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DNA methylation cooperates with genomic 
alterations during non-small cell lung  
cancer evolution
 

Aberrant DNA methylation has been described in nearly all human cancers, 
yet its interplay with genomic alterations during tumor evolution is poorly 
understood. To explore this, we performed reduced representation bisulfite 
sequencing on 217 tumor and matched normal regions from 59 patients 
with non-small cell lung cancer from the TRACERx study to deconvolve 
tumor methylation. We developed two metrics for integrative evolutionary 
analysis with DNA and RNA sequencing data. Intratumoral methylation 
distance quantifies intratumor DNA methylation heterogeneity. MR/MN 
classifies genes based on the rate of hypermethylation at regulatory (MR) 
versus nonregulatory (MN) CpGs to identify driver genes exhibiting recurrent 
functional hypermethylation. We identified DNA methylation-linked dosage 
compensation of essential genes co-amplified with neighboring oncogenes. 
We propose two complementary mechanisms that converge for copy number 
alteration-affected chromatin to undergo the epigenetic equivalent of an 
allosteric activity transition. Hypermethylated driver genes under positive 
selection may open avenues for therapeutic stratification of patients.

Lung cancer, of which the predominant group is non-small cell  
lung cancer (NSCLC), is the leading cause of cancer-related death 
worldwide1. Genomic and transcriptomic studies of the two major 
NSCLC subgroups, lung adenocarcinoma (LUAD) and lung squamous 
cell carcinoma (LUSC), have provided a deep understanding of the evo-
lutionary processes that provide subclones with selective advantages, 
through the accumulation of genetic driver events2–4.

Recent studies highlighted evidence of non-genomic evolution in 
cancer development, neoantigen silencing5 and acquired therapeutic 
resistance6,7. An important proportion of these resistance mechanisms 
are driven by epigenetic alterations, including DNA methylation.

Distinguishing DNA methylation events that play a causative role 
in cancer evolution from innocuous passenger events is not trivial8,9. 
Recent algorithms for driver gene discovery incorporate biological fea-
tures known to affect the rate of stochastic DNA methylation changes 
and have identified genes known to affect progression-free survival10–13. 
Although these approaches have been useful for identifying candidate 
DNA methylation cancer genes, they often do not incorporate the 
selection of hypermethylation events with functional impact and may 
inadvertently also identify neutral passengers. Analogous approaches 

to the implementation of the nonsynonymous-to-synonymous muta-
tions ratio (dN/dS) in evolutionary genetics with covariates for the 
identification of single-nucleotide variant (SNV) driver events14 may 
enable genuine DNA methylation drivers to be distinguished from 
neutral passenger events.

Many approaches have been developed for methylome profiling,  
most of which require either array hybridization or sequencing  
of bisulfite-converted DNA15,16. However, the varying purities of bulk  
solid tumor samples and the high degree of copy number (CN) 
instability associated with lung cancer, confound tumor methyla-
tion rates17. To overcome these limitations, we recently developed  
Copy number-Aware Methylation Deconvolution Analysis of Cancers 
(CAMDAC), which models the pure tumor methylation rate as the dif-
ference between the methylation rate in the bulk tumor and normal 
contaminants weighted for tumor CN and purity17. We applied CAMDAC 
to the multi-region tumor sampling and longitudinal lung TRAcking 
Cancer Evolution through therapy/Rx (TRACERx) study. Through an 
integrative analysis with gene expression and whole-exome sequencing 
(WES), we uncover the interplay between DNA hypermethylation and 
genomic alterations in NSCLC drawing on the concept of allostery18.
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Given the extensive genomic and transcriptomic intratumor  
heterogeneity (ITH) captured by TRACERx2,3, we next explored the 
interplay between epigenetic and genetic heterogeneity. The ITMD 
scores weakly correlated with mutation heterogeneity (SNV-ITH: LUAD, 
R = 0.13, P = 0.58; LUSC, R = 0.41, P = 0.13; Fig. 1d) and significantly 
correlated with somatic CN alteration (SCNA) ITH (SCNA-ITH) (LUAD, 
R = 0.47, P = 0.039; LUSC, R = 0.66, P = 0.007) and intratumoral expres-
sion distance (ITED) (LUAD, R = 0.54, P = 0.03; LUSC, R = 0.59, P = 0.034; 
Fig. 1d and Methods). As both CN loss and DNA hypermethylation 
exhibit converging roles on gene expression, we further explored the 
extent and impact of these alterations during tumor evolution.

The impact of DNA methylation on driver gene expression
To explore the impact of DNA methylation on gene expression, we 
assessed differentially methylated regions (DMRs)20 in tumor versus 
NAT, identified by separately binning promoter or enhancer CpGs 
into neighborhoods (Methods). Unlike the significant reduction in 
expression of canonical NSCLC cancer genes associated with CN loss, 
most oncogenes and tumor suppressor genes (TSGs) did not exhibit 
promoter hypermethylation-dependent reductions in gene expres-
sion (Fig. 2a and Extended Data Fig. 3a), which is in line with previous 
reports10. Compared to enhancers, DNA methylation of promoters 
affected the expression of more TSGs (Supplementary Fig. 3). The 
relative infrequency of promoter hypermethylation-dependent reduc-
tions in TSG gene expression (LUAD, 7 of 68 genes; LUSC, 9 of 68 genes), 
together with the positive correlation between ITMD and SCNA-ITH, 
led us to hypothesize that a more intricate interplay may exist between 
SCNAs and differentially methylated promoter regions during tumor 
evolution.

To study the mechanisms of convergent evolution affecting  
the expression of canonical TSGs, we first distinguished intratumor 
parallel evolution, where multiple independent mechanisms affect 
a locus across tumor regions, from double hits in the same tumor 
region. Among 68 lung cancer canonical TSGs for which we had DNA 
methylation and SCNA coverage, 61 of 68 were affected by either CN 
loss or hypermethylation in more than one tumor. Furthermore, 19 of 
68 TSGs showed evidence of parallel evolution in at least two tumors. 
In LUSC, a greater degree of interplay between DNA hypermethyla-
tion and CN loss was evident for TSGs (6.3%) compared to oncogenes 
(2.2%) (P = 3.09 × 10−5; chi-squared test; Fig. 2b and Extended Data 
Fig. 3b). More parallel convergent events affected TSGs (for example, 
FAT1, ZMYM2 and EPHA2) in LUSC (4.6%) compared to LUAD tumors 
(1.5%) (P = 5.06 × 10−7; chi-squared test; Fig. 2b). We next examined  
the impact of these concordant alterations on gene expression by 
applying a linear effects model to the multi-region samples. We 
observed a synergistic effect of CN loss and DNA hypermethylation 
(double hits) on the expression of RPL22 and MGA in LUAD and EPHA2 
and MGA in LUSC (Extended Data Fig. 4). Taken together, these data 
suggest that in NSCLC, genomic and epigenomic mechanisms can act 
in parallel to abrogate TSG function.

As only 24.6% of established genomic TSGs were hypermethyl-
ated in more than one tumor (Fig. 2b), we next sought to identify new 
candidate TSGs regulated by DNA hypermethylation. Candidate DNA 
methylation drivers were derived using the MethSig algorithm10, which 
we built on using CAMDAC. To avoid confounded inputs, only the 
tumor region with the highest purity per patient was used for this 
analysis. Additionally, we applied CAMDAC principles to the proportion 
of discordant read (PDR) estimates to obtain tumor-specific signals 
(Methods and Extended Data Fig. 5a–e).

Using this approach, we identified 99 and 118 candidate DNA 
methylation cancer genes in LUAD and LUSC, respectively (Fig. 2c,d, 
Extended Data Fig. 5f,g and Supplementary Tables 5 and 6). Of the 63 
genes identified in both subtypes, there was a significant enrichment of 
genomic TSGs compared to a set of random genes (P = 0.0422; Fisher’s 
exact test; Fig. 2e); 12 (including ZNF382, LXN, RASSF1 and CDO1) had 

Results
The cancer cell-specific DNA methylation landscape of NSCLC
To elucidate the roles of DNA methylation during NSCLC evolution,  
we performed reduced representation bisulfite sequencing (RRBS) 
on 217 tumor regions and 59 paired normal adjacent tissues (NATs) 
from 59 patients in the TRACERx cohort (Supplementary Fig. 1a–d).

Unsupervised hierarchical clustering using the 5,000 most 
variable CpGs based on CAMDAC methylation rates revealed three 
main groups of samples, largely corresponding to NAT, LUAD and 
LUSC (bootstrap probability value 98%; cluster stability values 0.98, 
0.91 and 0.94, respectively; Fig. 1a and Methods), with most tumor 
regions clustering according to patient. Three clusters of CpG sites 
with distinct profiles were observed, regardless of the number of 
CpGs analyzed (Fowlkes–Mallows index > 0.96) (Fig. 1a). These pro-
files were not apparent using nondeconvolved bulk methylomes 
(Extended Data Fig. 1a). Cluster 1 was enriched in two subclusters of 
promoter CpGs found unmethylated in normal tissue and methylated 
in tumor samples, independent of histology (Fig. 1a and Extended Data 
Fig. 1b). This cluster was enriched in genes involved in differentiation 
and developmental processes (for example, SOX1 and SOX9, HOXD3  
and HOXD8, and TBX4) and genes implicated as tumor suppressors  
(for example, SOX1 and SOX17, TSHZ3, WT1-AS, and FGF14) (Extended 
Data Fig. 1c and Supplementary Tables 1 and 2). Clusters 2 and 3  
captured CpG sites hypomethylated in the tumor. While cluster 2 
was enriched in LUSC-specific hypomethylation, cluster 3 exhibited 
cohort-wide hypomethylation, with a small subset of CpGs selectively 
hypomethylated in LUAD (Fig. 1a and Supplementary Tables 3 and 4). 
Upon considering all promoter CpGs in principal component analyses,  
histological subtype was the sole clinical variable distinguishing 
tumors (Supplementary Fig. 2).

To further characterize the tumor methylome, we next identified 
differentially methylated positions (DMPs) between tumor and normal 
samples using cancer-cell-specific methylation rates. To establish that 
bulk NAT serves as a reliable reference regardless of tumor subtype,  
we freshly isolated alveolar type 2 (AT2) cells, the cell of origin of  
LUAD, and basal cells (BSC), the cell of origin of LUSC, from bulk NAT 
from five TRACERx samples (Extended Data Fig. 2a); no significant 
differences were found in the methylation β values compared to bulk 
NAT (Extended Data Fig. 2b).

