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I. INTRODUCTION

General relativity gives an excellent classical description of the gravitational forge; however, the
quest to find a quantum theory of gravity is still ongoing. The quantum behaviour ofimatter is
well described by quantum field theory and as general relativity relates matter to the geometry of
spacetime, it is generally believed that a fully consistent theory also requires a'quantum description
of geometry (though see [1] for an alternative viewpoint). Quantum gravity is,also expected to
cure the singularities through which classical general relativity predicts/its own incompleteness.

Finding a satisfactory quantum description of gravity is no easy«feat. The perhaps natural
approach of applying quantum field theory techniques to a metric petturbation around a Minkowski
background leads to a non-renormalisable theory [2]. Multiple appreaches to finding a quantum
formulation of gravity have been established |3, 4]; different approaches have vastly different starting
points and it is not necessarily clear how and if they connectito each other. It is often difficult to
carry out explicit calculations within quantum gravity to assess if and4n which way a given theory
relates to general relativity in a suitable classical limit! A frequent strategy to circumvent this
issue and obtain first insights into the physical viability and implications of a specific approach is
its application to the cosmological setting, where the high degree of symmetry significantly reduces
the relevant number of degrees of freedom. Within géneral relativity, homogeneity and isotropy
of our cosmos are captured by the Friedmann-LemaitreRobertson-Walker (FLRW) metric; in
standard cosmology the universe is modelled as.a (flat) FLRW spacetime with small inhomogeneous
perturbations. In addition to obtaining a description fer the background metric, it is desirable to
include a description of cosmological perturbations\within the quantum framework to make further
contact with general relativity and possiblyseven cosmological observations.

Here, we work within group‘field theory (GFT) |4, 6], a background-independent approach to
quantum gravity related to loop guantum gravity (LQG) [7-9] and spin foam models [10]. GFTs
first appeared in the form of a 3-dimensional quantum gravity model [11]; they have been studied
in the context of models related QLQG and spin foam models [6, 12-15] and developed into their
own research field. A GFT is affield theory defined on an abstract group manifold; hence GFT
does not presuppose a spacetime manifold, but spacetime is dynamically emergent from a large
number of GFT quanta, which should be understood as the building blocks of space. This picture is
sometimes illustratedswith am.analogy to fluid dynamics where a large collection of water molecules
(GFT quanta) leads to theiemergence of a fluid (spacetime), which is characterised by different
attributes than the single molecules and described by different dynamical laws [16]. One is then
led to the idea of a maecroscopic universe emerging from a “condensate” of GFT quanta [17-19],
described by ‘a coherent many-body quantum state similar to those appearing in condensed matter
physics. WUsing this.main idea, the application of GFT to effective FLRW geometries (modelled by
a simple coherent quantum state) shows a resolution of the Big Bang singularity, which is replaced
by aboeunce that interpolates between a contracting and an expanding phase [20, 21]. Extensions
of this scenario can introduce additional interesting phenomenological features in the cosmological
evolution [22-24]. Phenomenologically interesting homogeneous cosmologies can be obtained from
a broad range of underlying GFT models. In order to further establish GFT as an approach to
quantum gravity, it is however imperative to study its implications beyond this rather restricted
setting of homogeneous cosmology. A first and natural extension is then to consider inhomogeneous
cosmological perturbations.
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A basic idea proposed in previous work on GFT cosmology is that massless scalarifields are
used to define “relational” coordinates. To describe homogeneous cosmology, a single‘matter field
is sufficient, whereas for a treatment of inhomogeneities one usually includes four matter fields that
can form a relational coordinate system. The concept of relational coordinates has been widely
investigated within general relativity as a means to define local gauge-invariant observables, (see,
e.g., [25-28]). The idea is to construct an observable by considering the value of a quantity of
interest at the spacetime point defined by the value of another physical quantity, which can be a
diffeomorphism-invariant definition unlike the standard coordinate-dependent tenserial quantities.
In GFT, models with a single clock field have been applied to homogeneous cosmology since the
proposal of [20, 21]; models with four (or more) fields have been introducedumore recently [29-35].
We will use the same construction of four massless scalar fields as relational coordinates. While
this is not a realistic model of cosmology, and more work would bemeededo connect to scenarios
such as inflation, the initial goal of this line of research is to establish whether predictions of GFT
in this setting are compatible with those of general relativity with a similar matter content.

Information about the emergent spacetime in GF'T can be extracted from expectation values of
relevant operators in suitably semiclassical states, where semiclassicality is a necessary criterion for
emergence of a classical spacetime in the multiparti€le limit [L7, 136, 37]. Previous GFT literature
predominantly makes use of the volume operator, based/on the assumption that volume eigenvalues
of GFT quanta are given by the eigenvaluesiof the LQG volume operator [38, 139] for comparable
spin-network vertices. In this approach, the main observable used to compare with the classical
cosmology is the total volume as a function of a matter clock. In this paper, we deviate from
this conventional approach and make usérof.the proposal to reconstruct an effective metric from
GFT operators detailed in [40]. This proposal relies on the identification of Noether currents in
the classical theory with expectation values oficorresponding GFT operators. As the spacetime
metric contains more information than just the volume of a spacetime region, this new approach
potentially gives access to a wider class of observables (including vector and tensor modes which
do not appear in the volume). The access to additional properties of spacetime is the main point
of attractiveness of developing the effective metric approach to extract semiclassical quantities.

In usual spacetime physies{ the action of four massless scalar fields that span a relational co-
ordinate system exhibits a shiftisymmetry; the same symmetry is imposed when these fields are
introduced in GFT, leading to the above-mentioned Noether currents. Specifically, this symmetry
allows the definition of a conserved GFT energy-momentum tensor in analogy to the energy-
momentum tensor of standard field theories. The expectation value of the GFT energy-momentum
tensor is thenddentified with the classical Noether currents arising from the shift symmetry. In the
relational coordinate systemythe classical Noether currents are related to the components of the
metric, and the consérvation law for these currents is the Klein—-Gordon equation for the matter
fields. An effective metric can then be reconstructed from the expectation values of the operators
corresponding to the GFT energy-momentum tensor [40], where “effective” refers to the fact that
the  metric 1s obtained from operator expectation values over semiclassical states and there is no
corresponding metric operator at the quantum level.

In [40] we explored the application of the effective metric proposal to a flat FLRW cosmology,
studying the homogeneous mode of the GFT energy-momentum tensor in a Fock coherent state
(defined in a way that is similar to previous GFT literature, e.g., [36, 37]). We showed that the
resulting metric leads to a bounce and can be consistently interpreted as a flat FLRW metric in
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the semiclassical regime away from the bounce. However, the effective Friedmann equation one
recovers at late times disagrees with general relativity coupled to four massless scalar fields, and
rather corresponds to the equation expected for only a single massless scalar field.

Here, we extend this analysis to inhomogeneous modes interpreted as cosmological scalar per-
turbations. Our work connects to previous studies of cosmological perturbationsiin GF'T, which
also rely on a relational coordinate system spanned by four massless scalar fields [29,131-35]. More
specifically, the previous works [33-35] study perturbations in a scenario.in which the effective
GFT Friedmann equation also agrees with that of general relativity svith a single scalar field.
Those works include a fifth matter field that is then assumed to be the dominant matter content of
the universe, which could justify the GFT Friedmann equation. In this papes, we work in a setting
with four fields all appearing on the same footing, and do not explicitly address the discrepancy
at background level. This issue is also mentioned in [40].

Previous investigations consider the volume operator andsits perturbations, which restricts the
perturbative quantities that can be studied; this limitationsis absent when using a GFT effective
metric. In our approach, all perturbative quantities (includingigauge-invariant ones) can be re-
constructed from the effective metric; in this paper we limit our study to scalar perturbations but
analogous constructions for vector and tensor modes should ‘be.possible. We give general relations
between GFT operator expectation values and scalar metric perturbation variables that arise di-
rectly from the effective GFT metric proposal.and hold for'any choice of semiclassical GF'T state.
We then find concrete expressions for scalar perturbation variables for the state used already in [40].
The perturbative dynamics of these variables ‘agree meither with those of general relativity with
four scalar fields nor with those of general relativity with one scalar field, as might be suggested by
the background dynamics. In particular, the dominant squeezed GFT modes exhibit exponentially
growing behaviour, as one wouldwexpect from Euclidean rather than Lorentzian signature. This is
a more fundamental type of disagreement with the general relativistic dynamics than a choice of
matter content as in the case of the background dynamics. We hope that the analysis presented
can serve as a blueprint for rela@ studies that might consider different state choices or amend-
ments to the underlying GFT model. For instance, one could compare with more sophisticated
constructions in the GFT literature that can lead to phenomenologically more acceptable results
for perturbations, such'as [34,35]:

Our results open up,an avenue to studying gauge-invariant quantities and more general pertur-
bation variables, surpassing the limitations of previous work restricted to the perturbed volume
element only. Extending the setup to give phenomenologically more realistic results then has the
potential to connect GET to observables relevant to cosmological observations. Within the various
assumptions we have made, the GFT effective metric calculations do not reproduce perturbative
dynamics«compatible’with general relativity; therefore, either our various simplifying assumptions
(such as limiting'to the free theory and the particular choice of state) are not all justified or the
effective metric construction or the particular class of GF'T models is ruled out. The hypothetical
opposite result, a calculation showing agreement of GFT with general relativity after neglecting
GFT. interactions, for the simplest coherent state choice, and for an arbitrary choice of (compact)
gauge group, should indeed be seen as highly implausible. Our work should be understood as a
firstystep in the challenging task of gaining further insights into the phenomenology of GFT.

Let us emphasise some conceptual differences between the approach taken here and that of
standard cosmological perturbation theory [41] or loop quantum cosmology (LQC) [42]. In these
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standard approaches, the background and perturbations are treated as separate entities. For
instance, in LQC perturbations can be included by quantising the background and peérturbations
separately [43], such that the perturbations evolve on an effectively classical background with
LQC corrections, or by working in an effective framework and ensuring that the algebra of the
modified constraints is anomaly-free [44]. In contrast, our effective metric approach in GFT treats
the background and perturbations on the same footing as they simply correspond to different
wavenumbers. As a consequence, the perturbations are fully treated within GFThand not quantised
with different methods or on a pre-existing background. They are also both determined by a single
quantum state, with less freedom to set arbitrary initial conditions.

This paper is structured as follows. We first outline the main idegas of the GFT framework and
the specific formulation we utilise in this paper in sec.[Il In sec.[I[Alwe review the main premise
of the effective GFT metric which is built on the idea of a conserved, GFT energy-momentum
tensor as first introduced in [40]. We establish the relation between expectation values of the GFT
energy-momentum tensor components and the perturbed flat FLRW metric in sec.IIIBl Sec.[V]is
dedicated to the analysis of a classical perturbed FLRW spacetime in a relational coordinate system
spanned by four massless scalar fields, which, while straightforward in principle, is not commonly
discussed in the literature. In sec.[Vl we discuss otir ¢hoice, of state that reflects the required
symmetries of the cosmological setting and revise the effective%)ackground metric arising from the
homogeneous background mode, where it was shown in [40] that the recovered metric is flat and
gives a bouncing universe. In sec.[VIl we extendithe past analysis to cosmological perturbations.
After general considerations, we include detailed caleulations for squeezed and oscillating modes.
We conclude in sec.[VIIl Possible extensions.to out'setup are discussed in the appendix. New results
are contained in sec.[IIB| [V B] and [VI} ‘6ther sections briefly review the results of [40] in order to
make this paper as self-contained as possible.

II. ELEMENTARY ASPECTS OF GROUP FIELD THEORY

GFT is a background-independent approach to quantum gravity in which spacetime emerges
from the excitations of an abstract quantum field defined on a group manifold. The group manifold
is not thought of as spacetime biit as a configuration space for discrete gravity and matter. We
direct the interested reader to |3 16, 45] for reviews as we can only sketch the main ideas here.

