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Aberrant DNA methylation has been described in nearly allhuman cancers,
yetitsinterplay with genomic alterations during tumor evolutionis poorly
understood. To explore this, we performed reduced representation bisulfite

sequencing on 217 tumor and matched normal regions from 59 patients

with non-small cell lung cancer from the TRACERx study to deconvolve
tumor methylation. We developed two metrics for integrative evolutionary
analysis with DNA and RNA sequencing data. Intratumoral methylation
distance quantifies intratumor DNA methylation heterogeneity. My /M,
classifies genes based on the rate of hypermethylation at regulatory (M)
versus nonregulatory (My) CpGs to identify driver genes exhibiting recurrent
functional hypermethylation. We identified DNA methylation-linked dosage
compensation of essential genes co-amplified with neighboring oncogenes.
We propose two complementary mechanisms that converge for copy number
alteration-affected chromatin to undergo the epigenetic equivalent of an
allosteric activity transition. Hypermethylated driver genes under positive
selection may open avenues for therapeutic stratification of patients.

Lung cancer, of which the predominant group is non-small cell
lung cancer (NSCLC), is the leading cause of cancer-related death
worldwide'. Genomic and transcriptomic studies of the two major
NSCLC subgroups, lung adenocarcinoma (LUAD) and lung squamous
cellcarcinoma (LUSC), have provided a deep understanding of the evo-
lutionary processes that provide subclones with selective advantages,
through the accumulation of genetic driver events®™*.

Recent studies highlighted evidence of non-genomic evolutionin
cancer development, neoantigen silencing’ and acquired therapeutic
resistance®’. Animportant proportion of these resistance mechanisms
are driven by epigenetic alterations, including DNA methylation.

Distinguishing DNA methylation events that play a causativerole
in cancer evolution from innocuous passenger events is not trivial®’.
Recentalgorithms for driver gene discovery incorporate biological fea-
tures known to affect the rate of stochastic DNA methylation changes
and have identified genes known to affect progression-free survival'® .
Although these approaches have been useful for identifying candidate
DNA methylation cancer genes, they often do not incorporate the
selection of hypermethylation events with functionalimpact and may
inadvertently alsoidentify neutral passengers. Analogous approaches

to theimplementation of the nonsynonymous-to-synonymous muta-
tions ratio (dN/dS) in evolutionary genetics with covariates for the
identification of single-nucleotide variant (SNV) driver events' may
enable genuine DNA methylation drivers to be distinguished from
neutral passenger events.

Many approaches have been developed for methylome profiling,
most of which require either array hybridization or sequencing
of bisulfite-converted DNA™', However, the varying purities of bulk
solid tumor samples and the high degree of copy number (CN)
instability associated with lung cancer, confound tumor methyla-
tion rates”. To overcome these limitations, we recently developed
Copy number-Aware Methylation Deconvolution Analysis of Cancers
(CAMDAC), which models the pure tumor methylation rate as the dif-
ference between the methylation rate in the bulk tumor and normal
contaminants weighted for tumor CN and purity”. We applied CAMDAC
to the multi-region tumor sampling and longitudinal lung TRAcking
Cancer Evolution through therapy/Rx (TRACERXx) study. Through an
integrative analysis with gene expressionand whole-exome sequencing
(WES), we uncover the interplay between DNA hypermethylation and
genomic alterations in NSCLC drawing on the concept of allostery'.

e-mail: pvanloo@mdanderson.org; n.kanu@ucl.ac.uk

Nature Genetics | Volume 57 | September 2025 | 2226-2237

2226


http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-025-02307-x
http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-025-02307-x&domain=pdf
mailto:pvanloo@mdanderson.org
mailto:n.kanu@ucl.ac.uk

Article

https://doi.org/10.1038/s41588-025-02307-x

Results

The cancer cell-specific DNA methylation landscape of NSCLC
To elucidate the roles of DNA methylation during NSCLC evolution,
we performed reduced representation bisulfite sequencing (RRBS)
on 217 tumor regions and 59 paired normal adjacent tissues (NATs)
from 59 patients in the TRACERx cohort (Supplementary Fig. 1a-d).

Unsupervised hierarchical clustering using the 5,000 most
variable CpGs based on CAMDAC methylation rates revealed three
main groups of samples, largely corresponding to NAT, LUAD and
LUSC (bootstrap probability value 98%; cluster stability values 0.98,
0.91 and 0.94, respectively; Fig. 1a and Methods), with most tumor
regions clustering according to patient. Three clusters of CpG sites
with distinct profiles were observed, regardless of the number of
CpGs analyzed (Fowlkes—-Mallows index > 0.96) (Fig. 1a). These pro-
files were not apparent using nondeconvolved bulk methylomes
(Extended Data Fig. 1a). Cluster 1 was enriched in two subclusters of
promoter CpGs found unmethylated in normal tissue and methylated
intumor samples, independent of histology (Fig. 1a and Extended Data
Fig.1b). This cluster was enriched in genes involved in differentiation
and developmental processes (for example, SOXI and SOX9, HOXD3
and HOXDS, and TBX4) and genes implicated as tumor suppressors
(for example, SOXI and SOX17, TSHZ3, WTI-AS, and FGF14) (Extended
Data Fig. 1c and Supplementary Tables 1 and 2). Clusters 2 and 3
captured CpG sites hypomethylated in the tumor. While cluster 2
was enriched in LUSC-specific hypomethylation, cluster 3 exhibited
cohort-wide hypomethylation, with asmall subset of CpGs selectively
hypomethylated in LUAD (Fig. 1a and Supplementary Tables 3 and 4).
Upon consideringall promoter CpGsin principal component analyses,
histological subtype was the sole clinical variable distinguishing
tumors (Supplementary Fig. 2).

To further characterize the tumor methylome, we next identified
differentially methylated positions (DMPs) between tumor and normal
samples using cancer-cell-specific methylation rates. To establish that
bulk NAT serves as areliable reference regardless of tumor subtype,
we freshly isolated alveolar type 2 (AT2) cells, the cell of origin of
LUAD, and basal cells (BSC), the cell of origin of LUSC, from bulk NAT
from five TRACERx samples (Extended Data Fig. 2a); no significant
differences were found in the methylation  values compared to bulk
NAT (Extended Data Fig. 2b).

Proceeding with bulk patient-matched NAT, the median number
of DMPs per sample varied between 48,080 and 362,775 (Fig. 1b); inthe
coveragerange of our samples, it was robust to the number of reads per
chromosomal copy”, purity and ploidy. Additionally, as expected, we
observeda correlation with the average breadth of coverage, represent-
ingthenumber of reads covered in the tumor-normal pairs (Extended
DataFig.1d). At the tumor level, a high variability in the proportion of
DMPs shared ubiquitously by all regions was apparent (ranging from
0.09t00.78), which was not affected by the number of regions sampled
per tumor (Extended Data Fig. 1e). Inaddition, the methylation status
of DMPs showed high variability between tumors but limited variability
betweenregions from the same tumor (Fig. 1b).

To further quantify the extent of DNA methylation heterogeneity,
we computed intratumoral methylation distances (ITMDs) based on
the pairwise Pearson distance between methylation rates at all CpGs
across all sampled regions and across different tumors (Methods).
TheITMD scorewas robust to thenumber of regions sampled (Extended
DataFig.1f) and exhibited no association with purity after deconvolu-
tionwith CAMDAC (Extended DataFig.1g). Compared to normal sam-
ples, tumors exhibited a25-fold increase in inter-patient heterogeneity,
indicating aberrant DNA methylation dynamics in tumors (Fig. 1c).In
addition, inter-patient variability was higher than intra-patient variabil-
ity acrossboth histological subtypes (Fig. 1c). Intergenic and enhancer
regions showed the highest variability, while promoter regions had
significantly lower methylation heterogeneity, suggesting tighter
regulation in promoter regions (Extended Data Fig. 1h).

Given the extensive genomic and transcriptomic intratumor
heterogeneity (ITH) captured by TRACERx*?, we next explored the
interplay between epigenetic and genetic heterogeneity. The ITMD
scores weakly correlated with mutation heterogeneity (SNV-ITH: LUAD,
R=0.13, P=0.58; LUSC, R=0.41, P=0.13; Fig. 1d) and significantly
correlated with somatic CN alteration (SCNA) ITH (SCNA-ITH) (LUAD,
R=0.47,P=0.039;LUSC,R=0.66,P=0.007) and intratumoral expres-
siondistance (ITED) (LUAD,R =0.54,P=0.03; LUSC,R =0.59,P=0.034;
Fig. 1d and Methods). As both CN loss and DNA hypermethylation
exhibit converging roles on gene expression, we further explored the
extent and impact of these alterations during tumor evolution.

The impact of DNA methylation on driver gene expression

To explore the impact of DNA methylation on gene expression, we
assessed differentially methylated regions (DMRs)?° in tumor versus
NAT, identified by separately binning promoter or enhancer CpGs
into neighborhoods (Methods). Unlike the significant reduction in
expression of canonical NSCLC cancer genes associated with CN loss,
most oncogenes and tumor suppressor genes (TSGs) did not exhibit
promoter hypermethylation-dependent reductions in gene expres-
sion (Fig. 2a and Extended Data Fig. 3a), which is in line with previous
reports'®. Compared to enhancers, DNA methylation of promoters
affected the expression of more TSGs (Supplementary Fig. 3). The
relative infrequency of promoter hypermethylation-dependent reduc-
tionsin TSG gene expression (LUAD, 7 of 68 genes; LUSC, 9 of 68 genes),
together with the positive correlation between ITMD and SCNA-ITH,
led usto hypothesize that amoreintricate interplay may exist between
SCNAs and differentially methylated promoter regions during tumor
evolution.

To study the mechanisms of convergent evolution affecting
the expression of canonical TSGs, we first distinguished intratumor
parallel evolution, where multiple independent mechanisms affect
alocus across tumor regions, from double hits in the same tumor
region. Among 68 lung cancer canonical TSGs for which we had DNA
methylation and SCNA coverage, 61 of 68 were affected by either CN
loss or hypermethylationin more than one tumor. Furthermore, 19 of
68 TSGs showed evidence of parallel evolution in at least two tumors.
In LUSC, a greater degree of interplay between DNA hypermethyla-
tion and CN loss was evident for TSGs (6.3%) compared to oncogenes
(2.2%) (P=3.09 x107%; chi-squared test; Fig. 2b and Extended Data
Fig.3b). More parallel convergent events affected TSGs (for example,
FAT1, ZMYM2 and EPHA2) in LUSC (4.6%) compared to LUAD tumors
(1.5%) (P=5.06 x107; chi-squared test; Fig. 2b). We next examined
the impact of these concordant alterations on gene expression by
applying a linear effects model to the multi-region samples. We
observed a synergistic effect of CN loss and DNA hypermethylation
(double hits) on the expression of RPL22 and MGA in LUAD and EPHA2
and MGA in LUSC (Extended Data Fig. 4). Taken together, these data
suggest thatin NSCLC, genomic and epigenomic mechanisms canact
in parallel to abrogate TSG function.

As only 24.6% of established genomic TSGs were hypermethyl-
ated in more than one tumor (Fig. 2b), we next sought to identify new
candidate TSGs regulated by DNA hypermethylation. Candidate DNA
methylation drivers were derived using the MethSig algorithm', which
we built on using CAMDAC. To avoid confounded inputs, only the
tumor region with the highest purity per patient was used for this
analysis. Additionally, we applied CAMDAC principles tothe proportion
of discordant read (PDR) estimates to obtain tumor-specific signals
(Methods and Extended Data Fig. 5a-e).

