
eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk

Universities of Leeds, Sheffield and York

Deposited via The University of York.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/233728/

Version: Accepted Version

Article:

Gould, Victoria, GRAU, AMBROISE and Johnson, Marianne (2025) The structure of 
End(T_n). Monatshefte fur Mathematik. ISSN: 0026-9255 

https://doi.org/10.1007/s00605-025-02147-1

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1007/s00605-025-02147-1
https://eprints.whiterose.ac.uk/id/eprint/233728/
https://eprints.whiterose.ac.uk/


THE STRUCTURE OF END(Tn)

VICTORIA GOULD, AMBROISE GRAU, AND MARIANNE JOHNSON

Abstract. The full transformation semigroups Tn, where n ∈ N, consisting of all maps
from a set of cardinality n to itself, are arguably the most important family of finite
semigroups. This article investigates the endomorphism monoid End(Tn) of Tn. The
determination of the elements of End(Tn) is due Schein and Teclezghi. Surprisingly, the
algebraic structure of End(Tn) has not been further explored. We describe Green’s rela-
tions and extended Green’s relations on End(Tn), and the generalised regularity properties
of these monoids. In particular, we prove that H = L ⊆ R = D = J (with equality if
and only if n = 1); the idempotents of End(Tn) form a band (which is equal to End(Tn) if
and only if n = 1) and also the regular elements of End(Tn) form a subsemigroup (which
is equal to End(Tn) if and only if n ≤ 2). Further, the regular elements of End(Tn) are
precisely the idempotents together with all endomorphisms of rank greater than 3. We
also provide a presentation for End(Tn) with respect to a minimal generating set.

1. Introduction

The full transformation semigroup Tn on a finite set {1, . . . , n} is an important object in
algebra. It is therefore natural to study its endomorphism monoid End(Tn). The elements
of End(Tn) were described by Schein and Teclezghi [21], and we use this description as the
starting point for our investigation of the algebraic structure and properties of End(Tn).
Our initial task is to partition End(Tn) in several ways, depending on the rank of an
element (the cardinality of its image) and type of an element (a quality of the image that
determines the behaviour of the element in products). This partitioning is then made use
of throughout the text.

One of the first questions to ask about a monoid S is whether it is regular, that is, for
any a ∈ S there is a b ∈ S such that a = aba. Regularity is intimately connected with
the position and nature of the idempotents in the monoid, where e ∈ S is idempotent if
e = e2. We show that for n ≥ 3 the monoid End(Tn) is not regular. On the other hand
the set of idempotents of End(Tn) is very special in that it is a band, that is, a semigroup
of idempotents. Moreover it is a special kind of band, namely a left regular band.

We next investigate minimal generating sets of End(Tn), and provide a presentation for
End(Tn) in terms of these generators.

A major tool used in understanding monoids is that of Green’s relations R,L,H,D
andJ, which measure mutual divisibility properties between elements by considering the
principal (one-sided) ideals that they generate. Specifically, for elements a, b of a monoid

2020 Mathematics Subject Classification. Primary: 20M05, 20M10, 20M20.
Key words and phrases. Full transformation semigroup; endomorphisms; ideals; presentations.

1

ar
X

iv
:2

30
7.

11
59

6v
1 

 [
m

at
h.

R
A

] 
 2

1 
Ju

l 2
02

3



2 V. GOULD, A. GRAU, AND M. JOHNSON

S we have aR b if and only if aS = bS; this is equivalent to a = bs and b = at for some
s, t ∈ S. The relation L is defined dually, andJis defined by aJb if and only if SaS = SbS.
Finally, H = R∧L = R∩L and D = R∨L = R ◦L with D =Jfor a finite semigroup;
the latter two assertions are theorems - see, for example, [11]. We characterise Green’s
relations on End(Tn). In particular, we show that H = L ⊆ R = D =J, and for n ̸= 4
the relation L is trivial outside of the group of units. We then use the description ofJto
fully determine the ideals of End(Tn).

Green’s relations provide an alternative characterisation of regularity, specifically, a
monoid is regular if every R-class (or, equivalently, every L-class) contains an idempo-
tent. We have commented that End(Tn) is not regular, however, we show that it satisfies
the weaker property of being left abundant, where a monoid is left abundant if every class of
the extended Green’s relation R∗ contains an idempotent. This follows from the fact that
the relation R∗ on En precisely captures the relation of having the same rank. We postpone
giving the definitions of the extended Green’s relations R∗,L∗,H∗,D∗ andJ∗ until later
in the text, but suffice to say here they are relations of mutual cancellativity. They first
arose in the work of Pastijn [19] and McAlister [17]. As observed in [6], it follows from
[12] that a monoid is left abundant precisely when every monogenic right act is projective.
We determine the ∗-relations R∗,L∗,H∗,D∗ andJ∗ on End(Tn), from which we observe
that End(Tn) does not satisfy the dual property of being right abundant. To complete

the picture of the extended Green’s relations we consider the ∼-relations R̃, L̃, H̃, D̃ and

J̃which extend the corresponding ∗-relations. They are formulated using idempotent left
identities: again, we postpone their definition until later. The ∼-relations first appear in
[5] and have subsequently proved to be useful in a number of ways. For example, they
are inherent in the characterisation of left restriction semigroups [10] and in determining
varieties containing quasi-varieties of abundant semigroups.

The main focus of our work will be on the general behaviour of End(Tn) which emerges
for n ≥ 5. The cases n ≤ 4 exhibit several degenerate or exceptional behaviours: for
instance, it is immediate that End(T1) = Aut(T1) is the trivial group, and we will see that
End(T4) is unique in that it contains endomorphisms of rank 7.

The structure of the paper is as follows. In Section 2 we remind the reader of the
description of the elements of En from [21]. We prove several fundamental results concerning
the non-automorphisms in End(Tn) and give the partitions promised above. Sections 3–6
consider the structure of End(Tn) for n ≥ 5: in Section 3 we describe some properties of
the idempotents and determine the regular elements; in Section 4 we provide a minimal
generating set and describe a presentation for End(Tn) in terms of these generators; in
Section 5 we give a description of Green’s relations and use this to determine the ideal
structure of End(Tn); we consider the extended Green’s relations on End(Tn) in Section
6. To complete the picture, in Section 7, we analyse the structure of End(Tn) for n ≤ 4.
Finally, in Section 8, we indicate how the ideas in this article could be developed and
extended.

Notation and conventions: Throughout the paper we write Sn ⊆ Tn to denote the
symmetric group and An ⊆ Sn the alternating group, that is, the subgroup of Sn of all
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even permutations. By a slight abuse of notation, we suppress the dependence on n and
write simply id to denote the identity element of Tn. For an element g ∈ Sn, and s ∈ Tn, we
denote by sg the product g−1sg. For 1 ≤ i ̸= j ≤ n we also write (i j) for the transposition
swapping i and j in Sn, and ci for the constant map with image i in Tn. For n ̸= 4,
the alternating group is the only non-trivial proper normal subgroup of Sn, whilst for
n = 4 there is one additional normal subgroup K = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}. A
straightforward calculation reveals that for any t ∈ S4 there is a unique element of Kt
which fixes 4. To facilitate readability, we take the convention that elements of Tn will
be written using Roman letters, while endomorphisms of Tn will be written using Greek
letters. We will also use the short-hand notation En = End(Tn) and Gn = Aut(Tn) for the
endomorphism monoid and automorphism group of Tn. The identity element of En (and
hence also Gn) is the trivial automorphism, which will be denoted by ε (again, suppressing
the dependence on n where convenient).

We attempt to keep the exposition as self-contained as possible, but refer the reader to
[11] for further details of semigroup notions we employ.

