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While homogeneous cosmologies have long been studied in the group field theory (GFT)

approach to quantum gravity, including a quantum description of cosmological perturbations

is highly non-trivial. Here we apply a recent proposal for reconstructing an effective space-

time metric in GFT to the case of a metric with small inhomogeneities over a homogeneous

background. We detail the procedure and give general expressions for cosmological scalar

perturbations defined in terms of the GFT energy-momentum tensor. These include all the

scalar components of standard perturbation theory and hence can be used to define gauge-

invariant quantities. This is a major advantage of the effective metric approach compared

to previous GFT studies limited to volume perturbations. We compute these perturbations

explicitly for a particular Fock coherent state. While it was previously shown that such

a state can be interpreted as an approximately flat homogeneous cosmology at late times,

here we find that, in a very simple example, inhomogeneities do not follow the dynamics of

general relativity in the semiclassical regime.

More specifically, restricting ourselves to a specific coherent state in a simple (free) GFT,

we study two types of perturbative GFT modes, squeezed and oscillating modes. For

squeezed modes we find perturbation equations with Euclidean signature and a late-time

limit that differs from general relativistic perturbation equations. Oscillating modes satisfy

different dynamical equations that also differ from those of general relativity, but show a

Lorentzian signature. Considering that our results were obtained within a number of simpli-

fying assumptions and arguably the simplest possible example, we discuss how going beyond

these assumptions could lead to a more desirable phenomenology. Overall, our analysis

should be understood as a first step in understanding cosmological perturbations within the

effective GFT metric.
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I. INTRODUCTION

General relativity gives an excellent classical description of the gravitational force; however, the

quest to find a quantum theory of gravity is still ongoing. The quantum behaviour of matter is

well described by quantum field theory and as general relativity relates matter to the geometry of

spacetime, it is generally believed that a fully consistent theory also requires a quantum description

of geometry (though see [1] for an alternative viewpoint). Quantum gravity is also expected to

cure the singularities through which classical general relativity predicts its own incompleteness.

Finding a satisfactory quantum description of gravity is no easy feat. The perhaps natural

approach of applying quantum field theory techniques to a metric perturbation around a Minkowski

background leads to a non-renormalisable theory [2]. Multiple approaches to finding a quantum

formulation of gravity have been established [3, 4]; different approaches have vastly different starting

points and it is not necessarily clear how and if they connect to each other. It is often difficult to

carry out explicit calculations within quantum gravity to assess if and in which way a given theory

relates to general relativity in a suitable classical limit. A frequent strategy to circumvent this

issue and obtain first insights into the physical viability and implications of a specific approach is

its application to the cosmological setting, where the high degree of symmetry significantly reduces

the relevant number of degrees of freedom. Within general relativity, homogeneity and isotropy

of our cosmos are captured by the Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric; in

standard cosmology the universe is modelled as a (flat) FLRW spacetime with small inhomogeneous

perturbations. In addition to obtaining a description for the background metric, it is desirable to

include a description of cosmological perturbations within the quantum framework to make further

contact with general relativity and possibly even cosmological observations.

Here, we work within group field theory (GFT) [5, 6], a background-independent approach to

quantum gravity related to loop quantum gravity (LQG) [7–9] and spin foam models [10]. GFTs

first appeared in the form of a 3-dimensional quantum gravity model [11]; they have been studied

in the context of models related to LQG and spin foam models [6, 12–15] and developed into their

own research field. A GFT is a field theory defined on an abstract group manifold; hence GFT

does not presuppose a spacetime manifold, but spacetime is dynamically emergent from a large

number of GFT quanta, which should be understood as the building blocks of space. This picture is

sometimes illustrated with an analogy to fluid dynamics where a large collection of water molecules

(GFT quanta) leads to the emergence of a fluid (spacetime), which is characterised by different

attributes than the single molecules and described by different dynamical laws [16]. One is then

led to the idea of a macroscopic universe emerging from a “condensate” of GFT quanta [17–19],

described by a coherent many-body quantum state similar to those appearing in condensed matter

physics. Using this main idea, the application of GFT to effective FLRW geometries (modelled by

a simple coherent quantum state) shows a resolution of the Big Bang singularity, which is replaced

by a bounce that interpolates between a contracting and an expanding phase [20, 21]. Extensions

of this scenario can introduce additional interesting phenomenological features in the cosmological

evolution [22–24]. Phenomenologically interesting homogeneous cosmologies can be obtained from

a broad range of underlying GFT models. In order to further establish GFT as an approach to

quantum gravity, it is however imperative to study its implications beyond this rather restricted

setting of homogeneous cosmology. A first and natural extension is then to consider inhomogeneous

cosmological perturbations.
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A basic idea proposed in previous work on GFT cosmology is that massless scalar fields are

used to define “relational” coordinates. To describe homogeneous cosmology, a single matter field

is sufficient, whereas for a treatment of inhomogeneities one usually includes four matter fields that

can form a relational coordinate system. The concept of relational coordinates has been widely

investigated within general relativity as a means to define local gauge-invariant observables (see,

e.g., [25–28]). The idea is to construct an observable by considering the value of a quantity of

interest at the spacetime point defined by the value of another physical quantity, which can be a

diffeomorphism-invariant definition unlike the standard coordinate-dependent tensorial quantities.

In GFT, models with a single clock field have been applied to homogeneous cosmology since the

proposal of [20, 21]; models with four (or more) fields have been introduced more recently [29–35].

We will use the same construction of four massless scalar fields as relational coordinates. While

this is not a realistic model of cosmology, and more work would be needed to connect to scenarios

such as inflation, the initial goal of this line of research is to establish whether predictions of GFT

in this setting are compatible with those of general relativity with a similar matter content.

Information about the emergent spacetime in GFT can be extracted from expectation values of

relevant operators in suitably semiclassical states, where semiclassicality is a necessary criterion for

emergence of a classical spacetime in the multiparticle limit [17, 36, 37]. Previous GFT literature

predominantly makes use of the volume operator, based on the assumption that volume eigenvalues

of GFT quanta are given by the eigenvalues of the LQG volume operator [38, 39] for comparable

spin-network vertices. In this approach, the main observable used to compare with the classical

cosmology is the total volume as a function of a matter clock. In this paper, we deviate from

this conventional approach and make use of the proposal to reconstruct an effective metric from

GFT operators detailed in [40]. This proposal relies on the identification of Noether currents in

the classical theory with expectation values of corresponding GFT operators. As the spacetime

metric contains more information than just the volume of a spacetime region, this new approach

potentially gives access to a wider class of observables (including vector and tensor modes which

do not appear in the volume). The access to additional properties of spacetime is the main point

of attractiveness of developing the effective metric approach to extract semiclassical quantities.

In usual spacetime physics, the action of four massless scalar fields that span a relational co-

ordinate system exhibits a shift symmetry; the same symmetry is imposed when these fields are

introduced in GFT, leading to the above-mentioned Noether currents. Specifically, this symmetry

allows the definition of a conserved GFT energy-momentum tensor in analogy to the energy-

momentum tensor of standard field theories. The expectation value of the GFT energy-momentum

tensor is then identified with the classical Noether currents arising from the shift symmetry. In the

relational coordinate system the classical Noether currents are related to the components of the

metric, and the conservation law for these currents is the Klein–Gordon equation for the matter

fields. An effective metric can then be reconstructed from the expectation values of the operators

corresponding to the GFT energy-momentum tensor [40], where “effective” refers to the fact that

the metric is obtained from operator expectation values over semiclassical states and there is no

corresponding metric operator at the quantum level.

In [40] we explored the application of the effective metric proposal to a flat FLRW cosmology,

studying the homogeneous mode of the GFT energy-momentum tensor in a Fock coherent state

(defined in a way that is similar to previous GFT literature, e.g., [36, 37]). We showed that the

resulting metric leads to a bounce and can be consistently interpreted as a flat FLRW metric in
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the semiclassical regime away from the bounce. However, the effective Friedmann equation one

recovers at late times disagrees with general relativity coupled to four massless scalar fields, and

rather corresponds to the equation expected for only a single massless scalar field.

Here, we extend this analysis to inhomogeneous modes interpreted as cosmological scalar per-

turbations. Our work connects to previous studies of cosmological perturbations in GFT, which

also rely on a relational coordinate system spanned by four massless scalar fields [29, 31–35]. More

specifically, the previous works [33–35] study perturbations in a scenario in which the effective

GFT Friedmann equation also agrees with that of general relativity with a single scalar field.

Those works include a fifth matter field that is then assumed to be the dominant matter content of

the universe, which could justify the GFT Friedmann equation. In this paper, we work in a setting

with four fields all appearing on the same footing, and do not explicitly address the discrepancy

at background level. This issue is also mentioned in [40].

Previous investigations consider the volume operator and its perturbations, which restricts the

perturbative quantities that can be studied; this limitation is absent when using a GFT effective

metric. In our approach, all perturbative quantities (including gauge-invariant ones) can be re-

constructed from the effective metric; in this paper we limit our study to scalar perturbations but

analogous constructions for vector and tensor modes should be possible. We give general relations

between GFT operator expectation values and scalar metric perturbation variables that arise di-

rectly from the effective GFT metric proposal and hold for any choice of semiclassical GFT state.

We then find concrete expressions for scalar perturbation variables for the state used already in [40].

The perturbative dynamics of these variables agree neither with those of general relativity with

four scalar fields nor with those of general relativity with one scalar field, as might be suggested by

the background dynamics. In particular, the dominant squeezed GFT modes exhibit exponentially

growing behaviour, as one would expect from Euclidean rather than Lorentzian signature. This is

a more fundamental type of disagreement with the general relativistic dynamics than a choice of

matter content as in the case of the background dynamics. We hope that the analysis presented

can serve as a blueprint for related studies that might consider different state choices or amend-

ments to the underlying GFT model. For instance, one could compare with more sophisticated

constructions in the GFT literature that can lead to phenomenologically more acceptable results

for perturbations, such as [34, 35].

Our results open up an avenue to studying gauge-invariant quantities and more general pertur-

bation variables, surpassing the limitations of previous work restricted to the perturbed volume

element only. Extending the setup to give phenomenologically more realistic results then has the

potential to connect GFT to observables relevant to cosmological observations. Within the various

assumptions we have made, the GFT effective metric calculations do not reproduce perturbative

dynamics compatible with general relativity; therefore, either our various simplifying assumptions

(such as limiting to the free theory and the particular choice of state) are not all justified or the

effective metric construction or the particular class of GFT models is ruled out. The hypothetical

opposite result, a calculation showing agreement of GFT with general relativity after neglecting

GFT interactions, for the simplest coherent state choice, and for an arbitrary choice of (compact)

gauge group, should indeed be seen as highly implausible. Our work should be understood as a

first step in the challenging task of gaining further insights into the phenomenology of GFT.

Let us emphasise some conceptual differences between the approach taken here and that of

standard cosmological perturbation theory [41] or loop quantum cosmology (LQC) [42]. In these
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standard approaches, the background and perturbations are treated as separate entities. For

instance, in LQC perturbations can be included by quantising the background and perturbations

separately [43], such that the perturbations evolve on an effectively classical background with

LQC corrections, or by working in an effective framework and ensuring that the algebra of the

modified constraints is anomaly-free [44]. In contrast, our effective metric approach in GFT treats

the background and perturbations on the same footing as they simply correspond to different

wavenumbers. As a consequence, the perturbations are fully treated within GFT and not quantised

with different methods or on a pre-existing background. They are also both determined by a single

quantum state, with less freedom to set arbitrary initial conditions.

This paper is structured as follows. We first outline the main ideas of the GFT framework and

the specific formulation we utilise in this paper in sec. II. In sec. IIIA we review the main premise

of the effective GFT metric which is built on the idea of a conserved GFT energy-momentum

tensor as first introduced in [40]. We establish the relation between expectation values of the GFT

energy-momentum tensor components and the perturbed flat FLRW metric in sec. III B. Sec. IV is

dedicated to the analysis of a classical perturbed FLRW spacetime in a relational coordinate system

spanned by four massless scalar fields, which, while straightforward in principle, is not commonly

discussed in the literature. In sec. V we discuss our choice of state that reflects the required

symmetries of the cosmological setting and revise the effective background metric arising from the

homogeneous background mode, where it was shown in [40] that the recovered metric is flat and

gives a bouncing universe. In sec. VI we extend the past analysis to cosmological perturbations.

After general considerations, we include detailed calculations for squeezed and oscillating modes.

We conclude in sec. VII. Possible extensions to our setup are discussed in the appendix. New results

are contained in sec. III B, IVB, and VI; other sections briefly review the results of [40] in order to

make this paper as self-contained as possible.

II. ELEMENTARY ASPECTS OF GROUP FIELD THEORY

GFT is a background-independent approach to quantum gravity in which spacetime emerges

from the excitations of an abstract quantum field defined on a group manifold. The group manifold

is not thought of as spacetime but as a configuration space for discrete gravity and matter. We

direct the interested reader to [5, 6, 45] for reviews as we can only sketch the main ideas here.