A GFT model for quantum gravity in vacuum can be defined in terms of a group field ¢(g;)
(here chosen to be real-valued) and an action S[p]. The arguments of ¢ are n group elements g;
(i =1,...,n)#alued in asuitable gauge group, with n usually representing the expected spacetime
dimension. Schematically (see, e.g., [6]) we expand the partition function perturbatively as

7 = /Dgp e Sl =% AT A, (1)
T

sym|[[]

where I" aresdFeynman graphs, sym[I'] is a symmetry factor and A[I'] a Feynman amplitude. Here we
are assuming a single interaction term in S[p| with coupling A, and vp is the number of interaction
verticesin T'. For a suitably chosen action, A[I'] represents a discrete quantum gravity path integral
or spin.foam amplitude associated to the graph I', which is interpreted as a combinatorially defined
discrete spacetime. The boundary states of the graph correspond to (triangulations of) spatial
hypersurfaces. In the example of the Boulatov model [11], the Feynman graphs represent oriented
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three-dimensional simplicial complexes and A[I'] would be the amplitude defining thePonzano—
Regge model of three-dimensional quantum gravity [46]. In this case, we have a field (91392, g3)
defined on SU(2)3, where SU(2) corresponds to the gauge group for gravity. In general, Z would
define a sum over all possible discrete spacetime histories weighted by path intégral-like amplitudes.
Just as it would be the case for a more conventional quantum field theory, the type of kinematical
data associated to each I depends on the kinematical data chosen for the group field (imparticular,
on the choice of gauge group), while the precise choice of interaction term(s) determines what types
of graphs I' appear in the sum, and what amplitudes are associated to each I

In the present context, we are interested in models for four-dimensional quantum gravity coupled
to four scalar matter fields. We will later use these matter fields todefine a relational coordinate
system. In addition to four group arguments g; (i = 1, 2, 3, 4), which we will here choose to be
elements of SU(2), we therefore couple four scalar fields x4 (A'%.0, 1,2, 3) to the group field
©(gi, x*), which becomes a function ¢ : SU(2)? x R* — R. Such a field ean be expanded in modes
associated to SU(2) representations,

gu Z@J DJ gz)’ (2)

where D(g;) represent suitable combinations of Wigner D-métrices and J = (j, 17, ¢) is a multi-
index representing SU(2) irreducible representations j' = (J1, Jjo, J3, ja), the corresponding mag-
netic indices m with m; € {—7;, —ji +1..., 9. =1, ji}, and intertwiners ¢, which label the basis of
the subspace invariant under SU(2) transformations.»Since the multi-index J will remain abstract
in the following, an equivalent constriction would be possible for any model with compact gauge
group allowing for a similar mode expansion (for instance, if we chose U(1) the different J would
just be discrete Fourier modes on the circle)snIn this sense, our formalism is very general. One
might want to extend the construetion to non-compact groups such as SL(2,C), which is used in
some Lorentzian four-dimensional models, |47, |48] and could be seen as the natural gauge group in
that context, even though there are also four-dimensional Lorentzian models based on SU(2) (see,
e.g., |33] for a comparison)./In the nonscompact case, (2)) needs to be replaced by a more compli-
cated expression involving integrals ‘over continuous representation labels. We will later return to
the question of whetherthe spacetime signature is indeed encoded in a choice of GF'T gauge group.

In general, the GFT action contains a quadratic part and higher order interactions nonlocal in
the group arguments, defined in a specific way to give Feynman graphs the desired combinatorial
structure to be interpreted as spacetime histories, as we have discussed. The quadratic part can
contain derivatives with.respect to the group variables, which are needed to obtain renormalisable
models [49], as well as' with respect to the scalar fields. Hence its structure is relatively similar
to that of standard quantum field theory, even though the interpretation of GFT is very different.
The kinétic term. encodes the propagator of the theory, which can be interpreted as a gluing or
identification of lower-dimensional building blocks, here usually pictured as tetrahedra. In general
we c€an assumeé an action of the for

stel= e, 2= Z( K0 — 1K (9aps) ) V(). 3)

L"As a technical subtlety, note that the modes SDJ(XA) in (@) are not real-valued but subject to reality conditions. A
simple linear basis change leads to a set of real and independent modes [50], which are the ones appearing in ([B]).
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which specifically satisfies the shift symmetry y* — x* 4+ €. Here, 94 = 8)% denotes a‘derivative

with respect to scalar field arguments and IC(JO) and IC(J2) are mode-dependent congtants.»V (¢)
contains all higher-order terms and is often of a complicated nonlocal form; infthe geometric
interpretation these terms are responsible for generating four-dimensional Spacetime histories of
the desired combinatorial structure. In applications to cosmology, interactions, are often neglected
since they are expected to be subdominant in the very early universe (see,e.g., |20, 21}), and we
will do the same in the following. The notation ICSO) and ICSQ) is taken from{20,21] where these are
thought of as expansion coefficients of a derivative expansion that could in prineiple also include
higher-order terms, which we assume are not present. Note that any additional terms in the action
would be required to satisfy the shift symmetry with respect to the scalar fields.

While GFT was originally formulated in terms of a functionaluimtegral (II), applications to
cosmology usually start from a canonical quantisation or more general Hilbert space structure, in
which the extraction of effective dynamical equations and study of semiclassical states are more
straightforward. This is somewhat similar to LQC whichdis. derived from the canonical, not the
covariant approach to LQG. A review of different Hilbert space formalisms for GFT and their
foundations can be found in [51]; we will work in the “deparametrised” approach proposed in
[52], which is essentially a conventional canonical guantisation, In this setting, after a Legendre
transform of () and a Fourier decomposition with respéect to the “spatial fields” x* with a = 1,2, 3,
one finds that the Hamiltonian of the theory is@ [52, 53]

H =/ 4% > (L 7,k () + W7 -k () (X°) (4)
(2m)3 - 2 |]Cf]2)|2 = e Tk ¥ I ’
where 7; = —ICSQ) 0o is the canonical momentum and we defined w?] P = m?, + k2 with m?] =
(0)
—%. Note that m% and w%}k can be negative, depending on the signs of KSO) and IC(J2), which

depJend on the choice of GFT mlodel. Again, being as general as possible, we also include the case
m? < 0 for which w?L ) < 0 atdeastyfor small enough I&|.

We proceed by promoting the/Fourier modes of ¢ ; and its conjugate momentum 7y to operators
satisfying equal-time commutation velations

ok (X0)s T (XO)] = 180 (27)38(k + ) . (5)

We can then define convenient linear combinations Ay, AT] & by

(2)
. 1 Wk K
Trk(x%) = =iagk(Agy — A;r],—k)a ere(x’) = m(AJ,k + AE,—k)? gk =\/ |‘2|‘]|7 (6)

which satisfy

—

(A7 (), A (O] = 8,50 (2m)%6(k — ), (7)

withhall other commutators vanishing. Evaluating these operators at time zero defines a set of
time-independent creation and annihilation operators by a;, = A;x(0) and afjk = ATJ,C(O). We

2 As pointed out in [53], singling out a clock field, as is necessary to perform the Fourier transform, breaks the initial
rotational symmetry between the four fields.
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find two different types of modes, namely oscillating and squeezed modes, from the Hamiltonian
(), depending on the sign of wi - For modes with w?L < 0 the Hamiltonian is a standard harmonic

oscillator
Hjp=— Sgn(lc((fz))‘wg’ﬂ (CLJ,—kaTL_k + QT]7kaJ,k) ; (8)
and the Heisenberg equations of motion dyAj, = —i[Ask, H] give
Agy = aJ7kengn(K(2))‘WJ,k|Xo ’ ATI,k — atTLke—isgn(lCm)le,k\xo ' (9)

On the other hand, for modes with w% i > 0 we obtain a squeezing Hamilfonian

| k|

Hjyj = sgn(/CS2)) 5 (aJ,kaJ,—k + aT]’ka},k) (10)

and the time-dependent expressions for our basic operators are given'by

Ajr =ayy cosh (|CL)J7]€|X0) — isgn(lC@))aT]’% sinh (|WJ7]<;’XO) ,

A}’k = aT],k cosh (|WJ7]<;|X0) + isgn(lC(Q))a‘L_pSinh (|W‘]’]€’XO) . (11)

Knowledge of these solutions is sufficient to show that the expectation value of the number operator
ATJ’kA 7% of squeezed modes satisfies a “Friedmann, equation” which is asymptotically equivalent
to the one of general relativity with a single massless scalar field while resolving the classical
singularity, in the sense that only very specialinitial states can ever have vanishing particle number
[36, 54]. Interpreting GFT quanta in a fixed mode J as representing spin-network excitations of
LQG, a definition of the volumeé eperator similar to the one of LQG would suggest that the total
volume is proportional to the numberiof quanta, and hence a similar Friedmann equation can be
obtained for the volume. In the/following analysis we will use the effective metric approach [40] in
which the volume of the universe s a function of this effective metric rather than determined by
the number operator, so that the effective Friedmann equation can be different.

For a wide class of possiblehoices of coefficients KSO) and ICSZ) in the GFT action, including the
particularly well-motivated case of a Laplacian operator acting on all group arguments, a single J
mode will dominate atilate times where the semiclassical limit can be related to general relativity
[55]. Because of this reasom and for technical simplicity, we therefore restrict to the analysis of a
single Peter—-Weyl'mode with J = Jy as is common in cosmological GFT studies [33, 136]. If the
dominant mode is of squeezed type (as it is when squeezed modes are present at all), the emergence
of Friedmann dymamics compatible with general relativity is hence a very general result of GFT
cosmology.  An extension of the analysis to multiple modes is straightforward in principle. Notice
again that eithet the single-mode truncation or a general multi-mode analysis would be possible
for many ¢hoices of gauge group other than SU(2), which makes these results even more general
and less semsitive to the details of the GFT model. The statement that such a wide range of
GFT.models agrees with general relativity may appear “too good to be true” from a conceptual
point of wiew, but it only applies to homogeneous and isotropic flat cosmology. Classically, the
eorrect. Friedmann equations can be obtained even from Newtonian dynamics [56], and hence the
agreement does not mean that all such models reduce to general relativity at low energies. This
strongly motivates going beyond purely homogeneous spacetimes and including inhomogeneities,
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where one would expect a possible agreement with general relativity to be much more sensitive to
the details of the GFT, as our later results will indeed indicate.

In the case of a non-compact gauge group (which we will not investigate hexe), restriction
to a single mode is not strictly possible for continuous representations, since these modes are not
normalisable. One could choose a sharply peaked Gaussian and obtain qualitatively.similar results,
as suggested by [47].

Oscillating modes do not lead to an expanding background cosmology and are,often not consid-
ered, but in a multi-mode analysis only a single squeezed mode is requiréd to obtaimyan expanding
background. At the level of perturbations, oscillating modes might then become|relevant, at least
for a certain time period and depending on initial conditions. Therefore werinelude them in our
later analysis.

IIT. EFFECTIVE GFT METRIC FOR A PERTURBED FLRW SPACETIME

In [40] we presented a new proposal for defining an effectiverspacetime metric in GFT, using
symmetries of the GF'T action and their relation to symmetries of spacetime fields. We will briefly
review this construction in sec.[[IT'Al before considering its spe(zﬁc application to the scenario of an
FLRW metric with small inhomogeneities in sec.[TIBl{/The application to the FLRW background
was already presented in [40] and our focus(igion extending the analysis to perturbations.