Proceeding with bulk patient-matched NAT, the median number 
of DMPs per sample varied between 48,080 and 362,775 (Fig. 1b); in the 
coverage range of our samples, it was robust to the number of reads per 
chromosomal copy19, purity and ploidy. Additionally, as expected, we 
observed a correlation with the average breadth of coverage, represent-
ing the number of reads covered in the tumor-normal pairs (Extended 
Data Fig. 1d). At the tumor level, a high variability in the proportion of 
DMPs shared ubiquitously by all regions was apparent (ranging from 
0.09 to 0.78), which was not affected by the number of regions sampled 
per tumor (Extended Data Fig. 1e). In addition, the methylation status 
of DMPs showed high variability between tumors but limited variability 
between regions from the same tumor (Fig. 1b).

To further quantify the extent of DNA methylation heterogeneity, 
we computed intratumoral methylation distances (ITMDs) based on  
the pairwise Pearson distance between methylation rates at all CpGs 
across all sampled regions and across different tumors (Methods).  
The ITMD score was robust to the number of regions sampled (Extended 
Data Fig. 1f) and exhibited no association with purity after deconvolu-
tion with CAMDAC (Extended Data Fig. 1g). Compared to normal sam-
ples, tumors exhibited a 25-fold increase in inter-patient heterogeneity, 
indicating aberrant DNA methylation dynamics in tumors (Fig. 1c). In 
addition, inter-patient variability was higher than intra-patient variabil-
ity across both histological subtypes (Fig. 1c). Intergenic and enhancer 
regions showed the highest variability, while promoter regions had 
significantly lower methylation heterogeneity, suggesting tighter 
regulation in promoter regions (Extended Data Fig. 1h).
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Fig. 1 | Global DNA methylation landscape in the TRACERx lung cancer 
study. a, Unsupervised hierarchical clustering of the 5,000 most variable CpGs 
in 217 tumor regions from 59 patients and 59 matched NAT samples. Yellow, 
hypermethylated CpGs; blue, hypomethylated CpGs. Groups correspond to 
patient samples and clusters correspond to CpGs. b, The number of DMPs, the 
percentage of ubiquitous DMPs (fraction of regions in which the DMP is present) 
and the methylation status of the DMPs are illustrated, indicating the degree of 
ITH. Samples are stratified according to histological subtypes and arranged  
in ascending order from left to right based on the number of regions sampled.  

c, ITMD metric calculated across regions within (intra) and between (inter) 
tumors. The box plot shows the median, interquartile range (IQR) (Q1–Q3), 
whiskers extending to 1.5 times the IQR and outliers beyond this range (Wilcoxon 
rank-sum test). d, Correlations between ITMD score and other heterogeneity 
metrics; mutation (SNV-ITH), SCNA-ITH and ITED, depicted from left to right, 
for LUAD (top) and LUSC (bottom). The fitted line represents a smoothed trend 
estimated using a robust linear regression, with the shaded region indicating the 
95% confidence interval.
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been previously reported as TSGs using genomic data alone. MethSig 
cancer genes were also enriched in developmental genes (for example, 
PAX6, PAX8 and TBX4), suggesting a potential role for DNA methyla-
tion in cell plasticity (Extended Data Fig. 5h,i). LUAD MethSig cancer 
genes specifically exhibited a significant enrichment in HOX genes, 
which demonstrated increased methylation in samples with reduced 
tumor-infiltrating lymphocytes (TILs) (P = 0.0065; Mann–Whitney 
U-test; Supplementary Fig. 4) as reported previously21.

MethSig cancer genes, identified by selecting a single region per 
tumor, were more ubiquitously methylated within tumors compared 
to canonical TSGs or a selection of 500 random genes (P = 7.70 × 10−6 
and 5.70 × 10−6, respectively; t-test; Fig. 2f). These data suggest that 
candidate methylation cancer genes are strongly selected for, or are 
relatively early events in tumor evolution. Additionally, MethSig cancer 
genes were more strongly downregulated in tumor samples compared 
to canonical TSGs or the random selection of genes (P = 1.50 × 10−6 and 
2.30 × 10−4 respectively; t-test; Fig. 2g). We observed no differences in 
the calling of DMRs for MethSig cancer genes when using the isolated 
AT2 and BSC populations compared to bulk NAT (Supplementary Fig. 5).

We next determined the extent of interplay between DNA methyla-
tion and SCNAs affecting these candidate driver genes. Specifically, 
hypermethylation occurring with CN loss was defined as concordant, 
whereas hypermethylation occurring with CN gain was defined as 
discordant. MethSig cancer genes exhibited a higher proportion of 
concordant events than canonical TSGs or the selection of random 
genes (P = 1.2 × 10−6 and 3.5 × 10−3, respectively; t-test), highlighting that 
parallel mechanisms might affect the expression of these genes (Fig. 2h).

To compare the convergence between genomic alterations 
and DNA methylation events in canonical TSGs versus MethSig 
cancer genes, their relative timing was estimated by leveraging the 
multi-region nature of the sequencing data. We focused on the 38 
MethSig cancer genes for which hypermethylation and CN loss each 
occurred in at least one tumor region. For 13 of 34 MethSig cancer 
genes, including ITGA8 and CXCL5, we observed ubiquitous DNA hyper-
methylation across all regions together with nonubiquitous (that is, 
subclonal) CN loss (84 events of clonal hypermethylation with sub-
clonal loss and 27 events of clonal CN loss with subclonal hypermeth-
ylation), whereas 8 of 20 canonical TSGs, including FAT1, exhibited 
ubiquitous CN loss with subclonal hypermethylation (28 events of 
clonal hypermethylation with subclonal loss and 38 events of clonal 
CN loss with subclonal hypermethylation). These data suggest that like 
the clonal disruption of canonical TSGs, hypermethylation of MethSig 
cancer genes may be early events in NSCLC, often preceding subclonal 
CN loss of the same gene (P = 2.84 × 10−2; chi-squared test; Fig. 2i).

Divergence of DNA methylation and CN alterations
The limited concordance between DNA methylation and genomic 
events at canonical TSGs (Fig. 2h) prompted us to explore the preva-
lence of discordant mechanisms of interplay between these alterations. 

Co-occurring CN loss and hypomethylation events were more prevalent 
in LUSC, affecting TSGs including NCOR1 (29 of 59 tumor regions), 
CDKN2C (28 of 59 tumor regions), CREBBP (26 of 59 tumor regions) and 
RPL22 (9 of 59 tumor regions) (Extended Data Fig. 6a). Interestingly, 
RPL22 (1p36.3), NCOR1 (17p12) and CDKN2C (1p32.3) are located in 
proximity to known aphidicolin-induced common fragile sites, such as 
FRA1A, FRA17 and FRA1B, respectively22,23. We also observed an enrich-
ment of essential genes such as RPS15A, CDT1 and MDN1 to be under 
DNA hypomethylation-dependent dosage compensation in regions 
of CN loss in LUSC (Extended Data Fig. 6b).

We next explored the interplay between DNA methylation and 
gene expression at loci that are amplified (Methods). Genes with higher 
expression levels and no increase in DNA methylation when amplified 
were enriched in oncogenes (Fig. 3a, red dots). Genes with reduced or 
equal expression, but with increased DNA methylation when amplified 
may be subject to DNA methylation-dependent dosage compensa-
tion (Fig. 3a, yellow dots). Gene set enrichment analysis revealed that  
these dosage-compensated yellow genes were enriched in pathways 
related to epithelial–mesenchymal transition, KRAS signaling, immune 
pathways (Fig. 3b) and several transmembrane channels in both  
LUSC and LUAD (Extended Data Fig. 7a,b).

Focusing on regions with recurrently amplified oncogenes 
(Fig. 3c), we hypothesized that DNA hypermethylation could be 
part of a mechanism to maintain neighboring co-amplified, but 
dosage-sensitive, genes near their basal expression level. We calcu-
lated the average difference in DNA methylation rates at frequently 
amplified regions between tumor regions with and without the 
amplification (Methods). Oncogenes with expression scaling with 
amplification, such as RAC1 and CDK4, were less methylated when 
amplified (P = 1.53 × 10−5 and 5.63 × 10−4, respectively; Mann–Whit-
ney U-test) compared to non-amplified tumor regions. We identi-
fied oncogene-proximal genes under dosage compensation by DNA 
methylation associated with amplification of CCND1 in both LUSC 
and LUAD and CDK4, KRAS, and GNAS exclusively in LUAD (Extended 
Data Fig. 7c,d). Dosage-compensated essential genes, such as RPS3, 
located in oncogene-proximal regions (for example, CCND1; Fig. 3c), 
were significantly enriched compared to other genomic regions 
(P = 0.028; chi-squared test). These data suggest a potential interplay 
between CN alterations and DNA methylation, whereby changes in CN 
at the oncogene locus could trigger a phenomenon that we have called  
an allosteric chromatin activity transition (AllChAT) affecting the  
DNA methylation status of neighboring passengers genes (Fig. 3d).