A GFT model for quantum gravity in vacuum can be defined in terms of a group field ϕ(gi)

(here chosen to be real-valued) and an action S[ϕ]. The arguments of ϕ are n group elements gi
(i = 1, . . . , n) valued in a suitable gauge group, with n usually representing the expected spacetime

dimension. Schematically (see, e.g., [6]) we expand the partition function perturbatively as

Z =

∫

Dϕ e−S[ϕ] =
∑

Γ

λvΓ

sym[Γ]
A[Γ] , (1)

where Γ are Feynman graphs, sym[Γ] is a symmetry factor and A[Γ] a Feynman amplitude. Here we

are assuming a single interaction term in S[ϕ] with coupling λ, and vΓ is the number of interaction

vertices in Γ. For a suitably chosen action, A[Γ] represents a discrete quantum gravity path integral

or spin foam amplitude associated to the graph Γ, which is interpreted as a combinatorially defined

discrete spacetime. The boundary states of the graph correspond to (triangulations of) spatial

hypersurfaces. In the example of the Boulatov model [11], the Feynman graphs represent oriented
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6

three-dimensional simplicial complexes and A[Γ] would be the amplitude defining the Ponzano–

Regge model of three-dimensional quantum gravity [46]. In this case, we have a field ϕ(g1, g2, g3)

defined on SU(2)3, where SU(2) corresponds to the gauge group for gravity. In general, Z would

define a sum over all possible discrete spacetime histories weighted by path integral-like amplitudes.

Just as it would be the case for a more conventional quantum field theory, the type of kinematical

data associated to each Γ depends on the kinematical data chosen for the group field (in particular,

on the choice of gauge group), while the precise choice of interaction term(s) determines what types

of graphs Γ appear in the sum, and what amplitudes are associated to each Γ.

In the present context, we are interested in models for four-dimensional quantum gravity coupled

to four scalar matter fields. We will later use these matter fields to define a relational coordinate

system. In addition to four group arguments gi (i = 1, 2, 3, 4), which we will here choose to be

elements of SU(2), we therefore couple four scalar fields χA (A = 0, 1, 2, 3) to the group field

ϕ(gi, χ
A), which becomes a function ϕ : SU(2)4 ×R

4 → R. Such a field can be expanded in modes

associated to SU(2) representations,

ϕ(gi, χ
A) =

∑

J

ϕJ(χ
A)DJ(gi) , (2)

where DJ(gi) represent suitable combinations of Wigner D-matrices and J = (~j, ~m, ι) is a multi-

index representing SU(2) irreducible representations ~j = (j1, j2, j3, j4), the corresponding mag-

netic indices ~m with mi ∈ {−ji, −ji + 1 . . . , ji − 1, ji}, and intertwiners ι, which label the basis of

the subspace invariant under SU(2) transformations. Since the multi-index J will remain abstract

in the following, an equivalent construction would be possible for any model with compact gauge

group allowing for a similar mode expansion (for instance, if we chose U(1) the different J would

just be discrete Fourier modes on the circle). In this sense, our formalism is very general. One

might want to extend the construction to non-compact groups such as SL(2,C), which is used in

some Lorentzian four-dimensional models [47, 48] and could be seen as the natural gauge group in

that context, even though there are also four-dimensional Lorentzian models based on SU(2) (see,

e.g., [33] for a comparison). In the non-compact case, (2) needs to be replaced by a more compli-

cated expression involving integrals over continuous representation labels. We will later return to

the question of whether the spacetime signature is indeed encoded in a choice of GFT gauge group.

In general, the GFT action contains a quadratic part and higher order interactions nonlocal in

the group arguments, defined in a specific way to give Feynman graphs the desired combinatorial

structure to be interpreted as spacetime histories, as we have discussed. The quadratic part can

contain derivatives with respect to the group variables, which are needed to obtain renormalisable

models [49], as well as with respect to the scalar fields. Hence its structure is relatively similar

to that of standard quantum field theory, even though the interpretation of GFT is very different.

The kinetic term encodes the propagator of the theory, which can be interpreted as a gluing or

identification of lower-dimensional building blocks, here usually pictured as tetrahedra. In general

we can assume an action of the form1

S[ϕ] =

∫

d4χ L, L =
∑

J

(

1

2
K(0)

J ϕ2
J − 1

2
K(2)

J (∂AϕJ)
2

)

− V (ϕ) , (3)

1 As a technical subtlety, note that the modes ϕJ(χ
A) in (2) are not real-valued but subject to reality conditions. A

simple linear basis change leads to a set of real and independent modes [50], which are the ones appearing in (3).
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which specifically satisfies the shift symmetry χA → χA+ ǫA. Here, ∂A = ∂
∂χA denotes a derivative

with respect to scalar field arguments and K(0)
J and K(2)

J are mode-dependent constants. V (ϕ)

contains all higher-order terms and is often of a complicated nonlocal form; in the geometric

interpretation these terms are responsible for generating four-dimensional spacetime histories of

the desired combinatorial structure. In applications to cosmology, interactions are often neglected

since they are expected to be subdominant in the very early universe (see, e.g., [20, 21]), and we

will do the same in the following. The notation K(0)
J and K(2)

J is taken from [20, 21] where these are

thought of as expansion coefficients of a derivative expansion that could in principle also include

higher-order terms, which we assume are not present. Note that any additional terms in the action

would be required to satisfy the shift symmetry with respect to the scalar fields.

While GFT was originally formulated in terms of a functional integral (1), applications to

cosmology usually start from a canonical quantisation or more general Hilbert space structure, in

which the extraction of effective dynamical equations and study of semiclassical states are more

straightforward. This is somewhat similar to LQC which is derived from the canonical, not the

covariant approach to LQG. A review of different Hilbert space formalisms for GFT and their

foundations can be found in [51]; we will work in the “deparametrised” approach proposed in

[52], which is essentially a conventional canonical quantisation. In this setting, after a Legendre

transform of (3) and a Fourier decomposition with respect to the “spatial fields” χa with a = 1, 2, 3,

one finds that the Hamiltonian of the theory is2 [52, 53]

H =

∫

d3k

(2π)3

∑

J

K(2)
J

2

(

− 1

|K(2)
J |2

πJ,−k(χ
0)πJ,k(χ

0) + ω2
J,k ϕJ,−k(χ

0)ϕJ,k(χ
0)

)

, (4)

where πJ = −K(2)
J ∂0ϕJ is the canonical momentum and we defined ω2

J,k = m2
J + ~k2 with m2

J =

−K(0)
J

K(2)
J

. Note that m2
J and ω2

J,k can be negative, depending on the signs of K(0)
J and K(2)

J , which

depend on the choice of GFT model. Again, being as general as possible, we also include the case

m2
J < 0 for which ω2

J,k < 0 at least for small enough |~k|.
We proceed by promoting the Fourier modes of ϕJ and its conjugate momentum πJ to operators

satisfying equal-time commutation relations

[ϕJ,k(χ
0), πJ ′,k′(χ

0)] = i δJJ ′(2π)3δ(~k + ~k′) . (5)

We can then define convenient linear combinations AJ,k, A
†
J,k by

πJ,k(χ
0) = −iαJ,k(AJ,k −A†

J,−k) , ϕJ,k(χ
0) =

1

2αJ,k
(AJ,k +A†

J,−k) ; αJ,k =

√

|ωJ,k||K(2)
J |

2
, (6)

which satisfy

[AJ,k(χ
0), A†

J ′,k′(χ
0)] = δJJ ′(2π)3δ(~k − ~k′) , (7)

with all other commutators vanishing. Evaluating these operators at time zero defines a set of

time-independent creation and annihilation operators by aJ,k = AJ,k(0) and a†J,k = A†
J,k(0). We

2 As pointed out in [53], singling out a clock field, as is necessary to perform the Fourier transform, breaks the initial

rotational symmetry between the four fields.
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find two different types of modes, namely oscillating and squeezed modes, from the Hamiltonian

(4), depending on the sign of ω2
J,k. For modes with ω2

J,k < 0 the Hamiltonian is a standard harmonic

oscillator

HJ,k =− sgn(K(2)
J )

|ωJ,k|
2

(

aJ,−ka
†
J,−k + a†J,kaJ,k

)

, (8)

and the Heisenberg equations of motion ∂0AJ,k = −i [AJ,k, H] give

AJ,k = aJ,ke
i sgn(K(2))|ωJ,k|χ0

, A†
J,k = a†J,ke

−i sgn(K(2))|ωJ,k|χ0
. (9)

On the other hand, for modes with ω2
J,k > 0 we obtain a squeezing Hamiltonian

HJ,k = sgn(K(2)
J )

|ωJ,k|
2

(

aJ,kaJ,−k + a†J,ka
†
J,−k

)

(10)

and the time-dependent expressions for our basic operators are given by

AJ,k = aJ,k cosh
(

|ωJ,k|χ0
)

− i sgn(K(2))a†J,−k sinh
(

|ωJ,k|χ0
)

,

A†
J,k = a†J,k cosh

(

|ωJ,k|χ0
)

+ i sgn(K(2))aJ,−k sinh
(

|ωJ,k|χ0
)

. (11)

Knowledge of these solutions is sufficient to show that the expectation value of the number operator

A†
J,kAJ,k of squeezed modes satisfies a “Friedmann equation” which is asymptotically equivalent

to the one of general relativity with a single massless scalar field while resolving the classical

singularity, in the sense that only very special initial states can ever have vanishing particle number

[36, 54]. Interpreting GFT quanta in a fixed mode J as representing spin-network excitations of

LQG, a definition of the volume operator similar to the one of LQG would suggest that the total

volume is proportional to the number of quanta, and hence a similar Friedmann equation can be

obtained for the volume. In the following analysis we will use the effective metric approach [40] in

which the volume of the universe is a function of this effective metric rather than determined by

the number operator, so that the effective Friedmann equation can be different.

For a wide class of possible choices of coefficients K(0)
J and K(2)

J in the GFT action, including the

particularly well-motivated case of a Laplacian operator acting on all group arguments, a single J

mode will dominate at late times where the semiclassical limit can be related to general relativity

[55]. Because of this reason and for technical simplicity, we therefore restrict to the analysis of a

single Peter–Weyl mode with J = J0 as is common in cosmological GFT studies [33, 36]. If the

dominant mode is of squeezed type (as it is when squeezed modes are present at all), the emergence

of Friedmann dynamics compatible with general relativity is hence a very general result of GFT

cosmology. An extension of the analysis to multiple modes is straightforward in principle. Notice

again that either the single-mode truncation or a general multi-mode analysis would be possible

for many choices of gauge group other than SU(2), which makes these results even more general

and less sensitive to the details of the GFT model. The statement that such a wide range of

GFT models agrees with general relativity may appear “too good to be true” from a conceptual

point of view, but it only applies to homogeneous and isotropic flat cosmology. Classically, the

correct Friedmann equations can be obtained even from Newtonian dynamics [56], and hence the

agreement does not mean that all such models reduce to general relativity at low energies. This

strongly motivates going beyond purely homogeneous spacetimes and including inhomogeneities,
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9

where one would expect a possible agreement with general relativity to be much more sensitive to

the details of the GFT, as our later results will indeed indicate.

In the case of a non-compact gauge group (which we will not investigate here), restriction

to a single mode is not strictly possible for continuous representations, since these modes are not

normalisable. One could choose a sharply peaked Gaussian and obtain qualitatively similar results,

as suggested by [47].

Oscillating modes do not lead to an expanding background cosmology and are often not consid-

ered, but in a multi-mode analysis only a single squeezed mode is required to obtain an expanding

background. At the level of perturbations, oscillating modes might then become relevant, at least

for a certain time period and depending on initial conditions. Therefore we include them in our

later analysis.

III. EFFECTIVE GFT METRIC FOR A PERTURBED FLRW SPACETIME

In [40] we presented a new proposal for defining an effective spacetime metric in GFT, using

symmetries of the GFT action and their relation to symmetries of spacetime fields. We will briefly

review this construction in sec. IIIA, before considering its specific application to the scenario of an

FLRW metric with small inhomogeneities in sec. III B. The application to the FLRW background

was already presented in [40] and our focus is on extending the analysis to perturbations.

A. General construction

The construction of the effective metric relies on using four massless scalar fields as a coordinate

system. Such matter reference frames have long been considered in the quantum gravity literature

[57, 58] and were previously employed to study perturbations within GFT [29, 31, 33, 34]. While

some GFT studies [33, 34] include a fifth scalar field that is assumed to dominate the four reference

or coordinate fields, so that the matter content can often be approximated as just a single field,

we assume that the reference fields constitute the only matter content. Within classical general

relativity, our matter action reads

Sχ =

∫

d4x Lχ = −1

2

∫

d4x
∑

A

√−g gµν∂µχA∂νχ
A . (12)

Using these fields as coordinates means that we identify each χA with a spacetime coordinate xµ

by demanding that hypersurfaces of constant χA coincide with hypersurfaces where the respective

coordinate is constant. We then have ∂µχ
A = δAµ , where A = 0, 1, 2, 3 denotes a label of the fields

(and is not a spacetime index). As before we use a = 1, 2, 3 to denote the spatial fields and 0 for

the clock field. For such a relational coordinate system to be locally well-defined, the fields have

to satisfy a non-degeneracy condition with respect to any other well-defined coordinate system,3

det(∂µχ
A) 6= 0 . (13)

The relational coordinate system defines a special case of the harmonic gauge ✷xµ = 0 by virtue

of the Klein–Gordon equation ✷χA = 0 satisfied by each of the fields. While the harmonic gauge

3 In the case of only a single scalar field χ used as a clock, the equivalent condition is ∂0χ 6= 0: the clock field is not

allowed to turn around and evolve backwards.
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10

has a residual gauge freedom, fixing the relational coordinate system as we do here fixes the gauge

completely. Using an Arnowitt–Deser–Misner (ADM) decomposition of the metric, we obtain the

following relations between the canonical momenta of the scalar fields πA = ∂Lχ/∂(∂0χ
A) defined

from (12) and the lapse N and shift Na:

π0 =

√

|q|
N

, πa = −Na

√

|q|
N

= −Naπ0 . (14)

These expressions show that the lapse and shift are fully determined by the spatial metric qab
together with the scalar field momenta. This can be seen as an explicit gauge-fixing of the general

coordinate freedom of general relativity which would permit an arbitrary choice of N and Na.