A.. General construction

The construction of the effective metric relies on using four massless scalar fields as a coordinate
system. Such matter reference frames have long been considered in the quantum gravity literature
[57, 58] and were previously employed to study perturbations within GFT [29, 131, 33, 134]. While
some GFT studies |33, 134] include a fifth scalar field that is assumed to dominate the four reference
or coordinate fields, so that the matter content can often be approximated as just a single field,
we assume that the reference fiélds constitute the only matter content. Within classical general
relativity, our matter,action réads

1 124
Sy = /d4x Ly = —2/d4x Z Nl BHXA&,XA. (12)
A

Using these field$as coordinates means that we identify each y* with a spacetime coordinate z*
by demandingdhat hypersurfaces of constant y* coincide with hypersurfaces where the respective
coordinate is constant! We then have 8HXA = (52‘, where A = 0,1,2,3 denotes a label of the fields
(and is notwa spacetime index). As before we use a = 1,2,3 to denote the spatial fields and 0 for

the clock field. For such a relational coordinate system to be locally well-defined, the fields have
to satisfy a non-degeneracy condition with respect to any other well-defined coordinate system

det(9,x1) #0. (13)

Therelational coordinate system defines a special case of the harmonic gauge Ox* = 0 by virtue
of the Klein-Gordon equation Oy“ = 0 satisfied by each of the fields. While the harmonic gauge

3 Tn the case of only a single scalar field x used as a clock, the equivalent condition is dpx # 0: the clock field is not
allowed to turn around and evolve backwards.
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has a residual gauge freedom, fixing the relational coordinate system as we do here fixesitheygauge
completely. Using an Arnowitt—Deser—Misner (ADM) decomposition of the metric, we obtain the
following relations between the canonical momenta of the scalar fields 74 = 9L, /3(Jox*) defined
from ([I2]) and the lapse N and shift N

Vil el e (14)

TN “” N
These expressions show that the lapse and shift are fully determined /by the spatial metric gu
together with the scalar field momenta. This can be seen as an explicit gauge-fixing of the general
coordinate freedom of general relativity which would permit an arbitrary choice of N and N¢.
The action (I2) is invariant under constant shifts of each of thefields x# — x4 4 ¢ (¢ € R),
which by virtue of Noether’s theorem implies the existence of a“current. 4#. There is a separate
current for each y“, which we can label as (j*)4, satisfiying a conservation law

(")t =0, (") = — /g g ot (15)

In the relational setup (with 8@(‘4 = 5;‘) these currents (j#)* can be interpreted as a symmetric
matrix field j42 = (j5)4, directly related to the metric via. &

P&\ /—g gl (16)

Hence, in a theory of general relativity coupled to four reference scalars, the spacetime metric can
be directly recovered from Noether currents.associated to shift symmetries in the matter fields.
The GFT action (@) has an equivalentytranslational symmetry x4 — x4 + ¢, here appearing
as a translational symmetry onghe GFT configuration space. Again, this symmetry is associated
with a conserved Noether current, mamely the GFT energy-momentum tensor 748 defined by
AB oL

it AB p _ (2) AB
Samgyze 4 L ZJ:(KJ 8A¢J83¢J)+5 C. (17)

TAB

The components of can bé promoted to operators and satisfy the conservation law 94748 = 0,

both classically and quantum-mechanically, as shown in [40]. This agrees with the expected classical
conservation law 0,448, = Oforspacetime Noether currents. The proposal of [40] is to identify the
conserved quantitiés that arise from the same symmetries in GFT with those of spacetime physics:

TAB as'the GFT wersion of the classical current j45. (We emphasise that this type of

TAB

we view
identification/holds only in the relational coordinate system.) Hence, encodes the spacetime
metric in GFT through (I6). The conservation law for 748 translates into the conservation law of
4B whieh'is equivalent to the Klein-Gordon equation for the fields y4. We denote the quantum
version of the GET energy-momentum tensor as 745 and for sufficiently semiclassical states (such
that_anyinterpretation in terms of an effective macroscopic spacetime is justified) we then propose
the identification j42 = & (T4P), where ¢ € R, to obtain an effective spacetime metric. The
constant &, which is not fixed by the general argument based on conservation laws, can be chosen
to simplify some expressions and we will set £ = sgn(lC(2)). Note that the metric g4 is not
directly. represented as an operator in GF'T, but only emerges after taking expectation values. In
the following analysis, the role of a semiclassical state will be played by the usual Fock coherent

state or “condensate” used in GFT cosmology.

Page 10 of 38
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1
2
3 The quantised GFT energy-momentum tensor 747 is a function of the annihilation and ereation
g operators Ay, AL (where we have dropped the J label as we focus on a single J mode/€ase in what
6 follows) and explicitly reads
! 3 (2
8 d sgn (K
o LT = / (2733 y g|winkL| [wl—:’” AL A 48 (; At AT A A ;) ] ,
1 T 0b. d371 |wk—| AT A AT A A A ATt
12 Ik "/<2w>32 o] (Al s AL Ay s A AR AL )
13 7

3 2

1;‘ T, :/ ((21 1l sgn(K?) e (1 — Kp) ( A Apy i+ ATGA S
e )% 2/lws[lwr—/| (18)
1; + : AJL,YAin A AVAR ) ,
19 raa. _ [ @y sgn(K®) - . .
;(1) : 77<: : _/ (27_‘_)3 4\/m Q(Bkﬂ - Q'Ya(k;a - ’Ya)) : AT—'yAk—w .
22
23 + ('Bljry — 294(ka — Ya)) (: AT_VAiry_k T A AL :) ] )
24 'S
;2 where ,6’,::,7 =-—m2+7-(k—7)+ |wy||wk—g|. In these expressions we employ a normal-ordering
27 procedure at the level of the time-independent eperators ay, aL, such that vacuum expectation
;g values are finite. We drop the normal ordering symbol for the GFT energy-momentum tensor
30 operators in the following, and it shouldsbe understood that we always use the normal ordered
31 version of the operators, such that (T Bystands for (: 7,45 :).
32 In summary, the idea is tosidentify the expectation values of components of the quantum
2131 GFT energy-momentum tensor with, the classically conserved current, i.e., we propose that we
35 can identify (T4P) = sgn(K?);#F for suitable semiclassical states. One can then reconstruct an
36 effective metric from (I6]). In the following we apply this to a perturbed flat FLRW spacetime.
37 >
38
39 B. Application to an FLRW metric with small inhomogeneities
40
2; While the proposalref an effective spacetime metric in GFT is completely general, in this paper
43 we want to specialise to the case most relevant in cosmology, namely a perturbed FLRW metric.
44 This means that wemeed to calculate the components of the symmetric tensor j42 (I6) resulting
45 from the classically conserved currents for a perturbed FLRW metric, remembering that these are
2? defined only |in the relational coordinate system spanned by four massless scalar fields. Making
48 the identificationiof these classical currents with GFT expectation values (745) and inverting the
49 expressions then(gives us expressions for metric quantities in terms of operator expectation values
50 in GET; Since this identification is in a sense a definition of a spacetime metric, in this part we do
g; not requireany knowledge of the specific form of 748 or any choice of state and the expressions
53 below. are of a kinematical nature. The choice of state and the choice of GFT model will then
54 later determine whether our proposal is sensible, considering also the resulting effective equations
55 of motion for the perturbation variables (see sec.[VIl for the analysis for a Fock coherent state). We
g? should be able to show that our perturbations of FLRW are indeed small in a well-defined sense,
58 and they should satisfy equations related to classical dynamics of perturbations in some form.
59



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - CQG-113163.R2

12

Using standard conventions of cosmology [41], the general perturbed FLRW metric reads,(here
and below i,j = 1,2, 3 denote spatial indices)

ds? = — N(t)*(1 + 2&(t,))dt* + 2N (t)a(t) (8;B(t, &) — BY (t, %)) dt d=
+a(t)? ((1 — (L, 7))y + 20:0; E(t, %) (19)
— (OEY (t,%) + 0;EY (t, %)) + 2EL (1, f))dxidxﬂ‘ ,
where N denotes the background lapse, a the scale factor, and we have carried out,a decomposition
of metric perturbations into scalar (¢, P, E, B), vector (BZV , EZV ) and tensor (Eg;) components.

The vector components have vanishing divergence and the tensor' component is transverse and
traceless:

§99;B) =0, ¢99;E) =0, 0"ORE]; =0, "B =0. (20)

For the metric (I9]) and the matter action for four massléssiscalarfields (I2]), we can then obtain
the classically conserved currents in the relational coordinate system, given by (IG), as

) a? ~ )
=5 (1830 +VIE) . A QB S0.B).,

J7V =aN (20,00E — 0.y — OBy +2E,, ), 21
j9 — _ gN (1 +d— W+ V2E — 262E+ 28,1E;/ - 2EaTa> (no sum over a).

We have left the lapse function N generals, but it\should be understood that the identification of
the 48 components with the GFT energy-momentum tensor is only possible in the coordinate
system spanned by the four scalar fields withaN = a?/mp and N® = —m, /7o from (I4), where 7o
and 7, are the momenta of the cloek and rod fields, respectively. For scalar perturbations the
momenta of the spatial fields are given by. 7, = —a’0,B.

The conserved current (2I) for a flatt FLRW universe (i.e., taking into account homogeneous
background quantities only) thus takesthe form

A _ (m0 0
J = < 0 _(fl(sab) ) (22)
o

where we recall that w9 > 0. Notice that the signs of the components are fixed by the Lorentzian
signature of ([I9);im the case of a Euclidean signature, all entries would be positive.

The TAP operators ¢onstructed in (I8) are defined in terms of Fourier modes of the spatial fields
and we thereforeselate them to the Fourier modes of j4Z. For any classically perturbed quantity
we have f(ty2) =.f(#) + 6f(t,%). The background quantity is given by f(t) = VLO [ &3z f(t, %) =
fr=0(t),/where 1§ is the coordinate volume of the universe or of a patch of the universe (“fiducial
cell”) used, to define it. Hence, the k = 0 mode determines the homogeneous part, so that we
haye ¢ fr—o(t) = 0. By (22), the conjugate momentum of the clock field and scale factor are then
determined by the k = 0 mode of the diagonal components of (TAB):

mo =sgn(K@)NT), o' = ~(TPONT). (23)

4 In app.[A2] we will generalise this to k-essence models for the scalar fields, which affects the form of the currents.
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If the off-diagonal components of (74P) vanish and all spatial diagonal components {7ge) are
identical, the effective metric can consistently be interpreted as flat FLRW. We will find this to be
the case for the state we consider below.

The non-zero k-modes correspond to metric perturbations. In general, the <7;€AB ) can include
scalar, vector, and tensor modes according to the decomposition in (2I]). For our,choice of state
(see (@8] below) we will see that the operator expectation values can consistently be interpreted as
containing only scalar perturbations and we hence neglect vector and tensor perturbations in the
expressions that follow. A more complete analysis that reveals which gypes of state choices can
give rise also to vector and tensor perturbations is left for future work. (In particular, it would
be of significant interest to include tensor modes and compare theSe with<the linearised form of
general relativity or its modifications.)

Assuming only scalar perturbations, the identification j;;‘B = sgn(lC(2))<7;€AB ) together with
([21I)) written in Fourier space leads to

3
a T .
San(K) (T) = — % (6 + 30+ 2E),  SKONTL,) = —i’k,B,
Sgn(’d”)(ﬁ‘;ﬁ& =aN <—§> +1 + k*F — 2kgE) (no sum over a), (24)
sgn(/C(2))<77€%b> =—2aNk.kE, 4

and therefore %sgn(lC(z))tM rto) = alN (—@ + 1+ %2E> (Here and in the following tr represents
a trace over the a index, ie., tr(7d,) = (5ab<7;€“720>.) Inverting the above gives the following
expressions for effective scalar perturbations (we.choose a, b so that k, # 0, ky # 0)

(TN (T 1 (k)

@Vp — — (CIAY -
sgn(K) IPE Jan e 2aN koky
<7’00 >N tI‘( aa > ki2 1 . <7‘0a > (25)
(2) _ _ VKO k=0 a#b (2) _ L AVE#0
sen(K) ¢ 443 20N Fiaky 6aN kb0 )0 sen(KT) B =25 =0

These relations are independent of the specific GFT and rely only on the identification of expecta-
tion values of the GFT energy-m&nentum tensor (74P) with components of a perturbed FLRW
metric in a relational coordinate system. In particular, they do not depend on a specific choice
of GFT state, assuming a state that only contains scalar perturbations@ By making a partic-
ular choice of state and computing the corresponding effective metric, one can check explicitly
whether the state admits an interpretation as a slightly inhomogeneous universe, by verifying that
the background quantities represent an FLRW universe and the non-zero k modes represent small
perturbations.«The choice®©f state detailed in sec.[Vland used already in [40] should be understood
as a naive first guess.

This illustrates the nature of the effective GF'T metric proposal: in itself, for any suitably semi-
classicalstate an.effective metric can be reconstructed; the task is to interpret its form physically.
In sec.M and sec.[VIl we will compare the effective metric to a perturbed flat FLRW metric, which
refléets our belief that our state describes said metric in the semiclassical limit. How to interpret

a general metric without assuming a classical counterpart from the beginning is less clear.