2. Singular endomorphisms

In this section we record several useful properties of the endomorphisms in En \ Gn

of End(Tn), which we refer to as singular endomorphisms. We begin by recalling the
characterisation of the semigroup endomorphisms of Tn (that is, endomorphisms preserving
the binary operation, but not necessarily the identity) due to Schein and Teclezghi [21].

Theorem 2.1 ([21]). Let g ∈ Sn and t, e ∈ Tn and define maps ψg and ϕt,e for any s ∈ Tn
by:

sψg = sg and sϕt,e =





t if s ∈ Sn \ An,

t2 if s ∈ An,

e if s ∈ Tn \ Sn.

Then the automorphisms and endomorphisms of Tn are described as follows.

(1) Gn = {ψg : g ∈ Sn}.
(2) For n ̸= 4,

En = Gn ∪ {ϕt,e : t, e ∈ Tn, t
3 = t, te = et = e2 = e}.

(3) For n = 4

E4 = G4 ∪ {ϕt,e : t, e ∈ T4, t
3 = t, te = et = e2 = e} ∪ {σg : g ∈ S4},

where sσ = c4 if s ∈ T4 \ S4 and sσ = ps if s ∈ S4, where ps denotes the unique
element in the coset of Ks which fixes 4, and for all s ∈ T4 and all g ∈ S4 sσ

g = (sσ)g.

We remark that in the case n = 4 in Theorem 2.1 there is no bias towards 4; any apparent
bias is dealt with by the process of conjugation. Note also that σ = σid and ψid = ε.

It is easy to see that for any g, h ∈ Sn we have that ψgψh = ψgh. Further if ψg = ψh then
an easy computation gives that for any i ∈ {1, . . . , n} we have that cig = ciψg = ciψh = cih,
so that ig = ih and, since i was arbitrary, g = h. It follows that Gn is isomorphic to the
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symmetric group Sn. For α ∈ En we write imα to denote the image of α, and define the
rank of α to be the cardinality of imα. Clearly the image of each automorphism ψg is the
whole of Tn, and hence has rank |Tn| = nn. The remaining endomorphisms, that is, the
singular endomorphisms, have rank strictly less than nn. From the above theorem the rank
of each singular endomorphism is either 1, 2, 3, or 7. For, the image of each endomorphism
of the form ϕt,e is the set

{
t, t2, e

}
, which can have up to three distinct elements. In the

case where n = 4 an easy computation gives that imσg = {tg : t ∈ S4, 4t = 4} ∪ {c4g}, has
precisely 7 elements.

2.1. Endomorphisms of rank at most 3. In order to encapsulate the conditions of the
elements t and e so that ϕt,e is an endomorphism, we let

Un =
{
t ∈ Tn | t3 = t with te = et = e2 = e for some e ∈ Tn

}
.

We say that (t, e) form a permissible pair, if ϕt,e ∈ En, and we denote by Pn the set of
all permissible pairs, that is,

Pn =
{
(t, e) | t ∈ Un, te = et = e2 = e

}
.

Before considering the endomorphisms in En further, we give some important properties
of the sets Un and Pn.

Lemma 2.2. The set Un consists of all elements t = t3 satisfying kt = k for at least one
1 ≤ k ≤ n. Moreover, for t ∈ Un the number of permissible pairs with first component
equal to t is

|J |∑

r=1

(
|J |

r

)
r|I|+|J |−r

where J = {k : kt = k} and I is maximal such that t restricts to a fixed point free
permutation on I ∪ It.

Proof. Let t ∈ Un. By definition we have t3 = t. Note that if there exists e ∈ Tn such that
et = e, then then for all k ∈ {1, . . . , n} we must have ket = ke, giving that all elements in
the image of e are fixed by t. Conversely, suppose that t3 = t and kt = k. Then it is easy
to see that ckt = tck = ck = c2k, and hence t ∈ Un.

Note that if t ∈ Tn satisfies t3 = t then for all k ∈ {1, . . . , n} there exist ik, jk such
that kt = jk, kt

2 = jkt = ik and kt3 = ikt = jkt
2 = kt. If jk = k then also ik = k. It

follows that J = {k : ik = jk = k}, K = {k : k ̸= jk = ik}, L = {k : k = ik ̸= jk}
and M = {k : k ̸= jk ̸= ik ̸= k}, partition the domain {1, · · · , n} of t. It is clear from
these definitions that t restricts to the identity on J , Kt ⊆ J and Mt ⊆ L. Moreover, L
is maximal such that t restricts to a fixed-point free permutation of order 2 on L; let us
partition L = I ∪ It.
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The general picture to have in mind is as follows. For each transformation t ∈ Tn
satisfying t3 = t, we may partition the domain of t as:

{1, . . . , n} = J ∪K ∪ L ∪M where

J = {j : jt = jt2 = j} j

K = {k : kt = kt2 ̸= k} k kt

L = {l : lt ̸= lt2 = l} l = lt2 lt

M = {m : m ̸= mt ̸= mt2 ̸= m} m mt mt2

Noting that l ∈ L if and only if lt ∈ L, it is clear that L may be further partitioned into
two sets of equal size, I = {i1, . . . , is} and It = {i1t, . . . , ist}. Thus we may write each t
such that t3 = t in the form:

t =

(
· · · j · · · · · · k · · · · · · ir · · · · · · irt · · · · · ·m · · ·
· · · j · · · · · · kt · · · · · · irt · · · · · · ir · · · · · ·mt · · ·

)
, with kt ∈ J and mt ∈ I ∪ It,

where here j, k and m denote arbitrary elements of the sets J , K and M respectively. We
claim that the elements e satisfying e = e2 = te = et are precisely those of the form:

e =

(
· · · j · · · · · · k · · · · · · ir · · · · · · irt · · · · · ·m · · ·
· · · jf · · · · · · ktf · · · · · · irf · · · · · · irf · · · · · ·mtf ′ · · ·

)
,

where f is any function f : J ∪ I → R fixing a non-empty subset R ⊆ J pointwise, and
f ′ : I ∪ It → R is defined by irtf

′ = irf
′ = irf . (For example, given the transformation

t = t3 =

(
1 2 3 4 5
1 3 2 1 2

)
, this description yields that e =

(
1 2 3 4 5
1 1 1 1 1

)
is the unique

idempotent satisfying te = et = e. Indeed, if t fixes exactly one element then we have no
choice but to take R = J , and since this is a singleton set this leaves no choice for the
function f .)

Now to prove the claim. If t ∈ Un, then by the first paragraph of the proof we may
assume that |J | > 0. It is then straightforward to describe the elements e which satisfy
et = te = e = e2. The condition that e is idempotent implies that e fixes each element
of its image. Further, if R is a subset of {1, . . . , n}, then there is a bijection between
functions f : {1, . . . , n} \ R → R and idempotents with image equal to R. Note that (as
observed above) the condition et = e implies that the image of e is contained in J . Let R
be a non-empty subset of J . We claim that every function f : (J \ R) ∪ I → R extends
uniquely to the whole of {1, . . . , n} to give an idempotent e ∈ Tn with image R satisfying
the constraints et = te = e.

We have observed that every idempotent must fix its image. Thus, if e is to be an
idempotent with image R extending f , we have no choice on how e must act on J ∪I. Now
the condition te = e forces ke = kte for all k ∈ {1, . . . , n} = J ∪K ∪ I ∪ It ∪M . If k ∈ K
then kt ∈ J and ke = kte = (kt)f . If k ∈ It, then kt ∈ I and the condition e = te forces
ke = kte = (kt)f . If k ∈M then kt ∈ I ∪ It and hence either kt ∈ I and ke = kte = (kt)f ,
or kt ∈ It. In the latter case, certainly kt2 ∈ I, so that kt = kt3 = ikt for ik = kt2 ∈ I,
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and then ke = kte = ikf . Since the sets J ∪K ∪ I ∪ It∪M partition the domain of t, this
shows that there is exactly one way to extend f to an idempotent e ∈ Tn with image R
satisfying et = te = e.