The action (12) is invariant under constant shifts of each of the fields χA 7→ χA + ǫ (ǫ ∈ R),

which by virtue of Noether’s theorem implies the existence of a current jµ. There is a separate

current for each χA, which we can label as (jµ)A, satisfiying a conservation law

∂µ(j
µ)A = 0 , (jµ)A = −√−g gµν∂νχA . (15)

In the relational setup (with ∂µχ
A = δAµ ) these currents (jµ)A can be interpreted as a symmetric

matrix field jAB = (jB)A, directly related to the metric via

jAB = −√−g gAB . (16)

Hence, in a theory of general relativity coupled to four reference scalars, the spacetime metric can

be directly recovered from Noether currents associated to shift symmetries in the matter fields.

The GFT action (3) has an equivalent translational symmetry χA → χA + ǫ, here appearing

as a translational symmetry on the GFT configuration space. Again, this symmetry is associated

with a conserved Noether current, namely the GFT energy-momentum tensor TAB defined by

TAB = − ∂L
∂(∂Aϕ)

∂Bϕ+ δAB L =
∑

J

(

K(2)
J ∂AϕJ ∂BϕJ

)

+ δAB L . (17)

The components of TAB can be promoted to operators and satisfy the conservation law ∂AT
AB = 0,

both classically and quantum-mechanically, as shown in [40]. This agrees with the expected classical

conservation law ∂Aj
AB = 0 for spacetime Noether currents. The proposal of [40] is to identify the

conserved quantities that arise from the same symmetries in GFT with those of spacetime physics:

we view TAB as the GFT version of the classical current jAB. (We emphasise that this type of

identification holds only in the relational coordinate system.) Hence, TAB encodes the spacetime

metric in GFT through (16). The conservation law for TAB translates into the conservation law of

jAB, which is equivalent to the Klein–Gordon equation for the fields χA. We denote the quantum

version of the GFT energy-momentum tensor as T AB and for sufficiently semiclassical states (such

that an interpretation in terms of an effective macroscopic spacetime is justified) we then propose

the identification jAB = ξ 〈T AB〉, where ξ ∈ R, to obtain an effective spacetime metric. The

constant ξ, which is not fixed by the general argument based on conservation laws, can be chosen

to simplify some expressions and we will set ξ = sgn(K(2)). Note that the metric gAB is not

directly represented as an operator in GFT, but only emerges after taking expectation values. In

the following analysis, the role of a semiclassical state will be played by the usual Fock coherent

state or “condensate” used in GFT cosmology.
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11

The quantised GFT energy-momentum tensor T AB is a function of the annihilation and creation

operators Ak, A
†
k (where we have dropped the J label as we focus on a single J mode case in what

follows) and explicitly reads

: T 00
k : =

∫

d3γ

(2π)3
sgn(K(2))

4
√

|ωγ ||ωk−γ |

[

2β+k, γ : A†
−γAk−γ : +β−k, γ

(

: A†
−γA

†
γ−k : + : AγAk−γ :

)

]

,

: T 0b
k : =

∫

d3γ

(2π)3
1

2

√

|ωk−γ |
|ωγ |

γb

(

: A†
γ−kAγ : − : A†

−γAk−γ : − : Ak−γAγ : + : A†
γ−kA

†
−γ :

)

,

: T a 6=b
k : =

∫

d3γ

(2π)3
sgn(K(2))

2
√

|ωγ ||ωk−γ |
γa (γb − kb)

(

: A†
−γAk−γ : + : A†

γ−kAγ :

+ : A†
−γA

†
γ−k : + : AγAk−γ :

)

,

: T aa
k : =

∫

d3γ

(2π)3
sgn(K(2))

4
√

|ωγ ||ωk−γ |

[

2(β−k,γ − 2γa(ka − γa)) : A
†
−γAk−γ :

+ (β+k,γ − 2γa(ka − γa))
(

: A†
−γA

†
γ−k : + : AγAk−γ :

)

]

,

(18)

where β±k,γ = −m2 + ~γ · (~k − ~γ) ± |ωγ ||ωk−γ |. In these expressions we employ a normal-ordering

procedure at the level of the time-independent operators ak, a
†
k, such that vacuum expectation

values are finite. We drop the normal ordering symbol for the GFT energy-momentum tensor

operators in the following, and it should be understood that we always use the normal ordered

version of the operators, such that 〈T AB
k 〉 stands for 〈: T AB

k :〉.
In summary, the idea is to identify the expectation values of components of the quantum

GFT energy-momentum tensor with the classically conserved current, i.e., we propose that we

can identify 〈T AB〉 = sgn(K(2))jAB for suitable semiclassical states. One can then reconstruct an

effective metric from (16). In the following we apply this to a perturbed flat FLRW spacetime.

B. Application to an FLRW metric with small inhomogeneities

While the proposal of an effective spacetime metric in GFT is completely general, in this paper

we want to specialise to the case most relevant in cosmology, namely a perturbed FLRW metric.

This means that we need to calculate the components of the symmetric tensor jAB (16) resulting

from the classically conserved currents for a perturbed FLRW metric, remembering that these are

defined only in the relational coordinate system spanned by four massless scalar fields. Making

the identification of these classical currents with GFT expectation values 〈T AB〉 and inverting the

expressions then gives us expressions for metric quantities in terms of operator expectation values

in GFT. Since this identification is in a sense a definition of a spacetime metric, in this part we do

not require any knowledge of the specific form of T AB or any choice of state and the expressions

below are of a kinematical nature. The choice of state and the choice of GFT model will then

later determine whether our proposal is sensible, considering also the resulting effective equations

of motion for the perturbation variables (see sec. VI for the analysis for a Fock coherent state). We

should be able to show that our perturbations of FLRW are indeed small in a well-defined sense,

and they should satisfy equations related to classical dynamics of perturbations in some form.
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Using standard conventions of cosmology [41], the general perturbed FLRW metric reads (here

and below i, j = 1, 2, 3 denote spatial indices)

ds2 =−N(t)2(1 + 2Φ̃(t, ~x))dt2 + 2N(t)a(t)
(

∂iB(t, ~x)−BV
i (t, ~x)

)

dt dxi

+ a(t)2
(

(1− 2ψ(t, ~x))δij + 2∂i∂jE(t, ~x)

−
(

∂iE
V
j (t, ~x) + ∂jE

V
i (t, ~x)

)

+ 2ET
ij(t, ~x)

)

dxidxj ,

(19)

where N denotes the background lapse, a the scale factor, and we have carried out a decomposition

of metric perturbations into scalar (ψ , Φ̃, E, B), vector (BV
i , E

V
i ) and tensor (ET

ij) components.

The vector components have vanishing divergence and the tensor component is transverse and

traceless:

δij∂jB
V
i = 0, δij∂jE

V
i = 0, δik∂kE

T
ij = 0, δijET

ij = 0 . (20)

For the metric (19) and the matter action for four massless scalar fields (12), we can then obtain

the classically conserved currents in the relational coordinate system, given by (16)4, as

j00 =
a3

N

(

1− Φ̃− 3ψ +∇2E
)

, j0a = a2(BV
a − ∂aB) ,

ja 6=b = aN
(

2∂a∂bE − ∂aE
V
b − ∂bE

V
a + 2ET

ab

)

,

jaa =− aN
(

1 + Φ̃− ψ +∇2E − 2∂2aE + 2∂aE
V
a − 2ET

aa

)

(no sum over a).

(21)

We have left the lapse function N general, but it should be understood that the identification of

the jAB components with the GFT energy-momentum tensor is only possible in the coordinate

system spanned by the four scalar fields with N = a3/π0 and Na = −πa/π0 from (14), where π0
and πa are the momenta of the clock and rod fields, respectively. For scalar perturbations the

momenta of the spatial fields are given by πa = −a2∂aB.

The conserved current (21) for a flat FLRW universe (i.e., taking into account homogeneous

background quantities only) thus takes the form

jAB =

(

π0 0

0 − a4

π0
δab

)

, (22)

where we recall that π0 > 0. Notice that the signs of the components are fixed by the Lorentzian

signature of (19); in the case of a Euclidean signature, all entries would be positive.

The T AB operators constructed in (18) are defined in terms of Fourier modes of the spatial fields

and we therefore relate them to the Fourier modes of jAB. For any classically perturbed quantity

we have f(t, ~x) = f̄(t) + δf(t, ~x). The background quantity is given by f̄(t) = 1
V0

∫

d3x f(t, ~x) =

fk=0(t), where V0 is the coordinate volume of the universe or of a patch of the universe (“fiducial

cell”) used to define it. Hence, the ~k = 0 mode determines the homogeneous part, so that we

have δfk=0(t) = 0. By (22), the conjugate momentum of the clock field and scale factor are then

determined by the ~k = 0 mode of the diagonal components of 〈T AB
0 〉:

π0 =sgn(K(2))〈T 00
0 〉 , a4 = −〈T 00

0 〉〈T aa
0 〉 . (23)

4 In app.A 2, we will generalise this to k-essence models for the scalar fields, which affects the form of the currents.
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If the off-diagonal components of 〈T AB〉 vanish and all spatial diagonal components 〈T aa
0 〉 are

identical, the effective metric can consistently be interpreted as flat FLRW. We will find this to be

the case for the state we consider below.

The non-zero k-modes correspond to metric perturbations. In general, the 〈T AB
k 〉 can include

scalar, vector, and tensor modes according to the decomposition in (21). For our choice of state

(see (46) below) we will see that the operator expectation values can consistently be interpreted as

containing only scalar perturbations and we hence neglect vector and tensor perturbations in the

expressions that follow. A more complete analysis that reveals which types of state choices can

give rise also to vector and tensor perturbations is left for future work. (In particular, it would

be of significant interest to include tensor modes and compare these with the linearised form of

general relativity or its modifications.)

Assuming only scalar perturbations, the identification jAB
k = sgn(K(2))〈T AB

k 〉 together with

(21) written in Fourier space leads to

sgn(K(2))〈T 00
k 6=0〉 =− a3

N
(Φ̃ + 3ψ + k2E), sgn(K(2))〈T 0a

k 6=0〉 = −ia2kaB,

sgn(K(2))〈T aa
k 6=0〉 = aN

(

−Φ̃ + ψ + k2E − 2k2aE
)

(no sum over a) ,

sgn(K(2))〈T a 6=b
k 6=0 〉 =− 2aNkakbE ,

(24)

and therefore 1
3sgn(K(2))tr〈T aa

k 6=0〉 = aN
(

−Φ̃ + ψ + k2

3 E
)

. (Here and in the following tr represents

a trace over the a index, i.e., tr〈T aa
k 6=0〉 = δab〈T ab

k 6=0〉.) Inverting the above gives the following

expressions for effective scalar perturbations (we choose a, b so that ka 6= 0, kb 6= 0):5

sgn(K(2)) Φ̃ =−
〈T 00

k 6=0〉N
4a3

−
tr〈T aa

k 6=0〉
4aN

, sgn(K(2))E = − 1

2aN

〈T a 6=b
k 6=0 〉
kakb

,

sgn(K(2))ψ =−
〈T 00

k 6=0〉N
4a3

+
tr〈T aa

k 6=0〉
12aN

+
k2

kakb

1

6aN
〈T a 6=b

k 6=0 〉 , sgn(K(2))B =
i

a2
〈T 0a

k 6=0〉
ka

.

(25)

These relations are independent of the specific GFT and rely only on the identification of expecta-

tion values of the GFT energy-momentum tensor 〈T AB〉 with components of a perturbed FLRW

metric in a relational coordinate system. In particular, they do not depend on a specific choice

of GFT state, assuming a state that only contains scalar perturbations.6 By making a partic-

ular choice of state and computing the corresponding effective metric, one can check explicitly

whether the state admits an interpretation as a slightly inhomogeneous universe, by verifying that

the background quantities represent an FLRW universe and the non-zero k modes represent small

perturbations. The choice of state detailed in sec. V and used already in [40] should be understood

as a naive first guess.

This illustrates the nature of the effective GFT metric proposal: in itself, for any suitably semi-

classical state an effective metric can be reconstructed; the task is to interpret its form physically.

In sec. V and sec. VI we will compare the effective metric to a perturbed flat FLRW metric, which

reflects our belief that our state describes said metric in the semiclassical limit. How to interpret

a general metric without assuming a classical counterpart from the beginning is less clear.