5 There is a consistency condition on E, which could also be obtained from

Sgn(’C(Q)) aa bb
E=_—7——{(Tx —(Tx , a#b,
saneiz iy (o) = (Tiho)), o #
and the resulting expression might differ from the one obtained in ([28]). For the state discussed in sec.[V] the two
expressions agree, see ([B7) for explicit expressions for squeezed modes and (f0) for oscillating modes.
8 This assumption means in particular that all six off-diagonal components of ('EAB) can be written in terms of two

scalar functions, which is again a consistency check for the proposal.
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IV. CLASSICAL ANALYSIS

Following the philosophy of constructing an effective metric in GFT as described above, defining
a suitable state gives us explicit expressions for metric perturbations, subject to equations.of motion
derived from the GFT dynamics. In order to be able to compare the resulting equations to our
expectations from classical cosmology, in this section we obtain the dynamical equationsifor classical
cosmological perturbations in a relational coordinate system spanned by four massless scalar fields,
as well as for a single massless scalar field that serves as a clock. We dnclude theydetails of the
general relativistic system for ease of reference, and we will compare the dynamical equations
obtained within GFT to the expressions below in sec.[VIl =

In classical spacetime physics, the energy-momentum tensor of four massless scalar fields (de-
fined by an action (I2))) is

1

] R i e ) (26)
A

Let us emphasise that his object has nothing to do with the GFT energy-momentum tensor (I7),

which is an abstract field-theoretic quantity not defined on any’spacetime. In the gauge where the

scalar fields are used as coordinates 6MXA = 5;:‘ we find

1
1, = 5 [ 5ot 1)
A

While originating from a different motivation, models which include three massless scalar fields
with homogeneous gradients have been investigated within models of solid inflation |59], including
a study of perturbations and differences to more standard cases considered within cosmology.

A. Background
N

At the background level'of the perturbed FLRW metric (I9), we obtain the following expressions
for the energy density @nd pressuré (no sum over i in the second expression):

1 /1 3 w2 3 . 1/ 1 1 w2 1
0 _ _ y 0 _ _ _ 0
_To_p_z(zw+a7>_w+w’ Tzi_P_2<N2_a2>_2a6_2a2‘ (28)

The contribution of thespatial coordinate fields, coming from their nonvanishing gradient energy:.

appears as an additional term that would be equivalent to negative spatial curvature (P = —% p)E]

For certain initial,conditions where Z—§ > 1, the contribution of the spatial fields to the energy
density can become negligibly small for a certain period of time, effectively recovering the standard
cosmelegical background scenario with a single massless scalar field. This limit can be achieved
for/ sufficiently early times, depending on the value of my, but at late times the gradient energy

. . . 1—a*/nk
will always dominate. In general, we have an equation of state parameter w = P/p = I +3aa4/ /7:;)2 €
1 - . 2 1—a*/(3n2 1
(—3,1), and similarly for the sound speed c¢; = P'/p' = Ha%(/ﬂgo) € (—3,1).
" These background terms agree with the simplest solid inflation model where F' = —X/2 in the construction of |59].
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The resulting first and second Friedmann equations read (with x = 87G)

9 A a* ad’ K a*
H :<) :<1+32), :<1+92>, (29)
a 6 T a 6 un

where the terms proportional to %5 arise due to the spatial fields and would not appear in the.case
O
of a single (clock) scalar field. An alternative way of writing the second Eriedmann equation is

H = /@%. Again it is clear that the contributions from gradient energy will always dominate at
0

late times; the solutions for a will actually diverge as |x° — Xf|_1/ 2 at some finitévalue x° = xs.

~
B. Perturbations

In the following, we give the results for the perturbative analysisfor the gauge-fixed system
with four massless scalar fields. We are interested in the dynamics of perturbations of a system
with four fields to compare with the GFT equations; a more detailed classical analysis of the
general-relativistic system is not the focus of the current work.

The harmonic gauge conditions Ox* = 0 for our cheice ofilapse N = a3 /7 read (these equations
agree with the ones given in [33]) 4

a?VEBt o (P $3y— V2E) =0,

! it (30
v [—WO(ZHB—l—B’) Pa’(2d + v + V2E)| =0.
These can be used to eliminate V2B for examiple, and combined to give
T2 (=0 3¢ + VEEYA= a'V2(—® + ¢ + V2E). (31)
The components of the perturbed Binstein tensor 6G*, for our lapse choice are given by
2 _ 2
560 = o (Ho+ o) + 0 vz - 2yt - 20 pyrE (32)
a a a a
0 277(% F /
5G,:——6,-(H<1>+¢), (33)
6Gl= 2”0 (2H' — 3H?) ® + 2”0 ~0HY + 275 2y
al
9 1 - 71'8 (34)
/!
+(V? - 0; )( (2HB+B) —(®—4¢) - —5F ) :
i o 1 - 2
6G" ;1= 0:9; (—a4 (2HB+ B') — 2(@—9)+ aﬁE”) : (35)

Our choice of coordinate system naturally limits us to the harmonic gauge, in fact, it completely
fixes the gauge and eliminates the residual gauge freedom. In particular, there are no perturbations
in the scalar fields in the relational coordinate system where GMXA = 5,;4. For the perturbed energy-
momentum tensor for four massless scalar fields in the relational coordinate system we find

570 =0 —(3¢ VE), 8T = 2108 = 6T,
¢ (36)
5T, = — ?aiajE, 6T = <I> +— ( ¥+ (V2 —202)E) .



oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - CQG-113163.R2

16

Note that, unlike in the single field case {2)), 67 # 0 due to the sum over spatial fields in. (27).
From the perturbed Einstein equations 6G", = x§T", and the harmonic gauge conditions (B0) oné
can derive equations of motion for all metric perturbation variables. First of all, we have

0= Gy — k6T, =0,0; (- ™ (2HB + B') — = (& — o) + T o A28
A 7T al a2 ab Vi
1 2 2K 87)
. 9.9. 2 Q o
=019 (‘azv B+ sl + 2E>
and hence
” a4 5 a4 ~
E"— SV'E+2k—E=0. (38)
T oy
0 0

Then, from §G°, — 6G?, = k6T, — kT% (with sum over i), elimination'of V2B from the harmonic

gauge condition and use of the background equations (29]), we have
~ ~ a4 )
" —4HP — Vi@ =0. (39)
o
Furthermore we can obtain ¢ and B from the (0, 0)and/0, 7) co’mponents of the Einstein equations:

27‘(‘0

~ 2 ~
9V 1 3ke) = —3kD + 2%}1@’ Byie, -2

(Hé + w’) = kB, (40)

again after eliminating V2B and using'the background equations to replace H?2.
Starting with (BI) and using B8), (Wpand §G% = k5T, we can also obtain

D “—4v2¢+2nf<w+fi>) =0 (41)
s s -

which is almost an equation for ‘@p.alone.

In the following we will/also %nt to compare with the corresponding equations for the case
of a single massless scalar field x used as a clock, d,x = 52. In this case, the perturbed energy-
momentum tensor is

2

2
6T = 200 (RS 0, o7 = 230,B, 0T, =0, 0T =-20d,  (42)

and we find thefollowing equations of motion for the perturbations:

(14 ~ ~ a4 ~ CL4
B' A V’E=0, O"—4HY — 5V*®=0, ¢"— 5V =0. (43)
iy T 7r
0 0 0

The 1 equation follows from (31]) (which which is a gauge condition and therefore holds indepen-
dently of the.matter content) in combination with the equations for £ and ®, and the (0,0) and
(0,4) parts of the Einstein equations with ({2)).

In this case of a single field, where the background solution is a = agexp(Hx), one can obtain
the explicit solution in Fourier space

2
ag

2H ||

2
|/<:]62HX> + c2(k) Yo ( 0 ]k\eZHX> : (44)

E(x) = c1(k)Jo < THro]
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where Jy and Yj are Bessel functions of the first and second kind, respectively, and c; (k)‘and,c2 (k)
are initial condition parameters. These solutions have also been derived in [33]. Thesenmodes
oscillate rapidly with growing y while their amplitude falls off as e=*X, or as 1/a.

For completeness, we also report the form of two gauge-invariant variables€ommonly used.in the
literature, namely the curvature perturbation on equal density hypersurfaces (“and the comoving
curvature perturbation R. The latter satisfies ;R = ;0 + HSTY /(p + P),and they take on the
following form in the relational coordinate system

»\ON

H — (3¢ — V2E) 7o HB
—43:¢+75P:¢+* — ; R = 1/J+*0*7T‘2a (45)
p 1+ 29 \1+;2

where §p = —6T9Y, is the perturbed energy density.

As for the background, the above reduces to the single field case in the limit Z—§ > 1. In
particular, in this limit we find —¢ — ¥ + % and R — . We do. not use these expressions further
in this paper given that the dynamics of perturbations{willybe found to disagree with general
relativity, but in future work one can use the effective scalar perturbations obtained as described
in sec.[VIl to study gauge-invariant quantities from GET. explicitly, which was not possible prior to
the proposal of an effective GFT metric. 7S

V. EMERGENT FLRW UNIVERSE FROM A COHERENT STATE

To obtain explicit expressions for/the.operator expectation values, enabling us to concretely
reconstruct an FLRW metric as well as itgperturbations from the identifications (23) and (24]), we
have to make a choice of state. ;-We use the same state as in [40], which was chosen based on the
condition of semiclassicality, such that the expectation values (T4B) can indeed be related to an
effective metric, as well as the requirement that it must incorporate properties of the cosmological
spacetime. Fock coherent states satisfy the requirement of relatively small uncertainty in operator
expectation values throughgfit the evelfition [36] (see also [37] for a more in-depth analysis of a
broader class of semiclassical GFT states). We work with a Fock coherent state |0) which is an
cigenstate of the (tinde-ifidependent) annihilation operator asy |o) = o(k) |o):

3 -
lo) = e llol*/2 exp (Z/%UJ(Malk) 0) (46)
J

where |0) is the GET Fock vacuum and ||o]|> =Y, [ (gikg, |os(k)|*. To reflect the homogeneity of
the FLRW metric in the quantum state, we choose a sharply peaked Gaussian for O‘(E),
- iB _ (F=Fkp)?
oy () = 6,5, 2B 5 (47)
Co

where A, B € R, s determines the peakedness of the state, and we set the homogeneous mode as the

- 3/2
initially dominantly excited Fourier mode, i.e., kg = 0. The normalisation factor ¢, = (ﬁ)
is fixed for convenience regarding later calculations. The state reflects our restriction to a single

8 Note that the use of the symbols ¢ and R is not consistent across the literature. We use the same convention as,
e.g., |60, 61], but the opposite of [62].
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Peter—Weyl mode; in the more general case of multiple modes, the initial conditions, namely..A, B
and s, could be J—dependent. While the Gaussian is strongly peaked on the background,mode,
it has a finite width, such that inhomogeneous modes with k % 0 will always be excited. A
strictly homogeneous state is reached in the limit of s — 0, corresponding téran infinitely peaked
state, which would introduce divergences that are avoided for 0 < s < 1. In standard cosmological
approaches, one treats the perturbations and the background independently, where the background
is either classical or a quantum state for a minisuperspace model, and the state.for perturbations
is defined separately. This is conceptually different to our proposed state, which does not allow
to excite solely the homogeneous background. Since we have chosen U(E) to be sharply peaked
on the background mode k = 0, modes with low \E\ will have the/dominant €ontribution to the
expectation value of the energy-momentum tensor (I8)) in addition tethe background mode

The effective FLRW metric resulting from the homogeneous mode k = 0fwas discussed in detail
in [40]; here we include only a brief recap of these results. Inhomogeneous modes are discussed in
detail in sec.[V1l

From the identifications sgn(K®)(T,AB) = jAB the egplicitiform of the effective FLRW metric
follows from (22)). For our choice of state (46]), convolutions appearing in the operator expressions
([I8) can be simplified with the saddle-point approximation:(which we will also use to calculate

expressions for the k # 0 modes) y

0)? (@£m°

[t e g(a) ~ gl SEE — g (48)

This approximation holds for sharply peaked Gaussians such that g(#) can be considered approx-
imately constant in the region |¥ — ji| <is and'issapplicable for our state choice due to U(E) being
highly peaked. As investigated in [40] using such an approximation naturally limits the time span
for which our analytic expressions are sufficiently accurate.