For a fixed t, the number of idempotents such that (t, e) ∈ Pn is therefore found by
summing the total number of functions f : (J \ R) ∪ I → R as R ranges over non-empty
subsets of J . That is, for t ∈ Un with partition as given above we have that the number of

idempotents e satisfying (t, e) ∈ Pn is
∑|J |

r=1

(
|J |
r

)
r|I|+|J |−r. □

We now gather together some routine but useful facts concerning the set Pn.

Lemma 2.3. Let k ∈ N, t, e ∈ Tn and g ∈ Sn.

(1) If t is idempotent, then t ∈ Un and (t, t) ∈ Pn.
(2) If (t, e) ∈ Pn with t2 = e, then t = e.
(3) We have t ∈ Sn ∩ Un if and only if t2 = id. Consequently, t ∈ Sn ∩ Un is a

product of an odd number [resp. even number] no more than (n − 1)/2 of disjoint
transpositions if t ∈ Sn \ An [resp. if t ∈ An].

(4) We have (tg)k = tg if and only if tk = t. Additionally, tg = id if and only if t = id.
(5) If (t, e) ∈ Pn, then (tg, eg) ∈ Pn.
(6) If (t, e) ∈ Pn and e = id, then t = id.
(7) If (t, e) ∈ Pn, then t

2 is idempotent and (t2, e) ∈ Pn.
(8) If (t, e) ∈ P4 and g ∈ S4, then (tσg, eσg) ∈ P4.

Proof. (1) Let t ∈ Tn be an idempotent. Then clearly t3 = t = t2, and hence (t, t) ∈ Pn.
(2) Let (t, e) ∈ Pn be such that t2 = e. Then we immediately obtain that t = t3 = tt2 =

te = e.
(3) If t ∈ Sn, from t3 = t we get that t2 = tt−1 = id, while t /∈ Sn directly implies that

t2 ̸= id. The second part follows from the fact that a permutation of order 2 is a
product of disjoint transpositions, and that t ∈ Un must fix at least one element of
{1, . . . , n} by Lemma 2.2.

(4) If tk = t, then we have that (tg)k = (g−1tg)k = g−1tkg = g−1tg = tg. Conversely,
if (tg)k = tg, then we have g−1tkg = g−1tg which immediately gives us that tk = t.
Finally, g−1tg = tg = id if and only if t = g id g−1 = id as required.

(5) Let (t, e) ∈ Pn and g ∈ Sn. Since t3 = t, by the previous argument, we get that
(tg)3 = tg. Also, tgeg = g−1teg = g−1eg = eg and similarly egtg = eg = (eg)2, which
shows that (tg, eg) ∈ Pn.

(6) Let (t, e) ∈ Pn so that te = e. Then, if e = id we get that t = t id = id, as required.
(7) Let (t, e) ∈ Pn. Then from t3 = t we directly obtain that (t2)2 = t3t = t2 and thus

t2 is an idempotent and lies in Un by point (1). Since te = et = e, we have that
t2e = t(te) = te = e, and similarly et2 = e. Hence t2e = et2 = e = e2, which shows
that (t2, e) ∈ Pn.

(8) Let (t, e) ∈ P4 and g ∈ S4. We first show that (tσ, eσ) ∈ P4 and then apply (5)
(recalling the definition of σg) to obtain the full result. Notice that if t, e ∈ Tn \ Sn,
then tσ = eσ = c4, while if t = e = id, then tσ = eσ = id, which by part (1) shows
in both cases that (tσ, eσ) ∈ P4. Otherwise, t ∈ S4 and e ̸= id, and then tσ = pt
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and eσ = c4. Since σ is an endomorphism, we get that (tσ)3 = t3σ = tσ = pt = tσ.
Moreover, as pt ∈ S4 fixes 4 by definition, it follows that ptc4 = c4pt = c4 = c24 and we
thus have (tσ, eσ) = (pt, c4) ∈ P4. □

We now give some characteristics of the endomorphisms of Tn with rank at most three
that will play an important part in the discussions to come. Elements of the proofs of
the following two results given explicitly can be found scattered throughout the proof of
Theorem 2.1 in [21]. They are only included here for convenience, and to prepare the
reader for similar arguments to come.

We refer in Corollary 2.4 to a semilattice ordering on idempotents, which we now explain.
For any semigroup S we order the idempotents E = E(S) of S by e ≤ f if ef = fe = e.
This is easily seen to be a partial order. If Y is a commutative subsemigroup of E, then we
refer to Y as a semilattice. The reason for employing this terminology being that the order
≤ restricted to Y is a semilattice ordering in the sense that for any e, f ∈ Y the product
ef is the meet of e and f under the partial order.

Corollary 2.4. (1) An endomorphism α ∈ En has rank 1 if and only if α = ϕe,e for
some e2 = e ∈ Tn. There is a one-to-one correspondence between the endomor-
phisms of rank 1 and the one-element subsemigroups of Tn.

(2) An endomorphism α ∈ En has rank 2 if and only if α = ϕt,e for some (t, e) ∈ Pn

with t2 = t ̸= e. There is a one-to-one correspondence between the endomorphisms
of rank 2 and the two-element semilattices {t, e} ⊆ Tn with e < t.

(3) An endomorphism α ∈ En has rank 3 if and only if α = ϕt,e for some (t, e) ∈ Pn

with t ̸= t2 ̸= e. There is a one-to one correspondence between the endomorphisms
of rank 3 and the three-element subsemigroups of Tn consisting of a two-element
subgroup

{
t, t2

}
having identity element t2, together with an adjoined zero e.

(4) The map ϕt,id ∈ En if and only if t = id.
(5) If ϕu,f ∈ En for some u, f ∈ Tn, then ϕu2,f , ϕf,f and ϕu2,u2 are also in En.

Proof. Let α ∈ En be an element of rank at most three. Thus α = ϕt,e for some (t, e) ∈ Pn

and it follows from the definition of ϕt,e that imϕt,e =
{
t, t2, e

}
.

For part (1) it is clear that α has rank 1 if and only if t = t2 = e. In this case, since e is
idempotent it is clear that the image of ϕe,e is the trivial semigroup {e}. Conversely, for
each idempotent e there is a unique endomorphism ϕe,e of rank 1 with image {e}.

For part (2), we note that it follows from Lemma 2.3 part (2) that ϕt,e having rank 2
is equivalent to the condition that t = t2 ̸= e (we have seen in Lemma 2.3 part (2) above
that it is not possible to simultaneously have t ̸= t2 and t2 = e, and since e is idempotent
it is also not possible to simultaneously have t = e and t2 ̸= t). In this case, the image of
ϕt,e is {e, t} and the relations e = e2 = te = et and t = t2 yield that this is a two element
semilattice with e < t. Conversely, for each pair of distinct comparable idempotents t, e
with t > e there is a unique endomorphism ϕt,e of rank 2 with image {t, e}. For part
(3), it is clear that ϕt,e has rank 3 if and only if t ̸= t2 ̸= e. In this case ϕt,e has image
{e, t, t2} and using the fact that t2 is idempotent and (t2, e) ∈ Pn by Lemma 2.3 part (7),
we obtain that

{
t, t2, e

}
is a subsemigroup of Tn, where the idempotent t2 acts identically
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on the left and right of t, and the idempotent e acts as a left and right zero on all three
elements. Conversely, for each two-element subgroup {t, t2} where t2 is idempotent, and
each idempotent e such that {t, t2, e} is a group with a zero e adjoined, we have a unique
endomorphism ϕt,e of rank 3 with image {t, t2, e}. This proves parts (1)–(3). To see that
(4) holds note that for the map ϕt,id to be in En, we require (t, id) ∈ Pn, which forces t = id
by (6) of Lemma 2.3, and then ϕt,id = ϕid,id. Finally, for part (5), we know that ϕu,f ∈ En
if and only if (u, f) ∈ Pn. But then using parts (7) and (1) of Lemma 2.3 we have that
u2 and f are idempotents, and we therefore have that u2, f ∈ Un as well as (u2, f) ∈ Pn.
Hence ϕu2,f , ϕf,f and ϕu2,u2 satisfy all conditions to be endomorphisms. □

The next result is surprising in that singular elements of En of rank no greater than 3
(so, all singular elements in the case n ≥ 5) are entirely determined by their images. This
has significant consequences later when we consider Green’s relations.