5 There is a consistency condition on E, which could also be obtained from

E =
sgn(K(2))

2aN(k2
b − k2

a)
(〈T aa

k 6=0〉 − 〈T bb
k 6=0〉) , a 6= b ,

and the resulting expression might differ from the one obtained in (25). For the state discussed in sec. V, the two

expressions agree, see (57) for explicit expressions for squeezed modes and (70) for oscillating modes.
6 This assumption means in particular that all six off-diagonal components of 〈T AB

k 〉 can be written in terms of two

scalar functions, which is again a consistency check for the proposal.
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IV. CLASSICAL ANALYSIS

Following the philosophy of constructing an effective metric in GFT as described above, defining

a suitable state gives us explicit expressions for metric perturbations, subject to equations of motion

derived from the GFT dynamics. In order to be able to compare the resulting equations to our

expectations from classical cosmology, in this section we obtain the dynamical equations for classical

cosmological perturbations in a relational coordinate system spanned by four massless scalar fields,

as well as for a single massless scalar field that serves as a clock. We include the details of the

general relativistic system for ease of reference, and we will compare the dynamical equations

obtained within GFT to the expressions below in sec. VI.

In classical spacetime physics, the energy-momentum tensor of four massless scalar fields (de-

fined by an action (12)) is

Tµ
ν =

∑

A

[

gµα∂αχ
A∂νχ

A − 1

2
δµν (g

αβ∂αχ
A∂βχ

A)

]

. (26)

Let us emphasise that his object has nothing to do with the GFT energy-momentum tensor (17),

which is an abstract field-theoretic quantity not defined on any spacetime. In the gauge where the

scalar fields are used as coordinates ∂µχ
A = δAµ we find

Tµ
ν =

∑

A

[

gµAδAν − 1

2
δµν g

AA

]

. (27)

While originating from a different motivation, models which include three massless scalar fields

with homogeneous gradients have been investigated within models of solid inflation [59], including

a study of perturbations and differences to more standard cases considered within cosmology.

A. Background

At the background level of the perturbed FLRWmetric (19), we obtain the following expressions

for the energy density and pressure (no sum over i in the second expression):

−T 0
0 = ρ =

1

2

(

1

N2
+

3

a2

)

=
π20
2a6

+
3

2a2
, T i

i = P =
1

2

(

1

N2
− 1

a2

)

=
π20
2a6

− 1

2a2
. (28)

The contribution of the spatial coordinate fields, coming from their nonvanishing gradient energy,

appears as an additional term that would be equivalent to negative spatial curvature (P = −1
3ρ).

7

For certain initial conditions where
π2
0

a4
≫ 1, the contribution of the spatial fields to the energy

density can become negligibly small for a certain period of time, effectively recovering the standard

cosmological background scenario with a single massless scalar field. This limit can be achieved

for sufficiently early times, depending on the value of π0, but at late times the gradient energy

will always dominate. In general, we have an equation of state parameter w = P/ρ =
1−a4/π2

0

1+3a4/π2
0
∈

(−1
3 , 1), and similarly for the sound speed c2s = P ′/ρ′ = 1−a4/(3π2

0)

1+a4/π2
0

∈ (−1
3 , 1).

7 These background terms agree with the simplest solid inflation model where F = −X/2 in the construction of [59].
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The resulting first and second Friedmann equations read (with κ = 8πG)

H2 =

(

a′

a

)2

=
κ

6

(

1 + 3
a4

π20

)

,
a′′

a
=
κ

6

(

1 + 9
a4

π20

)

, (29)

where the terms proportional to a4

π2
0
arise due to the spatial fields and would not appear in the case

of a single (clock) scalar field. An alternative way of writing the second Friedmann equation is

H ′ = κ a4

π2
0
. Again it is clear that the contributions from gradient energy will always dominate at

late times; the solutions for a will actually diverge as |χ0 − χf |−1/2 at some finite value χ0 = χf .

B. Perturbations

In the following, we give the results for the perturbative analysis for the gauge-fixed system

with four massless scalar fields. We are interested in the dynamics of perturbations of a system

with four fields to compare with the GFT equations; a more detailed classical analysis of the

general-relativistic system is not the focus of the current work.

The harmonic gauge conditions ✷xµ = 0 for our choice of lapse N = a3/π0 read (these equations

agree with the ones given in [33])

a2∇2B + π0(Φ̃ + 3ψ −∇2E)′ =0 ,

~∇
[

−π0(2HB +B′) + a2(−Φ̃ + ψ +∇2E)
]

=0 .
(30)

These can be used to eliminate ∇2B for example, and combined to give

π20(−Φ̃− 3ψ +∇2E)′′ = a4∇2(−Φ̃ + ψ +∇2E) . (31)

The components of the perturbed Einstein tensor δGµ
ν for our lapse choice are given by

δG0
0 =

6π20
a6

H
(

HΦ̃ + ψ′
)

+
2π0
a4

H∇2B − 2

a2
∇2ψ − 2π20

a6
H∇2E′ , (32)

δG0
i = − 2π20

a6
∂i

(

HΦ̃ + ψ′
)

, (33)

δGi
i =

2π20
a6
(

2H ′ − 3H2
)

Φ̃ +
2π20
a6

HΦ̃′ +
2π20
a6

ψ′′

+ (∇2 − ∂2i )

(

π0
a4
(

2HB +B′)+
1

a2
(Φ̃− ψ)− π20

a6
E′′
)

,

(34)

δGi
6=j = ∂i∂j

(

−π0
a4
(

2HB +B′)− 1

a2
(Φ̃− ψ) +

π20
a6
E′′
)

. (35)

Our choice of coordinate system naturally limits us to the harmonic gauge, in fact, it completely

fixes the gauge and eliminates the residual gauge freedom. In particular, there are no perturbations

in the scalar fields in the relational coordinate system where ∂µχ
A = δAµ . For the perturbed energy-

momentum tensor for four massless scalar fields in the relational coordinate system we find

δT 0
0 =

π20
a6

Φ̃− 1

a2
(3ψ −∇2E) , δT 0

i =
π0
a4
∂iB = δT i

0 ,

δT i
6=j =− 2

a2
∂i∂jE , δT i

i = −π
2
0

a6
Φ̃ +

1

a2
(

−ψ +
(

∇2 − 2∂2i
)

E
)

.

(36)
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Note that, unlike in the single field case (42), δT 0
i 6= 0 due to the sum over spatial fields in (27).

From the perturbed Einstein equations δGµ
ν = κδTµ

ν and the harmonic gauge conditions (30) one

can derive equations of motion for all metric perturbation variables. First of all, we have

0 = Gi
6=j − κδT i

6=j = ∂i∂j

(

−π0
a4
(

2HB +B′)− 1

a2
(Φ̃− ψ) +

π20
a6
E′′ +

2κ

a2
E

)

= ∂i∂j

(

− 1

a2
∇2E +

π20
a6
E′′ +

2κ

a2
E

) (37)

and hence

E′′ − a4

π20
∇2E + 2κ

a4

π20
E = 0 . (38)

Then, from δG0
0− δGi

i = κδT 0
0 −κδT i

i (with sum over i), elimination of ∇2B from the harmonic

gauge condition and use of the background equations (29), we have

Φ̃′′ − 4HΦ̃′ − a4

π20
∇2Φ̃ = 0 . (39)

Furthermore we can obtain ψ and B from the (0, 0) and (0, i) components of the Einstein equations:

−2∇2ψ + 3κψ = −3κΦ̃ + 2
π20
a4
HΦ̃′ + κ∇2E , −2π0

a2

(

HΦ̃ + ψ′
)

= κB , (40)

again after eliminating ∇2B and using the background equations to replace H2.

Starting with (31) and using (38), (39) and δG0
0 = κδT 0

0 , we can also obtain

ψ′′ − a4

π20
∇2ψ + 2κ

a4

π20
(ψ + Φ̃) = 0 , (41)

which is almost an equation for ψ alone.

In the following we will also want to compare with the corresponding equations for the case

of a single massless scalar field χ used as a clock, ∂µχ = δ0µ. In this case, the perturbed energy-

momentum tensor is

δT 0
0 =

π20
a6

Φ̃ , δT 0
i = 0, δT i

0 =
π0
a4
∂iB , δT i

6=j = 0 , δT i
i = −π

2
0

a6
Φ̃ , (42)

and we find the following equations of motion for the perturbations:

E′′ − a4

π20
∇2E = 0 , Φ̃′′ − 4HΦ̃′ − a4

π20
∇2Φ̃ = 0 , ψ′′ − a4

π20
∇2ψ = 0 . (43)

The ψ equation follows from (31) (which which is a gauge condition and therefore holds indepen-

dently of the matter content) in combination with the equations for E and Φ, and the (0, 0) and

(0, i) parts of the Einstein equations with (42).

In this case of a single field, where the background solution is a = a0 exp(Hχ), one can obtain

the explicit solution in Fourier space

E(χ) = c1(k)J0

(

a20
2H|π0|

|k|e2Hχ

)

+ c2(k)Y0

(

a20
2H|π0|

|k|e2Hχ

)

, (44)
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where J0 and Y0 are Bessel functions of the first and second kind, respectively, and c1(k) and c2(k)

are initial condition parameters. These solutions have also been derived in [33]. These modes

oscillate rapidly with growing χ while their amplitude falls off as e−Hχ, or as 1/a.

For completeness, we also report the form of two gauge-invariant variables commonly used in the

literature, namely the curvature perturbation on equal density hypersurfaces ζ and the comoving

curvature perturbation R. The latter satisfies ∂iR = ∂iψ +HδT 0
i /(ρ + P ) and they take on the

following form in the relational coordinate system:8

−ζ := ψ +
H

ρ′
δρ = ψ +

1

3

π2
0

a4
Φ̃− (3ψ −∇2E)

1 +
π2
0

a4

, R = ψ +
π0
a2

HB

1 +
π2
0

a4

, (45)

where δρ = −δT 0
0 is the perturbed energy density.

As for the background, the above reduces to the single field case in the limit
π2
0

a4
≫ 1. In

particular, in this limit we find −ζ → ψ + Φ̃
3 and R → ψ. We do not use these expressions further

in this paper given that the dynamics of perturbations will be found to disagree with general

relativity, but in future work one can use the effective scalar perturbations obtained as described

in sec. VI to study gauge-invariant quantities from GFT explicitly, which was not possible prior to

the proposal of an effective GFT metric.

V. EMERGENT FLRW UNIVERSE FROM A COHERENT STATE

To obtain explicit expressions for the operator expectation values, enabling us to concretely

reconstruct an FLRW metric as well as its perturbations from the identifications (23) and (24), we

have to make a choice of state. We use the same state as in [40], which was chosen based on the

condition of semiclassicality, such that the expectation values 〈T AB〉 can indeed be related to an

effective metric, as well as the requirement that it must incorporate properties of the cosmological

spacetime. Fock coherent states satisfy the requirement of relatively small uncertainty in operator

expectation values throughout the evolution [36] (see also [37] for a more in-depth analysis of a

broader class of semiclassical GFT states). We work with a Fock coherent state |σ〉 which is an

eigenstate of the (time-independent) annihilation operator aJ,k |σ〉 = σJ(~k) |σ〉:

|σ〉 = e−||σ||2/2 exp

(

∑

J

∫

d3k

(2π)3
σJ(~k)a

†
J,k

)

|0〉 , (46)

where |0〉 is the GFT Fock vacuum and ||σ||2 =
∑

J

∫

d3k
(2π)3

|σJ(~k)|2. To reflect the homogeneity of

the FLRW metric in the quantum state, we choose a sharply peaked Gaussian for σ(~k),

σJ(~k) = δJ,J0
A+ iB
cσ

e−
(~k−~k0)

2

2s2 , (47)

where A, B ∈ R, s determines the peakedness of the state, and we set the homogeneous mode as the

initially dominantly excited Fourier mode, i.e., ~k0 = 0. The normalisation factor cσ =
(

s
2
√
π

)3/2

is fixed for convenience regarding later calculations. The state reflects our restriction to a single

8 Note that the use of the symbols ζ and R is not consistent across the literature. We use the same convention as,

e.g., [60, 61], but the opposite of [62].
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Peter–Weyl mode; in the more general case of multiple modes, the initial conditions, namely A, B
and s, could be J−dependent. While the Gaussian is strongly peaked on the background mode,

it has a finite width, such that inhomogeneous modes with ~k 6= 0 will always be excited. A

strictly homogeneous state is reached in the limit of s → 0, corresponding to an infinitely peaked

state, which would introduce divergences that are avoided for 0 < s≪ 1. In standard cosmological

approaches, one treats the perturbations and the background independently, where the background

is either classical or a quantum state for a minisuperspace model, and the state for perturbations

is defined separately. This is conceptually different to our proposed state, which does not allow

to excite solely the homogeneous background. Since we have chosen σ(~k) to be sharply peaked

on the background mode ~k = 0, modes with low |~k| will have the dominant contribution to the

expectation value of the energy-momentum tensor (18) in addition to the background mode.9

The effective FLRW metric resulting from the homogeneous mode ~k = 0 was discussed in detail

in [40]; here we include only a brief recap of these results. Inhomogeneous modes are discussed in

detail in sec. VI.