The dynamics of T4 depend”on the type of modes we are considering — squeezed () or
oscillating ([@)). As we are interested in recovering an expanding universe, our focus lies on squeezed
modes, which have a growing'number of quanta over time. We also report the contribution to an
effective metric from oscillating/dmodes for completeness.

Through the identification (22]) the signs of the components of the conserved current are directly
related to the metric signature: all entries of the conserved current will either have the same sign
(Euclidean case) orstheéspatial/diagonal will have the opposite sign of the j° entry (Lorentzian
case). The initial conditions A, B in (7)) determine the signature of the effective metric we
reconstruct; the-uorentzian case is found for B? > A2, whereas B2 < A? results in a Euclidean
metric Here wefare interested in the Lorentzian case and therefore restrict ourselves to initial
conditions with 87 > A?. In connection to earlier discussions, we can note that the effective metric
signaturg is determined by initial conditions in the state rather than any particular features of the
underlying GFT model, such as a choice of gauge group. A similar dependence on initial conditions
ratherthan definitions of the GFT model was observed in [33].

Comparison with the conserved current for the FLRW case as given in (23) then gives the
following identifications for the momentum of the clock field and the scale factor in the case of

9 For squeezed modes, this statement no longer holds for (very) large values of |x°|, as large |E| modes have a larger
growth rate wy.
0 The special case of B> = A? corresponds to vanishing momentum of the clock field and is therefore excluded.
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squeezed modes m%o = m? > 0 (the expectation values (7*P) follow from the k — 0 limithof our
later more general expression (57))

mo =sgn(K@)(T5") = |m|(B> — A%),

at = — sgn(K®)mo (T82) = m?(B% — A?) ((AQ + B?) cosh(2|m|x°) — 2sgn(K?))AB sinh(2|m\x0)>

m2

:7(52 — A?) ((A — sgn(K@)B)2e2mIX” 4 (A + sgn(/c@))zs)?e—?\m\xO) '

(49)
Importantly, the off-diagonal components (7%) and <’76a7£b) vanish exactly duete'the antisymmetry
of the integrals, giving a spatially flat metric.

From the above we obtain the following effective Friedmann equation:

I\ 2 2 _ 1RrR2)\2 4
H2:<“> :1m2<1— A —5) . )=m2<—7r0
a) T (A —sgn(KD)B)em 1 (A ssgn(R@yB)Pe )2 ) ~ i o

-2

late times 4m )
(50)

L

In addition to a constant Hubble rate at late times, the effective metric gives a bouncing universe,
with the bounce occurring at a* = 73, or equivalently, (7#*)? = (T °)2. The Ricci scalar at the
bounce reads Rpounce = 77’:—02, thus resolving the singularity of the classical scenario. Singularity
resolution through a bounce is a comumon feature of GFT cosmology models with a single scalar
matter field (see, e.g., [20, 21,136, 54]), but in these past works the Hubble rate is derived from the
time evolution of a total volume proportional.to the number operator, which is different from our
proposal using the effective GF T metric. Recovering a constant Hubble rate in the late-time limit
is in agreement with all the Friedmann,equations previously obtained for GFT models as well as
with the general relativistic Friedmann equation for a single massless scalar field if we fix m? = %,«;.
However, the Friedmann equation,in general relativity with four massless scalar fields in (29) is
different, since the gradients of the spatial fields contribute. Hence, there is a mismatch with what
one might expect from the underlying cosmological model already at the background level. This
mismatch is discussed already in the introduction of this paper as well as in [40], which focused
on the background dynamics:sAnother difference with past GFT work (and other scenarios such
as loop quantum cosmology) is that the bounce is not associated to a maximal value of the energy
density in the scalar field, but can occur at either high or low curvatures. Indeed, the Ricci scalar
at the bounce depends-omnthe initial condition set by mg.

In the case of oscillating modes, U(E) needs to be especially peaked, so that contributions from
squeezing modes ¢an be neglected in the integral and only the region near 4 = 0 (which consists
entirely'of oscillating modes) contributes. We then obtain

mo = [m|(A® + B?)

at = — |mP(A2 + B?) ((A2 — B2) cos(2|m|x°) — 2sgn(K?)AB sm(z\m|X0)) . (51

Thesign of 7 is independent of the initial conditions. The sign of a* is not fixed and fluctuates
throughout the evolution, such that a single oscillating mode would lead to a metric with variable
signature; see the discussion above ([@J). Phenomenologically, oscillating modes can introduce a
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possible modulation to the evolution of the background scale factor if they appear in conjunction
with at least one squeezed mode.

This concludes the discussion of the cosmological background metric, as reconstructed from\the
k = 0 mode of the GFT energy-momentum tensor for a suitable state. For adsqueezed Peter“Weyl
mode, we recover an effective expression for the scale factor that leads to an effective Friedmann
equation with a bounce. In the following we will extend the analysis to inhomogeneous,modes.

VI. COSMOLOGICAL PERTURBATIONS

We now focus on the k # 0 modes of the GFT energy-momentum tensor F 4P () for the state
[#7) introduced in sec.[Vl Recall that even though the state is highlypeaked on the homogeneous
mode, inhomogeneous modes will always be excited. In the following we examine the dynamics that
arise for cosmological perturbations if we identify these inhomegeneous modes with components of
the perturbed FLRW metric (I9)). Perhaps unsurprisinglysgiven that/we are working in a simple
approximation to the full GFT and with the simplest [possiblenstate, we find a mismatch with
the dynamics of general relativity. Still, the following can be seen as a guidance to construct
perturbative quantities and may give hints which adjustment’s could lead to an agreement with
general relativity at late times.

All components of the GFT energy-momentum tenser (I8) depend on the same operator com-
binations; in particular, each term is a product of time-dependent ladder operators A and AL.
From the state choice (46) with (A7) and the linear dependence of Ay, AL on the time-independent
creation and annihilation operators (see (@)rand (LT)) we find tl21at each of the terms in the ex-
pectation values for <77€AB ) will be proportienal to 6727?67%. Similarly to the background
dynamics, we can then employ the saddle-point approximation (8] to obtain explicit dynamics
for the (T4B) components. For this, we rewrite the exponentials appearing in the integrals as

(%ﬁ R =3 (52)

so that the saddle-point approximation implies ¥ & % This approximation, which requires s < 1,

will not hold for all times or for large values of k. Note furthermore that for our choice of O'(E)
[HT) we have Ay |o) ="Agla) (and similarly for AL) for oscillating as well as squeezed modes, due
to wr = w_g. For squeezed,modes the operator expectation values (I8) then simplify to

<7-k()0> ~ Sgn(lc(z))

2
~ ——2C
Awrppl 2

K. AL/2A]{:/2 ) — 2m? (( A£/22 R NE Ak/22 >)] ,

k
(TR

«4&»—«@&4,

(53)
sgn (K@) ko k
Wﬁ%%——dﬁ);%iwAM%m%WAMU+¢@E»,
sgn (K2 K — k2
<77€aa> ~ Mcg — (4m2 + /{:2)< AL/QA;C/Q :> + 5 (< AL/22 ;> + <: Ak/22 >) ,

Wwhere the factor 2 enters from the integral over the exponential in the saddle-point approximation
(48)) and is cancelled by our choice of state ([@T) in later expressions. We use equality signs in the
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1
2
3 expressions that follow; it should be understood that statements below rely on the applicability
g and sufficient accuracy of the saddle-point approximation.
6 For oscillating modes we have different expressions of 8% in (I8) and therefore the following
7 components differ from the squeezed case:
8
?O Te° sgn(K?) 5| 1o gt K t 2 >

~———ct [ 4m*|(: A] A :—1——<:A D+ (A :) 4
I« ) ~ Sl | 16 ALtz 4 5 (64179 + 6 447 )
12 (K@) 2 (54)
13 Taa %Sgn 2 k2—/{72 ATA A ) 21 Mg (AT2 A 2,)
14 (Te) 74|wk/2’ Co ( a) (: k/24tk/2 ) |m”| 9 (: k/2 D+ k/2 ) .
15 o
16
17 As detailed in the previous section, recovering a Lorentzian{or Euclidean FLRW background
18 metric with a single Peter—Weyl mode is only possible in the case of asqueezed mode. Since there
19 is no split between background and perturbations in our formalism, perturbations are then also
;? of squeezing type in the single-mode case, J = Jy. In the more general case, where a minimum
22 of two J modes are excited, one of them can be of the oscillatingstype, as this will not alter the
23 background dynamics at late times. For completeness. wenthen also consider the perturbations
24 arising from oscillating modes. 'S
25
26
27 From the relation of perturbation variables to operater expectation values as given in (25]) we
28 can establish equations of motion for effective perturbations arising from the GFT effective metric
29 in terms of the dynamics of operatorsexpectation values independent of the explicit state choice.
2(1) From the identifications in (25]) we obtain the following equations of motion for £ and B, as well
32 as for the combination ® — v, which gives aparticularly convenient form,
33
34 <T0a>//
2 . 2
35 B" +4HB 42 (H"$2H?) B = isgn(K?) el
2? 1 2 sgn(K®)mg #b
E'"+8HE +A(H '+ 4H*)E = — =——— 2~ (T}

38 ( ) 2kqkpat < /s
39 - - - sen(K@Nr,
40 (® — )" +8H (O =) + H(HAFAH) (P — ) = - gmi - al % (2kakytr (T + K2(T#1)")
41 atb
42 (55)
43
44 We proceed to analyse squeezed and oscillating modes separately, due to their differing late time
45 limits, where/we explicitly compute the expressions of effective scalar perturbations for squeezed
2? and oscillating miodes in sec:[VTAl and [VIB], respectively. The classical analysis for four massless
48 scalar fields and assingle field was carried out in sec.[VlL We will focus on comparing the dynamics
49 of the scalar perturbation F as obtained from the quantum theory to those of general relativity, due
50 to its.ecomparative simplicity. As the effective Friedmann equation derived in (50]) has the late time
g; limit of general relativity with a single scalar field without a contribution from spatial gradients,
53 we ‘compare the effective GFT perturbation equations to the single field case as well. In principle,
54 one could carry out a comparative analysis for all scalar perturbation variables, however, as we
55 willifind a considerable mismatch between effective GFT dynamics and general relativity, focusing
g? on F should suffice at this stage. The full analysis would presumably become more relevant once
58 agreement with general relativity has been established in the late-time regime.
59

(o))
o
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A. Squeezed modes

The inhomogeneous squeezed modes, which we recall have w,% > 0, have similar dynamics to
the background mode with additional k—dependent terms. In particular, all €emponents.of (7;‘43 )
grow exponentially. To obtain explicitly their dynamics from (53] it is useful to define the following

expressions
k2
T 482
(: Az/zAkm )= 62642 <(A — sgn(K)B)2e2ln/2 4 (A + sgn(K(2))B)2e*2|”k/2|XO>
1
= énk(xoﬁ =
2 2 1
{: Alt/2 D+ Ak/22 )= =2 ¢ 12 (A2 - B%) = 2%k
(56)
in terms of which the expectation values for the GFT energy-momentum tensor (53] read
sgn(K?)) [ k2 sen(/C(2)
(T¢°) :M <nk(X0) - mgck> ) <77ca#b> i —Mkakb (2ﬂk(X0) + k)
20wg/a| \ 2 8w 2|
aa Sgn(,C(Q)) 2 kg 0 k2 — kg,
=V J1_ (2 a
T =G | (2 5 ) o) e (57)
<7—0b> ngn(IC(Q)) A~ (XO)
k 4wy | F
It then follows that tr(7,%¢) = ngTLS’:ZI)) [ - (2m2 + %) ne(x%) + %zck}, which will be a useful

expression in the following analysis. Forour choice of state, ng(x?) can be related to the expectation

value of the number operator Np = ALAk (not to be confused with the lapse function), i.e.,
%@VO) = (Ny/2). This relation is valid as long as o(k) [@T) is symmetric in k and we are within

-

the range of validity of the saddle-point approximation. In particular, the exact form of o(k) is
irrelevant, as long as it is,sufficiently peaked on the k = 0 mode.

