certain conditions (and possibly
limitations) on such a construction.

Finally, we emphasise that the setup for reconstructing an effective GFT metric introduced in
[40] is general and not limited to cosmology. Its usefulness could be established by invest-
igating its application also outside of the context of homogeneous and isotropic cosmology.
Here, anisotropic Bianchi models might be best suited and black hole spacetimes would be of
particular phenomenological interest. If proven suitable for obtaining a variety of spacetimes,
the effective GFT metric could pave the way for a variety of fruitful future research directions.
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Appendix. Possible extensions

In our analysis of the effective GFT metric recovered for the cosmological setting, the com-
parison with general relativity gave two main results:

1. The effective Friedmann equation obtained at late times disagrees with that of general
relativity with four massless scalar fields. Instead, consistent with previous literature, the
Hubble rate (defined for the clock χ0) approaches a constant, which resembles the case of
a single scalar field. This discrepancy was discussed in detail in [40].

2. Effective dynamics of perturbations do not agree with those of Lorentzian general relativity;
we find a Euclidean signature for effective perturbations for squeezed modes, and a factor
of a4/π2

0 is missing from the equations of motion.
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In order to recover a suitable semiclassical regime for cosmology, alterations have to be
introduced to the setup described above. In this appendix we consider two routes to such
alterations that focus on the manner in which the scalar fields are included in the theory and
demonstrate the restrictions imposed by the setup. We first consider changing the GFT action
and coupling clock and spatial scalar fields differently. Then, we consider the possibility of
comparing not with general relativity with four free massless scalar fields, but with the more
general setting of k-essence models, keeping in mind that GFT does not arise from quantising a
particular classical matter action but relies on general symmetry arguments. We find that both
cases are restricted by symmetry requirements on the form of the GFT energy-momentum
tensor and the conserved classical currents. We present both considerations separately; the
combination of both approaches (comparing more general GFT actions to k-essence models)
is left for future work.

A.1. Extensions of the GFT action

In the construction of a GFT action for quantum gravity with four massless scalar fields, one
imposes some symmetries of the corresponding classical action (12), namely, shifts, rotations
and reflections. The Laplacian on R4 in the GFT action (3) is consistent with these; in particu-
lar, derivatives with respect to the scalar fields all enter with the same prefactor to preserve the
rotational symmetry under χA → OA

Bχ
B. As the E(4) symmetry is broken upon singling out a

clock field for quantisation in the deparametrised approach to GFT, one might want to impose
an E(3) symmetry between the spatial fields only and allow for a different factor in front of
the derivatives with respect to the clock field, as was considered already in [29]. Introducing
a new parameter ca ∈ R, this leads to a more general form of the free action

S=
ˆ

d4χL, L=
∑
J

(
1
2
K(0)
J φ2

J −
1
2
K(2)
J

(
(∂0φJ)

2
+ ca

∑
a

(∂aφJ)
2

))
. (A1)

The action (3) used in our analysis so far is evidently recovered for ca = 1. On the other hand,
setting ca =−1 means the Laplacian is now the one on Minkowski spacetime R3,1 and the
symmetry group E(4) is replaced by the Poincaré group E(3,1), which one might hope could
encode Lorentzian rather than Euclidean signature in the effective spacetime geometry.

Having introduced a Lorentzian structure on the space spanned by the four massless scalar
fields, the energy-momentum tensor thus obtains a non-trivial index structure and we adjust
its definition to

TAB :=− ∂L
∂ (∂Aφ)

∂Bφ +LδAB , (A2)

where indices are raised and lowered with the Minkowski metric ηAB = diag(−1, 1, 1, 1).
Specifically, TAB is symmetric (unlike TAB) and therefore suitable for an identification with
jAB as defined in (16). Note that for ca 6= 1 and the previous definition of the GFT energy-
momentum tensor (17), TAB would no longer be symmetric and a consistent identification
with the classical currents impossible.

The question is then how such a change affects phenomenology. The additional factor in
front of the spatial gradient term enters the definition ofωk in theGFTHamiltonian (4) viaω2

k =

m2 + k⃗2 → ω2
k = m2 + ca⃗k2. Recall that we obtain a squeezing-type Hamiltonian for ω2

k > 0,
while ω2

k < 0 results in a harmonic oscillator Hamiltonian. If we consider the case with ca =
−1, we find that all modes with m2 < 0 are oscillating modes. For m2 > 0, we find squeezed
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modes only in the cases where k⃗2 < m2; all other modes are of oscillating type. Such a theory
might be phenomenologically desirable as it has a limited number of squeezed (exponentially
growing) modes.