Using this approach, we identified 99 and 118 candidate DNA
methylation cancer genes in LUAD and LUSC, respectively (Fig. 2c,d,
Extended Data Fig. 5f,g and Supplementary Tables 5 and 6). Of the 63
genesidentified in both subtypes, there was a significant enrichment of
genomic TSGs compared to aset of random genes (P= 0.0422; Fisher’s
exact test; Fig. 2e); 12 (including ZNF382, LXN, RASSF1 and CDOI) had
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Fig.1| Global DNA methylation landscape in the TRACERX lung cancer

study. a, Unsupervised hierarchical clustering of the 5,000 most variable CpGs
in 217 tumor regions from 59 patients and 59 matched NAT samples. Yellow,
hypermethylated CpGs; blue, hypomethylated CpGs. Groups correspond to
patient samples and clusters correspond to CpGs. b, The number of DMPs, the
percentage of ubiquitous DMPs (fraction of regions in which the DMP is present)
and the methylation status of the DMPs are illustrated, indicating the degree of
ITH. Samples are stratified according to histological subtypes and arranged
inascending order from left to right based on the number of regions sampled.
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¢, ITMD metric calculated across regions within (intra) and between (inter)
tumors. The box plot shows the median, interquartile range (IQR) (Q1-Q3),
whiskers extending to 1.5 times the IQR and outliers beyond this range (Wilcoxon
rank-sum test).d, Correlations between ITMD score and other heterogeneity
metrics; mutation (SNV-ITH), SCNA-ITH and ITED, depicted from left to right,

for LUAD (top) and LUSC (bottom). The fitted line represents asmoothed trend
estimated using arobust linear regression, with the shaded region indicating the
95% confidence interval.
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been previously reported as TSGs using genomic data alone. MethSig
cancer genes were also enriched in developmental genes (for example,
PAX6, PAX8 and TBX4), suggesting a potential role for DNA methyla-
tion in cell plasticity (Extended Data Fig. 5h,i). LUAD MethSig cancer
genes specifically exhibited a significant enrichment in HOX genes,
which demonstrated increased methylation in samples with reduced
tumor-infiltrating lymphocytes (TILs) (P=0.0065; Mann-Whitney
U-test; Supplementary Fig. 4) as reported previously?.

MethSig cancer genes, identified by selecting a single region per
tumor, were more ubiquitously methylated within tumors compared
to canonical TSGs or a selection of 500 random genes (P=7.70 x107¢
and 5.70 x107¢, respectively; t-test; Fig. 2f). These data suggest that
candidate methylation cancer genes are strongly selected for, or are
relatively early events in tumor evolution. Additionally, MethSig cancer
genes were more strongly downregulated in tumor samples compared
to canonical TSGs or the random selection of genes (P=1.50 x 10 and
2.30 x 10™* respectively; t-test; Fig. 2g). We observed no differences in
the calling of DMRs for MethSig cancer genes when using the isolated
AT2and BSC populations compared to bulk NAT (Supplementary Fig. 5).

We next determined the extent of interplay between DNA methyla-
tion and SCNAs affecting these candidate driver genes. Specifically,
hypermethylation occurring with CN loss was defined as concordant,
whereas hypermethylation occurring with CN gain was defined as
discordant. MethSig cancer genes exhibited a higher proportion of
concordant events than canonical TSGs or the selection of random
genes (P=1.2x10"°and 3.5 x 1073, respectively; t-test), highlighting that
parallelmechanisms might affect the expression of these genes (Fig. 2h).

To compare the convergence between genomic alterations
and DNA methylation events in canonical TSGs versus MethSig
cancer genes, their relative timing was estimated by leveraging the
multi-region nature of the sequencing data. We focused on the 38
MethSig cancer genes for which hypermethylation and CN loss each
occurred in at least one tumor region. For 13 of 34 MethSig cancer
genes, including /ITGA8and CXCLS, we observed ubiquitous DNA hyper-
methylation across all regions together with nonubiquitous (that is,
subclonal) CN loss (84 events of clonal hypermethylation with sub-
clonalloss and 27 events of clonal CN loss with subclonal hypermeth-
ylation), whereas 8 of 20 canonical TSGs, including FATI, exhibited
ubiquitous CN loss with subclonal hypermethylation (28 events of
clonal hypermethylation with subclonal loss and 38 events of clonal
CNloss withsubclonal hypermethylation). These datasuggest that like
the clonal disruption of canonical TSGs, hypermethylation of MethSig
cancer genes may be early eventsin NSCLC, often preceding subclonal
CN loss of the same gene (P =2.84 x 107, chi-squared test; Fig. 2i).

Divergence of DNA methylation and CN alterations

The limited concordance between DNA methylation and genomic
events at canonical TSGs (Fig. 2h) prompted us to explore the preva-
lence of discordant mechanisms of interplay between these alterations.

Co-occurring CN loss and hypomethylation events were more prevalent
in LUSC, affecting TSGs including NCORI (29 of 59 tumor regions),
CDKN2C (28 of 59 tumor regions), CREBBP (26 of 59 tumor regions) and
RPL22 (9 of 59 tumor regions) (Extended Data Fig. 6a). Interestingly,
RPL22 (1p36.3), NCORI (17p12) and CDKN2C (1p32.3) are located in
proximity to known aphidicolin-induced common fragile sites, such as
FRAIA, FRA17 and FRA1B, respectively”>*. We also observed an enrich-
ment of essential genes such as RPS154, CDT1 and MDNI to be under
DNA hypomethylation-dependent dosage compensation in regions
of CNlossin LUSC (Extended Data Fig. 6b).

We next explored the interplay between DNA methylation and
gene expressionatlocithat are amplified (Methods). Genes with higher
expression levels and noincrease in DNA methylation whenamplified
were enrichedinoncogenes (Fig.3a, red dots). Genes with reduced or
equal expression, but withincreased DNA methylation when amplified
may be subject to DNA methylation-dependent dosage compensa-
tion (Fig. 3a, yellow dots). Gene set enrichment analysis revealed that
these dosage-compensated yellow genes were enriched in pathways
related to epithelial-mesenchymal transition, KRAS signaling, immune
pathways (Fig. 3b) and several transmembrane channels in both
LUSC and LUAD (Extended Data Fig. 7a,b).

Focusing on regions with recurrently amplified oncogenes
(Fig. 3c), we hypothesized that DNA hypermethylation could be
part of a mechanism to maintain neighboring co-amplified, but
dosage-sensitive, genes near their basal expression level. We calcu-
lated the average difference in DNA methylation rates at frequently
amplified regions between tumor regions with and without the
amplification (Methods). Oncogenes with expression scaling with
amplification, such as RACI and CDK+4, were less methylated when
amplified (P=1.53 x 107 and 5.63 x 107*, respectively; Mann-Whit-
ney U-test) compared to non-amplified tumor regions. We identi-
fied oncogene-proximal genes under dosage compensation by DNA
methylation associated with amplification of CCNDI in both LUSC
and LUAD and CDK4, KRAS, and GNAS exclusively in LUAD (Extended
DataFig. 7c,d). Dosage-compensated essential genes, such as RPS3,
located in oncogene-proximal regions (for example, CCNDI; Fig. 3c),
were significantly enriched compared to other genomic regions
(P=0.028; chi-squared test). These data suggest a potential interplay
between CN alterations and DNA methylation, whereby changesin CN
attheoncogenelocus could trigger aphenomenon that we have called
an allosteric chromatin activity transition (AlIChAT) affecting the
DNA methylation status of neighboring passengers genes (Fig. 3d).

To investigate AIIChAT, we performed chromatin immunopre-
cipitation followed by sequencing (ChIP-seq) for H3K27me3 to iden-
tify closed chromatin regions, and H3K4me3 for open chromatin in
tumor patient-derived cells (PDCs) from TRACERx tumors (CRUK0977
and CRUKO0557), and a PDC from NAT (CRUK0667). Oncogenes
such as CDKNI1B, FGFRI and JAK2 were co-amplified and associated
with chromatin opening and hypomethylation when the locus was

Fig. 2| Analysis of the impact of DNA methylation on driver gene expression.
a, Impact of promoter DMR status on gene expression for genomic TSGs (left)
and oncogenes (right) for LUAD and LUSC separately. Negative values indicate
decreased expression in samples where the gene promoter is hypermethylated
(yellow); positive values indicate increased expression when the gene promoter
is hypermethylated (blue). *P < 0.05 (¢-test). b, Number of LUAD and LUSC
tumors with CN loss (blue) or promoter hypermethylation (yellow) in genomic
TSGs. Parallel events are defined as promoter hypermethylation and CN loss
occurring indifferent regions of the same tumor (red). Double-hit events

are defined as tumors exhibiting promoter hypermethylation and CNloss in
the same region (green). Other combinations of events, including CN gains,
mutations or promoter hypomethylation and combinations thereof (white),
are shown. The pie chart summarizes the percentage of each type of event for all
genomic TSGs. ¢,d, Manhattan plots illustrating the top MethSig cancer genes
in LUAD (c) and LUSC tumors (d). P= 0.05is indicated by the dashed horizontal

line. e, Venn diagram showing the overlap between MethSig cancer genes and
canonical genomic TSGs. f, Using multi-region DNA methylation data, the
fraction of ubiquitous DNA hypermethylation of all MethSig cancer genes, the
random set of genes and canonical TSGs, are reported (¢-test). g, Relationship
between the expression in tumor versus normal tissue for the MethSig cancer
genes, for the random set of genes and for canonical TSGs (¢-test). h, Percentage
of regions exhibiting concordant alterations for both DNA hypermethylation
and SCNAs in MethSig cancer genes, in the random set of genes and in canonical
TSGs. Concordant events include DNA hypermethylation and CN loss, or
hypomethylation with CN gain and amplification (¢t-test). The box plot shows the
median, IQR (Q1-Q3), the whiskers extending to 1.5 times the IQR and outliers
beyond this range. i, Number of tumors with ubiquitous/nonubiquitous DNA
hypermethylation and CN loss events in MethSig cancer genes and canonical
TSGs, used to determine the relative timing of the co-occurrence of these
alterations in NSCLC.
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amplified compared to when it was not. Additionally, we found that
essential passenger genes, including NOP2, DCTN6 and FOXD4, were
associated with closed chromatin and increased DNA methylation
at the same respective loci when amplified compared to when not
amplified in tumor PDCs compared to normal PDCs (Supplemen-
tary Table 7). We also observed AIIChAT at the locus of the MethSig
cancer gene TMTCI after co-amplification with the KRAS oncogene
in both tumor PDCs, along with concomitant changes in promoter
methylation (Fig. 3e). In TRACERX tumor tissues (Fig. 3c), we observed
evidence for methylation-dependent dosage compensationin LRRC34
when co-amplified with the PI3KCA oncogene in both tumor PDCs
(Supplementary Table 7). Finally, using 137 samples from five tissue
types from the EpiATLAS public dataset®, we observed co-amplification
of the essential gene SMC4 with the oncogene MECOM, associated
with recruitment of the closed H3K27me3 mark around SMC4 and
its concomitant hypermethylation. Taken together, these data
further support a role for AIIChAT in the regulation of essential
genes during tumor evolution.