To investigate AllChAT, we performed chromatin immunopre-
cipitation followed by sequencing (ChIP–seq) for H3K27me3 to iden-
tify closed chromatin regions, and H3K4me3 for open chromatin in 
tumor patient-derived cells (PDCs) from TRACERx tumors (CRUK0977 
and CRUK0557), and a PDC from NAT (CRUK0667). Oncogenes 
such as CDKN1B, FGFR1 and JAK2 were co-amplified and associated 
with chromatin opening and hypomethylation when the locus was 

Fig. 2 | Analysis of the impact of DNA methylation on driver gene expression. 
a, Impact of promoter DMR status on gene expression for genomic TSGs (left) 
and oncogenes (right) for LUAD and LUSC separately. Negative values indicate 
decreased expression in samples where the gene promoter is hypermethylated 
(yellow); positive values indicate increased expression when the gene promoter 
is hypermethylated (blue). *P < 0.05 (t-test). b, Number of LUAD and LUSC 
tumors with CN loss (blue) or promoter hypermethylation (yellow) in genomic 
TSGs. Parallel events are defined as promoter hypermethylation and CN loss 
occurring in different regions of the same tumor (red). Double-hit events 
are defined as tumors exhibiting promoter hypermethylation and CN loss in 
the same region (green). Other combinations of events, including CN gains, 
mutations or promoter hypomethylation and combinations thereof (white), 
are shown. The pie chart summarizes the percentage of each type of event for all 
genomic TSGs. c,d, Manhattan plots illustrating the top MethSig cancer genes 
in LUAD (c) and LUSC tumors (d). P = 0.05 is indicated by the dashed horizontal 

line. e, Venn diagram showing the overlap between MethSig cancer genes and 
canonical genomic TSGs. f, Using multi-region DNA methylation data, the 
fraction of ubiquitous DNA hypermethylation of all MethSig cancer genes, the 
random set of genes and canonical TSGs, are reported (t-test). g, Relationship 
between the expression in tumor versus normal tissue for the MethSig cancer 
genes, for the random set of genes and for canonical TSGs (t-test). h, Percentage 
of regions exhibiting concordant alterations for both DNA hypermethylation 
and SCNAs in MethSig cancer genes, in the random set of genes and in canonical 
TSGs. Concordant events include DNA hypermethylation and CN loss, or 
hypomethylation with CN gain and amplification (t-test). The box plot shows the 
median, IQR (Q1–Q3), the whiskers extending to 1.5 times the IQR and outliers 
beyond this range. i, Number of tumors with ubiquitous/nonubiquitous DNA 
hypermethylation and CN loss events in MethSig cancer genes and canonical 
TSGs, used to determine the relative timing of the co-occurrence of these 
alterations in NSCLC.
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amplified compared to when it was not. Additionally, we found that 
essential passenger genes, including NOP2, DCTN6 and FOXD4, were 
associated with closed chromatin and increased DNA methylation 
at the same respective loci when amplified compared to when not 
amplified in tumor PDCs compared to normal PDCs (Supplemen-
tary Table 7). We also observed AllChAT at the locus of the MethSig 
cancer gene TMTC1 after co-amplification with the KRAS oncogene 
in both tumor PDCs, along with concomitant changes in promoter 
methylation (Fig. 3e). In TRACERx tumor tissues (Fig. 3c), we observed 
evidence for methylation-dependent dosage compensation in LRRC34 
when co-amplified with the PI3KCA oncogene in both tumor PDCs  
(Supplementary Table 7). Finally, using 137 samples from five tissue 
types from the EpiATLAS public dataset24, we observed co-amplification 
of the essential gene SMC4 with the oncogene MECOM, associated 
with recruitment of the closed H3K27me3 mark around SMC4 and  
its concomitant hypermethylation. Taken together, these data  
further support a role for AllChAT in the regulation of essential  
genes during tumor evolution.

MR/MN stratifies genes under selection by DNA methylation
The enrichment of hypermethylated essential genes neighboring  
oncogenes that scale with amplification prompted us to closely evaluate 
the impact of DNA hypermethylation on gene expression. We derived a 
new metric to identify genes subject to cancer-associated disruption 
of gene expression. MR/MN assigns genes by determining the ratio of 
regulatory hypermethylated DMPs over nonregulatory hypermethyl-
ated DMPs located in gene promoter regions (Fig. 4a, Supplementary 
Table 8 and Methods), analogous to dN/dS in protein-coding genes. 
For most genes, MR/MN is approximately 1 (Fig. 4b and Supplementary 
Table 8). Like dN/dS, we hypothesize that this ratio may provide insights 
into the nature and direction of selection. Specifically, an MR/MN ratio 
greater than 1 (false discovery rate (FDR) < 0.05) suggests preferential 
hypermethylation of regulatory DMPs, while MR/MN ratios smaller than 
1 (FDR < 0.05) suggest enrichment of hypermethylation at nonregula-
tory DMPs that do not affect expression.

We observed no relationship between the number of CpGs  
studied and the MR/MN ratio, ensuring that the MR/MN metric is robust  
to promoter CpG content (Pearson’s R = −0.025 for LUAD and 
R = −0.085 for LUSC; Extended Data Fig. 8a). We next compared the 
expression level of genes with MR/MN ratios greater than 1 versus those  
with ratios smaller than 1 in tumors compared to matched NATs.  
As expected, genes with an MR/MN greater than 1 exhibited a signifi-
cantly stronger downregulation of expression in the tumor compared 
to genes with an MR/MN smaller than 1, observed in both LUAD and  
LUSC (P = 3.0 × 10−3 and P = 2.0 × 10−4, respectively; Extended Data 
Fig. 8b,c). Importantly, this effect was consistently observed in the 
LUAD and LUSC datasets from The Cancer Genome Atlas (TCGA) 
(P = 1.0 × 10−4 and P = 4.9 × 10−2, respectively; Extended Data Fig. 8b,c). 

Consistently, essential genes exhibited significantly lower MR/MN values 
compared to a random set of genes (t-test, P = 0.028; Extended Data 
Fig. 8d), suggesting selection against DNA methylation-dependent 
reduced expression for essential genes during tumor evolution.

To validate the MR/MN metric, we performed RNA-sequencing 
(RNA-seq) and RRBS on an independent cohort of 17 TRACERx LUAD 
samples from ten patients and matched NATs. DMP assignments in 
the test cohort were maintained in the validation cohort (differential 
expression in hypermethylated versus non-hypermethylated samples in 
a paired t-test; P < 2.2 × 10−16 for regulatory DMPs; Extended Data Fig. 8e) 
with a true positive rate of 84%, a true negative rate of 80%, a specificity  
of 83.3% and sensitivity of 80.7% (chi-squared P < 1.07 × 10−22; Extended 
Data Fig. 8f). Furthermore, we observed a significant correlation 
between the MR/MN ratio for each gene between the test and validation 
cohorts (Spearman’s rho = 0.603, P < 2.2 × 10−16; Extended Data Fig. 8g).

Cancer-related MethSig genes disrupted by DNA methylation
MethSig cancer genes demonstrated a broad range of MR/MN ratios in 
LUAD and LUSC (Fig. 4b, yellow). We hypothesize that, of these candi
date methylation drivers, those with a strong correlation between 
epimutations and gene expression are more likely to be under posi-
tive selection. Furthermore, despite exhibiting MR/MN ratios smaller  
or greater than 1, several MethSig cancer genes were alternatively  
under positive selection for deleterious variants, as defined by their 
higher dN/dS ratios (Supplementary Fig. 6a).

We evaluated whether applying MR/MN to MethSig cancer  
genes could further stratify this functionally diverse pool of DNA  
methylation cancer genes. In LUAD, MethSig cancer genes with an  
MR/MN greater than 1, including the HOX genes PAX6 and ITGA8, were 
enriched for cancer progression pathways, such as motility, tissue 
development and morphogenesis, and transcription regulation. On 
the other hand, MethSig cancer genes with an MR/MN smaller than 1  
revealed enrichment of only transcriptional regulatory genes and 
were enriched at amplified loci (Fig. 4c and Supplementary Fig. 6b,c).  
In the bulk analyses, genes with an MR/MN greater than 1 were  
enriched in stromal signatures; however, this enrichment was no longer 
observed after CAMDAC-based purification (Supplementary Fig. 6d). 
Leveraging a small interfering RNA viability screen in the LUAD PC9 
cell line25, we observed that depletion of the MethSig cancer genes 
ITAG8 and SLC7A15 with an MR/MN greater than 1 exhibited the highest 
proliferation rates among all MethSig LUAD genes.

To further investigate the impact of MethSig cancer genes with an 
MR/MN greater than 1, we leveraged methylation values and their associ-
ated gene expression levels in the TRACERx RRBS cohort to dichoto-
mize the larger TRACERx RNA-seq cohort (Methods). This approach 
allowed us to assess whether stratifying MethSig cancer genes accord-
ing to MR/MN status could reveal differences in disease-free survival 
(DFS). Unlike the MethSig cancer genes with an MR/MN smaller than 1,  

Fig. 3 | Divergent interplay between DNA methylation and CN alterations.  
a, Difference in median promoter methylation for genes when amplified versus 
when not amplified (y axis). A value greater than 0.2 indicates increased DNA 
methylation when amplified. The x axis indicates the ratio of gene expression 
between amplified versus non-amplified regions. Positive values indicate 
gene expression scales with CN amplification. Genes highlighted yellow are 
potentially under DNA-methylation-dependent dosage compensation, as their 
methylation, but not their expression, scales with CN. Genes with expression 
levels that scale with CN but do not scale with DNA methylation are highlighted 
red. b, Hallmarks in cancer functional enrichment of genes potentially under 
DNA-methylation-dependent dosage compensation. The bar lengths represent 
the P value; the proportion of overlap between the subset of genes (k) and the 
gene sets defining the hallmarks (K) are indicated by a red dot. c, Gene promoter 
methylation difference between samples with and without amplification 
located within 20 Mb of amplified oncogenes with expression levels that scale 
with CN, which are labeled red (HUGO Gene Nomenclature Committee name). 

Essential genes extracted from the Achilles project dataset are labeled yellow 
(HUGO Gene Nomenclature Committee name). d, Schematic illustrating the 
potential cooperation between CN alterations and DNA methylation around 
oncogenes. CN changes at the oncogene locus could trigger a focal AllChAT, 
affecting co-amplified essential and passenger genes. e, Validation of AllChAT on 
the gene pair TMTC1 as a passenger of the amplified oncogene KRAS, in primary 
cell cultures derived from patient tumors CRUK0977 and CRUK0577, and from a 
non-tumor-tissue-derived primary cell culture from patient CRUK0667. The CN 
for each locus is indicated numerically. The repressive histone mark H3K27me3 
to identify closed chromatin (red), and the active histone mark H3K4me3 to 
identify open chromatin H3K4me3 (green), were extracted from the Integrative 
Genomics Viewer and illustrated using BioRender. The intensity of both histone 
marks was normalized according to the CN. Assessment of DNA methylation 
status in the promoter region of each gene was performed using the non-tumor 
PDC as a control for the two tumor PDCs.
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three of the 52 MethSig cancer genes with an MR/MN greater than 
1 (CYP4F2, MSC and EIF5A2) were associated with worse survival in 
a multivariate Cox analysis (P = 0.022 for CYP4F2, P = 0.02 for MSC  
and P = 0.011 for EIF5A2; Fig. 4d and Supplementary Fig. 6e).