Lemma 2.5. Let ϕt,e, ϕu,f ∈ En. Then ϕt,e = ϕu,f if and only if imϕt,e = imϕu,f if and

only if t = u and e = f . Further, if n = 4 and g, h ∈ S4 then σg = σh if and only if g = h.

Proof. Suppose that imϕt,e = imϕu,f and consider the description of the images corre-
sponding to the possible ranks of these maps as given in Corollary 2.4. Clearly if ϕt,e and
ϕu,f have rank 1, then t = e = u = f . Suppose that they have rank 2 so that imϕt,e = {t, e}
and imϕu,f = {u, f} where t, e, u and f are all idempotents. Then, since their images
are two element semilattices with e < t and f < u, we get that e = f and t = u. Finally,
if ϕt,e and ϕu,f have rank 3, then

{
t, t2, e

}
=

{
u, u2, f

}
where t and u are the only non

idempotent elements, and e and f are the zeros, respectively, which together forces t = u
and e = f . In all cases, we have shown that if imϕt,e = imϕu,f then t = u and e = f , and
therefore ϕt,e = ϕu,f . This finishes the argument for the first statement.

If σg = σh in E4, then by consideration of the images of these maps we find 4g = 4h
and tg = th for all t ∈ S4 that fix 4. The action on the transpositions (1 2) and (1 3) forces
g = h. The converse direction is clear. □

We also describe below the explicit multiplication of elements in En for n ̸= 4 as this
will be a cornerstone of many later proofs.

Corollary 2.6. Let g, h ∈ Sn and (t, e), (u, f) ∈ Pn. Then we have the following composi-
tions in En:

(1) ψgψh = ψgh;
(2) ψgϕt,e = ϕt,e;
(3) ϕt,eψg = ϕtg ,eg ; and

(4) ϕt,eϕu,f =





ϕu,f if t ∈ Sn \ An and e ̸= id,

ϕu2,f if t ∈ An and e ̸= id,

ϕf,f if t ∈ Tn \ Sn and e ̸= id,

ϕu2,u2 if t = e = id.

Proof. All of the products are straightforward computations using the definition in Theo-
rem 2.1; we only detail that for (4). It is nonetheless worth noting that the map on the
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right-hand side of product (3) is well-defined and indeed belongs to En by point (5) of
Lemma 2.3.

So consider (t, e), (u, f) ∈ Pn so that ϕt,e, ϕu,f ∈ En, and let s ∈ Tn. Then:

sϕt,eϕu,f =





tϕu,f if s ∈ Sn \ An,

t2ϕu,f if s ∈ An,

eϕu,f if s ∈ Tn \ Sn.

Recall from Lemma 2.3 part (6) that if e = id then we must also have t = id. Clearly, if
t = e = id, then we have that tϕu,f = t2ϕu,f = eϕu,f = idϕu,f = u2 so that ϕt,eϕu,f = ϕu2,u2

in this case. Thus in all remaining cases we may assume that e ̸= id and hence e ∈ Tn \Sn.
If t ∈ Tn \ Sn, then t

2, e ∈ Tn \ Sn so that tϕu,f = t2ϕu,f = eϕu,f = f . Therefore we get
that ϕt,eϕu,f = ϕf,f whenever t ∈ Tn \ Sn. If t ∈ Sn, then t

2 = id by Lemma 2.3 part (3),
so that t2ϕu,f = idϕu,f = u2. In the case where t ∈ An, we get that

sϕt,eϕu,f =





tϕu,f = u2 if s ∈ Sn \ An,

idϕu,f = u2 if s ∈ An,

eϕu,f = f if s ∈ Tn \ Sn,

which shows that ϕt,eϕu,f = ϕu2,f . Otherwise, t ∈ Sn \ An and we obtain

sϕt,eϕu,f =





tϕu,f = u if s ∈ Sn \ An,

idϕu,f = u2 if s ∈ An,

eϕu,f = f if s ∈ Tn \ Sn,

so that ϕt,eϕu,f = ϕu,f in that case. □

Notice that for n ̸= 4 the previous result encapsulates the multiplication table of En. In
the next section we record the remaining products in the case n = 4.

2.2. Endomorphisms of rank 7 in End(T4). Let D(4) = {σg : g ∈ S4} denote the set
of all endomorphisms of rank 7 in E4. We recall from Theorem 2.1 the definition of the
elements σg. We have that K = {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} is a normal subgroup
of S4 and that each coset Ks contains a unique element that fixes 4, which we denote by
ps. Then

sσg =

{
pgs if s ∈ S4,

c4g if s ∈ T4 \ S4.

Since Ks = Kps it follows from the definition that for all s ∈ S4 we have psσ
g = sσg = pgs.

Since each of the maps σg is an endomorphism of T4 with the property that id is mapped
to id (as clearly id = pid), it is also easy to see that prs = (rs)σ = rσsσ = prps, and so
(ps)

−1 = ps−1 . Morover, we note that {ps : s ∈ S4} = {h ∈ S4 : 4h = 4} and hσ = h if and
only if 4h = 4. These facts will be used without further comment.

Lemma 2.7. The sets D(4) and E4 \ D(4) are subsemigroups of E4. Moreover, we have
the following compositions in E4:
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(1) σgσh = σpgh;
(2) σgψh = σgh;
(3) ψhσ

g = σphg;
(4) σgϕt,e = ϕt,e; and
(5) ϕt,eσ

g = ϕtσg ,eσg .

Proof. That E4 \D(4) is a subsemigroup follows from Corollary 2.6. To see that D(4) is a
subsemigroup, consider σg, σh ∈ D(4). Using the fact that σ is an endomorphism, for all
s ∈ T4 we have:

sσgσh =

{
(g−1psg)σ

h if s ∈ S4

c4gσ
h if s ∈ T4 \ S4

=

{
h−1(pg−1pspg)h if s ∈ S4

c4h if s ∈ T4 \ S4
,

= sσpgh,

where we use the fact that both ps and pg fix 4 and hence psσ = ps and c4h = c4pgh. This
shows that (1) holds, and hence that D(4) is a subsemigroup.

For all s ∈ T4 it is clear that sσgψh = h−1sσgh = sσgh, and so (2) holds. Similarly,
using the fact that σ is an endomorphism sψhσ

g = (h−1sh)σg = g−1p−1
h sσphg = sσphg as

given in (3).
For (4) note that for s ∈ S4 we have that s ∈ A4 if and only if ps ∈ A4. It follows that

sσg lies in S4 \ A4 (respectively, A4, T4 \ S4) if and only if s lies in S4 \ A4 (respectively,
A4, T4 \ S4).

Finally, for all s ∈ T4 we have

sϕt,eσ
g =





tσg if s ∈ S4 \ A4

t2σg if s ∈ A4

eσg if s ∈ T4 \ S4.