Mg/M, stratifies genes under selection by DNA methylation
The enrichment of hypermethylated essential genes neighboring
oncogenes thatscale with amplification prompted usto closely evaluate
theimpact of DNA hypermethylation on gene expression. We derived a
new metric to identify genes subject to cancer-associated disruption
of gene expression. My/M, assigns genes by determining the ratio of
regulatory hypermethylated DMPs over nonregulatory hypermethyl-
ated DMPs located in gene promoter regions (Fig. 4a, Supplementary
Table 8 and Methods), analogous to dN/dS in protein-coding genes.
For most genes, M/M,is approximately1(Fig.4b and Supplementary
Table 8). Like dN/dS, we hypothesize that this ratio may provide insights
into the nature and direction of selection. Specifically, an M/My ratio
greater than1(false discovery rate (FDR) < 0.05) suggests preferential
hypermethylation of regulatory DMPs, while Mp/My ratios smaller than
1(FDR < 0.05) suggest enrichment of hypermethylation at nonregula-
tory DMPs that do not affect expression.

We observed no relationship between the number of CpGs
studied and the My/My ratio, ensuring that the M/My metricis robust
to promoter CpG content (Pearson’s R=-0.025 for LUAD and
R=-0.085 for LUSC; Extended Data Fig. 8a). We next compared the
expression level of genes with Mp/Myratios greater than1versus those
with ratios smaller than 1in tumors compared to matched NATs.
As expected, genes with an Mp/M, greater than 1 exhibited a signifi-
cantly stronger downregulation of expressionin the tumor compared
to genes with an My/My smaller than 1, observed in both LUAD and
LUSC (P=3.0 x102and P=2.0 x107*, respectively; Extended Data
Fig. 8b,c). Importantly, this effect was consistently observed in the
LUAD and LUSC datasets from The Cancer Genome Atlas (TCGA)
(P=1.0x10™and P=4.9 x 1072, respectively; Extended Data Fig. 8b,c).

Consistently, essential genes exhibited significantly lower My/My values
compared to arandom set of genes (¢-test, P=0.028; Extended Data
Fig. 8d), suggesting selection against DNA methylation-dependent
reduced expression for essential genes during tumor evolution.

To validate the My/My metric, we performed RNA-sequencing
(RNA-seq) and RRBS on an independent cohort of 17 TRACERx LUAD
samples from ten patients and matched NATs. DMP assignments in
the test cohort were maintained in the validation cohort (differential
expressionin hypermethylated versus non-hypermethylated samplesin
apaired t-test; P< 2.2 x 10" for regulatory DMPs; Extended DataFig. 8e)
withatrue positive rate of 84%, a true negative rate of 80%, aspecificity
of 83.3% and sensitivity of 80.7% (chi-squared P < 1.07 x 10 %%; Extended
Data Fig. 8f). Furthermore, we observed a significant correlation
between the My/My ratio for each gene between the test and validation
cohorts (Spearman’srho = 0.603, P< 2.2 x107%; Extended Data Fig. 8g).

Cancer-related MethSig genes disrupted by DNA methylation
MethSig cancer genes demonstrated a broad range of My/Myratios in
LUAD and LUSC (Fig. 4b, yellow). We hypothesize that, of these candi-
date methylation drivers, those with a strong correlation between
epimutations and gene expression are more likely to be under posi-
tive selection. Furthermore, despite exhibiting M/M, ratios smaller
or greater than 1, several MethSig cancer genes were alternatively
under positive selection for deleterious variants, as defined by their
higher dN/dS ratios (Supplementary Fig. 6a).

We evaluated whether applying My/M, to MethSig cancer
genes could further stratify this functionally diverse pool of DNA
methylation cancer genes. In LUAD, MethSig cancer genes with an
Mg/My greater than 1, including the HOX genes PAX6 and ITGAS, were
enriched for cancer progression pathways, such as motility, tissue
development and morphogenesis, and transcription regulation. On
the other hand, MethSig cancer genes with an My/M, smaller than 1
revealed enrichment of only transcriptional regulatory genes and
were enriched atamplified loci (Fig. 4c and Supplementary Fig. 6b,c).
In the bulk analyses, genes with an My/M greater than 1 were
enrichedinstromal signatures; however, this enrichment was no longer
observed after CAMDAC-based purification (Supplementary Fig. 6d).
Leveraging a small interfering RNA viability screen in the LUAD PC9
cell line”, we observed that depletion of the MethSig cancer genes
ITAG8 and SLC7A15 with an My/M, greater than1exhibited the highest
proliferation rates among all MethSig LUAD genes.

Tofurtherinvestigate theimpact of MethSig cancer genes withan
My/M, greater than1, we leveraged methylation values and their associ-
ated gene expression levels in the TRACERx RRBS cohort to dichoto-
mize the larger TRACERXx RNA-seq cohort (Methods). This approach
allowed usto assess whether stratifying MethSig cancer genes accord-
ing to My/M, status could reveal differences in disease-free survival
(DFS). Unlike the MethSig cancer genes with an My/M, smaller than1,

Fig. 3 | Divergentinterplay between DNA methylation and CN alterations.

a, Difference in median promoter methylation for genes when amplified versus
when notamplified (y axis). A value greater than 0.2 indicates increased DNA
methylation when amplified. The x axis indicates the ratio of gene expression
between amplified versus non-amplified regions. Positive values indicate

gene expression scales with CN amplification. Genes highlighted yellow are
potentially under DNA-methylation-dependent dosage compensation, as their
methylation, but not their expression, scales with CN. Genes with expression
levels that scale with CN but do not scale with DNA methylation are highlighted
red. b, Hallmarks in cancer functional enrichment of genes potentially under
DNA-methylation-dependent dosage compensation. The bar lengths represent
the Pvalue; the proportion of overlap between the subset of genes (k) and the
gene sets defining the hallmarks (K) are indicated by ared dot. ¢, Gene promoter
methylation difference between samples with and without amplification
located within 20 Mb of amplified oncogenes with expression levels that scale
with CN, which arelabeled red (HUGO Gene Nomenclature Committee name).

Essential genes extracted from the Achilles project dataset are labeled yellow
(HUGO Gene Nomenclature Committee name). d, Schematicillustrating the
potential cooperation between CN alterations and DNA methylation around
oncogenes. CN changes at the oncogene locus could trigger a focal AIIChAT,
affecting co-amplified essential and passenger genes. e, Validation of AIIChAT on
the gene pair TMTCI as a passenger of the amplified oncogene KRAS, in primary
cell cultures derived from patient tumors CRUK0977 and CRUKO577, and froma
non-tumor-tissue-derived primary cell culture from patient CRUK0667. The CN
for eachlocusisindicated numerically. The repressive histone mark H3K27me3
toidentify closed chromatin (red), and the active histone mark H3K4me3 to
identify open chromatin H3K4me3 (green), were extracted from the Integrative
Genomics Viewer and illustrated using BioRender. The intensity of both histone
marks was normalized according to the CN. Assessment of DNA methylation
status in the promoter region of each gene was performed using the non-tumor
PDC as a control for the two tumor PDCs.
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three of the 52 MethSig cancer genes with an My/M, greater than Finally, we assessed which genomic alterationsin TRACERx tumors
1(CYP4F2, MSC and EIF5A2) were associated with worse survival in  co-occurred with these candidate DNA methylation driver events.
a multivariate Cox analysis (P=0.022 for CYP4F2, P=0.02 for MSC In LUAD, driver mutations in STK11 and KDMS5C resided in tumor
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MethSig cancer genes with an My/M, greater than 1 (Fig. 4e). In LUSC,
a predominance of tumor regions with driver mutations in ATR
and KMT2D was observed along with predicted hypermethylation
of PITX2 or VIRP2, MethSig cancer genes with an My/My greater than 1
(Supplementary Fig. 7). Expansion of our dataset to a cohort of

DFS

Step 1(DMP level) Step 2 (DMP level)

Step 3 (gene level)

. O O Number of hypermethylated QP
[ I ) @ and regulatory DMPs @ 4
5 P<0.05 5§, P>0.05 5§, P<0.05 = =
. |® O [ ] 2 2 2 Total number of regulatory DMPs @®-0-0 7
c 4 4 L M,
ioee o : m ¢ : . e
£ e * e e * Number of hypermethylated ? C? My
° ° ®
e O : £ e PRI @® ® s
@ 6 0 3 8 8 - -
) ® ® e ® 0 ® 0 Total number of nonregulatory DMPs @+ 0@ -+ @+ [ JX©) 14
omaer 3 @ ® ® ®
CpG
P g y y y o ovp @ oMP (@ Non-DMP
DMP DMP DMP
C
Calculable M,/M, genes for both subtypes
Mg/My > 1 LUAD Mq/My, > 1 LUAD and LUSC =
) Mg/My < 1LUAD Mg/My <1LUAD and LUSC
=] g‘er:zss'g LUAD Mg/My > 1LUSC Mg/My > 1LUAD and <1LUsC B o5 &
Oher Mg/My <1LUSC I Mq/My <1LUAD and > 1LUSC Qeo‘
O scs Nonsignificant M/M, LUAD and LUSC 1 X O SR
[ Oncogenes R (}Qv\o SRORaNe
X &
««%%w%o%%@‘i&%« e
NRN1IL
ZNF549 log Mq/My
AQP1 2
TMEM204
EIF5A2 1
- 2ZNF300
o % COLECT1 I 0
o) DMGDH
3 ZFP82
= IPR2 -1
a PHYHIPL
2 NNM1 2
KCNK10
=) SALL3
Z ERN2 Gene present
s " Ahr329 in GO category
= o GS7
3 S COX7AT Yes
= 5 K. W
POUGF2 No
2 PUS3
z PABPC3
£ o
N ] SYTio
" IFFOT
= HOXB4
= SLC7A14
= CIDEB
i
BARHI
12 0.8 0.4 o 2 E] o 1 2 ZD8F2
ST8SIA6
Density SYT14
(calculable M /M, genes) o 203
: g s
S % 03 G
2 0.
o R z o,
- <
N H.(0-R)+1 = HOXAY
n-Y%R+1 > HOXAS
Where for i DMP, 5 08 INE3S
= - PRKCB
- 1, DMP is hypermethylated, 3 ” Fil
H= g, othems"e‘: Y o MethSig LUSC g PREXT
and 8 0.9 L1 others g ! A%ﬁgzrszo
. ES TSGs 13 cypZict
. ’ 5] K HSR
e 2 = B N
areits v # i
and regulatory statuses Mq/My LUSC (log_) 2 LGAP
0’ = TPﬁB
EW kR
KCNH4
Low expression Low expression Lowerprossion  ©  ZNITH | emmmgy o3 BRCAD. <ATR
CYP4F2  High expression — MSC High expression — EIF5A2 High expression — SNFose Tm’ 'RASAT
1.00 1.00 1.00 ZNF382 | emme o
ZNF329 n“m:’ weloz  arp2
0.75 0.75 0.75 ZNF300 |
Zgg,gg TR& s V.TPSS 1 P KMT2C
0.50 050 0.50 20ar2 | ARDZNFTS AMS2
VIPR2 | ST ke _o KMgACSM
0.25 0.25 0.25 VAMPS | BARbagmpkl RAsifthu
TCERGIL | . amaes &
o| P=0.022 o| P=0.02 o| P=o0.0m T8X20 AM'W&M T oFOXA1
SYT14 | NpmmeRASAT o
o 500 1000 1,500 2,000 [ 500 1,000 1,500 2,000 o 500 1,000 1500 2,000 SPAG6 ATRITCE7(D RASA1
RGS7 | " empup o
o2 53 42 a1 1 o2 53 a2 a1 1 2 53 4 a1 1 PUS3 | amtG SPTCHI F—
High (95 78 62 33 4 95 78 62 33 4 95 78 62 33 4 p’:ﬁ%ﬂ Tcm-ﬁ;kh;n e
=
o 500 1,000 1,500 2,000 [ 500 1,000 1500 2,000 o 500 1,000 1500 2,000 g PCDHGB6 QARIDQ SCHEK2
Time (days) Time (days) Time (days) & ”f,‘é’;ﬁﬁ? SETD? CHEK2 :
o Ll . BRCAT
o PAXG | s e SRASAT
@ PAX5 | emmesmmpgyp)
2 NRNIL| mmms  Sppcn
5 MS —en
IFFOT | rimpe ® .
E Hoxpo [KMIZD.e = ARID2 BRCA2
A HOXDS| wmmme o ses
Z  HOXDI3| emms o o/Tho
= OXCO| emmsss « s FOXAI
> HOXG4 o o RASAT
= CDigl2aans KMT2A
HOXB8 o
HOXA9 | X1 oRASAT
FBXO41 @ARHGAP35
ERN2 .
Eirona TMRM RASAT SETD2
DSC3 - _CHEK2
DPP6 AMRBT o
DMGDH Al .
CNNMT | e FAT1 ATR
CIDEB [py wse ¢ om oo .
cmgg:fa ATAS RASAT
s | CHERZ“FOxa1 /. Foxat
BARHLZ | aOXAL RASAT
BANKI . .
b1 | Aol <ARIDIA BRCA2 ARIDIA
ALOXI5B | . smem.iSBace o . .
AbAM32 (CREBBE 0. masa1
ACTN2 | _empewpms2e
o 10 20 30