Finally, we assessed which genomic alterations in TRACERx tumors 
co-occurred with these candidate DNA methylation driver events.  
In LUAD, driver mutations in STK11 and KDM5C resided in tumor  
regions with predicted hypermethylation of ZNF714, MSC and EIF5A2 
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MethSig cancer genes with an MR/MN greater than 1 (Fig. 4e). In LUSC, 
a predominance of tumor regions with driver mutations in ATR  
and KMT2D was observed along with predicted hypermethylation  
of PITX2 or VIRP2, MethSig cancer genes with an MR/MN greater than 1  
(Supplementary Fig. 7). Expansion of our dataset to a cohort of 

preinvasive lesions9 revealed that although the VIPR2 and ZNF714 genes 
were already methylated in preinvasive lesions, co-occurrence with 
driver mutations in CDKN2A and STK11, respectively, was only evident 
in LUAD (P = 2.5 × 10−03 and P = 1.9 × 10−07; Fisher’s exact test; Fig. 4e). 
Notably, these mutations were relatively infrequent in the preinvasive 
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cohort. These results suggest that methylation of these genes with an 
MR/MN greater than 1 may occur early in tumorigenesis and could enable 
prediction of subsequent genomic trajectories.

Discussion
To capture the complex interplay between the genome and epigenome 
in NSCLC, we leveraged the high sequencing depth provided by RRBS 
on 217 tumor samples from 59 lung TRACERx patients and applied  
the CAMDAC deconvolution tool17 to enrich cancer-cell-specific  
methylomes. Unsupervised hierarchical clustering of the most variable 
CpGs sites revealed a clear separation between histological subtypes, 
highlighting the benefit of the tumor deconvolution strategy.

We developed ITMD, an approach to evaluate the degree of intra
tumoral DNA methylation heterogeneity. CAMDAC ITMD scores 
were not affected by sampling bias, sequencing coverage, CN or 
tumor purity, probably because they are not dependent on methyla-
tion signals from different cell types within the tumor, unlike other 
approaches26,27. Second, while other ITH studies relied on entropy26–28, 
we observed heterogeneity of CpG sites in multiple regions of  
the same tumor. Finally, unlike similar ITH scores that use SNVs 
and CNs for functional validation29, we additionally encompassed  
the impact of methylation heterogeneity on the heterogeneity of  
global gene expression.

Through integrating DNA methylation and CN data, we identified 
several canonical TSGs, such as STK11 and CDKN1B, which were most 
often targeted by a single alteration, in line with previous reports of 
their haploinsufficiency30,31.

Using CAMDAC cancer-cell-specific methylomes as input for 
MethSig, we observed significant enrichment of hypermethylated 
candidate NSCLC cancer genes known to encode differentiation and 
developmental transcription factors, such as PCDHGA3 and EVX1, and in 
ZNF-154, which may affect plasticity32. These MethSig events probably 
reflect histology-specific early DNA methylation events. Early inactiva-
tion of developmental genes may facilitate transformation through 
mechanisms such as preventing or reverting lineage differentiation 
and locking cells into a perpetuated stem-cell-like state, increasing 
their propensity to become transformed by additional oncogenic 
events33. Our findings further emphasize the potential of incorporating 
epigenetic modulators into combination therapy.

To assess the extent of positive selection of DNA hypermethyla-
tion at gene expression regulatory versus nonregulatory CpGs in gene 
promoters, we developed MR/MN, a metric that relies on the expectation 
that expression-associated DMPs are more likely to be under positive 
selection. We hypothesize that genes with an MR/MN greater than 1 may 
confer a selective advantage.

To date, dosage compensation studies have primarily focused  
on epigenetic regulation of the X chromosome, such as methylation- 
dependent dosage compensation and downregulation of SOX1,  
which is known to influence patient prognosis in breast cancer34,35. 
Dosage compensation by hypermethylation of genes amplified by 
virtue of their location proximal to an oncogene was enriched in essen-
tial genes. Many of these essential genes encode proteins that are  
part of complexes and are probably under selective pressure to 

maintain complex stoichiometry. This potential cooperation between 
genetic and epigenetic events may parallel the concept of allostery, 
which was introduced over a century ago to describe the pheno
menon whereby one molecule affects the binding affinity of another  
molecule to a protein18. The process involves one or more coopera-
tive changes at sites that are spatially separated from the target site, 
triggering an allosteric activity transition in the molecule. Extending 
the same concept to chromatin, we hypothesize that cooperation 
between local changes in CN and DNA methylation around one gene can 
trigger an in-cis focal AllChAT affecting a nearby gene, as exemplified 
by the essential gene DDX42, located 9 Mb from the oncogene SOX9  
and the TMTC1 gene with an MR/MN smaller than 1 located 4 Mb 
upstream of KRAS.

Our study is not without limitations. The MR/MN metric assumes 
that hypermethylated DMPs associated with reduced expression are 
regulatory, disregarding other confounding factors, such as the impact 
of SNVs and CN loss. MR/MN is also restricted to regulatory CpGs proxi-
mal to the transcription start site (TSS) regions and neglects other 
potential regulatory sites. In addition, 1.3% of promoter CpG sites, 
particularly associated with chromatin modifiers, exhibit a strong 
positive correlation between DNA methylation and gene expression36, 
which is not considered in our methods. Despite not observing a  
general correlation between the dN/dS and the MR/MN ratio within 
canonical TSGs, cis-regulatory mutations in these promoter regions 
may be associated with changes in DNA methylation at the same site, 
which could also interfere with our metric. Despite these assumptions, 
our data suggest that an early DNA methylation event may commit 
the primary tumor to particular genomic trajectories, as suggested 
for MGMT hypermethylation preceding KRAS activating mutations 
in colorectal cancer37. Furthermore, the incorporation of epigenetic  
modifications into cancer evolution trajectories may improve  
our understanding of the intricate relationship between genetic and 
epigenetic alterations and facilitate stratification of patients with 
NSCLC for appropriate therapeutic regimens.
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Methods
Patient selection for RRBS
The TRACERx study (ClinicalTrials.gov identifier: NCT01888601) is 
a prospective observational cohort study that aims to transform our 
understanding of NSCLC. It was approved by an independent research 
ethics committee, the National Research Ethics Service Committee 
London–Camden and Islington, with sponsor’s approval of the study 
by University College London (UCL) (research ethics committee refer-
ence no. 13/LO/1546, protocol no. UCL/12/0279, Integrated Research 
Approval System project ID: 138871). The design has been approved by 
an independent research ethics committee (no. 13/LO/1546). Written 
informed consent for entry into the TRACERx study was mandatory 
and obtained from every patient. All patients were assigned a study 
ID number known to the patient. We performed RRBS on 217 tumor 
regions from 59 patients (32 with LUAD, 20 with LUSC and seven with 
other NSCLC subtypes) all with matched NATs. Among the 59 patients, 
31 were stage I, 14 stage II and 14 stage III. Forty-seven were ex-smokers, 
six current smokers and six never-smokers (Supplementary Fig. 1b). 
RNA-seq data were leveraged from 43 patients (129 regions) and WES 
data from 45 patients (159 regions) from the TRACERx cohort (Sup-
plementary Fig. 1a).

Dual DNA/RNA extraction
Sequential extraction of DNA and RNA was performed from the same 
sample using the AllPrep DNA/RNA Mini Kit (QIAGEN). Briefly, frozen 
samples were transferred onto cold Petri dishes on dry ice and were 
dissected into 20–30 mg pieces. Immediately before extraction, the 
freshly dissected tissue was transferred directly into homogenization 
tubes containing RLT plus lysis buffer. Tissue homogenization was 
carried out using a TissueRuptor II probe or using a bead method and 
by passing the lysate through a QIAshredder column (QIAGEN). The 
DNA extracted was eluted with 200 µl of buffer EB (no EDTA) and RNA 
was eluted with 200 µl of nuclease-free water and stored immediately 
at −80 °C. The DNA and RNA samples were quantified using a Qubit 
3.0 Fluorometer (Thermo Fisher Scientific) and TapeStation system 
(Agilent Technologies), respectively. The integrity of DNA/RNA was 
assessed using the TapeStation system.

RRBS
DNA methylation profiles were obtained using RRBS38 with the NuGEN 
Ovation RRBS Methyl-Seq System, which incorporates unique molecu-
lar identifiers facilitating single-molecule analysis and precise meth-
ylation estimates16. The choice of the method for DNA methylation 
analysis of the TRACERx cohort was driven by (1) the available sample 
quantity, (2) cost-efficiency, accuracy, reproducibility and feature 
coverage of the available methods16 and (3) the required depth of cov-
erage. An inherent limitation of the targeted over-whole-methylome 
approaches is the reduced coverage of the non-CpG-rich regulatory 
regions (for example ~25% of FANTOM5 enhancers for RRBS); however, 
considering the trade-offs and sample and coverage constraints, RRBS 
was selected as the method of choice. Additionally, RRBS covers 90.02% 
of promoters with CpGs, making it the optimal method for studying the 
impact of DNA methylation on the regulation of protein-coding genes.

RRBS sequencing libraries were created by enzymatically digest-
ing 100 ng of genomic DNA using MspI, which recognizes 5′-CCGG-
3′ sequences and cleaves phosphodiester bonds upstream of CpG 
dinucleotides, leaving a 2-bp overhang suitable for adapter ligation. 
Bisulfite conversion was performed using the QIAGEN’s EpiTect Fast 
DNA Bisulfite Kit. Agencourt RNAClean XP magnetic beads were used 
to purify the converted libraries amplified using PCR. Purified libraries 
were quantified using the Qubit dsDNA HS Assay Kit (Invitrogen) and 
quality was evaluated using the Agilent Bioanalyzer High Sensitivity 
DNA Assay (Agilent Technologies).

FastQC v.0.11.2 (Babraham Institute, https://www.babraham.
ac.uk/) was used for quality control. Adapter sequences and diversity 

bases were trimmed using TrimGalore v.0.6.6 and the NuGEN’s trim-
RRBSdiversityAdaptCustomers.py custom script (https://github.com/
nugentechnologies/NuMetRRBS). Reads were aligned to the UCSC  
hg19 reference assembly using Bismark v.0.23.0 and Bowtie v.2-2.4.2 
(refs. 39,40); deduplication was carried out using NuDup (https://
github.com/nugentechnologies/nudup). A Nextflow pipeline to per-
form the alignment and quality control is available at https://github.
com/ccastignani/RRBS_DNAmethylation_pipeline.

CN-aware methylation deconvolution of cancers
The CAMDAC method17 was used to obtain cancer-cell-specific methyla-
tion rates from bulk RRBS data evaluating 1.8 M CpGs covered in every 
sample in the cohort. Absence of tumor infiltration from matched NATs 
was assessed using pathology and transcriptomic analyses and was 
used as the normal infiltrate contaminant component in the tumor.