From the identifications sgn(K(2))〈T AB
k=0〉 = jAB

k=0 the explicit form of the effective FLRW metric

follows from (22). For our choice of state (46), convolutions appearing in the operator expressions

(18) can be simplified with the saddle-point approximation (which we will also use to calculate

expressions for the ~k 6= 0 modes)
∫

d3x e−
(~x−~µ)2

s2 g(~x) ≈ g(~µ)

∫

d3x e−
(~x−~µ)2

s2 = g(~µ)(
√
πs)3 . (48)

This approximation holds for sharply peaked Gaussians such that g(~x) can be considered approx-

imately constant in the region |~x− ~µ| ≤ s and is applicable for our state choice due to σ(~k) being

highly peaked. As investigated in [40] using such an approximation naturally limits the time span

for which our analytic expressions are sufficiently accurate.

The dynamics of T AB depend on the type of modes we are considering – squeezed (11) or

oscillating (9). As we are interested in recovering an expanding universe, our focus lies on squeezed

modes, which have a growing number of quanta over time. We also report the contribution to an

effective metric from oscillating modes for completeness.

Through the identification (22) the signs of the components of the conserved current are directly

related to the metric signature: all entries of the conserved current will either have the same sign

(Euclidean case) or the spatial diagonal will have the opposite sign of the j00 entry (Lorentzian

case). The initial conditions A, B in (47) determine the signature of the effective metric we

reconstruct; the Lorentzian case is found for B2 > A2, whereas B2 < A2 results in a Euclidean

metric.10 Here we are interested in the Lorentzian case and therefore restrict ourselves to initial

conditions with B2 > A2. In connection to earlier discussions, we can note that the effective metric

signature is determined by initial conditions in the state rather than any particular features of the

underlying GFT model, such as a choice of gauge group. A similar dependence on initial conditions

rather than definitions of the GFT model was observed in [33].

Comparison with the conserved current for the FLRW case as given in (23) then gives the

following identifications for the momentum of the clock field and the scale factor in the case of

9 For squeezed modes, this statement no longer holds for (very) large values of |χ0|, as large |~k| modes have a larger

growth rate ωk.
10 The special case of B2 = A2 corresponds to vanishing momentum of the clock field and is therefore excluded.
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squeezed modes m2
J0

= m2 > 0 (the expectation values 〈T AB
0 〉 follow from the ~k → 0 limit of our

later more general expression (57))

π0 =sgn(K(2))〈T 00
0 〉 = |m|(B2 −A2),

a4 =− sgn(K(2))π0〈T aa
0 〉 = m2(B2 −A2)

(

(A2 + B2) cosh(2|m|χ0)− 2sgn(K(2))AB sinh(2|m|χ0)
)

=
m2

2
(B2 −A2)

(

(A− sgn(K(2))B)2e2|m|χ0
+ (A+ sgn(K(2))B)2e−2|m|χ0

)

.

(49)

Importantly, the off-diagonal components 〈T 0a
0 〉 and 〈T a 6=b

0 〉 vanish exactly due to the antisymmetry

of the integrals, giving a spatially flat metric.

From the above we obtain the following effective Friedmann equation:

H2 =

(

a′

a

)2

=
1

4
m2

(

1− 4(A2 − B2)2

((A− sgn(K(2))B)2e2mχ0 + (A+ sgn(K(2))B)2e−2mχ0)2

)

=
1

4
m2

(

1− π40
a8

)

−→
late times

1

4
m2.

(50)

In addition to a constant Hubble rate at late times, the effective metric gives a bouncing universe,

with the bounce occurring at a4 = π20, or equivalently, 〈T aa
0 〉2 = 〈T 00

0 〉2. The Ricci scalar at the

bounce reads Rbounce = 6m2

π0
, thus resolving the singularity of the classical scenario. Singularity

resolution through a bounce is a common feature of GFT cosmology models with a single scalar

matter field (see, e.g., [20, 21, 36, 54]), but in these past works the Hubble rate is derived from the

time evolution of a total volume proportional to the number operator, which is different from our

proposal using the effective GFT metric. Recovering a constant Hubble rate in the late-time limit

is in agreement with all the Friedmann equations previously obtained for GFT models as well as

with the general relativistic Friedmann equation for a single massless scalar field if we fix m2 = 2
3κ.

However, the Friedmann equation in general relativity with four massless scalar fields in (29) is

different, since the gradients of the spatial fields contribute. Hence, there is a mismatch with what

one might expect from the underlying cosmological model already at the background level. This

mismatch is discussed already in the introduction of this paper as well as in [40], which focused

on the background dynamics. Another difference with past GFT work (and other scenarios such

as loop quantum cosmology) is that the bounce is not associated to a maximal value of the energy

density in the scalar field, but can occur at either high or low curvatures. Indeed, the Ricci scalar

at the bounce depends on the initial condition set by π0.

In the case of oscillating modes, σ(~k) needs to be especially peaked, so that contributions from

squeezing modes can be neglected in the integral and only the region near ~γ = 0 (which consists

entirely of oscillating modes) contributes. We then obtain

π0 = |m|(A2 + B2) ,

a4 =− |m|2(A2 + B2)
(

(A2 − B2) cos(2|m|χ0)− 2 sgn(K(2))AB sin(2|m|χ0)
)

.
(51)

The sign of π0 is independent of the initial conditions. The sign of a4 is not fixed and fluctuates

throughout the evolution, such that a single oscillating mode would lead to a metric with variable

signature; see the discussion above (49). Phenomenologically, oscillating modes can introduce a
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possible modulation to the evolution of the background scale factor if they appear in conjunction

with at least one squeezed mode.

This concludes the discussion of the cosmological background metric, as reconstructed from the
~k = 0 mode of the GFT energy-momentum tensor for a suitable state. For a squeezed Peter–Weyl

mode, we recover an effective expression for the scale factor that leads to an effective Friedmann

equation with a bounce. In the following we will extend the analysis to inhomogeneous modes.

VI. COSMOLOGICAL PERTURBATIONS

We now focus on the ~k 6= 0 modes of the GFT energy-momentum tensor T AB (18) for the state

(47) introduced in sec. V. Recall that even though the state is highly peaked on the homogeneous

mode, inhomogeneous modes will always be excited. In the following we examine the dynamics that

arise for cosmological perturbations if we identify these inhomogeneous modes with components of

the perturbed FLRW metric (19). Perhaps unsurprisingly given that we are working in a simple

approximation to the full GFT and with the simplest possible state, we find a mismatch with

the dynamics of general relativity. Still, the following can be seen as a guidance to construct

perturbative quantities and may give hints which adjustments could lead to an agreement with

general relativity at late times.

All components of the GFT energy-momentum tensor (18) depend on the same operator com-

binations; in particular, each term is a product of time-dependent ladder operators Ak and A†
k.

From the state choice (46) with (47) and the linear dependence of Ak , A
†
k on the time-independent

creation and annihilation operators (see (9) and (11)) we find that each of the terms in the ex-

pectation values for 〈T AB
k 〉 will be proportional to e−

~γ2

2s2 e−
(~k−~γ)2

2s2 . Similarly to the background

dynamics, we can then employ the saddle-point approximation (48) to obtain explicit dynamics

for the 〈T AB〉 components. For this, we rewrite the exponentials appearing in the integrals as

e−
~k2−2~k·~γ+2~γ2

2s2 = e−
1
s2

(~γ−~k
2
)2e−

~k2

4s2 , (52)

so that the saddle-point approximation implies ~γ ≈ ~k
2 . This approximation, which requires s≪ 1,

will not hold for all times or for large values of k. Note furthermore that for our choice of σ(~k)

(47) we have Ak |σ〉 = A−k |σ〉 (and similarly for A†
k) for oscillating as well as squeezed modes, due

to ωk = ω−k. For squeezed modes the operator expectation values (18) then simplify to

〈T 00
k 〉 ≈ sgn(K(2))

4|ωk/2|
c2σ

[

k2〈: A†
k/2Ak/2 :〉 − 2m2

(

〈: A†
k/2

2 :〉+ 〈: Ak/2
2 :〉
)

]

,

〈T 0b
k 〉 ≈ kb

4
c2σ

[

〈: A†
k/2

2 :〉 − 〈: Ak/2
2 :〉
]

,

〈T a 6=b
k 〉 ≈ − sgn(K(2))

|ωk/2|
kakb
8
c2σ

[

2〈: A†
k/2Ak/2 :〉+ 〈: A†

k/2
2 :〉+ 〈: Ak/2

2 :〉
]

,

〈T aa
k 〉 ≈ sgn(K(2))

4|ωk/2|
c2σ

[

− (4m2 + k2a)〈: A†
k/2Ak/2 :〉+

k2 − k2a
2

(

〈: A†
k/2

2 :〉+ 〈: Ak/2
2 :〉
)

]

,

(53)

where the factor c2σ enters from the integral over the exponential in the saddle-point approximation

(48) and is cancelled by our choice of state (47) in later expressions. We use equality signs in the
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expressions that follow; it should be understood that statements below rely on the applicability

and sufficient accuracy of the saddle-point approximation.

For oscillating modes we have different expressions of β± in (18) and therefore the following

components differ from the squeezed case:

〈T 00
k 〉 ≈ sgn(K(2))

4|ωk/2|
c2σ

[

4|m2|〈: A†
k/2Ak/2 :〉+

k2

2

(

〈: A†
k/2

2 :〉+ 〈: Ak/2
2 :〉
)

]

,

〈T aa
k 〉 ≈ sgn(K(2))

4|ωk/2|
c2σ

[

(

k2 − k2a
)

〈: A†
k/2Ak/2 :〉+

(

2|m2| − k2a
2

)

(

〈: A†
k/2

2 :〉+ 〈: Ak/2
2 :〉
)

]

.

(54)

As detailed in the previous section, recovering a Lorentzian or Euclidean FLRW background

metric with a single Peter–Weyl mode is only possible in the case of a squeezed mode. Since there

is no split between background and perturbations in our formalism, perturbations are then also

of squeezing type in the single-mode case, J = J0. In the more general case, where a minimum

of two J modes are excited, one of them can be of the oscillating type, as this will not alter the

background dynamics at late times. For completeness we then also consider the perturbations

arising from oscillating modes.

From the relation of perturbation variables to operator expectation values as given in (25) we

can establish equations of motion for effective perturbations arising from the GFT effective metric

in terms of the dynamics of operator expectation values independent of the explicit state choice.

From the identifications in (25) we obtain the following equations of motion for E and B, as well

as for the combination Φ̃− ψ, which gives a particularly convenient form,

B′′ + 4HB′ + 2
(

H ′ + 2H2
)

B = i sgn(K(2))
〈T 0a〉′′
kaa2

,

E′′ + 8HE′ + 4
(

H ′ + 4H2
)

E =− sgn(K(2))π0
2kakba4

〈T a 6=b〉′′ ,

(Φ̃− ψ)′′ + 8H(Φ̃′ − ψ′) + 4
(

H ′ + 4H2
)

(Φ̃− ψ) =− sgn(K(2))π0
6kakba4

(2kakbtr〈T aa〉′′ + k2〈T a 6=b〉′′) .

(55)

We proceed to analyse squeezed and oscillating modes separately, due to their differing late time

limits, where we explicitly compute the expressions of effective scalar perturbations for squeezed

and oscillating modes in sec. VIA and VIB, respectively. The classical analysis for four massless

scalar fields and a single field was carried out in sec. IV. We will focus on comparing the dynamics

of the scalar perturbation E as obtained from the quantum theory to those of general relativity, due

to its comparative simplicity. As the effective Friedmann equation derived in (50) has the late time

limit of general relativity with a single scalar field without a contribution from spatial gradients,

we compare the effective GFT perturbation equations to the single field case as well. In principle,

one could carry out a comparative analysis for all scalar perturbation variables, however, as we

will find a considerable mismatch between effective GFT dynamics and general relativity, focusing

on E should suffice at this stage. The full analysis would presumably become more relevant once

agreement with general relativity has been established in the late-time regime.
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A. Squeezed modes

The inhomogeneous squeezed modes, which we recall have ω2
k > 0, have similar dynamics to

the background mode with additional k−dependent terms. In particular, all components of 〈T AB
k 〉

grow exponentially. To obtain explicitly their dynamics from (53) it is useful to define the following

expressions

〈: A†
k/2Ak/2 :〉 =

e−
k2

4s2

2c2σ

(

(A− sgn(K(2))B)2e2|ωk/2|χ0
+ (A+ sgn(K(2))B)2e−2|ωk/2|χ0

)

=:
1

c2σ
nk(χ

0) ,

〈: A†
k/2

2
:〉+ 〈: Ak/2

2 :〉 = 2

c2σ
e−

k2

4s2 (A2 − B2) =:
1

c2σ
ck ,

(56)

in terms of which the expectation values for the GFT energy-momentum tensor (53) read

〈T 00
k 〉 =sgn(K(2))

2|ωk/2|

(

k2

2
nk(χ

0)−m2ck

)

, 〈T a 6=b
k 〉 = −sgn(K(2))

8|ωk/2|
kakb

(

2nk(χ
0) + ck

)

,

〈T aa
k 〉 =sgn(K(2))

2|ωk/2|

[

−
(

2m2 +
k2a
2

)

nk(χ
0) +

(

k2 − k2a
4

)

ck

]

,

〈T 0b
k 〉 =i sgn(K(2))

4|ωk/2|
kbn

′
k(χ

0) .