OR

>0.05
<0.05

preinvasive lesions’ revealed that although the VIPR2and ZNF714 genes
were already methylated in preinvasive lesions, co-occurrence with
driver mutationsin CDKN2A and STK11, respectively, was only evident
in LUAD (P=2.5x10"and P=1.9 x10"%; Fisher’s exact test; Fig. 4€).
Notably, these mutations were relatively infrequentin the preinvasive
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Fig. 4 |Identification of cancer-related disruption events by applying My/My
to MethSig. a, Schematic of the development of the My/My metric. (1) The DMP
status is assigned for each CpG in the gene promoter across the cohort.

(2) Each DMPis characterized as regulatory or nonregulatory based on whether
hypermethylation of the CpG reduces gene expression of the cognate gene
across the cohort. (3) Mg and My values for each gene are calculated based on the
aggregated DNA methylation status of regulatory and nonregulatory CpGs in
eachgene promoter across the entire cohort. b, log-log scatter plot displaying
the common calculable My/My ratios for each gene in LUAD (y axis) and LUSC
(xaxis). On the density plot, subtype-specific calculable My/My ratios according
to genes are indicated. The formula for determining the My/My ratio for

eachgeneisillustrated in the lower left corner. The colorsin the log-log scatter
plotrepresent the direction of deviation of My/M, from1for each subtype and
its significance. ¢, Functional enrichment analysis with Gene Ontology (GO)
terms for MethSig genes with Mp/My >1(top) and My/My <1 (bottom).

d, Kaplan-Meier curves based on the expression of the MethSig cancer genes
with an Mg/My >1(CYP4F2, MSC and EIF5A2) associated with worse DFSin the
TRACERX cohort (multivariate Cox analysis). e, Odds ratio (OR) highlighting
the co-occurrence of promoter DNA hypermethylation events for M/My >1
MethSig cancer genes and driver mutations in canonical TSGs in LUAD.
Significant co-occurrences are labeled.

cohort. These results suggest that methylation of these genes withan
My/Mygreater than1may occur early in tumorigenesis and could enable
prediction of subsequent genomic trajectories.

Discussion

To capture the complexinterplay between the genome and epigenome
inNSCLC, we leveraged the high sequencing depth provided by RRBS
on 217 tumor samples from 59 lung TRACERX patients and applied
the CAMDAC deconvolution tool" to enrich cancer-cell-specific
methylomes. Unsupervised hierarchical clustering of the most variable
CpGssitesrevealed aclear separation between histological subtypes,
highlighting the benefit of the tumor deconvolution strategy.

We developed ITMD, an approach to evaluate the degree of intra-
tumoral DNA methylation heterogeneity. CAMDAC ITMD scores
were not affected by sampling bias, sequencing coverage, CN or
tumor purity, probably because they are not dependent on methyla-
tion signals from different cell types within the tumor, unlike other
approaches®?. Second, while other ITH studies relied on entropy® 2,
we observed heterogeneity of CpG sites in multiple regions of
the same tumor. Finally, unlike similar ITH scores that use SNVs
and CNs for functional validation®, we additionally encompassed
the impact of methylation heterogeneity on the heterogeneity of
global gene expression.

Throughintegrating DNA methylation and CN data, we identified
several canonical TSGs, such as STK11 and CDKN1B, which were most
often targeted by a single alteration, in line with previous reports of
their haploinsufficiency®*.,

Using CAMDAC cancer-cell-specific methylomes as input for
MethSig, we observed significant enrichment of hypermethylated
candidate NSCLC cancer genes known to encode differentiation and
developmental transcription factors, suchas PCDHGA3and EVX1,andin
ZNF-154, which may affect plasticity®. These MethSig events probably
reflect histology-specific early DNA methylation events. Early inactiva-
tion of developmental genes may facilitate transformation through
mechanisms such as preventing or reverting lineage differentiation
and locking cells into a perpetuated stem-cell-like state, increasing
their propensity to become transformed by additional oncogenic
events®. Our findings further emphasize the potential ofincorporating
epigenetic modulators into combination therapy.

To assess the extent of positive selection of DNA hypermethyla-
tionatgene expression regulatory versus nonregulatory CpGsin gene
promoters, we developed My/M,, ametric that relies on the expectation
that expression-associated DMPs are more likely to be under positive
selection. We hypothesize that genes with an My/My greater than1 may
confer aselective advantage.

To date, dosage compensation studies have primarily focused
on epigenetic regulation of the X chromosome, such as methylation-
dependent dosage compensation and downregulation of SOX1,
which is known to influence patient prognosis in breast cancer***.
Dosage compensation by hypermethylation of genes amplified by
virtue of their location proximal to an oncogene was enriched in essen-
tial genes. Many of these essential genes encode proteins that are
part of complexes and are probably under selective pressure to

maintain complex stoichiometry. This potential cooperationbetween
genetic and epigenetic events may parallel the concept of allostery,
which was introduced over a century ago to describe the pheno-
menon whereby one molecule affects the binding affinity of another
molecule to a protein'®. The process involves one or more coopera-
tive changes at sites that are spatially separated from the target site,
triggering an allosteric activity transition in the molecule. Extending
the same concept to chromatin, we hypothesize that cooperation
between local changesin CN and DNA methylationaround one gene can
trigger an in-cis focal AIIChAT affecting a nearby gene, as exemplified
by the essential gene DDX42, located 9 Mb from the oncogene SOX9
and the TMTCI gene with an My/My smaller than 1 located 4 Mb
upstream of KRAS.

Our study is not without limitations. The My/My metric assumes
that hypermethylated DMPs associated with reduced expression are
regulatory, disregarding other confounding factors, such as theimpact
of SNVsand CN loss. My/Myis alsorestricted to regulatory CpGs proxi-
mal to the transcription start site (TSS) regions and neglects other
potential regulatory sites. In addition, 1.3% of promoter CpG sites,
particularly associated with chromatin modifiers, exhibit a strong
positive correlation between DNA methylation and gene expression®®,
which is not considered in our methods. Despite not observing a
general correlation between the dN/dS and the My/My ratio within
canonical TSGs, cis-regulatory mutations in these promoter regions
may be associated with changes in DNA methylation at the same site,
which could alsointerfere with our metric. Despite these assumptions,
our data suggest that an early DNA methylation event may commit
the primary tumor to particular genomic trajectories, as suggested
for MGMT hypermethylation preceding KRAS activating mutations
in colorectal cancer”. Furthermore, the incorporation of epigenetic
modifications into cancer evolution trajectories may improve
our understanding of the intricate relationship between genetic and
epigenetic alterations and facilitate stratification of patients with
NSCLC for appropriate therapeutic regimens.
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Methods

Patient selection for RRBS

The TRACERX study (ClinicalTrials.gov identifier: NCT01888601) is
a prospective observational cohort study that aims to transform our
understanding of NSCLC. It was approved by anindependent research
ethics committee, the National Research Ethics Service Committee
London-Camden and Islington, with sponsor’s approval of the study
by University College London (UCL) (research ethics committee refer-
ence no. 13/L0O/1546, protocol no. UCL/12/0279, Integrated Research
Approval System project ID:138871). The design has been approved by
anindependent research ethics committee (no. 13/L0/1546). Written
informed consent for entry into the TRACERX study was mandatory
and obtained from every patient. All patients were assigned a study
ID number known to the patient. We performed RRBS on 217 tumor
regions from 59 patients (32 with LUAD, 20 with LUSC and seven with
other NSCLC subtypes) all with matched NATs. Among the 59 patients,
31werestagel, 14 stage Il and 14 stage l1l. Forty-seven were ex-smokers,
six current smokers and six never-smokers (Supplementary Fig. 1b).
RNA-seq data were leveraged from 43 patients (129 regions) and WES
data from 45 patients (159 regions) from the TRACERXx cohort (Sup-
plementary Fig.1a).

Dual DNA/RNA extraction

Sequential extraction of DNA and RNA was performed from the same
sample using the AllPrep DNA/RNA Mini Kit (QIAGEN). Briefly, frozen
samples were transferred onto cold Petri dishes on dry ice and were
dissected into 20-30 mg pieces. Immediately before extraction, the
freshly dissected tissue was transferred directly into homogenization
tubes containing RLT plus lysis buffer. Tissue homogenization was
carried out using a TissueRuptor Il probe or using abead method and
by passing the lysate through a QlAshredder column (QIAGEN). The
DNA extracted was eluted with 200 pl of buffer EB (no EDTA) and RNA
was eluted with200 pl of nuclease-free water and stored immediately
at -80 °C. The DNA and RNA samples were quantified using a Qubit
3.0 Fluorometer (Thermo Fisher Scientific) and TapeStation system
(Agilent Technologies), respectively. The integrity of DNA/RNA was
assessed using the TapeStation system.

RRBS
DNA methylation profiles were obtained using RRBS* with the NuGEN
Ovation RRBS Methyl-Seq System, which incorporates unique molecu-
lar identifiers facilitating single-molecule analysis and precise meth-
ylation estimates'®. The choice of the method for DNA methylation
analysis of the TRACERx cohort was driven by (1) the available sample
quantity, (2) cost-efficiency, accuracy, reproducibility and feature
coverage of the available methods'® and (3) the required depth of cov-
erage. An inherent limitation of the targeted over-whole-methylome
approaches is the reduced coverage of the non-CpG-rich regulatory
regions (for example ~25% of FANTOMS enhancers for RRBS); however,
considering the trade-offs and sample and coverage constraints, RRBS
was selected as the method of choice. Additionally, RRBS covers 90.02%
of promoters with CpGs, making it the optimal method for studying the
impact of DNA methylation on the regulation of protein-coding genes.

RRBS sequencing libraries were created by enzymatically digest-
ing 100 ng of genomic DNA using Mspl, which recognizes 5’-CCGG-
3’ sequences and cleaves phosphodiester bonds upstream of CpG
dinucleotides, leaving a 2-bp overhang suitable for adapter ligation.
Bisulfite conversion was performed using the QIAGEN’s EpiTect Fast
DNA Bisulfite Kit. Agencourt RNAClean XP magnetic beads were used
to purify the converted libraries amplified using PCR. Purified libraries
were quantified using the Qubit dsDNA HS Assay Kit (Invitrogen) and
quality was evaluated using the Agilent Bioanalyzer High Sensitivity
DNA Assay (Agilent Technologies).