Notice that since σg is an endomorphism, we have that t2σg = (tσg)2. The result then
follows from the fact that (tσg, eσg) ∈ P4 by (8) of Lemma 2.3. □

2.3. A decomposition via rank and type. The monoid En can be partitioned in a
convenient way by considering the following subsets of En \ Gn:

E3(n) = {ϕt,e ∈ En : t ∈ Sn \ An, e ̸= id},

A(n) = {ϕt,e ∈ En : t ∈ An, t ̸= id ̸= e} ,

B(n) =
{
ϕt,e ∈ En : t ∈ Tn \ Sn, t ̸= t2 ̸= e ̸= id

}
,

E2(n) = {ϕid,e ∈ En : e ̸= id},

C(n) =
{
ϕt,e ∈ En : t ∈ Tn \ Sn, t = t2 ̸= e ̸= id

}
and

E1(n) = {ϕe,e ∈ En}.

For n = 4 we also define E7(4) = {σg : g ∈ K} ⊊ D(4) = {σg : g ∈ S4}. To reduce
notation, when it is clear from context we will suppress the dependence on n and write
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simply E3, A,B,E2, C,E1, E7 andD. These subsets group together maps that share similar
properties, such as the idempotents of a given rank:

Lemma 2.8. For k = 1, 2, 3, 7 the set Ek consists of all the idempotents of rank k in En.
The set of idempotents of En is therefore

E(En) =

{
{ε} ∪ E7 ∪ E3 ∪ E2 ∪ E1 if n = 4,

{ε} ∪ E3 ∪ E2 ∪ E1 otherwise.

Proof. Clearly, the only idempotent element of Gn is ε. It follows from the multiplication
in Corollary 2.6 that α = ϕt,e ∈ En is idempotent if and only if either (i) t is odd and e ̸= id
(in which case α ∈ E3), or (ii) t = t2 ̸= e and t ∈ Sn (in which case t = id and α ∈ E2) or
(iii) t = e from the last two cases of 4) in Corollary 2.6 (in which case α ∈ E1). For n = 4
it follows from Lemma 2.7 that σg is idempotent if and only if pg = id or, in other words,
if and only if g ∈ K. □

The remaining sets A,B,C (together with D \E7 in the case n = 4) account for all the
non-idempotent singular maps; the reasoning behind this grouping shall be made apparent
shortly.

We remind the reader that a non-empty subset I of a semigroup S is an ideal (respec-
tively, a left or right ideal) if SI ∪ IS ⊆ I (respectively, SI ⊆ I, or IS ⊆ I).

Lemma 2.9. The endomorphism monoid En can be written as:

En =

{
Gn ∪D ∪ (E3 ∪B) ∪ (E2 ∪ C) ∪ (E1 \ {ϕid,id} ∪ {ϕid,id}) if n = 4,

Gn ∪ (E3 ∪A ∪B) ∪ (E2 ∪ C) ∪ (E1 \ {ϕid,id} ∪ {ϕid,id}) otherwise,

where subsets containing endomorphisms of the same rank are bracketed together. For
n ≥ 2 this union is disjoint and the set En \ Gn is an ideal of En.

Proof. That En is the union of the given sets follows from Theorem 2.1 and Corollary 2.4,
noting that the constraints of the given sets cover all eventualities and that the set A
is empty in the case of n = 4. The fact that the bracketed expressions are the sets of
endomorphisms of the same rank also follows from Corollary 2.4. Each automorphism of
En has rank nn and hence the union is disjoint for n ≥ 2. □

As we have seen in Corollary 2.6, there is an important distinction in the multiplicative
behaviour of elements ϕt,e depending on where the element t ∈ Tn lies and whether e = id.
Since this will be of great importance to determine Green’s relations and the ideal structure
of En, we define the type of an endomorphism θ relative to the type of the underlying
transformations associated with θ.

Definition 2.10. We say that θ ∈ En is of:

• group type if θ ∈ Gn;
• exceptional type if n = 4 and θ ∈ D(4);
• odd type if θ ∈ E3(n);
• even type if θ ∈ A(n) ∪ E2(n);
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• non-permutation type if θ ∈ B(n) ∪ C(n) ∪ (E1(n) \ {ϕid,id});
• trivial type if θ = ϕid,id.

Notice that the partition of En given by Lemma 2.9 is therefore a partition into subsets of
elements having the same rank and type.

The notion of type is a good one since this characteristic of a map is stable under
multiplication by automorphisms.

Lemma 2.11. (1) For any ϕt,e ∈ En and ψg ∈ Gn we have that

ϕt,e, ψgϕt,e = ϕt,e and ϕt,eψg = ϕtg ,eg

have the same type.
(2) For any σh ∈ E4 and any ψg ∈ G4 we have that

σh, ψgσ
h = σpgh and σhψg = σhg

have the same (exceptional) type.
(3) Let n ̸= 4 and γ ∈ En. For any ϕt,e ∈ X where X is one of A, B or C, we have

ϕt,eγ ∈ X if and only if γ ∈ Gn.

Proof. The proof of (1) and (2) follow immediately from Corollary 2.6 and Lemma 2.7,
together with the observation that conjugation in En preserves the parity of elements in Sn

and the rank of all elements.
To show that (3) holds, it only remains to show the converse. Let ϕt,e be in A, so that

it is of even type and rank 3. By Corollary 2.6 we have that for any ϕu,f we have that
ϕt,eϕu,f = ϕu2,f has rank at most 2, so cannot lie in A. Similarly, if ϕt,e is in B or C, so
that it has non-permutation type and is of rank 3 or 2, then ϕt,eϕu,f = ϕf,f has rank 1, so
cannot lie in B or C. □

Definition 2.12. For α ∈ En we define the orbit of α to be αGn. It is easy to see that all
elements of a given orbit have the same rank and (by Lemma 2.11) the same type. In view of
the decomposition given in Lemma 2.9 we note that each of the sets Gn, E3, A,B,E2, C,E1

(and D in the case n = 4) is a union of orbits. For ϕt,e ∈ X where X is one of A, B or
C, it will sometimes be convenient to write Xt,e to denote the orbit of ϕt,e, in order to
easily recall the rank and type of elements in this orbit without specific mention of the
corresponding properties of t and e.

For all n ≥ 5, being of the same type is equivalent to acting in the same way by
multiplication on the left on the singular part of En.

Lemma 2.13. Let n ≥ 5 and let α, β ∈ En \Gn. Then α and β are of the same type if and
only if αγ = βγ for all γ ∈ En \ Gn.

Proof. Since α, β, γ ∈ En \ Gn, only (4) in Corollary 2.6 is relevant. It follows immediately
from the description of this multiplication that if α and β are of the same type, then
αγ = βγ for all γ ∈ En \ Gn.

Conversely, suppose α, β ∈ En \ Gn are such that αγ = βγ for all γ ∈ En \ Gn. If
γ = ϕu,f ∈ En where u = (2 3) ̸= id = u2 ̸= f = c1 ̸= u, then the maps ϕu,f , ϕu2,f , ϕf,f
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and ϕu2,u2 are all distinct. From this, it is clear that if α and β have different types, then
we fall into into a different case for the multiplication and therefore αγ ̸= βγ, which gives
us the equivalence. □

Remark 2.14. The authors of [21] gave explicit formulae to count the number of endomor-
phisms of each rank. Since Gn and Sn are isomorphic we have |Gn| = n!. Meanwhile, it is
clear that for any e = e2 ∈ En we have that (e, e) ∈ Pn and if e ̸= id then also (id, e) ∈ Pn.
Consequently, |E1(n)| = |E2(n)|+ 1 = |

{
e ∈ Tn : e

2 = e
}
|. We shall not attempt to give

formulae for the cardinality of the remaining sets in our partition of En, but it is useful to
note that for n ≥ 5 each set in this partition is non-empty. We conclude this section by
recording examples to demonstrate this below; some of these examples will be utilised in
later proofs.