To analyse the dynamics of the energy-momentum tensor components, we first note that ng(x")
satisfies the equation of meotion

()" = 4w o (X°) - (58)

As 1y, (x°)fully governs the dynamics of the squeezed energy-momentum tensor, the (77;43 ) satisfy
similar dynamics) namely

(T0)" =dwp o (TY°) + sgn(K®)2|wy o lm’e

(e a kakf
(7Y =4 o (T70) + sn(K®) =2 g ol

<7-aa>/l —4 2 Taay _ IC(Q) k2 — k?z
A wk/2< k) — sgn(K)|wg o 5 Ch
(T =4wp ;o (TR)
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from which it follows that ftr(7,%¢)” = %wz/Qtr<77€aa> - sgn(/C(Q))|wk/2|§ck. They also satisfy
(ka # 0)

(T

(T = =i (T (T = iha(T), (T = (4m® k) =8

(60)

where the index b on the right-hand side of the last expression can refer to,any space component
of the energy-momentum tensor. Note in particular that due to the exponentialigrowth of n(x°),
the constant terms in the expressions can be neglected at late times, leading to clesed second-order
equations for the (7;48) that are exactly those of the number operator.

The comparison of (2I]) and (57) allows an identification regarding thesnature of the pertur-
bations focusing on the matching of factors of k,; we see that the (FAB) resulting from our state
choice are consistent with purely scalar perturbations. We first noterthat.the overall factor of k; in
(T9) is consistent with vanishing vector modes BY = 0. Similarly, from(7%7?) we find Ef;éb =0
and 9, E) +9,EY = 0 (a # b); we also get 9,E) = 0 from (7.%%). Finally, we conclude that EZ, = 0
by noticing that the k2 terms in (79%) give exactly the k2FE texm in j9¢, using the identification
sgn(K?))(Te#b) = jo#b The possibility of obtaining'¥ector and tensor perturbations from the
effective GFT metric we construct here is should befelarified in future studies; in what follows we
focus solely on scalar perturbations. y

We can then use the above results andithe relations/found in (25]) to write down explicit
expressions for the scalar metric perturbations arising from squeezed modes

= 2
1 1
B=————n(x%
Togyal 2"y
61)
1 m? 10 1 Am?m (
=~ (2= L (K [=4+ — 0
v 16wy 2| < o ¥ ( <a4 y 770) T >nk(x )> 7

~ 1 kE2mo~  2m? m 1 12m?2n
b =— _ -0, -y =" "0 0y
16wy << at’ {imo ) " < < at " 7T0> at >nk(x )>

Note that the overall sign factors'in the explicit expressions for (745) cancel with the sign in the
identification j4° =sgn(X @Y (T5), leading to simpler expressions.

From these effective expressions we can make some basic observations regarding the behaviour
of perturbations arising from squeezed modes:

4

e The initialsspectrum of perturbations at the bounce, where we have a* = wg, can be com-
2

putédias a function of k. Since ny(x°) and ¢, as defined in (56) scale as 6_4%, when || > s
perturbations are exponentially small at the bounce. The parameter s regulates the peaked-
ness of the state (46]) and can be made arbitrarily small. On the other hand, we see that
modes, for which |E | < s are of the same order as the background k = 0. This differs from
standard cosmological perturbation theory, where all perturbations are assumed to be small
with respect to the background, and is a finite-width effect of the state we are considering;:
the situation of standard cosmology corresponds to the case of s — 0 to obtain the back-
ground mode, and the inclusion of a separate spectrum for perturbation modes. In practice,
only modes above a minimal |E | are observable, and very long-wavelength modes outside of
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that window could be absorbed into a redefinition of the background. Since in our case the
equations of motion are linear and different k modes are decoupled, this would not introduce

any nonlinear averaging effects.

e As the universe expands, ng(x") increases and hence the perturbations gfow in time. Even

4 ode2™x and ny,(Y0)

the combination ng(x?)/a* grows (recall that at late enough times a
tewk/?lXO), such that all perturbations grow and take their minimum wvalue at the bounce.
This fact can be reconciled with linear perturbation theory by recalling that, the free GFT
and the saddle-point approximation are applicable for a finite time only and furthermore, the
perturbations are initially exponentially suppressed in k, i.e., the faster.growing modes start
with smaller initial amplitudes. At late times, the terms proportional to %‘%(XO) will be
dominant in the expressions for ® and 1 (assuming that the saddle-point approximation is
still applicable). However, an approximation of the form b ~ N —m%nk (x%) would
be invalid, as it violates (B1I), which is derived directly from the harmonic gauge conditions.
The harmonic gauge conditions are equivalent to thé congervation law 9y 7% +i " “ ko T8 =

0, which was shown to hold exactly at operator level in [40].

e Inthe k — 0 limit, 1 and ® tend towards congtants, s m (m—gc — m’m nk(xo)> and

210 at

O~ m (%ck + %nk (X0)> and from the effective scale factor (49) and the definition

of n(x") (B8), we can see that |wy /o[ =>Jm| and nz(x°)/a* ~ const. These perturbations
also satisfy the super-horizon limit of thesharmenic gauge condition (31), ®” + 3¢” = 0. In
the strict & — 0 limit, E and B{donot.appear in the metric where they are always multiplied
by the wavenumber (or, equivalentlyy only enter as spatial gradients, see (21])).

We proceed to analyse the concrete form of equations of motion for the perturbation variable
E arising for squeezed GFT modes and compare them to their classical counterparts. Using (G5
and (B9)), the dynamics of E can be written as
N

E" +8HE' + HH' +4H? — w} »)E +

|wr /2| mo
2 =o0. (62)

4

In the late-time limit We can neglect the ¢, term as it falls off as =%, and approximate H’ ~ 0 and

2 : 2
H? ~ = (see sec.[V)). Tf we also insert w2/2 = % +m?, we find

E'" +8HE —K’E=~0. (63)

This can be simplified further by considering an explicit late-time expression for E’. At late times,

we can assume that' B ~

(see (BO)), leading to

8‘w:%nk(xo), again neglecting the ¢, term, and ny(x°)’ =~ 2|wk/2|nk(xo)

E' ~ —4HE + 2|wy0|E. (64)

For small wavenumbers %2 < m? we furthermore have |wy, /2| ~ 2H, such that £’ ~ 0 and the

equation of motion for E simplifies to

E' —k*E=0. (65)
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Comparing to (43), the corresponding equation in general relativity coupled to a single massless
scalar field, our effective equation (65]) has a Euclidean signature instead of the Loréntzian one,
and is missing a factor of Z—é It furthermore resembles the general relativistic single.field case ([43])
more closely than that of four massless scalar fields ([B8]), which is similar 4o the results for the
effective Friedmann equation as discussed in sec.[Vl

In previous work in GFT cosmology (using different methods and assumptions) the signature of
perturbations was found to depend on initial conditions, where both the Lerentzian and Euclidean
case could be recovered [33]. It is evident that alterations to the setup we'present here are necessary
to recover agreement with Lorentzian general relativity. The presencesof ayFuclidean signature for
effective metric perturbations may not appear particularly surprising, given that our original GF'T
action (B]) treats all four matter fields on the same footing and hence'does not distinguish between
“space” and “time” directions. A possibility which we will discuss in. app.[A 1] would hence be to
start from a different coupling of matter degrees of freedom dn,the original GFT action.

In the general relativistic perturbation equations, the factor 73 /a*more generally reads a?/N?
where N is the lapse, and would hence be absent in the ‘case of ‘conformal time N ~ a. The lapse
is however determined by our choice of coordinate system and the expression of the conjugate
momentum of the clock field, such that one would/have torcomsider alternative matter actions to
obtain a different form of N. As a particular example, one might want to consider k-essence models
that include a more general function of the kinetic termygin the Lagrangian for the four massless
scalar fields. The challenge is then to obtain a model in which N ~ a and H? ~ const. at late
times; we discuss an extension of our setup to k-essence models in app.[A2l We note that the issue
of a missing dynamical factor of a* /7‘(‘8 was found in previous results on GFT perturbations [33]
and could be resolved through a more advanced construction [34, 135], as we will discuss again in
the conclusions.

A discussion similar to the oneé'we ineluded for E above could be carried out for the other three
scalar perturbation variables. As these will generally suffer from similar deviations, we leave this
analysis for future work. This coneludes the analysis of squeezed modes.

B. Oscillating modes

We now followthe equivalent procedure for oscillating modes w,% /2 < 0 (see sec.[l). From the

definition w,% = m2+ k2 this will only hold for m? < 0 and for sufficiently small wavenumbers: in

the saddle-point‘approximation we only consider the frequency wy /9, which only corresponds to an

oscillating mode for'k? < 4|m?|. For the operator expectation values in (53)) and (54), we obtain

(; AL Apn ) = L —%(AQJFB?) = ia
El2ik/2 2 ECRLE
k2
2e 4s2 .
(: A};/; D+ ( Ak/QQ )= 2 ((A2 - B?) COS(2|wk/2|XO) — 2sgn(K®)AB sm(2]wk/2|xo)> (66)
1
= éfk(xo) )
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which leads to
0 _Sgn(’C@)) 2 712 0
i (2
(T — R [sgn(/c@)(,at2 — B%) sin(2|wg2/x°) +2A3cos(2|wk/2|xo)} yisen(C) ke
2 8luwr/2|
o sgn(K@
(Te7h) = - Mkakb (200 + 1 (X)]
wa sgn (K k2
U el (GOSN CUREDCIE =
(67)

with tr(7,%%) = sgn(K) (k:QDk + (3|m\2 - %) fk(xo)>. The dynamies of oscillating modes are

2|wy, /2l

governed by fi(x"), which satisfies

(X)) = —4lwr2PT) - (68)
This leads to the following equations of motion for the/GFT eﬁergy—momentum tensor:

(T = — 4\W§/2’<7—00> + Sgn(’C(2))4\wk/2||m2’°ka
(TP = = dlwd )y (T7") — sen(K®) lwy, alka odk, (69)
(T = — 4|} o [(TE) + sen (KO Bah(k®— k2) 0, (T = —4lw? ,[(T) .

Note that this mimics the dynamical equations of squeezed modes (B9), with an opposite sign,
which hints at the possibility to reecover a Lorentzian signature in the perturbation equations.
From (25]) and (€7]) we find the following expressions for perturbation variables in the case of

oscillating modes:
A S

W(f}c( X2+ 20k)

1
B=—-——~=i(X"),
8|wryala®

70)
il L (molm? R (1w, (
47T0’wk/2|bk + 8|UJ}C/2| CL4 4 o + a4 fk(x )’
- 1 2|m2| k27TO k2 o 3|m2\770 .
b= — 2 L |
8|wyyol [( mo T )T T\ )T T fr(X7)

Importantly, thete are no growing terms in the perturbations, so that terms proportional to 0

cannot_beineglected at late times. The only applicable late-time limit is that the amplitude of
termms proportional to a~* decreases. In particular, this implies that £ and B decay, whereas 1) and
& oscillate around a set value. Similarly to the case of squeezed modes, a late-time approximation
in whichn® ~ ¢ violates the harmonic gauge condition B1)) outside the super-horizon limit. In
the.k — 0 limit, the harmonic gauge condltlon reduces to —®” — 3" = 0 and is satisfied by the
approximations ® ~ — ] m?|m fe(x") and ¥ ~ m_y m|g fe(x%). In the

4molwy 2] Ok — 8|wk/2|a4 T Amolwy ol kT 8|wk/2|a4

late-time, superhorizon limit, we then find that ¢ ~ ® are constants.
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Using (B3)) together with (69) we find the following equation of motion for E in the case of

oscillating modes
Wy /9|
E" + SHE' + 4(4H? + H' + 4|w? ,|)E = |’;/2i°ok . (71)
a

The late-time limit is different from the squeezed case; in particular, the right-hand side is of the

same order as I/ and cannot be ignored. Hence the late-time limit for background quantities is less

straightforward in the case of oscillating modes. As we discussed in se¢.[V] oscillating modes do

not lead to a bouncing universe at the background level, so that we would assume that oscillating

modes appear only in conjunction with at least one squeezed mode that givesidesirable background

2 2
sq sq

of m? for the squeezed background mode, which is different from. the ,value appearing in wz /2

dynamics. In such a case, we would have 4H? ~ m2, and H’' ~ 0, where mZ, would be the value
While we recover a Lorentzian signature, the discrepancy of.the a*/ wg factor remains. Lastly, as
no terms can be neglected at late times, £’ cannot be simplified and/we are left with additional
terms compared to general relativity (B8]). As an additignal peint of comparison, we noted below
([#4)) that in the case of general relativity with a single massless scalar field, the amplitude of E falls
off as 1/a with increasingly rapid oscillations. Thisds élearly, very different from the 1/a? fall-off
with a constant oscillation frequency that we obsetve id the exXplicit solution ([0l).