CAMDAC deconvolution relies on ASCAT.m, a module that infers 
allele-specific CN from RRBS data leveraging the same principles 
presented in ref. 41. To improve ASCAT.m CN calling, we performed 
multi-sample phasing. In segments with an allelic imbalance in at 
least one sample, haplotyping was performed by taking the B allele 
frequency of heterozygous single-nucleotide polymorphisms. After 
multi-region phasing, ASCAT.m solutions for 67 samples were refitted 
manually and 26 samples were excluded because of low quality (low 
coverage or low proportion of tumor cells).

At loci with allele-specific methylation, a copy gain or loss can 
simultaneously result in an apparent hypomethylation or hypermeth-
ylation event, depending on whether the methylated or unmethylated 
copy is involved. As these allele specifically methylated loci represent 
5% or less of loci and CN events at these regions may have biological 
meaning17, we included them in the concordant or discordant counts 
accordingly.

Tumor-normal differential methylation analysis
Tumor-normal DMPs were identified based on a statistical test 
described in ref. 17. The CAMDAC cancer-cell-specific methylation 
rate (mt) and the adjacent normal methylation rate as proxy for the 
cell of origin (mn) were used. Significant DMPs were identified using a 
P < 0.01 and a difference threshold of 0.2 between methylation rates 
(that is, mt − mn > 0.2). DMRs were called by binning CpGs into neigh-
borhoods and identifying DMP hotspots in these clusters. CpGs that fell 
within 100 bp of one another were grouped together. For each bin, the 
number of consecutive DMPs with an effect size above 0.2 and P < 0.01 
were computed. Genomic bins with four or more consecutive DMPs 
and at least five DMPs in total were deemed DMRs. Methylation status 
in gene promoters (defined as starting 2.5 kb upstream and ending 
250 bp downstream of the TSS) was used to compute the methylation 
status per gene.

Hierarchical clustering
Unsupervised hierarchical clustering of the top 5,000 most variable 
CpGs, based on the s.d., was performed using the Ward’s minimum 
variance clustering method implemented in the R package Complex-
Heatmap42. Bootstrap hierarchical clustering was performed using 
the R package pvclust (https://github.com/shimo-lab/pvclust) with 
the hierarchical clustering method set to ‘average’ and using a Pearson 
distance matrix43. For each analysis, we ran 1,000 bootstrap iterations 
and significant clusters were taken using alpha > 0.95. Cluster stability 
values were estimated using the clusterboot() function from the fpc R 
package (https://cran.r-project.org/web/packages/fpc/index.html). 
The use of 5,000 most variable CpGs in this analysis was representa-
tive of the variation in the cohort. Cluster stability was evaluated using 
the Fowlkes–Mallows index, which is used to determine the similar-
ity between two sets of hierarchical clustering. Clusters taken from 
the 5,000 most variable CpGs were compared against the clusters 
derived from the 10,000, 20,000 and 50,000 most variable CpGs. 
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The Fowlkes–Mallows indices of 0.97 for 5,000 versus 10,000, 0.96 for 
5,000 versus 20,000, and 0.95 for 5,000 versus 50,000 were obtained.

Intratumor heterogeneity metrics
ITED3 was calculated as the mean normalized gene expression correla-
tion distance for a given tumor region paired with every other region 
from the same tumor3. Mutational and CN heterogeneity were calcu-
lated based on recently established metrics2. ITMDs were computed 
based on the pairwise Pearson distance between all CpGs across all 
sampled regions per tumor.

Isolation of basal and AT2 cells from normal human tissue
Human cells derived from lobectomy tissue (TRACERx patients 
CRUK1231, CRUK1266, CRUK1262, CRUK1320 and CRUK1319) were 
isolated as described previously44 and either used immediately or 
cryopreserved before flow cytometry sorting. Cryopreserved samples 
underwent a 1.5-h incubation at 37 °C before staining with antibod-
ies. Cells were blocked with anti-Fc block (Fc1, BD Biosciences) and 
stained with the following antibodies using a standard concentra-
tion of 0.25 µg 10−6 cells: CD45-PE (HI30, BD Biosciences); CD235a-PE 
(clone HIR2, BD Biosciences); CD140b-PE (clone 28D4, BD Biosciences); 
CD31-PE (clone WM59, BD Biosciences); EpCAM-FITC (clone VU-1D9, 
STEMCELL Technologies); podoplanin-APC-Cy7 (clone NC-08, Bio-
Legend); CD166-APC (clone eBioALC48, Thermo Fisher Scientific); 
CD49f-PE-Cy7 (clone GoH3, Thermo Fisher Scientific); and propid-
ium iodide (BD Biosciences). Samples were sorted on FACSAria cell 
sorters (BD Biosciences). Basal cells were defined as propidium−, PE−, 
EpCAM+, CD166mid, CD49fhi and podoplanin+; AT2 cells were defined 
as propidium−, PE−, EpCAM+, CD166mid, CD49fmid and podoplanin− and 
collected into DNA/RNA shield buffer (Zymo Research). DNA/RNA was 
extracted using the Quick-DNA/RNA MagBead kit (cat. no. R2130, Zymo 
Research). After isolation, RRBS libraries were generated, as described 
in the RRBS methodology and DNA/RNA extraction sections, and 
RNA-seq was performed3. Validation of the purity of the isolated AT2 
and basal cells was performed using previously published signatures 
for the LUAD and LUSC origins, respectively45.

DNA methylation driver discovery
MethSig scores10 (https://github.com/HengPan2007/MethSig) were 
calculated separately for the LUAD and LUSC samples. For each tumor, 
only the sample with the highest purity was used. Promoter hypermeth-
ylation was measured using the differentially hypermethylated cyto-
sine ratio (DHcR), defined as the ratio of hypermethylated cytosines 
to the total number of profiled CpGs per gene in the promoter region. 
DMPs were defined based on the counts of methylated and unmethyl-
ated loci in tumor versus normal samples using a chi-squared test and 
15% FDR. In the normal samples, DHcR ratios were estimated by taking 
the hypermethylation ratio with respect to the median normal. In the 
tumor samples, CAMDAC cancer-cell-specific methylation rates were 
used to calculate the tumor hypermethylation ratios. Genes with no 
coverage in all samples and no expression in the normal tissue (RSEM 
counts < 1) were filtered out for subsequent analyses. The expression 
levels of normal tissue were calculated by averaging RSEM counts 
across all matched NAT samples. Promoter regions were defined using 
the default threshold of a ±2-kb window centered on the RefSeq TSS.

MethSig models hypermethylation stochasticity using the PDR46 
in promoter regions. The PDR measures the proportion of overlapping 
reads with discordant hypermethylated or hypomethylated CpGs. 
Applying CAMDAC principles, the cancer-cell-specific tumor PDR 
(PDRt) can be expressed as a function of the bulk (PDRb) and matched 
normal PDR (PDRn), weighted by the normal and tumor CN, respectively 
nn and nt, and tumor purity (rho; Extended Data Figure 5a).

PDRb = PDRt ntρ + PDRn nn(1 − p)
ntρ + nn(1 − p) or equally

PDRt =
PDRb(ntρ + nn(1 − p)) − PDRn nn(1 − p)

ntρ

To validate the application of CAMDAC principles to the methyla-
tion stochasticity estimates, we first leveraged SNVs found in genomic 
regions with loss of heterozygosity (LOH). In these regions, all reads 
bearing an SNV can be assigned to the tumor cells while all wild- 
type (WT) reads originate from the normal compartment. A sig-
nificant correlation was observed between the PDR estimated from  
CAMDAC and the PDR estimated using SNVs; similarly, a significant 
correlation was observed between the PDR of NATs and the PDR calcu-
lated using WT-LOH (R > 0.8, P < 2.2 × 10−17) (Extended Data Fig. 5b,c).

To evaluate the use of the patient-matched NATs as a representa-
tive proxy for the methylation profile of the normal infiltrating cells, 
we used fluorescence-activated cell sorting (FACS) by DNA content to 
experimentally separate diploid cell populations from five tumors17. 
As shown in Extended Data Fig. 5d, good agreement was observed 
between the matched NATs and FACS-purified normal PDRs in all sam-
pled regions (R > 0.7). The average PDR per tumor was higher in the 
CAMDAC cancer-cell-specific estimates than bulk and normal in the 
vast majority of samples (Extended Data Fig. 5e).

The MethSig functions makeInputMatrix, pvalueBetaReg and 
pvalueCombine were used to estimate the expected promoter DHcR 
of tumor samples using a beta regression model and tested against the 
observed ratio across the cohort.

Quantification of dosage compensation by DNA methylation
To assess dosage compensation, we calculated the difference in 
median promoter methylation rates between tumor regions with 
and without amplification. For instance, a difference of 0.2 between 
amplified and non-amplified regions indicates that, on average, the 
allele in half of all amplified tumor regions has become at least 20% 
more methylated compared to the unamplified regions. In practical 
terms, for an amplified total CN of five, this could signify that (1) at 
least one additional promoter copy has become fully methylated in all 
tumor cells, (2) all copies in all tumor cells have become 20% or more 
methylated or (3) an additional 20% or more of cells have all copies 
methylated. The mean gene expression in regions when amplified by 
SCNAs was compared to when not amplified, with no significant dif-
ference being classified as buffered; a significantly lower expression 
when amplified versus when not amplified was classified as antiscaling 
based on t-test analyses.

ChIP–seq
For the ChIP–seq analyses, approximately 107 cells from primary cul-
tures derived from the TRACERx samples (two tumor CRUK0977, 
CRUK0557, and one from NAT CRUK0667 (ref. 47)) were fixed with 
1% formaldehyde for 10 min in PBS, quenched with 125 mM glycine, 
washed and lysed; chromatin was sonicated using a Bioruptor Pico 
(Diagenode), to an average size of 200–700 bp. Immunoprecipitation 
was performed using 10 μg of chromatin and 2.5 μg of H3K4me3 (cat. 
no. C15410003) and H3K27me3 (cat. no. C15410195) antibodies. After 
de-crosslinking, the final DNA purification was performed using the 
GeneJET PCR Purification Kit (cat. no. K0701, Thermo Fisher Scien-
tific) and quantified using the Qubit dsDNA HS Assay Kit. Sequencing 
libraries were constructed using the NEBNext Ultra II DNA Library Prep 
Kit for Illumina (New England Biolabs) and sequenced on the Illumina 
platform using the Nextseq 2000 system, with a loading concentration 
of 800 pM and 2% PhiX spike-in, obtaining a total of 500 million reads 
on average. The reads from the ChIP–seq data were trimmed using 
TrimGalore v.0.6.6 and aligned to the hg38 genome assembly using 
Bowtie 2 v.2.4.5. The BAM files were visualized using the interactive 
tools SeqMonk v.1.48.1 and Integrative Genomics Viewer v.3.2.4. Sig-
nals from the histone signal marks were illustrated using BioRender 
(publication license no. ZG27ZVCQE2).
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Development of the AllChAT pipeline using the EpiATLAS data
We developed the AllChAT pipeline using the EpiATLAS dataset24 con-
sisting of 137 samples from five tissue types: bone marrow; brain; 
colon; kidney; and venous blood. These samples include both tumor 
and normal tissues, profiled using whole-genome bisulfite sequencing 
(WGBS) for DNA methylation and chromatin immunoprecipitation for 
histone modification marks: the activating H3K4me3 and the repres-
sive H3K27me3.