Example 2.15. Let n ≥ 5 and let t, u, p, q, e, f ∈ Tn be defined as follows:

t =

(
1 2 3 4 i≥5

1 3 2 1 i

)
, p =

(
1 2 3 4 i≥5

2 1 4 3 i

)
, e =

(
1 2 3 4 i≥5

5 5 5 5 i

)
,

u =

(
1 2 3 4 i≥5

1 1 1 4 4

)
, q =

(
1 2 3 4 i≥5

1 3 2 4 i

)
, f =

(
1 2 3 4 i≥5

1 1 1 1 1

)
.

It is easy to verify that p, q ∈ Sn, p ∈ An, q ∈ Sn \An and t, u, e, f ∈ Tn \Sn are such that:

• e2 = e ̸= id ̸= f = f2;
• p2 = id = q2, pe = e = ep and qf = f = fq so that (p, e), (q, f) ∈ Pn;
• t3 = t and te = e = et so that (t, e) ∈ Pn.
• u2 = u and uf = f = fu so that (u, f) ∈ Pn.

It then follows that the maps ϕp,e, ϕq,f , ϕt,e, ϕid,f and ϕu,f are endomorphisms of Tn. More-
over, it is clear from definition that ϕq,f ∈ E3(n), ϕp,e ∈ A(n), ϕt,e ∈ B(n), ϕid,f ∈ E2(n),
ϕu,f ∈ C(n), and ϕf,f ∈ E1 \ {ϕid,id}.

Remark 2.16. We will make use of the preceding results repeatedly in the following sec-
tions where we describe the regular elements, minimal generating sets (and moreover, a
presentation), Green’s relations, ideal structure and extended Green’s relations for En. In
order to state our results in their most general form, it will be convenient to assume that
n ≥ 5; this, of course, bypasses the case when n = 4, where the structure of E4 is more
complicated due to the additional maps of rank 7, as well as some degenerate behaviour for
n ≤ 3 (where there are in some sense too few maps for the general behaviour to emerge).
We will return to these special cases in Section 7.

3. Idempotents and regularity

Throughout this section we assume that n ≥ 5. In particular, this means that the set
En \ Gn of singular endomorphisms is equal to the set of endomorphisms of rank at most
three:

En \ Gn = {ϕt,e : (t, e) ∈ Pn} =
{
ϕt,e | t, e ∈ Tn with t3 = t and te = et = e2 = e

}
.
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3.1. The left action of the endomorphism monoid on the singular part. For
(t, e) ∈ Pn the maps ϕt2,e, ϕe,e and ϕt2,t2 are all closely related to the map ϕt,e. Indeed
their images are all contained in that of ϕt,e and by Corollary 2.6 they are all in Enϕt,e.
Lemma 2.13 allows us to define a notation facilitating this identification.

Definition 3.1. Let α ∈ En \ Gn. Then we define α+, α− and α0 as:

• α+ = γα for any γ ∈ En \ Gn of even type;
• α− = γα for any γ ∈ En \ Gn of non-permutation type; and
• α0 = ϕid,idα (that is, γα for γ ∈ En \ Gn of trivial type).

Additionally, for X ⊆ En \ Gn and † ∈ {+,−, 0}, we define X† to be the set
{
α† : α ∈ X

}
.

Remark 3.2. Under this definition, we can now see that if α ∈ En \ Gn, then γα ∈{
α, α+, α−, α0

}
for any γ ∈ En and thus Enα =

{
α, α+, α−, α0

}
. Additionally, if we

write α as ϕt,e, then we have that

γα =





α = ϕt,e if γ has group type or odd type,

α+ = ϕt2,e if γ has even type,

α− = ϕe,e if γ has non-permutation type,

α0 = ϕt2,t2 if γ has trivial type.

We now show how each of the sets involved in the decomposition of En behave under
the operations mapping α to α+, α− or α0.

Lemma 3.3. Let α ∈ En \ Gn. Then

(1) 1 = rank(α0) = rank(α−) ≤ rank(α+) ≤ rank(α) ≤ 3;
(2) α+ = α if and only if rank(α) ≤ 2 if and only if α ∈ E2 ∪ C ∪ E1;
(3) α− = α if and only if α0 = α if and only if rank(α) = 1 if and only if α ∈ E1;
(4) E+

3 ∪A+ ⊆ E2 = E+
2 , B+ ⊆ C = C+, and E+

1 = E1;
(5) E−

3 ∪A− ∪B− ∪ C− ⊆ E1 \ {ϕid,id} = E−
2 , and E−

1 = E1;

(6) B0∪C0 ⊆ E1\{ϕid,id} = (E1\{ϕid,id})
0, and A0 = E0

3 = E0
2 = {ϕid,id} = {ϕid,id}

0.

Consequently, we have (En \ Gn)
+ = E2 ∪ C ∪ E1. and (En \ Gn)

− = (En \ Gn)
0 = E1.

Proof. Let α = ϕt,e ∈ En for some (t, e) ∈ Pn. Throughout this proof, we use the description
of α+, α− and α0 given in Remark 3.2.

Part (1) follows immediately from Remark 3.2. For part (2), suppose first that α = α+,
which means that ϕt,e = ϕt2,e, so that t = t2 and rank(α) ≤ 2. If t ∈ Sn, this forces t = id,
and thus α = ϕid,e ∈ E2. Otherwise, t ∈ Tn \Sn and either t ̸= e, which means that α ∈ C,
or t = e and then α = ϕe,e ∈ E1. Conversely, if α ∈ E2 ∪ C ∪ E1, then t = t2 from which
we have that α has rank at most 2 and α+ = ϕt2,e = ϕt,e = α.

For part (3), if α = α−, then we have that ϕt,e = ϕe,e which forces t = e, while if α = α0,
we require ϕt,e = ϕt2,t2 which implies that t = t2 = e. In both cases, this gives us that

α ∈ E1, that is, has rank 1. Conversely, if α ∈ E1, then t = t2 = e and α− = ϕe,e = α
while α0 = ϕt2,t2 = ϕe,e = α.
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For part (4), notice that we have already seen that E+
2 = E2, C

+ = C and E+
1 = E1.

If α = ϕt,e ∈ E3 ∪ A so that t ∈ Sn, then α
+ = ϕt2,e = ϕid,e ∈ E2. On the other hand, if

α = ϕt,e ∈ B, we have that t2 ̸= e and then α+ = ϕt2,e ∈ C.

Similarly, for part (5) if α = ϕt,e ∈ E3 ∪ A ∪ B ∪ E2 ∪ C then e ̸= id and so α− =
ϕe,e ∈ E1 \ {ϕid,id}, whilst for each idempotent e ̸= id we have that ϕ−id,e = ϕe,e and so

E−
2 = E1 \ {ϕid,id}. The remaining equality is given by part (3). Likewise, for part (6) if

α = ϕt,e ∈ B ∪ C ∪ E1 \ {ϕid,id} then t2 ̸= id and so α0 = ϕt2,t2 ∈ E1 \ {ϕid,id}, whilst for

α = ϕt,e ∈ E3 ∪A ∪ E2 ∪ {ϕid,id} we have t2 = id and so α0 = ϕid,id. □

The inclusions given in the previous lemma, as well as the representation of the action
of the maps α 7→ αx for x ∈ {+,−, 0} can be seen in Figure 5.1 alongside the depiction of
theJ-order of the monoid En. The latter will be given explicitly in Proposition 5.5.