To assess possible effects on the signature of the effective metric, we first note that due
to the necessary raising of the index of T0

0, we find an additional minus sign in the effect-
ive expression, whereas the spatial diagonal components remain unchanged. For a squeezed
background mode, we thus find (see (49)) 〈T 00

0 〉=−sgn(K(2))|m|(B2 −A2)∝ j00 = π0 and

〈T aa
0 〉=−sgn(K(2))|m|n0(χ

0)∝ jaa =− a4

π0
. Recall that at the level of the background the

effective metric signature is determined by the signs of 〈T 00
0 〉 and 〈T aa

0 〉 (see (22)): If all
components of jAB have the same sign the metric is Euclidean, if the j00 component has a dif-
ferent sign, the metric is Lorentzian. In order to recover a Lorentzian signature for the back-
ground metric we therefore need sgn(B2 −A2) 6= sgn(n0(χ

0)) = 1, i.e. we require A2 > B2

for the initial conditions. Using the same identification as before, jAB = sgn(K(2))〈T AB〉, we
then recover a positive π0 from the effective expressions. In short, setting ca =−1 in the GFT
action has implications for the range of initial conditions that give a Lorentzian effective FLRW
metric.

In the case of effective perturbations, the signature depends on their dynamics, which again
are determined by the mode type. As pointed out above, which modes are of squeezed or oscil-
lating type changes with ca =−1. Additionally, the sign of 〈T 00

k 〉 has changed, which enters
the explicit forms of ψ and Φ̃, see (25). The overall dynamics of squeezed or oscillating per-
turbation modes should however remain unaffected and we should find the same discrepancies
in the dynamics as noted in the main text.

Finally, we comment on more general extensions of the GFT action: To uphold the premise
of our proposal, any generalisation of the construction presented must lead to a symmetric
GFT energy-momentum tensor that can be consistently identified with the classical currents.
If one wanted to extend the GFT action to include, e.g. higher-order derivatives, such higher-
order terms must then appear for all four scalar fields. Such a modification will inevitably also
affect the background dynamics and one cannot include additional terms solely for the spatial
fields, which might have been desirable from a purely phenomenological perspective.

A.2. K-essence models

In the main text, we compared the effective GFT dynamics to dynamics of free massless scalar
fields in general relativity and found various disagreements. However, recall that GFT is not a
direct quantisation of any classical theory but constructed from general principles and proper-
ties of Feynman amplitudes, to be interpreted as discrete spacetime histories. The GFT action
we discussed uses the shift symmetries of free massless scalar fields, but such symmetries exist
in more general classical matter theories. It would hence be very reasonable to suggest that the
classical limit of GFT could correspond to such a more general matter theory. In the following,
we investigate this proposal and study a more general form of the scalar field action known as
k-essence models (see, e.g. [63, 64]).

When using four scalar fields as a relational coordinate system, as done here and in previous
GFT works [33, 34, 40, 53], the simplest assumption is to assume the Lagrangian for free,
minimally coupled fields

Lχ =−1
2

√
−g
∑
A

gµν∂µχ
A∂νχ

A . (A3)
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However, the construction of an effective GFT metric only requires a shift symmetry under
χA → χA+ ϵA, which is satisfied by any Lagrangian that only depends on derivatives of the
scalar fields. In particular, we can generalise to a Lagrangian of the form (a= 1, 2, 3)

L=
√
−gP (X0,Xa) , with X0 =−1

2
gµν∂µχ

0∂νχ
0 , Xa =−1

2
gµν∂µχ

a∂νχ
a , (A4)

where P denotes a general function. For a flat FLRW spacetime and in a relational coordinate
system with ∂µχA = δAµ we have X0 =

1
2N2 and Xa =− 1

2a2 . For a Lagrangian as given in (A4),
the energy-momentum tensor is given by13

(χ)Tµν = δµν P +
∑
A

∂P
∂XA

gµα∂αχ
A∂νχ

A = δµν P +
∑
A

∂P
∂XA

gµAδAν , (A5)

and the classically conserved currents in relational coordinates read

( jµ)A =−
√
−g ∂P

∂XA
gµA (no sum over A) . (A6)

The clock field momentum is given by

π0 =

√
|q|
N

∂P
∂X0

, (A7)

which upon fixing P gives an equation that can be solved for the lapse N.
In the following we demonstrate with a simple example that we could obtain a constant

Hubble rate within k-essence models; we will discuss the restrictions imposed by symmetry
requirements below. For the example we choose P = (X0)

u+
∑

a(Xa)
v, with u, v ∈ R. If we

assume that, again for a flat FLRW Universe, N= ξ aq for some ξ ∈ R+ and q ∈ R, we obtain
the following expression for the conserved canonical momentum of the clock field and a rela-
tion between q and u:

π0 ∝ a3+q(1−2u) !
= const. ⇒ q=

3
2u− 1

. (A8)

Note that an explicit form of ξ as a function of π0 can be found from (A7). From (A5) we can
obtain the energy density