To identify CN aberrations (CNAs) from DNA methylation data, 
we took the WGBS data from 54 International Human Epigenome Con-
sortium tumors aligned with gemBS and applied the Control-FREEC 
(v.11.6b) algorithm (window = 50 kb, threshold = 0.8). For a subset 
of tumors, Control-FREEC was applied to matched whole-genome 
sequencing and high concordance was observed for WGBS CNAs above 
50 Mb in size; therefore, we filtered out all CNAs below this threshold to 
detect large events and arm-level events. We defined gain and loss CNAs 
as those greater than or below the ploidy estimate from Control-FREEC, 
respectively.

We evaluated histone mark intensity, considering their coverage 
pattern within 2 kb upstream of the TSS of each gene, to determine 
chromatin accessibility affected by gain or amplification events. His-
tone marks analyzed included H3K4me3 and H3K27me3. Normalized 
histone values were obtained by dividing tumor signal averages by 
normal sample averages, followed by a logarithmic transformation. 
To identify potential AllChAT oncogene–passenger gene pairs across 
the genome located in the same amplicon, we used a curated list of 
235 known oncogenes and genes located within 20 Mb on the same 
chromosome, assuming they are under the same CN event.

The pipeline for the identification of AllChAT at pairs of oncogene 
and passenger gene loci within tumor samples involves: (1) DNA methyl
ation assessment within a gained region. We conducted a one-sided 
t-test to assess whether within a gained or amplified region the differen-
tial DNA methylation (tumor versus normal) at the oncogene was lower 
than that of the passenger. Conversely, in samples where this region 
is not gained or amplified, we examined whether the differential DNA 
methylation levels of oncogenes were equal to or more than that of the 
passenger gene; (2) we next assigned chromatin status using histone 
mark chromatin immunoprecipitation. In samples with CN gain or 
amplification, for H3K4me3, a one-sided t-test was used to determine 
whether the tumor/normal differential area under the peak at the TSS 
of the oncogene was higher than that of the passenger. In samples 
without CN gain or amplification, we tested whether the tumor/normal 
differential area under the peak at the TSS of the oncogene was equal 
to or less than that of the passenger. Alternatively, for H3K27me3, a 
one-sided t-test was used to determine if the tumor/normal differential 
area under the peak at the TSS of the oncogene was lower than that of 
the passenger. In samples without CN gain or amplification, we tested 
whether the tumor/normal differential area under the peak at the TSS 
of the oncogene was equal to or more than that of the passenger. Loci 
passing all these criteria were assigned as exhibiting AllChAT.

Selective enrichment of gene regulatory CpGs using MR/MN

DNA methylation drivers with potential positive selection in regulatory 
CpGs were identified using the MR/MN metric. To obtain the MR/MN ratio 
per gene, the number of hypermethylation events in all the DMPs cov-
ered in every sample and located in gene promoters were considered. 
Across the cohort, regulatory DMPs were defined as promoter CpGs 
with differential hypermethylation in tumor versus NAT, with con-
comitant significantly reduced gene expression using the parametric 
t-test (P < 0.05). Nonregulatory DMPs were classified as differentially 
hypermethylated CpGs not resulting in reduced gene expression. At 
the gene level, MR represents the number of hypermethylated regula-
tory promoter CpGs per total number of regulatory promoter CpGs; 
MN represents the number of hypermethylated nonregulatory pro-
moter CpGs per total number of nonregulatory promoter CpGs; each 

component was normalized by adding the value of 1 as a pseudocount. 
Genes without both regulatory and nonregulatory assignments were 
deemed non-calculable.

The total number of promoter hypermethylation event counts for 
each regulatory and nonregulatory CpG by gene for LUAD and LUSC 
are described in Supplementary Table 8. The formula for defining the 
MR/MN ratio per gene was as follows:

MR
MN

=

∑n
i=1Hi⋅Ri+1
∑n

i=1Ri+1

∑n
i=1Hi⋅(1−Ri)+1
n−∑n

i=1Ri+1

where for ith DMP, i = 1,… n, we define its corresponding hypermethyl-
ated and regulatory statuses as:

Hi = {
1, ifDMP is hypermethylated,

0, otherwise

and

Ri = {
1, ifDMP is regulatory,

0, ifDMP is nonregulatory

This ratio was calculated for LUAD and LUSC independently 
in the TRACERx cohort. Given that DMPs at expression-associated  
CpGs are more likely to have functional consequences, MR/MN ratios 
greater than 1 imply a selection of regulatory hypermethylation  
events, while MR/MN ratios smaller than 1 imply a selection of non-
regulatory hypermethylation events among the total events on DMPs. 
The impact of MR/MN status on gene expression was performed inde-
pendently in the TCGA cohort. An OR analysis with FDR-adjusted  
P values (P < 0.05, t-test) was applied to identify significantly affected 
genes. MR/MN has been represented on a logarithmic scale to facilitate 
interpretation.

Validation of the MR/MN metric
To validate the MR/MN metric for the LUAD samples, RRBS and RNA-seq 
were performed as described in the Methods for 17 regions from ten 
LUAD tumors, in addition to the adjacent normal tissue. MR/MN was 
calculated as described in the Methods.

To validate whether the DMPs assigned as regulatory and non-
regulatory in the discovery cohort maintained these assignments in 
the validation cohort, we first selected those CpGs associated with a 
significant expression reduction when hypermethylated compared 
to tumor regions where they were not hypermethylated (P < 0.0001, 
t-test). These CpGs are referred to as ‘significantly regulatory CpGs in 
the discovery cohort’. Similarly, we selected these CpGs in the discovery 
cohort with a significant increase in expression in tumor regions when 
the CpG is hypermethylated versus when it is not (P < 0.0001, t-test), 
assigned ‘significantly nonregulatory CpGs in the discovery cohort’.

Next, we assessed the impact of hypermethylation of the selected 
CpGs in the validation cohort. The ‘significantly regulatory CpGs’ from 
the discovery cohort were associated with a significant decrease in 
expression when the CpG was hypermethylated versus when it was 
not in the validation cohort (P = 2.2 × 10−16; paired t-test; Extended Data 
Figure 8e). Similarly, the ‘significantly nonregulatory CpGs’ from the 
discovery cohort were associated with a significant increase in expres-
sion when the CpG was hypermethylated versus when it was not in the 
validation cohort (P = 0.0025; paired t-test; Extended Data Figure 8e).

DNA methylation predictions in the TRACERx RNA-seq cohort
To establish a gene expression threshold for the TRACERx RNA-seq 
cohort that reflects the methylation status of the functional DMPs 
in the TRACERx RRBS cohort, a bootstrapping methodology was 
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followed. Samples from the TRACERx RRBS cohort with available 
matched RRBS and RNA-seq data were used. To ensure this metric is 
robust to multi-region sampling, bootstrapping was performed by 
randomly selecting a single region per tumor and repeating the process 
100 times. Through this process, it was possible to evaluate the mean 
and 25th, 50th and 75th percentiles of the expression level of genes in 
tumors when the DMPs were hypermethylated versus when they were 
not hypermethylated. Next, these values were extrapolated to the 
gene expression in the TRACERx RNA-seq cohort. For each gene, we 
dichotomized tumors based on whether or not each promoter DMR was 
hypermethylated in the RRBS cohort. Hypermethylation-dependent 
‘low’ gene expression was assigned in TRACERx RNA-seq samples when 
gene expression was lower than the 75th percentile (Q3) of expres-
sion in the TRACERx RRBS cohort. In contrast, a tumor region was 
classified as having ‘high’ gene expression if the level was higher than 
the third quartile of expression in the TRACERx RRBS cohort. At the 
tumor level, if different tumor regions in the TRACERx RNA-seq cohort 
exhibited different classifications (for example, R1 with hypermethyla-
tion and R2 with hypomethylation), the tumor was classified as having 
hypermethylation-dependent reduced expression for that gene.

Survival analysis (TRACERx RNA-seq cohort)
DFS was defined as the period from the date of registration to the time 
of radiological confirmation of the recurrence of the primary tumor 
registered for the TRACERx or the time of death by any cause. Dur-
ing the follow-up, three participants with LUAD tumors (CRUK0512, 
CRUK0428 and CRUK0511) developed a new primary cancer and sub-
sequent recurrence from either the first primary lung cancer or the 
new primary cancer diagnosed during the follow-up. These cases were 
censored at the time of the diagnosis of new primary cancer for DFS 
analysis because of the uncertainty of the origin of the second tumor. 
As for the participants who harbored synchronous multiple primary 
lung cancers, when associating genomic and pathological data from 
the tumors with participant-level clinical information, we used only 
data from the tumor of the highest pathological TNM stage. Hazard 
ratios (HRs) and P values were calculated using the coxph function of 
the survival (v.3.4.0) R package, through multivariable Cox regression 
analyses, adjusted for age, pathological stage, smoking pack-years and 
receipt of adjuvant therapy. Kaplan–Meier plots were generated using 
the ggsurvplot function of the survminer (v.0.4.9) R package.

TIL estimation
TIL scores were estimated using pathological evaluation of regional 
hematoxylin and eosin-stained slides using established international  
guidelines, developed by the International Immuno-Oncology  
Biomarker Working Group, as described in previous reports48,49.