3.2. Idempotents and regular elements. The set of idempotents of En, which we de-
note by E = E(En), has very nice properties. In particular, E is a band. Before stating
Proposition 3.4, we give a little semigroup terminology and background. If we have a
semilattice Y , then a semigroup S decomposed into disjoint subsemigroups Si, i ∈ Y , is
a semilattice Y of the subsemigroups Si if SiSj ⊆ Si∧j for all i, j ∈ I. It is a fact (see,
for example, [11, Theorem 4.4.1]) that any band is a semilattice Y of rectangular bands
Di, i ∈ I, where a band is rectangular if it satisfies the identity x = xyx. A right zero
(resp. left identity) for a semigroup S is an element e such that ae = e (resp. ea = a)
for all a ∈ S. A semigroup consisting entirely of right zeroes (equivalently, entirely of left
identities) is called a right-zero semigroup; clearly any such semigroup is a band, in fact,
a special kind of rectangular band. In what follows, we use the term chain for a linearly
ordered set (which is, of course, a semilattice).

Proposition 3.4. (1) Each element of E3 is a left identity of En \ Gn.
(2) Each element of E1 is a right zero of En \ Gn.
(3) The minimal ideal of En is E1.
(4) The set of all singular idempotents E3 ∪ E2 ∪ E1 forms a left ideal of En.
(5) The set of all idempotents E = {ε} ∪E3 ∪E2 ∪E1 is a band, and forms a chain of

right-zero semigroups.

Proof. Throughout, we bear in mind that ε is the identity of the monoid En.
The fact that elements of E3 are left identities for En\Gn is immediate from Corollary 2.6,

as is the fact that elements of E1 are right zeroes for En \ Gn. Consideration of ranks
immediately gives that E1 is an ideal of En. Since E1 is a right-zero semigroup it has no
proper ideals, hence is the minimal ideal of En. This verifies (1)–(3).

For (4), let β = ϕt,e ∈ E3 ∪E2 ∪E1. Using Remark 3.2 and Corollary 2.6, we know that
for any α ∈ En we have that

αβ ∈ {β, β+, β−, β0} = {ϕt,e, ϕt2,e, ϕe,e, ϕt2,t2}.

If β ∈ E3∪E2 then t
2 = id; if β ∈ E1 then t = t2 = e. It follows that αβ ∈ E\{ε} and hence

E3 ∪E2 ∪E1 is a left ideal. Moreover, for α, β ∈ Ek where k = 1, 2, 3 it is straightforward
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to check that αβ = β and hence each of these sets forms a right-zero semigroup and indeed
E is a band. The only thing remaining to check to see that (5) holds is that E2E3 ⊆ E2,
and this is a now familiar calculation (also inherent in the above). □

We have shown that the idempotents of En form a left regular band, that is, a band that
satisfies the identity xyx = yx.

We now have all the tools necessary to describe the regular elements of En. We recall at
this point our assumption that n ≥ 5.

Proposition 3.5. The set of all regular elements of En is Gn ∪ E(En). Furthermore, this
is a proper subsemigroup of En. In particular, En is not regular.

Proof. Clearly if α ∈ En is an automorphism or an idempotent, then it is a regular element.
The fact that Gn ∪ E(En) forms a (proper) subsemigroup is immediate from Lemma 2.11
and Proposition 3.4.

Conversely, let α ∈ En \ Gn be a regular element of En so that αγα = α where γ ∈ En.
Suppose for contradiction that α is not idempotent (that is, α ∈ A∪B ∪C) then it follows
from Corollary 2.6 part (2) that γ ∈ En \ Gn. Note that αγ must be an idempotent left
identity for α and hence of the same rank as α. If α ∈ A∪B, then α has rank 3; but since
γ ∈ En \ Gn and α has even or non-permutation type, the rank of αγ is no greater than 2,
contradicting that αγ has the same rank as α. Similarly, if α ∈ C, then α has rank 2; but
since α has non-permutation type, the rank of αγ is 1. The result follows. □

Remark 3.6. We will see in Section 7 that the only values of n ∈ N such that En is regular
are n = 1, 2.

4. Generators and presentations

Throughout this section we assume that n ≥ 5. We demonstrate a minimal set of
generators for En and, with respect to this set of generators, a presentation for En. Recall
that for α ∈ En, the orbit of α is αGn. All elements of the same orbit have the same rank,
and so we shall speak of orbits of a given rank. We shall say that the orbit of α is essential
if α cannot be generated by elements of strictly greater rank.

Remark 4.1. Clearly the orbit of each rank 3 element, that is, each element in E3 ∪A∪B,
is essential. Meanwhile, there is a unique essential orbit of rank 1, namely the orbit of
ϕid,id. Indeed, any ϕe,e, where e ̸= id may be decomposed as a product γϕid,e where γ ∈ B
and ϕid,e ∈ E2 each have rank greater than 1, and so the orbit is not essential. The orbit
of ϕid,id is simply {ϕid,id}.

Proposition 4.2. Let Σ ⊆ En. Then Σ is a generating set for En if and only if Σ contains
a generating set for the group Gn together with at least one element of each essential orbit.
The minimal size of a generating set is therefore 3 + r3(n) + r2(n), where r3(n) denotes
the number of essential orbits (equivalently, orbits) of rank 3 in En and r2(n) denotes the
number of essential orbits of rank 2 in En.
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Proof. Suppose first that Σ is a generating set. It follows immediately from the multiplica-
tion given in Corollary 2.6 that Σ must contain a generating set for Gn. Clearly Gn forms a
single essential orbit, and Σ contains at least one element of this orbit. By Remark 4.1 we
have that {ϕid,id} is the unique essential orbit of rank 1, and since it is clear from Corollary
2.6 that ϕid,id cannot be decomposed into a product of elements of En \ {ϕid,id} it follows
that any generating set must contain ϕid,id.

Assume that the rank of α ∈ En is 2 or 3, and the orbit of α is essential. Since Σ
is a generating set we must have that α = θ1 · · · θm for some m where θi ∈ Σ. Since α
is singular, it is clear that at least one of the generators θi is singular. Moreover, since
elements of Gn act as left identities on the singular elements, we may assume without loss
of generality that θ1, . . . , θl are all singular and θl+1, . . . , θm ∈ Gn. Let γ = θ1 · · · θl−1 so
that γθl is in the orbit of α and in particular has the same rank as α. We aim to show that
the generator θl is in the orbit of α too.

If α has rank 3, then it follows from the facts that 3 = |imα| = |im γθl| ≤ |im θl| ≤ 3
and im γθl ⊆ θl that im γθl = im θl and by Lemma 2.5 we have γθl = θl.

Suppose now that α and hence γθl have rank 2. If θl has rank 3 then as γθl has rank 2
we must have that γθl = γ′θl for any representative γ′ of an essential orbit lying in A. But
this would contradict our assumption that the orbit of α is essential. Thus θl has rank 2
and as above we have γθl = θl.

Conversely, suppose that Σ is any set with the given properties. By Remark 4.1 we
have that ϕid,id ∈ Σ. It is clear that we can generate all elements of Gn (since we have
a generating set for this finite group), and hence also all elements of the essential orbits
(by definition). Since each rank 3 orbit is essential this shows that we may generate all
elements of rank at least 3, which in turn allows us to generate all elements of rank 2 (each
element in a non-essential orbit by definition being obtained as products of elements of
order greater than 2). Finally, for each idempotent e ∈ Tn with e ̸= id we have that ϕid,e
is an endomorphism of rank 2, and so for all γ ∈ B of rank 3 we have that γϕid,e = ϕe,e,
which shows that all elements of rank 1 can be generated.