FastQC v.0.11.2 (Babraham Institute, https://www.babraham.
ac.uk/) was used for quality control. Adapter sequences and diversity

bases were trimmed using TrimGalore v.0.6.6 and the NuGEN’s trim-
RRBSdiversityAdaptCustomers.py customscript (https://github.com/
nugentechnologies/NuMetRRBS). Reads were aligned to the UCSC
hg19 reference assembly using Bismark v.0.23.0 and Bowtie v.2-2.4.2
(refs. 39,40); deduplication was carried out using NuDup (https://
github.com/nugentechnologies/nudup). A Nextflow pipeline to per-
form the alignment and quality control is available at https://github.
com/ccastignani/RRBS_DNAmethylation_pipeline.

CN-aware methylation deconvolution of cancers

The CAMDAC method"” was used to obtain cancer-cell-specific methyla-
tionrates from bulk RRBS data evaluating 1.8 M CpGs covered inevery
sampleinthe cohort. Absence of tumor infiltration from matched NATs
was assessed using pathology and transcriptomic analyses and was
used as the normal infiltrate contaminant componentin the tumor.

CAMDAC deconvolution relies on ASCAT.m, amodule that infers
allele-specific CN from RRBS data leveraging the same principles
presented in ref. 41. To improve ASCAT.m CN calling, we performed
multi-sample phasing. In segments with an allelic imbalance in at
least one sample, haplotyping was performed by taking the B allele
frequency of heterozygous single-nucleotide polymorphisms. After
multi-region phasing, ASCAT.m solutions for 67 samples were refitted
manually and 26 samples were excluded because of low quality (low
coverage or low proportion of tumor cells).

At loci with allele-specific methylation, a copy gain or loss can
simultaneously resultinan apparent hypomethylation or hypermeth-
ylationevent, depending on whether the methylated or unmethylated
copyisinvolved. As these allele specifically methylated locirepresent
5% or less of loci and CN events at these regions may have biological
meaning”, we included themin the concordant or discordant counts
accordingly.

Tumor-normal differential methylation analysis
Tumor-normal DMPs were identified based on a statistical test
described in ref. 17. The CAMDAC cancer-cell-specific methylation
rate (m,) and the adjacent normal methylation rate as proxy for the
cell of origin (m,) were used. Significant DMPs were identified using a
P<0.01and a difference threshold of 0.2 between methylation rates
(thatis, m.— m,>0.2). DMRs were called by binning CpGs into neigh-
borhoods andidentifying DMP hotspotsin these clusters. CpGs that fell
within100 bp of one another were grouped together. For each bin, the
number of consecutive DMPs with an effect size above 0.2and P < 0.01
were computed. Genomic bins with four or more consecutive DMPs
and atleast five DMPsin total were deemed DMRs. Methylation status
in gene promoters (defined as starting 2.5 kb upstream and ending
250 bp downstream of the TSS) was used to compute the methylation
status per gene.

Hierarchical clustering

Unsupervised hierarchical clustering of the top 5,000 most variable
CpGs, based on the s.d., was performed using the Ward’s minimum
variance clustering method implemented in the R package Complex-
Heatmap™. Bootstrap hierarchical clustering was performed using
the R package pvclust (https://github.com/shimo-lab/pvclust) with
the hierarchical clustering method set to ‘average’ and using a Pearson
distance matrix*. For each analysis, we ran1,000 bootstrap iterations
andsignificant clusters were taken using alpha > 0.95. Cluster stability
values were estimated using the clusterboot() function fromthe fpcR
package (https://cran.r-project.org/web/packages/fpc/index.html).
The use of 5,000 most variable CpGs in this analysis was representa-
tive of the variationin the cohort. Cluster stability was evaluated using
the Fowlkes-Mallows index, which is used to determine the similar-
ity between two sets of hierarchical clustering. Clusters taken from
the 5,000 most variable CpGs were compared against the clusters
derived from the 10,000, 20,000 and 50,000 most variable CpGs.
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The Fowlkes—Mallows indices of 0.97 for 5,000 versus 10,000, 0.96 for
5,000 versus 20,000, and 0.95for 5,000 versus 50,000 were obtained.

Intratumor heterogeneity metrics

ITED?was calculated as the mean normalized gene expression correla-
tion distance for a given tumor region paired with every other region
from the same tumor’®. Mutational and CN heterogeneity were calcu-
lated based on recently established metrics® ITMDs were computed
based on the pairwise Pearson distance between all CpGs across all
sampled regions per tumor.

Isolation of basal and AT2 cells from normal human tissue
Human cells derived from lobectomy tissue (TRACERx patients
CRUK1231, CRUK1266, CRUK1262, CRUK1320 and CRUK1319) were
isolated as described previously** and either used immediately or
cryopreserved before flow cytometry sorting. Cryopreserved samples
underwent a 1.5-h incubation at 37 °C before staining with antibod-
ies. Cells were blocked with anti-Fc block (Fcl, BD Biosciences) and
stained with the following antibodies using a standard concentra-
tion of 0.25 pg 107¢ cells: CD45-PE (HI30, BD Biosciences); CD235a-PE
(clone HIR2, BD Biosciences); CD140b-PE (clone 28D4, BD Biosciences);
CD31-PE (clone WM59, BD Biosciences); EpCAM-FITC (clone VU-1D9,
STEMCELL Technologies); podoplanin-APC-Cy7 (clone NC-08, Bio-
Legend); CD166-APC (clone eBioALC48, Thermo Fisher Scientific);
CD49f-PE-Cy7 (clone GoH3, Thermo Fisher Scientific); and propid-
ium iodide (BD Biosciences). Samples were sorted on FACSAria cell
sorters (BD Biosciences). Basal cells were defined as propidium™, PE",
EpCAM*, CD166™¢, CD49f" and podoplanin®; AT2 cells were defined
as propidium™, PE", EpCAM*, CD166™¢, CD49f™“ and podoplanin and
collectedinto DNA/RNA shield buffer (Zymo Research). DNA/RNA was
extracted using the Quick-DNA/RNA MagBead kit (cat.no.R2130, Zymo
Research). Afterisolation, RRBS libraries were generated, as described
in the RRBS methodology and DNA/RNA extraction sections, and
RNA-seq was performed®. Validation of the purity of the isolated AT2
and basal cells was performed using previously published signatures
for the LUAD and LUSC origins, respectively®.

DNA methylation driver discovery
MethSig scores' (https://github.com/HengPan2007/MethSig) were
calculated separately for the LUAD and LUSC samples. For each tumor,
only the sample with the highest purity was used. Promoter hypermeth-
ylation was measured using the differentially hypermethylated cyto-
sine ratio (DHcR), defined as the ratio of hypermethylated cytosines
to the total number of profiled CpGs per gene in the promoter region.
DMPs were defined based on the counts of methylated and unmethyl-
ated lociintumor versus normal samples using a chi-squared test and
15% FDR.Inthe normal samples, DHcRratios were estimated by taking
the hypermethylation ratio with respect to the median normal. In the
tumor samples, CAMDAC cancer-cell-specific methylation rates were
used to calculate the tumor hypermethylation ratios. Genes with no
coverage in all samples and no expression in the normal tissue (RSEM
counts < 1) were filtered out for subsequent analyses. The expression
levels of normal tissue were calculated by averaging RSEM counts
across allmatched NAT samples. Promoter regions were defined using
the default threshold of a +2-kb window centered on the RefSeq TSS.
MethSig models hypermethylation stochasticity using the PDR*
inpromoter regions. The PDR measures the proportion of overlapping
reads with discordant hypermethylated or hypomethylated CpGs.
Applying CAMDAC principles, the cancer-cell-specific tumor PDR
(PDR,) can be expressed as a function of the bulk (PDR,) and matched
normal PDR (PDR,), weighted by the normal and tumor CN, respectively
n,and n,, and tumor purity (rho; Extended Data Figure 5a).

PDR, n.p + PDR,, n,(1 - p)

PDR, =
b np +n,(1-p)

or equally

_ PDRy(p + (1= p)) ~ PDR, (1~ p)
np

PDR,

Tovalidate the application of CAMDAC principles to the methyla-
tion stochasticity estimates, we first leveraged SNVs found in genomic
regions with loss of heterozygosity (LOH). In these regions, all reads
bearing an SNV can be assigned to the tumor cells while all wild-
type (WT) reads originate from the normal compartment. A sig-
nificant correlation was observed between the PDR estimated from
CAMDAC and the PDR estimated using SNVs; similarly, a significant
correlation was observed between the PDR of NATs and the PDR calcu-
lated using WT-LOH (R > 0.8, P< 2.2 x10™7) (Extended Data Fig. 5b,c).

To evaluate the use of the patient-matched NATs as arepresenta-
tive proxy for the methylation profile of the normal infiltrating cells,
we used fluorescence-activated cell sorting (FACS) by DNA content to
experimentally separate diploid cell populations from five tumors".
As shown in Extended Data Fig. 5d, good agreement was observed
betweenthe matched NATs and FACS-purified normal PDRs in all sam-
pled regions (R > 0.7). The average PDR per tumor was higher in the
CAMDAC cancer-cell-specific estimates than bulk and normal in the
vast majority of samples (Extended Data Fig. 5e).

The MethSig functions makelnputMatrix, pvalueBetaReg and
pvalueCombine were used to estimate the expected promoter DHcR
of tumor samples using abeta regression model and tested against the
observed ratio across the cohort.

Quantification of dosage compensation by DNA methylation
To assess dosage compensation, we calculated the difference in
median promoter methylation rates between tumor regions with
and without amplification. For instance, a difference of 0.2 between
amplified and non-amplified regions indicates that, on average, the
allele in half of all amplified tumor regions has become at least 20%
more methylated compared to the unamplified regions. In practical
terms, for an amplified total CN of five, this could signify that (1) at
least one additional promoter copy has become fully methylated inall
tumor cells, (2) all copies in all tumor cells have become 20% or more
methylated or (3) an additional 20% or more of cells have all copies
methylated. The mean gene expressioninregions when amplified by
SCNAs was compared to when not amplified, with no significant dif-
ference being classified as buffered; a significantly lower expression
when amplified versus when not amplified was classified as antiscaling
based on t-test analyses.

ChIP-seq

For the ChIP-seq analyses, approximately 107 cells from primary cul-
tures derived from the TRACERx samples (two tumor CRUK0977,
CRUKO0557, and one from NAT CRUKO667 (ref. 47)) were fixed with
1% formaldehyde for 10 min in PBS, quenched with 125 mM glycine,
washed and lysed; chromatin was sonicated using a Bioruptor Pico
(Diagenode), to anaverage size of 200-700 bp. Immunoprecipitation
was performed using 10 pug of chromatin and 2.5 pg of H3K4me3 (cat.
no. C15410003) and H3K27me3 (cat. no. C15410195) antibodies. After
de-crosslinking, the final DNA purification was performed using the
GeneJET PCR Purification Kit (cat. no. KO701, Thermo Fisher Scien-
tific) and quantified using the Qubit dsDNA HS Assay Kit. Sequencing
libraries were constructed using the NEBNext Ultra Il DNA Library Prep
Kit for Illumina (New England Biolabs) and sequenced on the lllumina
platformusing the Nextseq 2000 system, with aloading concentration
of 800 pM and 2% PhiX spike-in, obtaining a total of 500 million reads
on average. The reads from the ChIP-seq data were trimmed using
TrimGalore v.0.6.6 and aligned to the hg38 genome assembly using
Bowtie 2 v.2.4.5. The BAM files were visualized using the interactive
tools SeqMonk v.1.48.1 and Integrative Genomics Viewer v.3.2.4. Sig-
nals from the histone signal marks were illustrated using BioRender
(publication license no.ZG27ZVCQE2).
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Development of the AIIChAT pipeline using the EpiATLAS data
We developed the AlIChAT pipeline using the EpiATLAS dataset* con-
sisting of 137 samples from five tissue types: bone marrow; brain;
colon; kidney; and venous blood. These samples include both tumor
and normaltissues, profiled using whole-genome bisulfite sequencing
(WGBS) for DNA methylation and chromatinimmunoprecipitation for
histone modification marks: the activating H3K4me3 and the repres-
sive H3K27me3.