ρ=−P − ∂P
∂X0

g00 =
1

2uN2u
(2u− 1)+ (−1)v+1 3

2va2v
, (A9)

leading to the Friedmann equation

H2 ∝N2ρ=
(2u− 1)
2uξ2(u−1)

1
a2q(u−1)

+(−1)v+1 3ξ2

2v
1

a2(v−q)
, (A10)

where we again assumed that N= ξ aq. We would then recover a constant right-hand side of
the Friedmann equation in the case of u= 1 and v= q, with q= 3 from (A8), so that we recover
a harmonic gauge. The discrepancy between the GFT effective Friedmann equation and the
general-relativistic Friedmann equation at late times for four massless scalar fields would be

13 We do not carry out the sum explicitly in the last step to avoid a confusing index structure.
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resolved in this type of model. In the case of conformal time (q= 1), we have u= 2, such that
the first term in the Friedmann equation decays as a−2, and the right-hand side approaches a
constant at late times for v= 1. Note however that this would imply a stronger mismatch with
the GFT Friedmann equation (50), which does not contain an a−2 term, at early times.

So far, we have focused solely on the homogeneous FLRW dynamics, where the off-
diagonal parts of ( jµ)A vanish. If we consider the time-space components of the currents (A6),
we find

(
j0
)a

=−
√
−gg0a ∂P

∂Xa
, ( ja)0 =−

√
−gg0a ∂P

∂X0
, (A11)

and in order to relate these to a symmetric GFT energy-momentum tensor we must demand
( j0)a = ( ja)0. This imposes ∂P

∂X0 =
∂P
∂Xa , and the Lagrangian has to include all fields in the same

manner. While this symmetry requirement only applies when considering non-diagonal met-
rics, one might prefer a general construction that can hold for various spacetimes (in particular,
also for the perturbed FLRW case). With this restriction we have

L=
√
−gP (X) with X :=−1

2

∑
A

gµν∂µχ
A∂νχ

A =
1

2N2
− 3

2a2
, ( jµ)A =−

√
−ggµA ∂P

∂X
,

(A12)

where we assumed a flat FLRW background and a relational coordinate system for the explicit
form of X. The requirement that

π0 =
a3

N
∂P
∂X

!
= const. (A13)

leaves us with two possible scenarios:

1. The case we considered in the main text above, i.e. N∝ a3 and P ∝ X.
2. (Almost) conformal time: X is a single power of a, i.e. N= ξ a , ξ ∈ R+, such that X=

1
2a2

(
1
ξ2 − 3

)
. We then have π0 =

a2

ξ
∂P
∂X

!
= const. and therefore P ∝ X2. We then find π0 ∝

1
ξ3 − 3

ξ which can be solved to obtain an expression for ξ (π0). As π0 is positive, we must

have ξ ∈ (0,1/
√
3).

From the energy density −ρ= P + ∂P
∂X g

00 we can again compute the Friedmann equation
H2 ∝−N2P + ∂P

∂X . The first option above is the standard case we considered in the main text
and results in (29). The second case of conformal time gives (P ∝ X2)

H2 ∝ 3
4a2

(
1
ξ2

− 3ξ2 − 2

)
, (A14)

which is positive as ξ2 < 1
3 (see above). This goes to zero at late times and does not match

the GFT effective Friedmann equation. Hence, with the symmetry restriction that enables a
consistent identification of the classical currents with the GFT energy-momentum tensor the
scope of allowed k-essence models is limited and we could not identify a case in which we
recover a constant Friedmann equation at late times.
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A.3. Summary

To obtain effective GFT dynamics that can match those of general relativity at the late times,
alterations to the setup presented in the main text are necessary. These can go in several dir-
ections: one can either change the definition of the GFT model, or the classical matter theory
one expects to obtain at low energies. We studied these two types of modifications separ-
ately. Both cases are limited by symmetry requirements on TAB and jAB, which are crucial to
allow a consistent identification with one another. Hence, the desirable effects we found can-
not straightforwardly be included in the setup of an effective GFTmetric as studied in the main
text.

Adjusting the derivatives with respect to clock and spatial fields in the GFT action has the
potential to alter which values of ωk result in oscillating or squeezed modes. Interestingly, it is
possible to introduce a maximum wavenumber for squeezed modes, such that all modes with
larger k will be of oscillating type. In the case of k-essence models, we assessed whether it
is possible to find a form of the matter Lagrangian that gives conformal time and a constant
general relativistic Friedmann equation at late times. The desired result can be achieved if
one is concerned solely with an FLRW metric; then we saw that clock and rod fields can be
included in the classical k-essence action in such a way that one recovers a constant Hubble
rate in general relativity with four massless scalar fields, thus matching the result of GFT.
However, the goal of our paper was to explicitly include cosmological perturbations, and one
would like to find a common consistent description for background and perturbations in which
the phenomenology of both is satisfactory from the perspective of general relativity.
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