This concludes the analysis of scalar perturbations within our proposal to extract an effective
metric from GFT for a first naive state choice. »We have obtained explicit expressions for scalar
perturbations in the squeezed and oscillating case. Mn both cases, we find that the equation of
motion for the effective perturbation wariable E, shows deviations from the general relativistic
dynamics in the form of having the wrong signature (squeezed modes), having additional terms
(oscillating modes), and a missing dynamical factor of a*/72 (both cases). In a model with at least
two modes, one oscillating and oneisqueezed, one could imagine that the squeezed mode is very
highly peaked on the background mode and leads to a bouncing universe, while the perturbative
modes are suppressed, and the ‘oscillating mode gives the dominant contribution to cosmological
perturbations. Still, in ordet to match the general relativistic dynamics at late times, alterations
to the proposed setup, e.gi, indform of a more complicated state choice, are required. Below we
will discuss some possible directions for obtaining more phenomenologically acceptable results in
our general setting.

VII. CONCLUSION

In this paper{we extended the analysis of an effective metric for an FLRW background as
studied in’[40] to cosmological perturbations. For the FLRW background, previous work had shown
the promising result of an exactly flat metric and a bouncing universe. The effective Friedmann
equation derived for this case showed agreement with general relativity coupled to a single massless
scalar fieldgwhile the GFT model includes four such fields. The study of GFT perturbations
thenyhas two main objectives: firstly, to establish whether the effective metric proposal allows
a consistent reconstruction of perturbation variables, and secondly to investigate whether their
effective dynamics can be interpreted from the perspective of general relativity (in suitable limits).

We began with a brief summary of the basics of GFT and the fundamental ideas behind the
effective metric proposal and its application to homogeneous cosmology. As in most of the literature
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on GFT cosmology, we neglect interactions between GFT quanta. The free theory then contains two
types of modes, oscillating and squeezed modes, which exhibit different dynamics. Throughoeut the
paper we work in a relational coordinate system given by four massless scalar fields: The proposal
is then to identify the GFT energy-momentum tensor with an effective spaeetime metric, given
that both define conserved Noether currents associated to the same symmetries. By giving explicit
expressions for the general relativistic Noether currents for a perturbed FLRW metric, we were
able to reconstruct expressions for all scalar metric perturbations explicitly for, the first time in
the GF'T literature. This is a significant improvement on previous work‘in which enly the spatial
volume and its perturbations could be studied. We established general expressions and equations
of motion for scalar perturbation variables in terms of the effective/operater’dynamics, which are
independent of a specific state choice. These could be used for any GET state beyond the example
we consider here, or for more general models with alternative operator dynamics, e.g., for a different
GFT action. While the proposal for an effective GFT metric.is very general, in the sense that an
effective metric can be associated to any state that is sufficiently semiclassical, the particular choice
of state governs the specific form of such a metric and it§ symmetries.

For our analysis, we chose a Fock coherent state highly peaked on the homogeneous k = 0 mode.
Fock coherent states are commonly used in the GET literature as they satisfy the requirement of
semiclassicality; peaking around the homogeneous mode reﬂegts the goal of obtaining an FLRW
metric with small perturbations. This statéwas used in [40] to obtain the effective background
metric, and its non-zero k modes are interpretedias perturbations. In [40] we had shown that the
effective Friedmann equation for squeezed modes corresponds (at late times) to what is expected
for general relativity coupled to a single massless scalar field. GF'T is not a direct quantisation of
classical general relativity; a GF'T action isiconstructed via symmetries, renormalisation arguments
and connection to discrete quanmtum gravity models. Our introduction of a specific simple coher-
ent state and the truncation to the free theory are also significant simplifications. Hence, while
obtaining a reasonable Friedmann equation gives a first hint, it does not yet give strong evidence
that the resulting low-energy the%y is consistent with general relativity.

To obtain explicit expressions for perturbative quantities we made use of the saddle-point ap-
proximation, which restricts, the validity of our results to perturbations with sufficiently small
wavenumbers and to a finite timexFor our state choice small wavelength perturbations are initially
exponentially suppressed and.the assumption of negligible interactions in the GF'T action limits our
results to regions close (enough) to the bounce. We considered the case of oscillating and squeezed
modes separately, where for both mode types the dynamics of perturbations are naturally very
similar to those for the respective background mode. Our choice of state leads to expressions for
the expectation values of the,GFT energy-momentum tensor components (745) that are compat-
ible with the interpretation of recovering only scalar perturbations, even though in principle the
components of (F47) contain all perturbation types.

Theyeffective/perturbations we found for squeezed modes grow in time, excluding a consistent
interpretation as small deviations from a homogeneous background at a certain point in the evo-
lution. Comparing the equation of motion for the perturbation variable E to those obtained in
general relativity for either one or four massless scalar fields revealed several discrepancies. Firstly,
thedynamics of the effective perturbation have a Euclidean signature instead of a Lorentzian one.
Secondly, they resemble the general relativistic dynamics one might expect for conformal time,
whereas we are working in a harmonic gauge given by the relational coordinate system, which
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would lead to a relative factor a*/73. Finally, the late-time limit of the effective dynamics for
E resemble (save for the aforementioned discrepancies) those of general relativity with a,single
matter field, which is similar to what we found for the effective Friedmann equatien. To recover
a bouncing universe at the background level, we saw that at least one squeezed mode needsto be
excited; for our state choice we then inevitably encounter perturbations that are ofisqueezing type.
Oscillating modes, on the other hand, remain finite in amplitude throughout the evelution of the
universe. While for these modes we recovered a Lorentzian signature in the dymamical equations
for the effective perturbation F, we again encountered the same discrepancy regarding a dynamical
factor of a* /773, moreover, additional terms that are not present in general relativity arise. Note
that since a single oscillating mode does not lead to an expanding universe at.the background level,
one needs to consider a minimum of two J modes (one squeezed, one.oscillating) in order to have

perturbations of oscillating type in a phenomenologically feasible universe:

The GFT literature includes models for Euclidean as well as for Lorentzian gravity. As we
discussed in our earlier review of GFT, the desired spacetime signature can (but does not need to)
be built into a choice of gauge group; to determine the relation between such details of the model
and the emergent spacetime signature, one needs to have access to an effective spacetime geometry.
The work of [40], as well as other results in GFT cogmology [33], indicated that in GFT the metric
signature is not fundamentally included in the quantum theory and instead emerges at an effective
level. In our case, at the background levelithe metric signature (read off from effective metric
coefficients) is determined by initial conditions, whereas for the perturbations it is determined by
the type of dynamical equation and depends on the mode type. Since we are working in a free
GFT, the model presented here has no ¢oupling between the background and perturbations, and
the dynamics of the various k modes of the GFT energy-momentum tensor are independent of
one another. This is a reflection, of the linearity of the theory and stands in contrast to general
relativity, where the perturbation equations explicitly depend on the scale factor and the Hubble
rate. This might suggest that fhe proposed setting is more suitable for studying perturbations
around a flat spacetime, the study of which we leave to future investigations.

All previous approaches(to cosmological perturbations in GFT were limited to considering the
perturbation of the volume elemient and thus the combination k?E —31). The exceptional advantage
of having access to a réconstructed metric in our setting lies in the fact that we can retrieve any
combination of perturbative,quantities, in particular, we can construct effective gauge-invariant
perturbations. This is of particular interest as gauge-invariant quantities are those that can be
related to observations. Moreover, future work based on more elaborate state choices could include
tensor or vector modes, which could again be read off from the effective metric.

In a previous study/[33] based on volume perturbations, the dynamics of perturbations similarly
lack a fagtor’of at/sd; whereas the signature is determined by initial conditions. The model is also
built on'a free GET action with a single group field, but includes a fifth matter field that is assumed
to dominate thetrelational fields. One hence assumes agreement with general relativity coupled to
a single scalar field, which is found at late times in the k—0 limit, similar to the long-wavelength
limitof the dynamics for £ we find here in the case of squeezed modes. The dynamical discrepancies
in the perturbation equations at finite & could then be resolved in [34] using a GFT model with
twontypes of group field (“spacelike” and “timelike”), which enter the GFT action in a different
manner. In this work the choice of state is not a simple coherent state, but includes entanglement
between the perturbations of the different GFT fields. This choice of state and a simplified form
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of GFT dynamics assumed in the analysis allow for the introduction of a free function that ean be
chosen to achieve agreement with general relativity at late times, including fixing thefsignature to
Lorentzian. The mismatch we find between effective GF'T dynamics and those of general relativity
is similar to those of [33], so the follow-up work of [34] might suggest that this can beimproved in
a more complicated GFT and with a different choice of state.

In the appendix we propose some avenues for extending our results or their interpretation in
terms of a corresponding classical theory. Beyond this, our results for cosmological perturbations
can be extended in many different directions:

e Alternative state choices. The state we considered here is characterised by a single k-
dependent function that determines both background and perturbations. One might want
to consider states that more closely resemble the approachyin standard cosmology, e.g., one
could consider a background mean field only used to define background quantities, plus a
small E—dependent contribution for the perturbations, which can'exhibit an entirely different
spectrum. This would be similar to previous studies'of perturbations in GFT [30, 133, 34].

e Improved GFT dynamics. The dynamics of pérturbations are derived from dynamics of
the GFT energy-momentum tensor, which are/determined by the GFT action. Including the
effect of interactions in the GF'T action, which wethave ngglected here, might lead to effective
dynamics that are closer to those of general relativity. This would be consistent with the
origin of GFT in discrete gravity models, where the precise form of interaction is important
to determine the “gluing” of lower-dimensionalbuilding blocks to form spacetime. Viewed
from that angle it would seem unreasenable to expect that a truncation to a simple quadratic
action that does not know about interactions is already able to capture general-relativistic
dynamics (such a result avould also suggest that almost any GFT action of a particular
class reduces to general relativity, which might again seem unrealistic). Of course, adding
interactions will substantially complicate matters and potentially require new (perturbative
and nonperturbative) metheds.

e Including additional group fields. One might consider extensions similar to [34], where
two GF'T fields,are included, whose interplay leads to dynamical equations that agree with
GR in a certain limit. Such extensions would change the form of the 748 and symmetry
requirements©f the energy-momentum tensor would likely impose certain conditions (and
possibly limitations) en such a construction.

Finally, we/emphasisesthat the setup for reconstructing an effective GF'T metric introduced in
[40] is general and notlimited to cosmology. Its usefulness could be established by investigating its
applicationsalso outside of the context of homogeneous and isotropic cosmology. Here, anisotropic
Bianchi/models might be best suited and black hole spacetimes would be of particular phenomeno-
logical interest. If proven suitable for obtaining a variety of spacetimes, the effective GFT metric
could pave the way for a variety of fruitful future research directions.

ACKNOWLEDGMENTS

The work of SG is funded by the Royal Society through the University Research Fellowship
Renewal URF\R\221005. The work of LM was partly funded by the Leverhulme Trust through a

Page 30 of 38



Page 31 of 38 AUTHOR SUBMITTED MANUSCRIPT - CQG-113163.R2

1 31
2

2 Study Abroad Studentship.

5

? Appendix A: Possible extensions

2 In our analysis of the effective GF'T metric recovered for the cosmological setting, the comparison
10 with general relativity gave two main results:

1; 1. The effective Friedmann equation obtained at late times disagreesswith that, of general rel-
13 ativity with four massless scalar fields. Instead, consistent with previous literature, the
14 Hubble rate (defined for the clock x") approaches a constant, sthichiresenibles the case of a
12 single scalar field. This discrepancy was discussed in detail in [40}¢ -

17 2. Effective dynamics of perturbations do not agree with those of Lorentzian general relativity;
12 we find a FEuclidean signature for effective perturbations for squeezed modes, and a factor of
20 at/m? is missing from the equations of motion.