To identify CN aberrations (CNAs) from DNA methylation data,
we took the WGBS data from 54 International Human Epigenome Con-
sortium tumors aligned with gemBS and applied the Control-FREEC
(v.11.6b) algorithm (window = 50 kb, threshold = 0.8). For a subset
of tumors, Control-FREEC was applied to matched whole-genome
sequencing and high concordance was observed for WGBS CNAs above
50 Mbinsize; therefore, wefiltered out all CNAs below this threshold to
detect large events and arm-level events. We defined gain and loss CNAs
asthose greater than or below the ploidy estimate from Control-FREEC,
respectively.

We evaluated histone mark intensity, considering their coverage
pattern within 2 kb upstream of the TSS of each gene, to determine
chromatin accessibility affected by gain or amplification events. His-
tone marks analyzed included H3K4me3 and H3K27me3. Normalized
histone values were obtained by dividing tumor signal averages by
normal sample averages, followed by a logarithmic transformation.
To identify potential AIIChAT oncogene-passenger gene pairs across
the genome located in the same amplicon, we used a curated list of
235 known oncogenes and genes located within 20 Mb on the same
chromosome, assuming they are under the same CN event.

The pipeline for theidentification of AIChAT at pairs of oncogene
and passenger gene loci within tumor samples involves: (1) DNA methyl-
ation assessment within a gained region. We conducted a one-sided
t-test to assess whether withinagained or amplified region the differen-
tial DNA methylation (tumor versus normal) at the oncogene was lower
than that of the passenger. Conversely, in samples where this region
isnot gained or amplified, we examined whether the differential DNA
methylation levels of oncogenes were equal to or more than that of the
passenger gene; (2) we next assigned chromatin status using histone
mark chromatin immunoprecipitation. In samples with CN gain or
amplification, for H3K4me3, aone-sided ¢-test was used to determine
whether the tumor/normal differential area under the peak at the TSS
of the oncogene was higher than that of the passenger. In samples
without CN gain or amplification, we tested whether the tumor/normal
differential area under the peak at the TSS of the oncogene was equal
to or less than that of the passenger. Alternatively, for H3K27me3, a
one-sided t-test was used to determineif the tumor/normal differential
areaunder the peak at the TSS of the oncogene was lower than that of
the passenger. Insamples without CN gain or amplification, we tested
whether the tumor/normal differential area under the peak at the TSS
of the oncogene was equal to or more than that of the passenger. Loci
passing all these criteria were assigned as exhibiting AIIChAT.

Selective enrichment of gene regulatory CpGs using Mp/My

DNA methylation drivers with potential positive selectionin regulatory
CpGswereidentified using the My/My metric. To obtain the My/My ratio
per gene, the number of hypermethylation eventsin all the DMPs cov-
eredinevery sample andlocated in gene promoters were considered.
Across the cohort, regulatory DMPs were defined as promoter CpGs
with differential hypermethylation in tumor versus NAT, with con-
comitantsignificantly reduced gene expression using the parametric
t-test (P<0.05). Nonregulatory DMPs were classified as differentially
hypermethylated CpGs not resulting in reduced gene expression. At
the genelevel, Mg represents the number of hypermethylated regula-
tory promoter CpGs per total number of regulatory promoter CpGs;
M, represents the number of hypermethylated nonregulatory pro-
moter CpGs per total number of nonregulatory promoter CpGs; each

component was normalized by adding the value of 1as a pseudocount.
Genes without both regulatory and nonregulatory assignments were
deemed non-calculable.

Thetotal number of promoter hypermethylation event counts for
each regulatory and nonregulatory CpG by gene for LUAD and LUSC
aredescribed in Supplementary Table 8. The formula for defining the
My/My ratio per gene was as follows:

S Hi-Ri+1
Mg S Ri+1
My o Hi (1R +1

n-y Ri+l

where for i DMP,i=1,... n, we defineits corresponding hypermethyl-
ated and regulatory statuses as:

{ 1, ifDMP is hypermethylated,

0, otherwise

and

1, ifDMP isregulatory,
T 0, if DMP is nonregulatory

This ratio was calculated for LUAD and LUSC independently
in the TRACERX cohort. Given that DMPs at expression-associated
CpGs are more likely to have functional consequences, Mp/M, ratios
greater than 1imply a selection of regulatory hypermethylation
events, while My/M, ratios smaller than 1imply a selection of non-
regulatory hypermethylation events among the total events on DMPs.
The impact of My/M, status on gene expression was performed inde-
pendently in the TCGA cohort. An OR analysis with FDR-adjusted
Pvalues (P < 0.05, t-test) was applied to identify significantly affected
genes. M/Myhasbeenrepresented onalogarithmicscaleto facilitate
interpretation.

Validation of the M /My metric

Tovalidate the My/My metric for the LUAD samples, RRBS and RNA-seq
were performed as described in the Methods for 17 regions from ten
LUAD tumors, in addition to the adjacent normal tissue. My/My was
calculated as described in the Methods.

To validate whether the DMPs assigned as regulatory and non-
regulatory in the discovery cohort maintained these assignments in
the validation cohort, we first selected those CpGs associated with a
significant expression reduction when hypermethylated compared
to tumor regions where they were not hypermethylated (P < 0.0001,
t-test). These CpGs are referred to as ‘significantly regulatory CpGsin
thediscovery cohort’. Similarly, we selected these CpGsin the discovery
cohortwith asignificantincreaseinexpressionintumor regions when
the CpG is hypermethylated versus when it is not (P < 0.0001, t-test),
assigned ‘significantly nonregulatory CpGsin the discovery cohort’.

Next, we assessed theimpact of hypermethylation of the selected
CpGsinthevalidation cohort. The ‘significantly regulatory CpGs’ from
the discovery cohort were associated with a significant decrease in
expression when the CpG was hypermethylated versus when it was
notinthevalidation cohort (P=2.2 x107%; paired t-test; Extended Data
Figure 8e). Similarly, the ‘significantly nonregulatory CpGs’ from the
discovery cohort were associated with asignificantincrease in expres-
sionwhen the CpG was hypermethylated versus when it wasnotinthe
validation cohort (P=0.0025; paired t-test; Extended Data Figure 8e).

DNA methylation predictions in the TRACERx RNA-seq cohort

To establish a gene expression threshold for the TRACERx RNA-seq
cohort that reflects the methylation status of the functional DMPs
in the TRACERx RRBS cohort, a bootstrapping methodology was
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followed. Samples from the TRACERx RRBS cohort with available
matched RRBS and RNA-seq data were used. To ensure this metric is
robust to multi-region sampling, bootstrapping was performed by
randomly selecting asingle region per tumor and repeating the process
100 times. Through this process, it was possible to evaluate the mean
and 25th, 50th and 75th percentiles of the expression level of genes in
tumors whenthe DMPs were hypermethylated versus when they were
not hypermethylated. Next, these values were extrapolated to the
gene expression in the TRACERX RNA-seq cohort. For each gene, we
dichotomized tumorsbased on whether or noteach promoter DMR was
hypermethylated in the RRBS cohort. Hypermethylation-dependent
‘low’ gene expression was assigned in TRACERx RNA-seq samples when
gene expression was lower than the 75th percentile (Q3) of expres-
sion in the TRACERX RRBS cohort. In contrast, a tumor region was
classified as having ‘high’ gene expression if the level was higher than
the third quartile of expression in the TRACERX RRBS cohort. At the
tumor level, if different tumor regions inthe TRACERx RNA-seq cohort
exhibited different classifications (for example, R1with hypermethyla-
tionand R2 withhypomethylation), the tumor was classified as having
hypermethylation-dependent reduced expression for that gene.

Survival analysis (TRACERX RNA-seq cohort)

DFSwas defined asthe period from the date of registration to the time
of radiological confirmation of the recurrence of the primary tumor
registered for the TRACERX or the time of death by any cause. Dur-
ing the follow-up, three participants with LUAD tumors (CRUKO0512,
CRUKO0428 and CRUKO511) developed a new primary cancer and sub-
sequent recurrence from either the first primary lung cancer or the
new primary cancer diagnosed during the follow-up. These cases were
censored at the time of the diagnosis of new primary cancer for DFS
analysis because of the uncertainty of the origin of the second tumor.
As for the participants who harbored synchronous multiple primary
lung cancers, when associating genomic and pathological data from
the tumors with participant-level clinical information, we used only
data from the tumor of the highest pathological TNM stage. Hazard
ratios (HRs) and Pvalues were calculated using the coxph function of
thesurvival (v.3.4.0) R package, through multivariable Cox regression
analyses, adjusted for age, pathological stage, smoking pack-years and
receipt of adjuvant therapy. Kaplan-Meier plots were generated using
the ggsurvplot function of the survminer (v.0.4.9) R package.

TIL estimation

TIL scores were estimated using pathological evaluation of regional
hematoxylin and eosin-stained slides using established international
guidelines, developed by the International Immuno-Oncology
Biomarker Working Group, as described in previous reports*#,

Statistical information

All statistical tests were performedin R (v3.6.3). No statistical methods
were used to predetermine the sample sizes of this specific cohort (217
tumors from 59 patients); however, the size of the complete TRACERX
cohortatstudy completion (421 patients) was chosen to provide statis-
tical power for detection of a 0.77 HR effect on the outcome by an ITH
variable when split by the median. Tests involving comparisons of dis-
tributions were done using a two-tailed Wilcoxon rank-sum test (wilcox.
test) unless otherwise specified, using paired or unpaired options where
appropriate unless otherwise specified. Testsinvolving the comparison
of groups were done using a two-tailed Fisher’s exact test (fisher.test).
HRs and P values for the survival analyses were calculated using the
survival package. For all statistical tests, the number of data points
included are plotted or annotated in the corresponding figure legend.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The WES, the RNA-seq and RRBS data (in each case from the TRACERx
study) used during this study have been deposited at the European
Genome-phenome Archive (EGA), which is hosted by the European
Bioinformatics Institute and the Centre for Genomic Regulation
under accession nos. EGAS00001006494 (WES), EGAS00001006517
(RNA-seq), EGAS00001006523 (RRBS) and EGASO00001008071 (RBBS
and ChIP-seq) and is under controlled access because of its nature
and commercial licenses. Specifically, data are available through the
CRUK & UCL Cancer Trials Centre (ctc.tracerx@ucl.ac.uk) for academic
noncommercial research purposes only and is subject to review of a
project proposal by the TRACERx data access committee, entering into
an appropriate data access agreement and subject to any applicable
ethical approvals. A response to the request for access is typically
provided within 10 working days after the committee has received the
relevant project proposal and all other required information.