Statistical information
All statistical tests were performed in R (v3.6.3). No statistical methods 
were used to predetermine the sample sizes of this specific cohort (217 
tumors from 59 patients); however, the size of the complete TRACERx 
cohort at study completion (421 patients) was chosen to provide statis-
tical power for detection of a 0.77 HR effect on the outcome by an ITH 
variable when split by the median. Tests involving comparisons of dis-
tributions were done using a two-tailed Wilcoxon rank-sum test (wilcox.
test) unless otherwise specified, using paired or unpaired options where 
appropriate unless otherwise specified. Tests involving the comparison 
of groups were done using a two-tailed Fisher’s exact test (fisher.test). 
HRs and P values for the survival analyses were calculated using the 
survival package. For all statistical tests, the number of data points 
included are plotted or annotated in the corresponding figure legend.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The WES, the RNA-seq and RRBS data (in each case from the TRACERx 
study) used during this study have been deposited at the European 
Genome-phenome Archive (EGA), which is hosted by the European 
Bioinformatics Institute and the Centre for Genomic Regulation 
under accession nos. EGAS00001006494 (WES), EGAS00001006517 
(RNA-seq), EGAS00001006523 (RRBS) and EGAS00001008071 (RBBS 
and ChIP–seq) and is under controlled access because of its nature 
and commercial licenses. Specifically, data are available through the 
CRUK & UCL Cancer Trials Centre (ctc.tracerx@ucl.ac.uk) for academic 
noncommercial research purposes only and is subject to review of a 
project proposal by the TRACERx data access committee, entering into 
an appropriate data access agreement and subject to any applicable 
ethical approvals. A response to the request for access is typically 
provided within 10 working days after the committee has received the 
relevant project proposal and all other required information.

Code availability
The code used to process the data and generate the figures is available 
at Zenodo (https://zenodo.org/records/14640157)50.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Global DNA methylation landscape in the TRACERx 
lung cancer study. a) Unsupervised hierarchical clustering of the 5,000 most 
variable CpGs in the bulk DNA methylation data. Yellow, hypermethylated 
CpGs, blue, hypomethylated CpGs. Groups correspond to patient samples and 
clusters correspond to CpGs. b) Genomic features representation of the 5,000 
most variable CpGs identified using CAMDAC in the three clusters and in the 
background of CpGs in RRBS capture regions c) Methylation rate of CpGs in 
Clusters 1, 2 and 3, corresponding to promoter regions of genes in tumor and 
normal, classified by subtype from left to right: LUAD, LUSC, and other subtypes. 
Wilcoxon test, P < 0.001 (***), P < 0.01 (**), P < 0.05 (*). d) Correlation between 
the number of differentially methylated positions (DMPs) and the number of 
reads per chromosomal copy (NRPCC), purity, ploidy, median CpG coverage in 
the tumor and normal samples and median β-value. Median mt and mn coverage 
correspond to the number of reads per CpG in the CAMDAC-deconvolved and 
normal data respectively (Pearson’s correlation test). The fitted line represents 

a smoothed trend estimated using a robust linear regression (RLM), with 
the shaded region indicating the 95% confidence interval. e) Proportion of 
ubiquitous DMPs with respect to the number of regions sampled (ANOVA test). 
f) Relationship between ITMD value and the number of regions sampled (ANOVA 
test). The boxplot shows the median, interquartile range (Q1–Q3), whiskers 
extending to 1.5×IQR, and outliers beyond this range. g) Correlation between the 
standard deviation (SD) of purities across regions from the same patient tumor 
versus CAMDAC-based methylomes (left) and nondeconvolved bulk methylomes 
(right) ITMD (Pearson’s correlation test). The fitted line represents a smoothed 
trend estimated using a robust linear regression (RLM), with the shaded region 
indicating the 95% confidence interval. h) Relationship between ITMD value and 
the genomic feature annotation. ANOVA test, P < 0.001 (***). The boxplot shows 
the median, interquartile range (Q1–Q3), whiskers extending to 1.5×IQR, and 
outliers beyond this range.
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Extended Data Fig. 2 | Analysis and characterization of cells of origin for LUAD 
and LUSC compared to normal adjacent tissue. a) Principal component analysis 
based on known transcriptomic signatures of cells-of-origin for LUAD (AT2) and 
LUSC (BSC). Freshly isolated populations were obtained via flow cytometry from 
five normal-adjacent tissue samples from the TRACERx cohort. b) Correlation of 

the β-values of a random set of 1 million CpGs (minimum coverage of 10 reads) 
between the panel of normal (PON) from the FACS sorted cells-of-origin (y axis) 
and the PON from NAT (x axis). AT2 PON versus NAT PON (LUAD, left) and BSC 
PON versus NAT PON (LUSC, right). Color scale (count) corresponds to the 
number of CpGs with overlapping methylation rates in both PONs.
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Extended Data Fig. 3 | Convergent DNA methylation and genomic alterations 
in drivers. a) Impact of SCNA loss status on gene expression for genomic TSGs 
(left) and oncogenes (right) for LUAD and LUSC separately. Negative values 
indicate decreased expression in tumors where the gene is lost by SCNA, positive 
values indicate increased expression in tumors where the gene is lost by SCNA, 
P < 0.05 (*) (t-test). b) Number of tumors with alterations based on SCNA loss 
(blue) or promoter hypermethylation (yellow) in genomic oncogenes. Parallel 

events, defined as hypermethylation and copy number loss occurring in different 
regions of the same tumor (red). Double hit events, defined as tumors exhibiting 
promoter hypermethylation and somatic copy number loss in the same region 
(green); other combinations of events, such as somatic copy number gains, 
mutations or promoter hypomethylation events and combinations thereof 
(white). Pie chart, summarising the percentage of each event for all genomic 
oncogenes.
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Extended Data Fig. 4 | Heatmap of gene expression by copy loss and/or DNA 
methylation. TSG expression in samples with at least 2 tumor regions per 
category in LUAD (left) and LUSC (right). * indicates significance of the expression 
decrease relative to samples with no hypermethylation or copy number loss 

observed based on RRBS and WES analyses using a linear mixed model analysis. 
The colour scale (Z-score) is standardised by rows to allow comparisons within 
the same gene, with 0 being the mean value.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Identification of candidate DNA methylation cancer 
genes using MethSig. a) Application of CAMDAC principles to PDR. Bulk PDR 
(PDRb) can be described as a combination of the tumor PDR (PDRt) and normal 
PDR (PDRn) weighted by the copy number and purity. b and c) Normal and 
CAMDAC PDRs correlated with PDRs estimated from WT (WT-LOH PDR) and 
mutated reads (SNV-LOH PDR) respectively in regions with loss of heterozygosity 
(LOH) phased to SNVs. d) Correlation between PDR estimated from purified 
diploid cell populations from five tumor samples experimentally separated using 

FACS (Methods) vs. matched normal adjacent tissue (NAT). e) Plots showing 
the median PDR per tumor for bulk (PDRb), CAMDAC tumor (PDRt) and normal 
(PDRn) data. In concordance with CAMDAC principles, CAMDAC PDR (PDRt) levels 
are usually higher than the PDRb when the PDRn from adjacent tissue is lower 
than the PDRb. f) and g) Q-Q plot showing top significant MethSig cancer genes in 
LUAD and LUSC respectively. h and i) Top enriched Reactome pathways in LUAD 
and LUSC respectively.
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Extended Data Fig. 6 | Divergent interplay between DNA methylation status 
and genomic alterations in genomic driver genes. a) Number of concordant 
and discordant combinations of copy number, DNA methylation, and 
inactivating mutations impacting canonical TSGs in LUAD and LUSC. Double 
hits are defined as the combination of more than two types of concordant events 

identified within the same tumor region. Parallel events refer to concordant 
events identified in different regions of the same tumor. b) Differential 
expression analysis of essential genes comparing tumor regions with both 
hypomethylated DMRs and SCNA loss versus tumor regions with SCNA loss alone 
in LUAD and LUSC (t-test).
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Divergent interplay between DNA methylation and copy 
number in amplified regions in LUAD and LUSC separately. a) Difference in 
median promoter DNA methylation (y axis) versus log2-fold change in median 
expression for genes when amplified versus when not amplified (x axis). Genes 
highlighted in yellow are potentially under DNA methylation-dependent dosage 
compensation. Genes with expression levels that scale with copy number and 
do not scale with DNA hypermethylation are highlighted in red; LUSC (left); 

LUAD (right). b) GO terms highlighting the enriched pathways for genes under 
DNA methylation-dependent dosage compensation in LUSC (left) and in LUAD 
(right). c, d) DNA methylation-associated dosage compensation of genes co-
amplified within 20 Mb of oncogenes in c) LUSC and d) LUAD. Genes with a DNA 
methylation difference > 0.2 when amplified versus non-amplified are labelled in 
yellow. Genes with expression levels that scale with copy number and do not scale 
with DNA hypermethylation are highlighted in red.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Implementation of MR/MN to stratify genes under DNA 
methylation-dependent regulatory selection. a) Linear regression between 
the logarithm of the number of promoter CpGs and the MR/MN ratio per gene 
in LUAD and LUSC (95% confidence intervals are indicated in grey). b) Gene 
expression ratio between the tumor and the normal adjacent tissue (NAT) for 
the top 1000 genes with highest MR/MN and bottom 1000 MR/MN in the LUAD 
TRACERx RRBS cohort and the LUAD TCGA cohort. c) Gene expression ratio 
between the tumor and the NAT for the top 1000 genes with highest MR/MN and 
bottom 1000 MR/MN in the LUSC TRACERx RRBS cohort and the LUSC TCGA 
cohort (t-test). d) Mean value ± SEM of MR/MN of known essential genes extracted 
from the Achilles dataset project versus the mean value ± SEM of MR/MN from a 
random iteration of selected genes (t-test). e) Validation of the promoter CpG 
assignments (regulatory and non-regulatory) using an additional 17 regions from 

10 LUAD from the TRACERx cohort as an independent validation cohort using 
CpGs significantly assigned as regulatory (left boxplot), and significantly non-
regulatory (right boxplot) in the discovery cohort (t-test). f) Confusion matrix 
showing the percentages of CpGs selected in panel ‘e’ in both the discovery and 
validation cohorts that are associated with reduced gene expression (or not) 
when hypermethylated versus when non hypermethylated. For the validation 
cohort, ‘reduced’ CpGs have been assigned when the expression ratio between 
when the CpG is hypermethylated versus when it is not is less than 0.5, while ‘Not 
reduced’ has been considered when the ratio is greater than 1.5. Significance 
has been evaluated using a chi-squared test. g) Validation of the MR/MN metric 
by comparing the value of MR/MN in the discovery vs the validation cohort 
(Correlation coefficient calculated using the Spearman method, 95% confidence 
intervals are indicated in grey).
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Data collection No software was used to collect data 

Data analysis R (version 3.6.3) 
 