(57)

It then follows that 1
3tr〈T aa

k 〉 = sgn(K(2))
2|ωk/2|

[

−
(

2m2 + k2

6

)

nk(χ
0) + k2

6 ck

]

, which will be a useful

expression in the following analysis. For our choice of state, nk(χ
0) can be related to the expectation

value of the number operator Nk = A†
kAk (not to be confused with the lapse function), i.e.,

nk(χ
0)

c2σ
= 〈Nk/2〉. This relation is valid as long as σ(~k) (47) is symmetric in k and we are within

the range of validity of the saddle-point approximation. In particular, the exact form of σ(~k) is

irrelevant, as long as it is sufficiently peaked on the ~k = 0 mode.

To analyse the dynamics of the energy-momentum tensor components, we first note that nk(χ
0)

satisfies the equation of motion

nk(χ
0)′′ = 4ω2

k/2nk(χ
0) . (58)

As nk(χ
0) fully governs the dynamics of the squeezed energy-momentum tensor, the 〈T AB

k 〉 satisfy
similar dynamics, namely

〈T 00
k 〉′′ =4ω2

k/2〈T 00
k 〉+ sgn(K(2))2|ωk/2|m2ck ,

〈T a 6=b
k 〉′′ =4ω2

k/2〈T
a 6=b
k 〉+ sgn(K(2))

kakb
2

|ωk/2|ck ,

〈T aa
k 〉′′ =4ω2

k/2〈T aa
k 〉 − sgn(K(2))|ωk/2|

(

k2 − k2a
2

)

ck ,

〈T 0b
k 〉′′ =4ω2

k/2〈T 0b
k 〉 ,

(59)
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from which it follows that 1
3tr〈T aa

k 〉′′ = 4
3ω

2
k/2tr〈T aa

k 〉 − sgn(K(2))|ωk/2|k
2

3 ck. They also satisfy

(ka 6= 0)

〈T 00
k 〉′ = −i

k2

ka
〈T 0a

k 〉, 〈T a 6=b
k 〉′ = i ka〈T 0b

k 〉, 〈T aa
k 〉′ = i

(

4m2 + k2a
) 〈T 0b

k 〉
kb

, (60)

where the index b on the right-hand side of the last expression can refer to any space component

of the energy-momentum tensor. Note in particular that due to the exponential growth of nk(χ
0),

the constant terms in the expressions can be neglected at late times, leading to closed second-order

equations for the 〈T AB
k 〉 that are exactly those of the number operator.

The comparison of (21) and (57) allows an identification regarding the nature of the pertur-

bations focusing on the matching of factors of ka; we see that the 〈T AB〉 resulting from our state

choice are consistent with purely scalar perturbations. We first note that the overall factor of kb in

〈T 0b〉 is consistent with vanishing vector modes BV
a = 0. Similarly, from 〈T a 6=b〉 we find ET

a 6=b = 0

and ∂aE
V
b +∂bE

V
a = 0 (a 6= b); we also get ∂aE

V
a = 0 from 〈T aa〉. Finally, we conclude that ET

aa = 0

by noticing that the k2a terms in 〈T aa〉 give exactly the k2aE term in jaa, using the identification

sgn(K(2))〈T a 6=b〉 = ja 6=b. The possibility of obtaining vector and tensor perturbations from the

effective GFT metric we construct here is should be clarified in future studies; in what follows we

focus solely on scalar perturbations.

We can then use the above results and the relations found in (25) to write down explicit

expressions for the scalar metric perturbations arising from squeezed modes

E =
1

16|ωk/2|
π0
a4

(ck + 2nk(χ
0)) ,

B =− 1

4|ωk/2|
1

a2
nk(χ

0)′ ,

ψ =
1

16|ωk/2|

(

2
m2

π0
ck −

(

k2
(

π0
a4

+
1

π0

)

+
4m2π0
a4

)

nk(χ
0)

)

,

Φ̃ =− 1

16|ωk/2|

((

k2π0
a4

− 2m2

π0

)

ck +

(

k2
(

−π0
a4

+
1

π0

)

− 12m2π0
a4

)

nk(χ
0)

)

.

(61)

Note that the overall sign factors in the explicit expressions for 〈T AB〉 cancel with the sign in the

identification jAB = sgn(K(2))〈T AB〉, leading to simpler expressions.

From these effective expressions we can make some basic observations regarding the behaviour

of perturbations arising from squeezed modes:

• The initial spectrum of perturbations at the bounce, where we have a4 = π20, can be com-

puted as a function of ~k. Since nk(χ
0) and ck as defined in (56) scale as e−

~k2

4s2 , when |~k| ≫ s

perturbations are exponentially small at the bounce. The parameter s regulates the peaked-

ness of the state (46) and can be made arbitrarily small. On the other hand, we see that

modes for which |~k| ≤ s are of the same order as the background ~k = 0. This differs from

standard cosmological perturbation theory, where all perturbations are assumed to be small

with respect to the background, and is a finite-width effect of the state we are considering:

the situation of standard cosmology corresponds to the case of s → 0 to obtain the back-

ground mode, and the inclusion of a separate spectrum for perturbation modes. In practice,

only modes above a minimal |~k| are observable, and very long-wavelength modes outside of
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that window could be absorbed into a redefinition of the background. Since in our case the

equations of motion are linear and different ~k modes are decoupled, this would not introduce

any nonlinear averaging effects.

• As the universe expands, nk(χ
0) increases and hence the perturbations grow in time. Even

the combination nk(χ
0)/a4 grows (recall that at late enough times a4 ∝ e2mχ0

and nk(χ
0) ∝

e2|ωk/2|χ0
), such that all perturbations grow and take their minimum value at the bounce.

This fact can be reconciled with linear perturbation theory by recalling that the free GFT

and the saddle-point approximation are applicable for a finite time only and furthermore, the

perturbations are initially exponentially suppressed in k, i.e., the faster growing modes start

with smaller initial amplitudes. At late times, the terms proportional to k2

π0
nk(χ

0) will be

dominant in the expressions for Φ̃ and ψ (assuming that the saddle-point approximation is

still applicable). However, an approximation of the form Φ̃ ≈ ψ ≈ − 1
16|ωk/2|

k2

π0
nk(χ

0) would

be invalid, as it violates (31), which is derived directly from the harmonic gauge conditions.

The harmonic gauge conditions are equivalent to the conservation law ∂0T 0B+i
∑

a kaT aB =

0, which was shown to hold exactly at operator level in [40].

• In the ~k → 0 limit, ψ and Φ̃ tend towards constants, as ψ ∼ 1
4|ωk/2|

(

m2

2π0
ck − m2π0

a4
nk(χ

0)
)

and

Φ̃ ∼ 1
4|ωk/2|

(

m2

2π0
ck +

3m2π0
a4

nk(χ
0)
)

and from the effective scale factor (49) and the definition

of nk(χ
0) (56), we can see that |ωk/2| → |m| and nk(χ

0)/a4 ≈ const. These perturbations

also satisfy the super-horizon limit of the harmonic gauge condition (31), Φ̃′′ + 3ψ′′ = 0. In

the strict ~k → 0 limit, E and B do not appear in the metric where they are always multiplied

by the wavenumber (or, equivalently, only enter as spatial gradients, see (21)).

We proceed to analyse the concrete form of equations of motion for the perturbation variable

E arising for squeezed GFT modes and compare them to their classical counterparts. Using (55)

and (59), the dynamics of E can be written as

E′′ + 8HE′ + 4(H ′ + 4H2 − ω2
k/2)E +

|ωk/2|
4

π0
a4

ck = 0 . (62)

In the late-time limit we can neglect the ck term as it falls off as a−4, and approximate H ′ ≈ 0 and

H2 ≈ m2

4 (see sec. V). If we also insert ω2
k/2 =

k2

4 +m2, we find

E′′ + 8HE′ − k2E ≈ 0 . (63)

This can be simplified further by considering an explicit late-time expression for E′. At late times,

we can assume that E ≈ π0
8|ωk/2|a4nk(χ

0), again neglecting the ck term, and nk(χ
0)′ ≈ 2|ωk/2|nk(χ0)

(see (56)), leading to

E′ ∼ −4HE + 2|ωk/2|E . (64)

For small wavenumbers k2

4 ≪ m2 we furthermore have |ωk/2| ∼ 2H, such that E′ ∼ 0 and the

equation of motion for E simplifies to

E′′ − k2E = 0 . (65)
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Comparing to (43), the corresponding equation in general relativity coupled to a single massless

scalar field, our effective equation (65) has a Euclidean signature instead of the Lorentzian one,

and is missing a factor of
π2
0

a4
. It furthermore resembles the general relativistic single field case (43)

more closely than that of four massless scalar fields (38), which is similar to the results for the

effective Friedmann equation as discussed in sec. V.

In previous work in GFT cosmology (using different methods and assumptions) the signature of

perturbations was found to depend on initial conditions, where both the Lorentzian and Euclidean

case could be recovered [33]. It is evident that alterations to the setup we present here are necessary

to recover agreement with Lorentzian general relativity. The presence of a Euclidean signature for

effective metric perturbations may not appear particularly surprising, given that our original GFT

action (3) treats all four matter fields on the same footing and hence does not distinguish between

“space” and “time” directions. A possibility which we will discuss in app.A 1 would hence be to

start from a different coupling of matter degrees of freedom in the original GFT action.

In the general relativistic perturbation equations, the factor π20/a
4 more generally reads a2/N2

where N is the lapse, and would hence be absent in the case of conformal time N ∼ a. The lapse

is however determined by our choice of coordinate system and the expression of the conjugate

momentum of the clock field, such that one would have to consider alternative matter actions to

obtain a different form of N . As a particular example, one might want to consider k-essence models

that include a more general function of the kinetic term in the Lagrangian for the four massless

scalar fields. The challenge is then to obtain a model in which N ∼ a and H2 ∼ const. at late

times; we discuss an extension of our setup to k-essence models in app.A 2. We note that the issue

of a missing dynamical factor of a4/π20 was found in previous results on GFT perturbations [33]

and could be resolved through a more advanced construction [34, 35], as we will discuss again in

the conclusions.

A discussion similar to the one we included for E above could be carried out for the other three

scalar perturbation variables. As these will generally suffer from similar deviations, we leave this

analysis for future work. This concludes the analysis of squeezed modes.

B. Oscillating modes

We now follow the equivalent procedure for oscillating modes ω2
k/2 < 0 (see sec. II). From the

definition ω2
k = m2 + ~k2 this will only hold for m2 < 0 and for sufficiently small wavenumbers: in

the saddle-point approximation we only consider the frequency ωk/2, which only corresponds to an

oscillating mode for k2 < 4|m2|. For the operator expectation values in (53) and (54), we obtain

〈: A†
k/2Ak/2 :〉 =

1

c2σ
e−

k2

4s2 (A2 + B2) =:
1

c2σ
dk ,

〈: A†
k/2

2 :〉+ 〈: Ak/2
2 :〉 = 2e−

k2

4s2

c2σ

(

(A2 − B2) cos(2|ωk/2|χ0)− 2 sgn(K(2))AB sin(2|ωk/2|χ0)
)

=:
1

c2σ
fk(χ

0) ,

(66)
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which leads to

〈T 00
k 〉 =

sgn(K(2))

4|ωk/2|

[

4|m2|dk +
k2

2
fk(χ

0)

]

,

〈T 0b
k 〉 = − ikb

2
e−

k2

4s2

[

sgn(K(2))(A2 − B2) sin(2|ωk/2|χ0) + 2AB cos(2|ωk/2|χ0)
]

=
i sgn(K(2)) kb

8|ωk/2|
fk(χ

0)′ ,

〈T a 6=b
k 〉 = − sgn(K(2))

8|ωk/2|
kakb

[

2dk + fk(χ
0)
]

,

〈T aa
k 〉 =

sgn(K(2))

4|ωk/2|

[

(k2 − k2a)dk +

(

2|m|2 − k2a
2

)

fk(χ
0)

]

,

(67)

with tr〈T aa
k 〉 = sgn(K(2))

2|ωk/2|

(

k2dk +
(

3|m|2 − k2

4

)

fk(χ
0)
)

. The dynamics of oscillating modes are

governed by fk(χ
0), which satisfies

fk(χ
0)′′ = −4|ωk/2|2fk(χ0) . (68)

This leads to the following equations of motion for the GFT energy-momentum tensor:

〈T 00
k 〉′′ =− 4|ω2

k/2|〈T 00
k 〉+ sgn(K(2))4|ωk/2||m2|dk,

〈T a 6=b
k 〉′′ =− 4|ω2

k/2|〈T
a 6=b
k 〉 − sgn(K(2))|ωk/2|kakbdk,

〈T aa
k 〉′′ =− 4|ω2

k/2|〈T aa
k 〉+ sgn(K(2))|ωk/2|

(

k2 − k2a
)

dk , 〈T 0b
k 〉′′ = −4|ω2

k/2|〈T 0b
k 〉 .

(69)

Note that this mimics the dynamical equations of squeezed modes (59), with an opposite sign,

which hints at the possibility to recover a Lorentzian signature in the perturbation equations.

From (25) and (67) we find the following expressions for perturbation variables in the case of

oscillating modes:

E =
π0

16|ωk/2|a4
(fk(χ

0) + 2dk) ,

B =− 1

8|ωk/2|a2
fk(χ

0)′ ,

ψ =− |m2|
4π0|ωk/2|

dk +
1

8|ωk/2|

(

π0|m2|
a4

− k2

4

(

1

π0
+
π0
a4

))

fk(χ
0) ,

Φ̃ =− 1

8|ωk/2|

[(

2|m2|
π0

+
k2π0
a4

)

dk +

(

k2

4

(

1

π0
− π0
a4

)

+
3|m2|π0
a4

)

fk(χ
0)

]

.