Code availability
Thecodeusedto process the dataand generate the figuresisavailable
at Zenodo (https://zenodo.org/records/14640157)*°.
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Extended Data Fig. 1| Global DNA methylation landscape in the TRACERX
lung cancer study. a) Unsupervised hierarchical clustering of the 5,000 most
variable CpGs in the bulk DNA methylation data. Yellow, hypermethylated
CpGs, blue, hypomethylated CpGs. Groups correspond to patient samples and
clusters correspond to CpGs. b) Genomic features representation of the 5,000
most variable CpGs identified using CAMDAC in the three clusters and in the
background of CpGs in RRBS capture regions ¢) Methylation rate of CpGs in
Clusters 1,2 and 3, corresponding to promoter regions of genes in tumor and
normal, classified by subtype from left to right: LUAD, LUSC, and other subtypes.
Wilcoxontest, P< 0.001 (***), P< 0.01 (*), P< 0.05 (*). d) Correlation between
the number of differentially methylated positions (DMPs) and the number of
reads per chromosomal copy (NRPCC), purity, ploidy, median CpG coverage in
the tumor and normal samples and median -value. Median m.and m, coverage
correspond to the number of reads per CpG in the CAMDAC-deconvolved and
normal data respectively (Pearson’s correlation test). The fitted line represents

asmoothed trend estimated using a robust linear regression (RLM), with

the shaded regionindicating the 95% confidence interval. e) Proportion of
ubiquitous DMPs with respect to the number of regions sampled (ANOVA test).
f) Relationship between ITMD value and the number of regions sampled (ANOVA
test). The boxplot shows the median, interquartile range (Q1-Q3), whiskers
extending to 1.5xIQR, and outliers beyond this range. g) Correlation between the
standard deviation (SD) of purities across regions from the same patient tumor
versus CAMDAC-based methylomes (left) and nondeconvolved bulk methylomes
(right) ITMD (Pearson’s correlation test). The fitted line represents a smoothed
trend estimated using a robust linear regression (RLM), with the shaded region
indicating the 95% confidence interval. h) Relationship between ITMD value and
the genomic feature annotation. ANOVA test, P < 0.001 (***). The boxplot shows
the median, interquartile range (Q1-Q3), whiskers extending to 1.5xIQR, and
outliers beyond this range.
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Extended Data Fig. 2| Analysis and characterization of cells of origin for LUAD
and LUSC compared to normal adjacent tissue. a) Principal component analysis
based on known transcriptomic signatures of cells-of-origin for LUAD (AT2) and
LUSC (BSC). Freshly isolated populations were obtained via flow cytometry from
five normal-adjacent tissue samples from the TRACERx cohort. b) Correlation of
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Extended Data Fig. 5| Identification of candidate DNA methylation cancer
genes using MethsSig. a) Application of CAMDAC principles to PDR. Bulk PDR
(PDR,) canbe described as acombination of the tumor PDR (PDR,) and normal
PDR (PDR,) weighted by the copy number and purity. b and ¢) Normal and
CAMDAC PDRs correlated with PDRs estimated from WT (WT-LOH PDR) and
mutated reads (SNV-LOH PDR) respectively in regions with loss of heterozygosity
(LOH) phased to SNVs. d) Correlation between PDR estimated from purified
diploid cell populations from five tumor samples experimentally separated using

FACS (Methods) vs. matched normal adjacent tissue (NAT). e) Plots showing

the median PDR per tumor for bulk (PDR,), CAMDAC tumor (PDR,) and normal
(PDR,) data. In concordance with CAMDAC principles, CAMDAC PDR (PDR,) levels
are usually higher than the PDR, when the PDR, from adjacent tissue is lower

than the PDR,,. f) and g) Q-Q plot showing top significant MethSig cancer genes in
LUAD and LUSC respectively. hand i) Top enriched Reactome pathways in LUAD
and LUSC respectively.
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Extended DataFig. 7| Divergent interplay between DNA methylationand copy ~ LUAD (right). b) GO terms highlighting the enriched pathways for genes under

number in amplified regions in LUAD and LUSC separately. a) Difference in DNA methylation-dependent dosage compensation in LUSC (left) and in LUAD
median promoter DNA methylation (y axis) versus log2-fold change in median (right). ¢, d) DNA methylation-associated dosage compensation of genes co-
expression for genes when amplified versus when not amplified (x axis). Genes amplified within 20 Mb of oncogenes in ¢) LUSC and d) LUAD. Genes witha DNA
highlighted in yellow are potentially under DNA methylation-dependent dosage methylation difference > 0.2 when amplified versus non-amplified are labelled in
compensation. Genes with expression levels that scale with copy number and yellow. Genes with expression levels that scale with copy number and do not scale
do notscale with DNA hypermethylation are highlighted in red; LUSC (left); with DNA hypermethylation are highlighted in red.
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Extended Data Fig. 8 | Implementation of My/M, to stratify genes under DNA
methylation-dependent regulatory selection. a) Linear regression between
thelogarithm of the number of promoter CpGs and the My/My ratio per gene

in LUAD and LUSC (95% confidence intervals are indicated in grey). b) Gene
expression ratio between the tumor and the normal adjacent tissue (NAT) for

the top 1000 genes with highest My/My and bottom 1000 My/Myin the LUAD
TRACERX RRBS cohort and the LUAD TCGA cohort. ¢) Gene expression ratio
between the tumor and the NAT for the top 1000 genes with highest M/My and
bottom 1000 My/Myin the LUSC TRACERX RRBS cohort and the LUSC TCGA
cohort (t-test). d) Mean value + SEM of M,/M, of known essential genes extracted
from the Achilles dataset project versus the mean value + SEM of My/M froma
random iteration of selected genes (t-test). e) Validation of the promoter CpG
assignments (regulatory and non-regulatory) using an additional 17 regions from

10 LUAD from the TRACERX cohort as an independent validation cohort using
CpGs significantly assigned as regulatory (left boxplot), and significantly non-
regulatory (right boxplot) in the discovery cohort (t-test). f) Confusion matrix
showing the percentages of CpGs selected in panel ‘e’ in both the discovery and
validation cohorts that are associated with reduced gene expression (or not)
when hypermethylated versus when non hypermethylated. For the validation
cohort, ‘reduced’ CpGs have been assigned when the expression ratio between
when the CpGis hypermethylated versus whenitis not is less than 0.5, while ‘Not
reduced’ hasbeen considered when the ratio is greater than 1.5. Significance

has been evaluated using a chi-squared test. g) Validation of the My/My metric
by comparing the value of My/Myin the discovery vs the validation cohort
(Correlation coefficient calculated using the Spearman method, 95% confidence
intervals areindicated in grey).
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
@ A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
' Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[X] A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

& A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

g For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

D For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

D For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
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& Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used to collect data
Data analysis R (version 3.6.3)

Alignment and QC:

FastQC (version 0.11.8)
FastQ Screen (version 0.13.0)
bwa-mem (version 0.7.17)
Sambamba (version 0.7.0)
Picard Tools (version 2.21.9)
GATK (version 3.8.1)
Somalier (version 0.2.7)
Samtools (version 1.9)
Conpair (version 0.2)
Bismark (version 0.23.0)
Bowtie2 (version 2.4.2)

Variant Calling:
SAMtools (version 1.10)
VarScan?2 (version 2.4.4)
MuTect (version 1.1.7)




bam-readcount (version 0.7.4)
Annovar (version: Revision 529)

Heterozygous single nucleotide polymorphism (SNP) identification:
Platypus (version 0.8.1)

Somatic Copy Number aberration detection:
VarScan?2 (version 2.4.4)

ASCAT (version 2.3)

Sequenza (version 2.1.2)

R packages used in version 3.6.3:
fst (version 0.9.4)

tidyverse (version 1.3.0)
survival (version 3.4)

ggplot2 (version 3.3.2)

dplyr (version 1.0.2)

tidyr (version 1.1.2)

gridExtra (version 2.3)

cowplot (version 1.1.0)
survminer (version 0.4.9)
survival (version 3.4.0)

ggpubr (version 0.4.0)

ggalluvial (version 0.12.3)
gtsummary (version 1.5.0)
reshape2 (version 1.4.4)

tibble (version 3.0.4)

gtable (version 0.3.0)
RColorBrewer (version 1.1-2)
plyr (version 1.8.6)

dndscv (version 0.0.1.0)
deconstructSigs (version 1.9.0)
ggrepel (version 0.8.2)
GenomicRanges (version 1.38.0)
rlist (version 0.4.6.2)

tidytext (version 0.2.3)

stringr (version 1.4.0)

magick (version 2.7.3)
data.table (version 1.13.2)
DiagrammR (version 1.0.1)
magrittr (version 2.0.1)
ComplexHeatmap (version 2.4.5)
Biorender (License: ZG27ZVCQE2)

The reads from ChiIP-seq data were trimmed using Trim Galore (Version 0.6.6) and aligned to the hg38 genome assembly using Bowtie2v2.4.5.

The bam files were visualised using the interactive tools SeqMonk (Version 1.48.1 ) and IGV (Version 3.2.4)

All code to reproduce the figures will be available.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The Whole exome sequencing (WES) data, the RNA sequencing (RNA seq) data and the Reduced representation bisulfite sequencing (RRBS) data (in each case from
the TRACERXx study) used during this study have been deposited at the European Genome—phenome Archive (EGA), which is hosted by The European Bioinformatics
Institute (EBI) and the Centre for Genomic Regulation (CRG) under the accession codes EGAS00001006494 (WES), EGAS00001006517 (RNAseq) and
EGAS00001006523 and EGASO0001008071 (RBBS and ChipSEQ); access is controlled by the TRACERx data access committee. Details on how to apply for access are
available at the linked page.

>
Q
g
[
=
D
©
(@]
=
S
S
=
(D
o
(@]
=)
>
«Q
wv
(e
3
3
QU
S




Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender The effects of sex and/or gender have not been considered in the recruitment of patients. No differences have been
observed between men and women in patient recruitment, and there are no differences in any of our analyses.

Reporting on race, ethnicity, or |Please specify the socially constructed or socially relevant categorization variable(s) used in your manuscript and explain why
other socially relevant they were used. Please note that such variables should not be used as proxies for other socially constructed/relevant variables
groupings (for example, race or ethnicity should not be used as a proxy for socioeconomic status).
Provide clear definitions of the relevant terms used, how they were provided (by the participants/respondents, the
researchers, or third parties), and the method(s) used to classify people into the different categories (e.g. self-report, census or
administrative data, social media data, etc.)
Please provide details about how you controlled for confounding variables in your analyses.
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Population characteristics 421 patients are included in this TRACERx cohort. 44.6% are females , 55.4% males; 93% are smokers of have a smoking
history, 7% are never smokers; 25% of patients were diagnosed at stage IA, 25% at IB, 17.8% at IIA, 13.5% at |IB, 18.5% at IlIA
and 0.2% at I11B; 52% of diagnosed tumours were adenocarcinomas, 28.8% were squamous cell carcinomas and 19.2% were
of other histological subtypes; 93% of the cohort is from a white ethnic background and the mean age of the patients is 69,
ranging between 34 and 92.

Please note that the study started recruiting patients in 2016, when TNM version 7 was standard of care. The up-to-date
inclusion/exclusion criteria now utilizes TNM version 8.