21 In order to recover a suitable semiclassical regime for cosmology, alterations have to be introduced
;g to the setup described above. In this appendix we consider two routes to such alterations that focus
24 on the manner in which the scalar fields are included in the thegry and demonstrate the restrictions
25 imposed by the setup. We first consider changing the (GFT action and coupling clock and spatial
26 scalar fields differently. Then, we consider thespossibility. of comparing not with general relativity
;é with four free massless scalar fields, but with the more general setting of k-essence models, keeping
29 in mind that GFT does not arise from quantising a particular classical matter action but relies on
30 general symmetry arguments. We find that both. cases are restricted by symmetry requirements on
31 the form of the GFT energy-momentum tensor and the conserved classical currents. We present
32 . . . 5 .

33 both considerations separately; the combinationiof both approaches (comparing more general GFT
34 actions to k-essence models) is left-for,future work.

35

36

37 1.\ Extensions of the GFT action

38

39 In the construction of a ‘GFT action for quantum gravity with four massless scalar fields, one
2(1) imposes some symmetries,of the corresponding classical action (I2)), namely, shifts, rotations and
42 reflections. The Laplacian onR* in the GFT action @) is consistent with these; in particular,
43 derivatives with respect to the scalar fields all enter with the same prefactor to preserve the rota-
44 tional symmetry-under x4/ O4px?. As the F(4) symmetry is broken upon singling out a clock
22 field for quantisation in the deparametrised approach to GFT, one might want to impose an F(3)
47 symmetry between the spatial fields only and allow for a different factor in front of the derivatives
48 with respect to the'elock field, as was considered already in [29]. Introducing a new parameter
gg cq € R, this leads to a more general form of the free action

51 1 1
2 G— /d4X L, £=Y (2KS°)¢3 L ((aow)2 + ca Z(aa(PJ>2>> . (A1
J

a

54 The action (B) used in our analysis so far is evidently recovered for ¢, = 1. On the other hand,
55 setting.c, = —1 means the Laplacian is now the one on Minkowski spacetime R*! and the sym-
g? metry group F(4) is replaced by the Poincaré group F(3,1), which one might hope could encode
58 Lorentzian rather than Euclidean signature in the effective spacetime geometry.

59
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Having introduced a Lorentzian structure on the space spanned by the four masslessiscalar
fields, the energy-momentum tensor thus obtains a non-trivial index structure and e adjust its
definition to

oL
T4 == —————9pp+ L5, A2
B a(aASO) BY B ( )

where indices are raised and lowered with the Minkowski metric nap = diag(~1, 1, 1,'1). Specif-
ically, 74P is symmetric (unlike TAB) and therefore suitable for an idemtification with j45 as
defined in (I6]). Note that for ¢, # 1 and the previous definition of the GFT efiergy-momentum
tensor (I7), TAB would no longer be symmetric and a consistent identification with the classical
currents impossible. o

The question is then how such a change affects phenomenology. The additional factor in front
of the spatial gradient term enters the definition of wy in the GEE, Hamiltonian ) via w; =
m?+ k2 - w,% = m? 4 c,k?. Recall that we obtain a squeezing-type Hamiltonian for w,% > 0,
while w% < 0 results in a harmonic oscillator Hamiltonians If . we consider the case with ¢, = —1,
we find that all modes with m? < 0 are oscillating modes. For m? > 0, we find squeezed modes
only in the cases where K < m?; all other modes are ofroscillating type. Such a theory might
be phenomenologically desirable as it has a limited number of squeezed (exponentially growing)
modes.

To assess possible effects on the signature of theeffective metric, we first note that due
to the necessary raising of the index of TOO, we, find an additional minus sign in the effec-
tive expression, whereas the spatial diagonal ‘components remain unchanged. For a squeezed
background mode, we thus find (seé EINHTLN = —sgn(K?)|m|(B? — A?) « j%° = 7y and
(7o) = —sgn(K@)mng(x°) o j** = —fr—: Recall that at the level of the background the effec-
tive metric signature is determined by the signg of (7°) and (77¢) (see 22)): If all components
of 748 have the same sign the metriévis Euclidean, if the % component has a different sign, the
metric is Lorentzian. In order(to recoverhra Lorentzian signature for the background metric we
therefore need sgn(B? — A?) # qu(no(xo)) =1, i.e., we require A% > B2 for the initial conditions.
Using the same identification as before, j48 = Sgn(lC(Q))<TAB), we then recover a positive my from
the effective expressions. Imishort, setting ¢, = —1 in the GFT action has implications for the
range of initial conditions that give a Lorentzian effective FLRW metric.

In the case of effeetive perturbations, the signature depends on their dynamics, which again are
determined by the mode type. As pointed out above, which modes are of squeezed or oscillating
type changes with ¢z = —1. Additionally, the sign of (7,°°) has changed, which enters the explicit
forms of 1 and @, see (23). The overall dynamics of squeezed or oscillating perturbation modes
should however remain unaffected and we should find the same discrepancies in the dynamics as
noted in_ the maintext.

Finally,»we comment on more general extensions of the GFT action: To uphold the premise
of pur propesal, any generalisation of the construction presented must lead to a symmetric GFT
energy-momentum tensor that can be consistently identified with the classical currents. If one
wanted to extend the GFT action to include, e.g., higher-order derivatives, such higher-order
terms,must then appear for all four scalar fields. Such a modification will inevitably also affect the
background dynamics and one cannot include additional terms solely for the spatial fields, which
might have been desirable from a purely phenomenological perspective.
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2. K-essence models

In the main text, we compared the effective GFT dynamics to dynamics of free imassless scalar
fields in general relativity and found various disagreements. However, recall that GFT is_not a
direct quantisation of any classical theory but constructed from general principles,and properties
of Feynman amplitudes, to be interpreted as discrete spacetime histories.  The GET, action we
discussed uses the shift symmetries of free massless scalar fields, but such symmetries exist in
more general classical matter theories. It would hence be very reasonable to suggest that the
classical limit of GFT could correspond to such a more general matter theory. | In the following,
we investigate this proposal and study a more general form of the scalarfield action known as
k-essence models (see, e.g., [63, 164]).

When using four scalar fields as a relational coordinate systemj.as dome here and in previous
GFT works [33,134, 40, 53], the simplest assumption is to assume the Lagrangian for free, minimally
coupled fields

1
Ly=—5V9 > g™ a0 (A3)
A
L
However, the construction of an effective GFT metric Only requires a shift symmetry under x4 —
x4 4 €4, which is satisfied by any Lagrangian'that only'depends on derivatives of the scalar fields.
In particular, we can generalise to a Lagrangian ofithe form (a =1, 2, 3)

1 1
L=+=gP(Xo,X,), with Xo= —59“”3ux06ux0, Xo = =59" 9 x"0uX", (A4)

where P denotes a general fun¢tion. For a flaty FLRW spacetime and in a relational coordinate

system with 9, x4 = 5/’:‘ we have Xg'= +i» and X, = —#. For a Lagrangian as given in (A4,

the energy-momentum tensor is'given b

s, — s+ 3 2
2 A

oP
gMaaozXAauxA = 55 P + Z mgu'A(Sf ) (AS)
A
and the classically conserved currents in relational coordinates read

G4 = —v/—g a—PgHA (no sum over A). (A6)
0X 4

The clock field momentum. is given by

gl OP
o = TTXO’ (A7)

which upon fixing P gives an equation that can be solved for the lapse N.

In the following we demonstrate with a simple example that we could obtain a constant Hubble
rate within' k-essence models; we will discuss the restrictions imposed by symmetry requirements
below. For the example we choose P = (Xo)*+ > _,(X4)", with u, v € R. If we assume that, again

1 We do not carry out the sum explicitly in the last step to avoid a confusing index structure.
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for a flat FLRW universe, N = £ a? for some £ € RT and g € R, we obtain the following expression
for the conserved canonical momentum of the clock field and a relation between g and w:

3
2u—1"

3+4q(

mo o a>Fa(i=2u) = const. = q= (A8)
Note that an explicit form of £ as a function of 7y can be found from ([A7). From (AZ) we can

obtain the energy density

OP oo 1 3
=— 2u—1) 4 (=1)°! A
P P 8Xog - QuN2u ( )+ ( ) v 20’ ( 9)
~
leading to the Friedmann equation
2u—1 1 N
H? x N?p = (2u—1) _qprt (A10)

2u€2(u—1) a2q(u—1) ( 1) 2w q2Ww=q)’

where we again assumed that N = £ a?. We would then(recoverra constant right-hand side of the
Friedmann equation in the case of u = 1 and v = ¢, with ¢ = 3 from (AS§]), so that we recover a
harmonic gauge. The discrepancy between the GF Léeffective Friedmann equation and the general-
relativistic Friedmann equation at late times for four masslesg scalar fields would be resolved in
this type of model. In the case of conformal gime (¢ = 1), we have u = 2, such that the first term in
the Friedmann equation decays as a2, and the right-hand side approaches a constant at late times
for v = 1. Note however that this would imply a stronger mismatch with the GFT Friedmann
equation (50), which does not contaid afva=2 term, at early times.

So far, we have focused solely on the homogeneous FLRW dynamics, where the off-diagonal
parts of ( j“)A vanish. If we consider the time-space components of the currents ([Ad), we find

Oa (977 Oa (977

(19 = £V/=gg

(7)° = —v~gg (A11)

. N .
and in order to relate these tosa symmetric GFT energy-momentum tensor we must demand
(°)% = (§4)°. This imposes 68% = aaXla, and the Lagrangian has to include all fields in the same
manner. While this symmetry requirement only applies when considering non-diagonal metrics,
one might prefer a general eonstruction that can hold for various spacetimes (in particular, also

for the perturbed FLRW gase). With this restriction we have

13 2P 677

3 . v A
L =y/—gPR(X) witheX := —7291 dux o, x* =oNZ T 92 (M) = —v/—=gg

(A12)

where we assumed a flat FLRW background and a relational coordinate system for the explicit
formeof’ X". Therequirement that

a’ OP |
Ty = Na—X = const. (A13)

leavesius with two possible scenarios:

1. The case we considered in the main text above, i.e., N  a® and P x X.
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2. (Almost) conformal time: X is a single power of a, i.e., N = £a , £ € RT, such that

X = ﬁ (5% — 3). We then have my = ‘2—23—}? L const. and therefore P x X?2. We then find
3

Ty X E% — which can be solved to obtain an expression for &(my). As modis positive, we
must have ¢ € (0,1//3).

From the energy density —p = P + g%goo we can again compute the Friedmann equation

H? x —N?P + g—f(. The first option above is the standard case we considered imthe main text and
results in ([29). The second case of conformal time gives (P o< X?)

H2 o 2 (1 —3¢% 2> : (A14)

4a2 \ &2 ~

% (see above). This goes to zero athlate times and does not match

the GFT effective Friedmann equation. Hence, with the symmetry, restriction that enables a

which is positive as £? <

consistent identification of the classical currents with the GFT energy-momentum tensor the scope
of allowed k-essence models is limited and we could not identify a’case in which we recover a

constant Friedmann equation at late times.

3. Summary

To obtain effective GF'T dynamics that can match those of general relativity at the late times,
alterations to the setup presented in the main text are@mnecessary. These can go in several directions:
one can either change the definition of the GFT ‘model, or the classical matter theory one expects
to obtain at low energies. We studied these two types of modifications separately. Both cases
are limited by symmetry requirements on 748 and j4B. which are crucial to allow a consistent
identification with one another. Hence, the desirable effects we found cannot straightforwardly be
included in the setup of an effective GEL. metric as studied in the main text.

Adjusting the derivatives with respect to clock and spatial fields in the GFT action has the
potential to alter which valaes ofwiprésult in oscillating or squeezed modes. Interestingly, it is
possible to introduce a maximum wavenumber for squeezed modes, such that all modes with larger
k will be of oscillatingytype. In,thelcase of k-essence models, we assessed whether it is possible to
find a form of the matter Lagrangian that gives conformal time and a constant general relativistic
Friedmann equation at late times. The desired result can be achieved if one is concerned solely
with an FLRW metric; then we saw that clock and rod fields can be included in the classical
k-essence actiom’in such. away that one recovers a constant Hubble rate in general relativity with
four massless scalar fields, thus matching the result of GFT. However, the goal of our paper was
to explicitly imelude cosmological perturbations, and one would like to find a common consistent
description for background and perturbations in which the phenomenology of both is satisfactory
from the perspective of general relativity.
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