(70)

Importantly, there are no growing terms in the perturbations, so that terms proportional to dk

cannot be neglected at late times. The only applicable late-time limit is that the amplitude of

terms proportional to a−4 decreases. In particular, this implies that E and B decay, whereas ψ and

Φ̃ oscillate around a set value. Similarly to the case of squeezed modes, a late-time approximation

in which Φ̃ ∼ ψ violates the harmonic gauge condition (31) outside the super-horizon limit. In

the ~k → 0 limit, the harmonic gauge condition reduces to −Φ̃′′ − 3ψ′′ = 0 and is satisfied by the

approximations Φ̃ ∼ − |m2|
4π0|ωk/2|dk − 3|m2|π0

8|ωk/2|a4 fk(χ
0) and ψ ∼ − |m2|

4π0|ωk/2|dk + |m2|π0

8|ωk/2|a4 fk(χ
0). In the

late-time, superhorizon limit, we then find that ψ ∼ Φ̃ are constants.
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Using (55) together with (69) we find the following equation of motion for E in the case of

oscillating modes

E′′ + 8HE′ + 4(4H2 +H ′ + 4|ω2
k/2|)E =

|ωk/2|π0
2a4

dk . (71)

The late-time limit is different from the squeezed case; in particular, the right-hand side is of the

same order as E and cannot be ignored. Hence the late-time limit for background quantities is less

straightforward in the case of oscillating modes. As we discussed in sec. V, oscillating modes do

not lead to a bouncing universe at the background level, so that we would assume that oscillating

modes appear only in conjunction with at least one squeezed mode that gives desirable background

dynamics. In such a case, we would have 4H2 ∼ m2
sq and H ′ ∼ 0, where m2

sq would be the value

of m2 for the squeezed background mode, which is different from the value appearing in ω2
k/2.

While we recover a Lorentzian signature, the discrepancy of the a4/π20 factor remains. Lastly, as

no terms can be neglected at late times, E′ cannot be simplified and we are left with additional

terms compared to general relativity (38). As an additional point of comparison, we noted below

(44) that in the case of general relativity with a single massless scalar field, the amplitude of E falls

off as 1/a with increasingly rapid oscillations. This is clearly very different from the 1/a4 fall-off

with a constant oscillation frequency that we observe in the explicit solution (70).

This concludes the analysis of scalar perturbations within our proposal to extract an effective

metric from GFT for a first naive state choice. We have obtained explicit expressions for scalar

perturbations in the squeezed and oscillating case. In both cases, we find that the equation of

motion for the effective perturbation variable E shows deviations from the general relativistic

dynamics in the form of having the wrong signature (squeezed modes), having additional terms

(oscillating modes), and a missing dynamical factor of a4/π20 (both cases). In a model with at least

two modes, one oscillating and one squeezed, one could imagine that the squeezed mode is very

highly peaked on the background mode and leads to a bouncing universe, while the perturbative

modes are suppressed, and the oscillating mode gives the dominant contribution to cosmological

perturbations. Still, in order to match the general relativistic dynamics at late times, alterations

to the proposed setup, e.g., in form of a more complicated state choice, are required. Below we

will discuss some possible directions for obtaining more phenomenologically acceptable results in

our general setting.

VII. CONCLUSION

In this paper we extended the analysis of an effective metric for an FLRW background as

studied in [40] to cosmological perturbations. For the FLRW background, previous work had shown

the promising result of an exactly flat metric and a bouncing universe. The effective Friedmann

equation derived for this case showed agreement with general relativity coupled to a single massless

scalar field, while the GFT model includes four such fields. The study of GFT perturbations

then has two main objectives: firstly, to establish whether the effective metric proposal allows

a consistent reconstruction of perturbation variables, and secondly to investigate whether their

effective dynamics can be interpreted from the perspective of general relativity (in suitable limits).

We began with a brief summary of the basics of GFT and the fundamental ideas behind the

effective metric proposal and its application to homogeneous cosmology. As in most of the literature
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on GFT cosmology, we neglect interactions between GFT quanta. The free theory then contains two

types of modes, oscillating and squeezed modes, which exhibit different dynamics. Throughout the

paper we work in a relational coordinate system given by four massless scalar fields. The proposal

is then to identify the GFT energy-momentum tensor with an effective spacetime metric, given

that both define conserved Noether currents associated to the same symmetries. By giving explicit

expressions for the general relativistic Noether currents for a perturbed FLRW metric, we were

able to reconstruct expressions for all scalar metric perturbations explicitly for the first time in

the GFT literature. This is a significant improvement on previous work in which only the spatial

volume and its perturbations could be studied. We established general expressions and equations

of motion for scalar perturbation variables in terms of the effective operator dynamics, which are

independent of a specific state choice. These could be used for any GFT state beyond the example

we consider here, or for more general models with alternative operator dynamics, e.g., for a different

GFT action. While the proposal for an effective GFT metric is very general, in the sense that an

effective metric can be associated to any state that is sufficiently semiclassical, the particular choice

of state governs the specific form of such a metric and its symmetries.

For our analysis, we chose a Fock coherent state highly peaked on the homogeneous ~k = 0 mode.

Fock coherent states are commonly used in the GFT literature as they satisfy the requirement of

semiclassicality; peaking around the homogeneous mode reflects the goal of obtaining an FLRW

metric with small perturbations. This state was used in [40] to obtain the effective background

metric, and its non-zero ~k modes are interpreted as perturbations. In [40] we had shown that the

effective Friedmann equation for squeezed modes corresponds (at late times) to what is expected

for general relativity coupled to a single massless scalar field. GFT is not a direct quantisation of

classical general relativity; a GFT action is constructed via symmetries, renormalisation arguments

and connection to discrete quantum gravity models. Our introduction of a specific simple coher-

ent state and the truncation to the free theory are also significant simplifications. Hence, while

obtaining a reasonable Friedmann equation gives a first hint, it does not yet give strong evidence

that the resulting low-energy theory is consistent with general relativity.

To obtain explicit expressions for perturbative quantities we made use of the saddle-point ap-

proximation, which restricts the validity of our results to perturbations with sufficiently small

wavenumbers and to a finite time. For our state choice small wavelength perturbations are initially

exponentially suppressed and the assumption of negligible interactions in the GFT action limits our

results to regions close (enough) to the bounce. We considered the case of oscillating and squeezed

modes separately, where for both mode types the dynamics of perturbations are naturally very

similar to those for the respective background mode. Our choice of state leads to expressions for

the expectation values of the GFT energy-momentum tensor components 〈T AB〉 that are compat-

ible with the interpretation of recovering only scalar perturbations, even though in principle the

components of 〈T AB〉 contain all perturbation types.

The effective perturbations we found for squeezed modes grow in time, excluding a consistent

interpretation as small deviations from a homogeneous background at a certain point in the evo-

lution. Comparing the equation of motion for the perturbation variable E to those obtained in

general relativity for either one or four massless scalar fields revealed several discrepancies. Firstly,

the dynamics of the effective perturbation have a Euclidean signature instead of a Lorentzian one.

Secondly, they resemble the general relativistic dynamics one might expect for conformal time,

whereas we are working in a harmonic gauge given by the relational coordinate system, which

Page 28 of 38AUTHOR SUBMITTED MANUSCRIPT - CQG-113163.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



29

would lead to a relative factor a4/π20. Finally, the late-time limit of the effective dynamics for

E resemble (save for the aforementioned discrepancies) those of general relativity with a single

matter field, which is similar to what we found for the effective Friedmann equation. To recover

a bouncing universe at the background level, we saw that at least one squeezed mode needs to be

excited; for our state choice we then inevitably encounter perturbations that are of squeezing type.

Oscillating modes, on the other hand, remain finite in amplitude throughout the evolution of the

universe. While for these modes we recovered a Lorentzian signature in the dynamical equations

for the effective perturbation E, we again encountered the same discrepancy regarding a dynamical

factor of a4/π20, moreover, additional terms that are not present in general relativity arise. Note

that since a single oscillating mode does not lead to an expanding universe at the background level,

one needs to consider a minimum of two J modes (one squeezed, one oscillating) in order to have

perturbations of oscillating type in a phenomenologically feasible universe.

The GFT literature includes models for Euclidean as well as for Lorentzian gravity. As we

discussed in our earlier review of GFT, the desired spacetime signature can (but does not need to)

be built into a choice of gauge group; to determine the relation between such details of the model

and the emergent spacetime signature, one needs to have access to an effective spacetime geometry.

The work of [40], as well as other results in GFT cosmology [33], indicated that in GFT the metric

signature is not fundamentally included in the quantum theory and instead emerges at an effective

level. In our case, at the background level the metric signature (read off from effective metric

coefficients) is determined by initial conditions, whereas for the perturbations it is determined by

the type of dynamical equation and depends on the mode type. Since we are working in a free

GFT, the model presented here has no coupling between the background and perturbations, and

the dynamics of the various ~k modes of the GFT energy-momentum tensor are independent of

one another. This is a reflection of the linearity of the theory and stands in contrast to general

relativity, where the perturbation equations explicitly depend on the scale factor and the Hubble

rate. This might suggest that the proposed setting is more suitable for studying perturbations

around a flat spacetime, the study of which we leave to future investigations.

All previous approaches to cosmological perturbations in GFT were limited to considering the

perturbation of the volume element and thus the combination k2E−3ψ. The exceptional advantage

of having access to a reconstructed metric in our setting lies in the fact that we can retrieve any

combination of perturbative quantities, in particular, we can construct effective gauge-invariant

perturbations. This is of particular interest as gauge-invariant quantities are those that can be

related to observations. Moreover, future work based on more elaborate state choices could include

tensor or vector modes, which could again be read off from the effective metric.

In a previous study [33] based on volume perturbations, the dynamics of perturbations similarly

lack a factor of a4/π20, whereas the signature is determined by initial conditions. The model is also

built on a free GFT action with a single group field, but includes a fifth matter field that is assumed

to dominate the relational fields. One hence assumes agreement with general relativity coupled to

a single scalar field, which is found at late times in the ~k → 0 limit, similar to the long-wavelength

limit of the dynamics for E we find here in the case of squeezed modes. The dynamical discrepancies

in the perturbation equations at finite ~k could then be resolved in [34] using a GFT model with

two types of group field (“spacelike” and “timelike”), which enter the GFT action in a different

manner. In this work the choice of state is not a simple coherent state, but includes entanglement

between the perturbations of the different GFT fields. This choice of state and a simplified form
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of GFT dynamics assumed in the analysis allow for the introduction of a free function that can be

chosen to achieve agreement with general relativity at late times, including fixing the signature to

Lorentzian. The mismatch we find between effective GFT dynamics and those of general relativity

is similar to those of [33], so the follow-up work of [34] might suggest that this can be improved in

a more complicated GFT and with a different choice of state.

In the appendix we propose some avenues for extending our results or their interpretation in

terms of a corresponding classical theory. Beyond this, our results for cosmological perturbations

can be extended in many different directions:

• Alternative state choices. The state we considered here is characterised by a single ~k-

dependent function that determines both background and perturbations. One might want

to consider states that more closely resemble the approach in standard cosmology, e.g., one

could consider a background mean field only used to define background quantities, plus a

small ~k-dependent contribution for the perturbations, which can exhibit an entirely different

spectrum. This would be similar to previous studies of perturbations in GFT [30, 33, 34].

• Improved GFT dynamics. The dynamics of perturbations are derived from dynamics of

the GFT energy-momentum tensor, which are determined by the GFT action. Including the

effect of interactions in the GFT action, which we have neglected here, might lead to effective

dynamics that are closer to those of general relativity. This would be consistent with the

origin of GFT in discrete gravity models, where the precise form of interaction is important

to determine the “gluing” of lower-dimensional building blocks to form spacetime. Viewed

from that angle it would seem unreasonable to expect that a truncation to a simple quadratic

action that does not know about interactions is already able to capture general-relativistic

dynamics (such a result would also suggest that almost any GFT action of a particular

class reduces to general relativity, which might again seem unrealistic). Of course, adding

interactions will substantially complicate matters and potentially require new (perturbative

and nonperturbative) methods.

• Including additional group fields. One might consider extensions similar to [34], where

two GFT fields are included, whose interplay leads to dynamical equations that agree with

GR in a certain limit. Such extensions would change the form of the T AB and symmetry

requirements of the energy-momentum tensor would likely impose certain conditions (and

possibly limitations) on such a construction.

Finally, we emphasise that the setup for reconstructing an effective GFT metric introduced in

[40] is general and not limited to cosmology. Its usefulness could be established by investigating its

application also outside of the context of homogeneous and isotropic cosmology. Here, anisotropic

Bianchi models might be best suited and black hole spacetimes would be of particular phenomeno-

logical interest. If proven suitable for obtaining a variety of spacetimes, the effective GFT metric

could pave the way for a variety of fruitful future research directions.
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Appendix A: Possible extensions

In our analysis of the effective GFT metric recovered for the cosmological setting, the comparison

with general relativity gave two main results:

1. The effective Friedmann equation obtained at late times disagrees with that of general rel-

ativity with four massless scalar fields. Instead, consistent with previous literature, the

Hubble rate (defined for the clock χ0) approaches a constant, which resembles the case of a

single scalar field. This discrepancy was discussed in detail in [40].