Alignment and QC: 
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bwa-mem (version 0.7.17) 
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Heterozygous single nucleotide polymorphism (SNP) identification: 
Platypus (version 0.8.1) 
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VarScan2 (version 2.4.4) 
ASCAT (version 2.3) 
Sequenza (version 2.1.2) 
 
 
R packages used in version 3.6.3: 
fst (version 0.9.4) 
tidyverse (version 1.3.0) 
survival (version 3.4) 
ggplot2 (version 3.3.2) 
dplyr (version 1.0.2) 
tidyr (version 1.1.2) 
gridExtra (version 2.3) 
cowplot (version 1.1.0) 
survminer (version 0.4.9) 
survival (version 3.4.0) 
ggpubr (version 0.4.0) 
ggalluvial (version 0.12.3) 
gtsummary (version 1.5.0) 
reshape2 (version 1.4.4) 
tibble (version 3.0.4) 
gtable (version 0.3.0) 
RColorBrewer (version 1.1-2) 
plyr (version 1.8.6) 
dndscv (version 0.0.1.0) 
deconstructSigs (version 1.9.0) 
ggrepel (version 0.8.2) 
GenomicRanges (version 1.38.0) 
rlist (version 0.4.6.2) 
tidytext (version 0.2.3) 
stringr (version 1.4.0) 
magick (version 2.7.3) 
data.table (version 1.13.2) 
DiagrammR (version 1.0.1) 
magrittr (version 2.0.1) 
ComplexHeatmap (version 2.4.5) 
Biorender (License: ZG27ZVCQE2) 
The reads from ChIP-seq data were trimmed using Trim Galore (Version 0.6.6) and aligned to the hg38 genome assembly using Bowtie2v2.4.5. 
The bam files were visualised using the interactive tools SeqMonk (Version 1.48.1 ) and IGV (Version 3.2.4) 
 
 
All code to reproduce the figures will be  available.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The Whole exome sequencing (WES) data, the RNA sequencing (RNA seq) data and the Reduced representation bisulfite sequencing (RRBS) data (in each case from 
the TRACERx study) used during this study have been deposited at the European Genome–phenome Archive (EGA), which is hosted by The European Bioinformatics 
Institute (EBI) and the Centre for Genomic Regulation (CRG) under the accession codes EGAS00001006494 (WES), EGAS00001006517 (RNAseq) and 
EGAS00001006523 and EGAS00001008071  (RBBS and ChipSEQ); access is controlled by the TRACERx data access committee. Details on how to apply for access are 
available at the linked page.
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Reporting on sex and gender The effects of sex and/or gender have not been considered in the recruitment of patients. No differences have been 
observed between men and women in patient recruitment, and there are no differences in any of our analyses.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

Please specify the socially constructed or socially relevant categorization variable(s) used in your manuscript and explain why 
they were used. Please note that such variables should not be used as proxies for other socially constructed/relevant variables 
(for example, race or ethnicity should not be used as a proxy for socioeconomic status).  
Provide clear definitions of the relevant terms used, how they were provided (by the participants/respondents, the 
researchers, or third parties), and the method(s) used to classify people into the different categories (e.g. self-report, census or 
administrative data, social media data, etc.) 
Please provide details about how you controlled for confounding variables in your analyses.

Population characteristics 421 patients are included in this TRACERx cohort. 44.6% are females , 55.4% males; 93% are smokers of have a smoking 
history, 7% are never smokers; 25% of patients were diagnosed at stage IA, 25% at IB, 17.8% at IIA, 13.5% at IIB, 18.5% at IIIA 
and 0.2% at IIIB; 52% of diagnosed tumours were adenocarcinomas, 28.8% were squamous cell carcinomas and 19.2% were 
of other histological subtypes; 93% of the cohort is from a white ethnic background and the mean age of the patients is 69, 
ranging between 34 and 92. 
 
Please note that the study started recruiting patients in 2016, when TNM version 7 was standard of care. The up-to-date 
inclusion/exclusion criteria now utilizes TNM version 8. 
 
TRACERx inclusion and exclusion criteria 
 
Inclusion Criteria: 
_Written Informed consent 
_Patients ≥18 years of age, with early stage I-IIIB disease (according to TNM 8th edition) who are eligible for primary surgery. 
_Histopathologically confirmed NSCLC, or a strong suspicion of cancer on lung imaging necessitating surgery (e.g. diagnosis 
determined from frozen section in theatre) 
_Primary surgery in keeping with NICE guidelines planned 
_Agreement to be followed up at a TRACERx site 
_Performance status 0 or 1 
_Minimum tumor diameter at least 15mm to allow for sampling of at least two tumour regions (if 15mm, a high likelihood of 
nodal involvement on pre-operative imaging required to meet eligibility according to stage, i.e. T1N1-3) 
 
Exclusion Criteria: 
_Any other* malignancy diagnosed or relapsed at any time, which is currently being treated (including by hormonal therapy). 
_Any other* current malignancy or malignancy diagnosed or relapsed within the past 3 years**. 
*Exceptions are: non-melanomatous skin cancer, stage 0 melanoma in situ, and in situ cervical cancer 
**An exception will be made for malignancies diagnosed or relapsed more than 2, but less than 3, years ago only if a pre-
operative biopsy of the lung lesion has confirmed a diagnosis of NSCLC. 
_Psychological condition that would preclude informed consent 
_Treatment with neo-adjuvant therapy for current lung malignancy deemed necessary 
_Post-surgery stage IV 
_Known Human Immunodeficiency Virus (HIV), Hepatitis B Virus (HBV), Hepatitis C Virus (HCV) or syphilis infection. 
_Sufficient tissue, i.e. a minimum of two tumor regions, is unlikely to be obtained for the study based on pre-operative 
imaging 
 
Patient ineligibility following registration  
_There is insufficient tissue  
_The patient is unable to comply with protocol requirements  
_There is a change in histology from NSCLC following surgery, or NSCLC is not confirmed during or after surgery.  
_Change in staging to IIIC or IV following surgery  
_The operative criteria are not met (e.g. incomplete resection with macroscopic residual tumors (R2)). Patients with 
microscopic residual tumors (R1) are eligible and should remain in the study  
_Adjuvant therapy other than platinum-based chemotherapy and/or radiotherapy is administered.

Recruitment When patients are initially diagnosed with stage I-III lung cancer and then referred for surgical resection, a research nurse 
identifies them on a clinic/operating list. The patient has an initial eligibility assessment and then provided with written 
information about the TRACERx study and he/she can ask the research nurse any questions. 
 
Patients have to agree to provide serial blood samples whenever they attend clinic for routine blood sampling, so this 
represents the only main potential self-selecting bias (i.e. only patients willing to do this would participate). However, it is 
unclear how this would affect the biomarker analyses. Also, the gender and ethnicity characteristics are in line with patients 
seen in routine practice. 
 
Inclusion and exclusion criteria are summarised above.

Ethics oversight The study was approved by the NRES Committee London with the following details: 
Study title: TRAcking non small cell lung Cancer Evolution through therapy (Rx) 
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Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample size. The sample size of 59 patients (217 tumour regions) that passed quality check 
filters for RRBS included 32 LUAD, 20 LUSC, and 7 other NSCLC subtypes, all with matched normal adjacent tissue (NAT). Among these, 31 
were stage I, 14 stage II, and 14 stage III. In terms of smoking history, 47 were former smokers, 6 were current smokers, and 6 were never 
smokers.

Data exclusions Please see study inclusion/exclusion criteria below. Additionally, samples which fail quality control metrics including low tumor purity (<10%) 
were also excluded from analysis.

Replication TRACERx is a prospective longitudinal study. As such, the results shown here are not the result of an experimental set up. This is the half-way  
point of the TRACERx study and reflects hypothesis generating analysis.

Randomization Randomization is not relevant as this is an observational study.

Blinding Blinding is not relevant as this is an observational study. Patients were not allocated to any intervention and they were followed up and 
assessed as per routine practice. No biomarker results (tissue and bloods) are reported back to patients, so there is no likelihood of people 
changing their behaviours based on these findings. The laboratory analyses were all performed without knowing the outcome (DFS or 
survival) status of the patients, which represents a form of blinding.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Immunoprecipitation was performed using 10ug of chromatin and 2.5 ug of H3K4me3 (C15410003) and H3K27me3 (C15410195) 

antibodies. Isolated cells were blocked with anti-Fc block (Fc1, BD) and stained with the following antibodies using a standar 
concentration of 0.25 μg/106 cells: CD45-PE (HI30, BDbioscience), CD235a-PE (HIR2, BDbioscience), CD140b-PE (28D4, 
BDbioscience), CD31-PE (WM59, BDbioscience), EpCAM-FITC (VU-1D9, STEMCELL tech.), podoplanin-APC-Cy7 (NC-08, BioLegend), 
CD166-APC (eBioALC48, ThermoFisher), CD49f-PE-Cy7 (GoH3, ThermoFisher). Basal cells were defined as propidium-, PE-, EpCAM+, 
CD166mid, CD49fhi and podoplanin+; alveolar type II cells were defined as propidium-, PE-, EpCAM+, CD166mid, CD49fmid and 
podoplanin- 

Validation The protocol for the isolation and identification of both basal cells and type II alveolar cells has been previously described in Weeden, 
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Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
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the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
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Genome browser session 
(e.g. UCSC)

not longer applicable

Methodology

Replicates Three replicates por IP

Sequencing depth After de-crosslinking, the final DNA purification was performed using the GeneJET PCR Purification Kit (Thermo Scientific, catalogue 
number K0701) and quantified using Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific). Sequencing libraries were constructed 
using the NEBNext Ultra II DNA Library Prep Kit for Illumina (NEB) and sequenced on the Illumina platform using Nextseq2000, with a 
loading concentration of 800pM and 2% PhiX spike-in and obtaining a total of 500 million reads on average. The reads from ChIP-seq 
data were trimmed using Trim Galore and aligned  to the hg38 genome assembly using Bowtie2v2.4.5. The bam files were visualised 
using the interactive tools SeqMonk and IGV. The histone signal was illustrated using BioRender. 
 

Antibodies We have used the commercial antibodies H3K4me3 (C15410003) and H3K27me3 (C15410195).  

Peak calling parameters The reads from ChIP-seq data were trimmed using Trim Galore and aligned to the hg38 genome assembly using Bowtie2v2.4.5. 

Data quality The bam files were evaluated using the interactive tool SeqMonk 

Software The reads from ChIP-seq data were trimmed using Trim Galore and aligned to the hg38 genome assembly using Bowtie2v2.4.5. The 
bam files were visualised using the interactive tools SeqMonk and IGV.
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