TRACERX inclusion and exclusion criteria

Inclusion Criteria:

_Written Informed consent

_Patients =18 years of age, with early stage I-111B disease (according to TNM 8th edition) who are eligible for primary surgery.
_Histopathologically confirmed NSCLC, or a strong suspicion of cancer on lung imaging necessitating surgery (e.g. diagnosis
determined from frozen section in theatre)

_Primary surgery in keeping with NICE guidelines planned

_Agreement to be followed up at a TRACERX site

_Performance status 0 or 1

_Minimum tumor diameter at least 15mm to allow for sampling of at least two tumour regions (if 15mm, a high likelihood of
nodal involvement on pre-operative imaging required to meet eligibility according to stage, i.e. TIN1-3)

Exclusion Criteria:

_Any other* malignancy diagnosed or relapsed at any time, which is currently being treated (including by hormonal therapy).
_Any other* current malignancy or malignancy diagnosed or relapsed within the past 3 years**.

*Exceptions are: non-melanomatous skin cancer, stage O melanoma in situ, and in situ cervical cancer

**An exception will be made for malignancies diagnosed or relapsed more than 2, but less than 3, years ago only if a pre-
operative biopsy of the lung lesion has confirmed a diagnosis of NSCLC.

_Psychological condition that would preclude informed consent

_Treatment with neo-adjuvant therapy for current lung malignancy deemed necessary

_Post-surgery stage IV

_Known Human Immunodeficiency Virus (HIV), Hepatitis B Virus (HBV), Hepatitis C Virus (HCV) or syphilis infection.
_Sufficient tissue, i.e. a minimum of two tumor regions, is unlikely to be obtained for the study based on pre-operative
imaging

Patient ineligibility following registration

_There is insufficient tissue

_The patient is unable to comply with protocol requirements

_There is a change in histology from NSCLC following surgery, or NSCLC is not confirmed during or after surgery.
_Change in staging to IlIC or IV following surgery

_The operative criteria are not met (e.g. incomplete resection with macroscopic residual tumors (R2)). Patients with
microscopic residual tumors (R1) are eligible and should remain in the study

_Adjuvant therapy other than platinum-based chemotherapy and/or radiotherapy is administered.

Recruitment When patients are initially diagnosed with stage I-1Il lung cancer and then referred for surgical resection, a research nurse
identifies them on a clinic/operating list. The patient has an initial eligibility assessment and then provided with written
information about the TRACERx study and he/she can ask the research nurse any questions.

Patients have to agree to provide serial blood samples whenever they attend clinic for routine blood sampling, so this
represents the only main potential self-selecting bias (i.e. only patients willing to do this would participate). However, it is
unclear how this would affect the biomarker analyses. Also, the gender and ethnicity characteristics are in line with patients
seen in routine practice.

Inclusion and exclusion criteria are summarised above.

Ethics oversight The study was approved by the NRES Committee London with the following details:
Study title: TRAcking non small cell lung Cancer Evolution through therapy (Rx)




REC reference: 13/L0/1546
Protocol number: UCL/12/0279
IRAS project ID: 138871

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size No statistical methods were used to predetermine sample size. The sample size of 59 patients (217 tumour regions) that passed quality check
filters for RRBS included 32 LUAD, 20 LUSC, and 7 other NSCLC subtypes, all with matched normal adjacent tissue (NAT). Among these, 31
were stage |, 14 stage Il, and 14 stage IlI. In terms of smoking history, 47 were former smokers, 6 were current smokers, and 6 were never
smokers.

Data exclusions  Please see study inclusion/exclusion criteria below. Additionally, samples which fail quality control metrics including low tumor purity (<10%)
were also excluded from analysis.

Replication TRACERX is a prospective longitudinal study. As such, the results shown here are not the result of an experimental set up. This is the half-way
point of the TRACERx study and reflects hypothesis generating analysis.

Randomization  Randomization is not relevant as this is an observational study.

Blinding Blinding is not relevant as this is an observational study. Patients were not allocated to any intervention and they were followed up and
assessed as per routine practice. No biomarker results (tissue and bloods) are reported back to patients, so there is no likelihood of people
changing their behaviours based on these findings. The laboratory analyses were all performed without knowing the outcome (DFS or
survival) status of the patients, which represents a form of blinding.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
X Antibodies [1IX] chip-seq
|X| Eukaryotic cell lines IX D Flow cytometry
D Palaeontology and archaeology |X D MRI-based neuroimaging

[] Animals and other organisms
X clinical data

[] Dual use research of concern

[] Pplants

NXOXKXOOS

Antibodies

Antibodies used Immunoprecipitation was performed using 10ug of chromatin and 2.5 ug of H3K4me3 (C15410003) and H3K27me3 (C15410195)
antibodies. Isolated cells were blocked with anti-Fc block (Fc1, BD) and stained with the following antibodies using a standar
concentration of 0.25 pg/106 cells: CD45-PE (HI30, BDbioscience), CD235a-PE (HIR2, BDbioscience), CD140b-PE (28D4,
BDbioscience), CD31-PE (WM59, BDbioscience), EpCAM-FITC (VU-1D9, STEMCELL tech.), podoplanin-APC-Cy7 (NC-08, BioLegend),
CD166-APC (eBioALC48, ThermoFisher), CD49f-PE-Cy7 (GoH3, ThermoFisher). Basal cells were defined as propidium-, PE-, EpCAM+,
CD166mid, CD49fhi and podoplanin+; alveolar type Il cells were defined as propidium-, PE-, EpCAM+, CD166mid, CD49fmid and
podoplanin-

Validation The protocol for the isolation and identification of both basal cells and type Il alveolar cells has been previously described in Weeden,
C. E. et al. Lung Basal Stem Cells Rapidly Repair DNA Damage Using the Error-Prone Nonhomologous End-Joining Pathway. PLoS Biol.
15, 1-27 (2017). The H3K4me3 and H3K27me3 antibodies from the commercial company Diagenode have been previously cited in
Sipola, J. Plasma Cell-Free DNA Chromatin Immunoprecipitation Profiling Depicts Phenotypic and Clinical Heterogeneity in Advanced




Prostate Cancer. Cancer Res. 2025 Feb 17;85(4):791-807

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s)

Authentication

Three primary cell lines derived from TRACERx study patients previously reported have been used

Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for

mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines | Name any commonly misidentified cell lines used in the study and provide a rationale for their use.

(See ICLAC register)

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMIE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  TRACERx Lung https://clinicaltrials.gov/ct2/show/NCT01888601, approved by an independent Research Ethics Committee, 13/

Study protocol

Data collection

Outcomes

Plants

LO/1546
https://clinicaltrials.gov/ct2/show/NCT01888601

Clinical and pathological data is collected from patients during study follow up - this period is a minimum of five years. Data collection
is overseen by the sponsor of the study (Cancer Research UK & UCL Cancer Trials Centre) and takes place in hospitals across the
United Kingdom. A centralised database called MACRO is used for this purpose. Recruitment started in April 2014 and is still ongoing
(in London and Manchester).

The main clinical outcomes is:

Disease-free survival (DFS) — measured from the time of study registration to date of first lung recurrence or death from any cause.
Patients who do not have these events are censored at the date last known to be alive (including patients who developed a new
primary tumour that has been shown biologically to not be linked to the initial primary lung tumour).

Seed stocks

Novel plant genotypes

Authentication

ChlP-seq

Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
VDVgsbcbrlﬁiﬁé//t;rL;y authentication-proceduresfor-each-seed-stock-used-or-novel-genotype-generated.-Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.

Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links

EGAS00001008071

May remain private before publication.

Files in database submission EGAF00007612978;EGAF00007612979;EGAF00007612980;EGAF00007612981;EGAF00007612982;EGAF00007612983;EGAF

00007612984;EGAF00007612985;EGAF00007612986;EGAF00007612987;EGAF00007612988;EGAF00007612989;EGAF00007
612990;EGAF00007612991;EGAF00007612992;EGAF00007612993;EGAF00007612994;EGAF00007612995;EGAF0000761299
6;,EGAF00007612997;EGAF00007612998;EGAF00007612999;EGAF00007613000;EGAF00007613001;EGAF00007613002;EGA
FO0007613003;EGAF00007613004;EGAF00007613005;EGAFO0007613006;EGAF00007613007;EGAF00007613008;EGAFO000
7613009;EGAF00007613010;EGAF00007613011;EGAF00007613012;EGAF00007613013;EGAF00007613014;EGAF000076130
15;EGAF00007613016;EGAF00007613017;EGAF00007613018;EGAF00007613019;EGAF00007613020;EGAF00007613021;EG
AF00007613022;EGAF00007613023;EGAF00007613024;EGAF00007613025;EGAF00007613026;EGAF00007613027;EGAFO00
07613028;EGAF00007613029;EGAF00007613030;EGAF00007613031;EGAF00007613032;EGAF00007613033;EGAF00007613
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Genome browser session
(e.g. UCSC)

Methodology
Replicates

Sequencing depth

Antibodies

Peak calling parameters
Data quality

Software

034;EGAF00007613035;EGAF00007613036;EGAF00007613037;EGAF00007613038;EGAF00007613039;EGAFO00007613040;E

GAF00007613041;EGAFO0007613042;EGAF00007613043;EGAF00007613044;EGAF00007613045;EGAF00007613046,EGAFO

0007613047;EGAF00007613048;EGAFO0007613049;EGAFO0007613050;EGAFO00007613051;EGAF00007613052;EGAF000076
13053;EGAF00007613054;EGAF00007613055;EGAF00007613056;EGAFO00007613057;EGAF00007613058;EGAF00007613059
;EGAF00007613060;EGAF00007613061;EGAF00007613062;EGAFO0007613063;EGAFO0007613064;EGAFO0007613065;EGAF
00007613066;EGAFO0007613067;EGAF00007613068;EGAF00007613069;EGAF00007613070;EGAF00007613071;EGAFO0007
613072;EGAF00007613073;EGAF00007613074;EGAF00007613075;EGAF00007613076;EGAF00007613077;EGAF0000761307
8,EGAF00007613079;EGAF00007613080;EGAF00007613081;EGAF00007613082;EGAFO00007613083;EGAF00007613084;EGA
FO0007613085;EGAF00007613086;EGAF00007613087;EGAFO0007613088;EGAF00007613089;EGAF00007613090;EGAFO000
7613091;EGAF00007613092;EGAF00007613093;EGAF00007613096;EGAF00007613097;EGAF00007613098;EGAF000076130
99;EGAF00007613100;EGAF00007613101;EGAF00007613102;EGAFO0007613103;EGAF00007613104;EGAF00007613105;EG
AF00007613106;EGAF00007613107;EGAF00007613108;EGAF00007613109;EGAF00007613110;EGAF00007613111;EGAFO00
07613112;EGAF00007613113;EGAF00007613114;EGAF00007613115

not longer applicable

Three replicates por IP

After de-crosslinking, the final DNA purification was performed using the GeneJET PCR Purification Kit (Thermo Scientific, catalogue
number KO701) and quantified using Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific). Sequencing libraries were constructed
using the NEBNext Ultra Il DNA Library Prep Kit for lllumina (NEB) and sequenced on the Illumina platform using Nextseq2000, with a
loading concentration of 800pM and 2% PhiX spike-in and obtaining a total of 500 million reads on average. The reads from ChlIP-seq
data were trimmed using Trim Galore and aligned to the hg38 genome assembly using Bowtie2v2.4.5. The bam files were visualised
using the interactive tools SeqMonk and IGV. The histone signal was illustrated using BioRender.

We have used the commercial antibodies H3K4me3 (C15410003) and H3K27me3 (C15410195).

The reads from ChIP-seq data were trimmed using Trim Galore and aligned to the hg38 genome assembly using Bowtie2v2.4.5.
The bam files were evaluated using the interactive tool SeqMonk

The reads from ChlIP-seq data were trimmed using Trim Galore and aligned to the hg38 genome assembly using Bowtie2v2.4.5. The
bam files were visualised using the interactive tools SeqMonk and IGV.
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