2. Effective dynamics of perturbations do not agree with those of Lorentzian general relativity;

we find a Euclidean signature for effective perturbations for squeezed modes, and a factor of

a4/π20 is missing from the equations of motion.

In order to recover a suitable semiclassical regime for cosmology, alterations have to be introduced

to the setup described above. In this appendix we consider two routes to such alterations that focus

on the manner in which the scalar fields are included in the theory and demonstrate the restrictions

imposed by the setup. We first consider changing the GFT action and coupling clock and spatial

scalar fields differently. Then, we consider the possibility of comparing not with general relativity

with four free massless scalar fields, but with the more general setting of k-essence models, keeping

in mind that GFT does not arise from quantising a particular classical matter action but relies on

general symmetry arguments. We find that both cases are restricted by symmetry requirements on

the form of the GFT energy-momentum tensor and the conserved classical currents. We present

both considerations separately; the combination of both approaches (comparing more general GFT

actions to k-essence models) is left for future work.

1. Extensions of the GFT action

In the construction of a GFT action for quantum gravity with four massless scalar fields, one

imposes some symmetries of the corresponding classical action (12), namely, shifts, rotations and

reflections. The Laplacian on R
4 in the GFT action (3) is consistent with these; in particular,

derivatives with respect to the scalar fields all enter with the same prefactor to preserve the rota-

tional symmetry under χA → OA
Bχ

B. As the E(4) symmetry is broken upon singling out a clock

field for quantisation in the deparametrised approach to GFT, one might want to impose an E(3)

symmetry between the spatial fields only and allow for a different factor in front of the derivatives

with respect to the clock field, as was considered already in [29]. Introducing a new parameter

ca ∈ R, this leads to a more general form of the free action

S =

∫

d4χL, L =
∑

J

(

1

2
K(0)

J ϕ2
J − 1

2
K(2)

J

(

(∂0ϕJ)
2 + ca

∑

a

(∂aϕJ)
2

))

. (A1)

The action (3) used in our analysis so far is evidently recovered for ca = 1. On the other hand,

setting ca = −1 means the Laplacian is now the one on Minkowski spacetime R
3,1 and the sym-

metry group E(4) is replaced by the Poincaré group E(3, 1), which one might hope could encode

Lorentzian rather than Euclidean signature in the effective spacetime geometry.
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Having introduced a Lorentzian structure on the space spanned by the four massless scalar

fields, the energy-momentum tensor thus obtains a non-trivial index structure and we adjust its

definition to

TA
B := − ∂L

∂(∂Aϕ)
∂Bϕ+ L δAB , (A2)

where indices are raised and lowered with the Minkowski metric ηAB = diag(−1, 1, 1, 1). Specif-

ically, TAB is symmetric (unlike TA
B ) and therefore suitable for an identification with jAB as

defined in (16). Note that for ca 6= 1 and the previous definition of the GFT energy-momentum

tensor (17), TAB would no longer be symmetric and a consistent identification with the classical

currents impossible.

The question is then how such a change affects phenomenology. The additional factor in front

of the spatial gradient term enters the definition of ωk in the GFT Hamiltonian (4) via ω2
k =

m2 + ~k2 → ω2
k = m2 + ca~k

2. Recall that we obtain a squeezing-type Hamiltonian for ω2
k > 0,

while ω2
k < 0 results in a harmonic oscillator Hamiltonian. If we consider the case with ca = −1,

we find that all modes with m2 < 0 are oscillating modes. For m2 > 0, we find squeezed modes

only in the cases where ~k2 < m2; all other modes are of oscillating type. Such a theory might

be phenomenologically desirable as it has a limited number of squeezed (exponentially growing)

modes.

To assess possible effects on the signature of the effective metric, we first note that due

to the necessary raising of the index of T 0
0 , we find an additional minus sign in the effec-

tive expression, whereas the spatial diagonal components remain unchanged. For a squeezed

background mode, we thus find (see (49)) 〈T 00
0 〉 = −sgn(K(2))|m|(B2 − A2) ∝ j00 = π0 and

〈T aa
0 〉 = −sgn(K(2))|m|n0(χ0) ∝ jaa = − a4

π0
. Recall that at the level of the background the effec-

tive metric signature is determined by the signs of 〈T 00
0 〉 and 〈T aa

0 〉 (see (22)): If all components

of jAB have the same sign the metric is Euclidean, if the j00 component has a different sign, the

metric is Lorentzian. In order to recover a Lorentzian signature for the background metric we

therefore need sgn(B2 −A2) 6= sgn(n0(χ
0)) = 1, i.e., we require A2 > B2 for the initial conditions.

Using the same identification as before, jAB = sgn(K(2))〈T AB〉, we then recover a positive π0 from

the effective expressions. In short, setting ca = −1 in the GFT action has implications for the

range of initial conditions that give a Lorentzian effective FLRW metric.

In the case of effective perturbations, the signature depends on their dynamics, which again are

determined by the mode type. As pointed out above, which modes are of squeezed or oscillating

type changes with ca = −1. Additionally, the sign of 〈T 00
k 〉 has changed, which enters the explicit

forms of ψ and Φ̃, see (25). The overall dynamics of squeezed or oscillating perturbation modes

should however remain unaffected and we should find the same discrepancies in the dynamics as

noted in the main text.

Finally, we comment on more general extensions of the GFT action: To uphold the premise

of our proposal, any generalisation of the construction presented must lead to a symmetric GFT

energy-momentum tensor that can be consistently identified with the classical currents. If one

wanted to extend the GFT action to include, e.g., higher-order derivatives, such higher-order

terms must then appear for all four scalar fields. Such a modification will inevitably also affect the

background dynamics and one cannot include additional terms solely for the spatial fields, which

might have been desirable from a purely phenomenological perspective.
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2. K-essence models

In the main text, we compared the effective GFT dynamics to dynamics of free massless scalar

fields in general relativity and found various disagreements. However, recall that GFT is not a

direct quantisation of any classical theory but constructed from general principles and properties

of Feynman amplitudes, to be interpreted as discrete spacetime histories. The GFT action we

discussed uses the shift symmetries of free massless scalar fields, but such symmetries exist in

more general classical matter theories. It would hence be very reasonable to suggest that the

classical limit of GFT could correspond to such a more general matter theory. In the following,

we investigate this proposal and study a more general form of the scalar field action known as

k-essence models (see, e.g., [63, 64]).

When using four scalar fields as a relational coordinate system, as done here and in previous

GFT works [33, 34, 40, 53], the simplest assumption is to assume the Lagrangian for free, minimally

coupled fields

Lχ = −1

2

√−g
∑

A

gµν∂µχ
A∂νχ

A . (A3)

However, the construction of an effective GFT metric only requires a shift symmetry under χA →
χA + ǫA, which is satisfied by any Lagrangian that only depends on derivatives of the scalar fields.

In particular, we can generalise to a Lagrangian of the form (a = 1, 2, 3)

L =
√−gP(X0, Xa), with X0 = −1

2
gµν∂µχ

0∂νχ
0 , Xa = −1

2
gµν∂µχ

a∂νχ
a , (A4)

where P denotes a general function. For a flat FLRW spacetime and in a relational coordinate

system with ∂µχ
A = δAµ we have X0 = 1

2N2 and Xa = − 1
2a2

. For a Lagrangian as given in (A4),

the energy-momentum tensor is given by11

(χ)Tµ
ν = δµν P +

∑

A

∂P
∂XA

gµα∂αχ
A∂νχ

A = δµν P +
∑

A

∂P
∂XA

gµAδAν , (A5)

and the classically conserved currents in relational coordinates read

(jµ)A = −√−g ∂P
∂XA

gµA (no sum over A) . (A6)

The clock field momentum is given by

π0 =

√

|q|
N

∂P
∂X0

, (A7)

which upon fixing P gives an equation that can be solved for the lapse N .

In the following we demonstrate with a simple example that we could obtain a constant Hubble

rate within k-essence models; we will discuss the restrictions imposed by symmetry requirements

below. For the example we choose P = (X0)
u+

∑

a(Xa)
v, with u, v ∈ R. If we assume that, again

11 We do not carry out the sum explicitly in the last step to avoid a confusing index structure.
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for a flat FLRW universe, N = ξ aq for some ξ ∈ R
+ and q ∈ R, we obtain the following expression

for the conserved canonical momentum of the clock field and a relation between q and u:

π0 ∝ a3+q(1−2u) !
= const. ⇒ q =

3

2u− 1
. (A8)

Note that an explicit form of ξ as a function of π0 can be found from (A7). From (A5) we can

obtain the energy density

ρ = −P − ∂P
∂X0

g00 =
1

2uN2u
(2u− 1) + (−1)v+1 3

2va2v
, (A9)

leading to the Friedmann equation

H2 ∝N2ρ =
(2u− 1)

2uξ2(u−1)

1

a2q(u−1)
+ (−1)v+1 3ξ

2

2v
1

a2(v−q)
, (A10)

where we again assumed that N = ξ aq. We would then recover a constant right-hand side of the

Friedmann equation in the case of u = 1 and v = q, with q = 3 from (A8), so that we recover a

harmonic gauge. The discrepancy between the GFT effective Friedmann equation and the general-

relativistic Friedmann equation at late times for four massless scalar fields would be resolved in

this type of model. In the case of conformal time (q = 1), we have u = 2, such that the first term in

the Friedmann equation decays as a−2, and the right-hand side approaches a constant at late times

for v = 1. Note however that this would imply a stronger mismatch with the GFT Friedmann

equation (50), which does not contain an a−2 term, at early times.

So far, we have focused solely on the homogeneous FLRW dynamics, where the off-diagonal

parts of (jµ)A vanish. If we consider the time-space components of the currents (A6), we find

(j0)a = −√−gg0a ∂P
∂Xa

, (ja)0 = −√−gg0a ∂P
∂X0

, (A11)

and in order to relate these to a symmetric GFT energy-momentum tensor we must demand

(j0)a = (ja)0. This imposes ∂P
∂X0 = ∂P

∂Xa , and the Lagrangian has to include all fields in the same

manner. While this symmetry requirement only applies when considering non-diagonal metrics,

one might prefer a general construction that can hold for various spacetimes (in particular, also

for the perturbed FLRW case). With this restriction we have

L =
√−gP(X) with X := −1

2

∑

A

gµν∂µχ
A∂νχ

A =
1

2N2
− 3

2a2
, (jµ)A = −√−ggµA ∂P

∂X
,

(A12)

where we assumed a flat FLRW background and a relational coordinate system for the explicit

form of X. The requirement that

π0 =
a3

N

∂P
∂X

!
= const. (A13)

leaves us with two possible scenarios:

1. The case we considered in the main text above, i.e., N ∝ a3 and P ∝ X.
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2. (Almost) conformal time: X is a single power of a, i.e., N = ξ a , ξ ∈ R
+, such that

X = 1
2a2

(

1
ξ2

− 3
)

. We then have π0 = a2

ξ
∂P
∂X

!
= const. and therefore P ∝ X2. We then find

π0 ∝ 1
ξ3

− 3
ξ which can be solved to obtain an expression for ξ(π0). As π0 is positive, we

must have ξ ∈ (0, 1/
√
3).

From the energy density −ρ = P + ∂P
∂X g

00 we can again compute the Friedmann equation

H2 ∝ −N2P+ ∂P
∂X . The first option above is the standard case we considered in the main text and

results in (29). The second case of conformal time gives (P ∝ X2)

H2 ∝ 3

4a2

(

1

ξ2
− 3ξ2 − 2

)

, (A14)

which is positive as ξ2 < 1
3 (see above). This goes to zero at late times and does not match

the GFT effective Friedmann equation. Hence, with the symmetry restriction that enables a

consistent identification of the classical currents with the GFT energy-momentum tensor the scope

of allowed k-essence models is limited and we could not identify a case in which we recover a

constant Friedmann equation at late times.

3. Summary

To obtain effective GFT dynamics that can match those of general relativity at the late times,

alterations to the setup presented in the main text are necessary. These can go in several directions:

one can either change the definition of the GFT model, or the classical matter theory one expects

to obtain at low energies. We studied these two types of modifications separately. Both cases

are limited by symmetry requirements on TAB and jAB, which are crucial to allow a consistent

identification with one another. Hence, the desirable effects we found cannot straightforwardly be

included in the setup of an effective GFT metric as studied in the main text.

Adjusting the derivatives with respect to clock and spatial fields in the GFT action has the

potential to alter which values of ωk result in oscillating or squeezed modes. Interestingly, it is

possible to introduce a maximum wavenumber for squeezed modes, such that all modes with larger

k will be of oscillating type. In the case of k-essence models, we assessed whether it is possible to

find a form of the matter Lagrangian that gives conformal time and a constant general relativistic

Friedmann equation at late times. The desired result can be achieved if one is concerned solely

with an FLRW metric; then we saw that clock and rod fields can be included in the classical

k-essence action in such a way that one recovers a constant Hubble rate in general relativity with

four massless scalar fields, thus matching the result of GFT. However, the goal of our paper was

to explicitly include cosmological perturbations, and one would like to find a common consistent

description for background and perturbations in which the phenomenology of both is satisfactory

from the perspective of general relativity.
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