Since Gn is isomorphic to Sn it is clear that a minimal generating set for Gn has two
elements. Since all rank 3 orbits are essential, whilst ϕid,idGn = {ϕid,id} is the unique rank
1 essential orbit it then follows that a minimal generating set has 2 + r3(n) + r2(n) + 1
elements. □

We now give a sketch of how one might enumerate a minimal generating set for En.
Clearly this amounts to finding a formula for r2(n) and r3(n). Each singular element
corresponds to a pair (t, e) ∈ Pn and hence to a labelled coloured directed graph (one
colour denoting the action of t and one of e), with specific properties. Hence, each orbit of
a singular element corresponds to an unlabelled coloured directed graph - and it must have
precisely the following properties:

• There are n unlabelled vertices.
• All edges are coloured either blue (corresponding to the action of t and its conju-
gates) or red (corresponding to the action of e and its conjugates).

• There is exactly one red edge and exactly one blue edge leaving each vertex.
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• Looking only at the blue edges, recalling the constraint t3 = t only, one can split
the graph into components of the following two forms:

– a vertex with a loop, possibly with edges coming into it and
– a two-cycle, possibly with edges coming in to the vertices.

• Looking now at the red edges, recalling the constraints te = e = et = e2, the red
edges map all vertices to a subset of the blue-loop-vertices in such a way that:

– there is a red-loop at each vertex in the subset and
– all vertices of a blue component are mapped by a red edge to the same red-

loop-vertex.

Counting the total number of orbits therefore amounts to counting the number of (non-
isomorphic) unlabelled coloured directed graphs of this kind. Rank 3 orbits correspond to
the graphs containing at least one two-cycle. Rank 2 orbits correspond to graphs where
there is no two-cycle but the red and blue edges do not completely coincide.

Having found minimal generating sets for En, we now give a presentation using those
generators. First, we recall some details concerning presentations for monoids: we must
quotient free monoids by congruences.

Let X be an alphabet and denote by X∗ the free monoid on X. The elements of X∗

are words over X, that is, finite products of elements of X, which may be referred to
as letters. We allow the empty product which we will denote by 1. Then X∗ becomes
a monoid under concatenation of words, with 1 being the identity. A congruence on X∗

is an equivalence relation that is compatible with the binary operation: if ρ is such a
congruence then X∗/ρ := {[w] : w ∈ X∗} becomes a monoid under [v][w] = [vw] with
identity [1]. If R ⊆ X∗ ×X∗, we denote by R♯ the congruence on X∗ generated by R, that
is, the smallest congruence on X∗ containing R. It is easy to see that R♯ is the reflexive
transitive closure of the set {(xvy, xwy) : x, y ∈ X∗, (v, w) ∈ R or (w, v) ∈ R}. We say a
monoid S has monoid presentation ⟨X : R⟩ if S ∼= X∗/R♯ or, equivalently, if there is an
epimorphism θ : X∗ → S with kernel R♯ = ker θ. Here the congruence ker θ is defined
by ker θ := {(v, w) : vθ = wθ}. If θ is such an epimorphism, we say S has presentation
⟨X : R⟩ with respect to θ. A relation (w1, w2) ∈ R will usually be displayed as an equation:
w1 = w2.

Now let Π ∪ Σ be a (minimal) generating set for En consisting of a generating set Π for
Gn together with a set Σ containing exactly one element ϕt,e of each remaining essential
orbit. We define

XΠ = {qg : ψg ∈ Π} and XΣ = {pt,e : ϕt,e ∈ Σ}.

We choose and fix a single element of XΣ of odd (even, non-permutation, trivial) type and
denote it by pod (pev, pnp, ptr) (supressing here the subscripts, and where ptr = pid,id). Note

that, by definition, podθ ∈ E3 has rank 3. Since each rank 3 orbit is essential, it is clear
that we may also select pev and pnp so that their images under θ have rank 3. With abuse
of terminology, we may refer to pt,e having (odd/even/non-permutation/trivial) type and
rank k (where k ∈ {1, 2, 3}) if ϕt,e does. It follows from Remark 4.1 that ptr is the unique
generator of rank 1.
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Let X = XΠ ∪XΣ and θ : X∗ → En be defined by

pt,eθ = ϕt,e and qgθ = ψg.

Let RΠ consist of any set of relations that yield ⟨XΠ : RΠ⟩ is a presentation of the symmetric
group Sn. We do not concern ourselves here with the ‘best’ form of RΠ, as this is a
well-trodden route. We aim to describe a set of relations RΠ∪Σ on X that, when taken
together with the relations RΠ, yields a presentation for En. In what follows, the underlying
assumptions are that qg varies over XΠ and pt,e varies over XΣ. Define FΠ(n) to be the
smallest number such that any element of Sn has a representation as a word of length
at most FΠ(n) in the generators XΠ. Let RΠ∪Σ consist of the following relations, where
m ≤ FΠ(n):

(R1) qgpt,e = pt,e
(R2) pt,eqg1 . . . qgm = pt,e where ϕt,eψg1 . . . ψgm = ϕt,e
(R3) pt1,e1pt2,e2qg1 . . . qgm = pu1,f1pu2,f2 where ϕt1,e1ϕt2,e2ψg1 · · ·ψgm = ϕu1,f1ϕu2,f2 does

not belong to an essential orbit
(R4) pt,epu,f = pt′,e′pu,f where pt,e and pt′,e′ have the same type

(R5) podpt,e = pt,e
(R6) pevpt,e = pt,e where pt,e has rank 2
(R7) pevpevpt,e = pevpt,e
(R8) pnppevpt,e = pnppt,e, p

evpnppt,e = pnppt,e and pnppnppt,e = pnppt,e
(R9) pevptr = ptr, pnpptr = ptr and ptrptr = ptr

(R10) ptrpnppt,e = pnppt,e and ptrpu,f = ptr where pu,f has odd or even type.

We now let

R = RΠ ∪RΠ∪Σ.

Theorem 4.3. The monoid En has presentation ⟨X : R⟩ with respect to θ.

Proof. The morphism θ takes X to a set of generators of En, so is an epimorphism. Let us
denote R♯ by ∼. Corollary 2.6 gives that ∼ ⊆ ker θ; it remains to show the converse.

Lemma 4.4. Let w ∈ X∗ and suppose that w contains at least one letter from XΣ. Then

w ∼ pt,eqg1 · · · qgm or w ∼ pt1,e1pt2,e2qg1 · · · qgm

for some pt,e, pt1,e1 , pt2,e2 ∈ XΣ and qg1 · · · qgm ∈ XΠ, for some m ≥ 0.

Proof. By (R1) we have that w ∼ pt1,e1 . . . ptk,ekqg1 · · · qgm where m ≥ 0. Either k = 1, so
that the first case holds. Otherwise, using (R4) and (R5) we have that pt1,e1 . . . ptk,ek ∼
p1 . . . pk−1ptk,ek where pi ∈ {pev, pnp, ptr} for 1 ≤ i ≤ k − 1. Finally, (R7)–(R8) give that
the second case holds. □

Lemma 4.5. Let w ∈ X∗ and suppose that w contains at least one letter from XΣ. Then
the orbit of wθ is essential if and only if

w ∼ pt,eqg1 · · · qgm

for some pt,e ∈ XΣ and qg1 · · · qgm ∈ XΠ, for some m ≥ 0.
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Proof. If w ∼ pt,eqg1 · · · qgm then it is clear the orbit of wθ is essential. Conversely, suppose
that the orbit of wθ is essential and the second case of Lemma 4.4 holds. Then w ∼
pt1,e1pt2,e2qh1

· · · qhk
. We proceed by examining the rank of wθ to show that pt1,e1pt2,e2 ∼

pt,e for some pt,e. Note that it follows from (R4) together with the fact that podθ, pevθ and
pnpθ are assumed to have rank 3 that we may assume without loss of generality that either
pt1,e1θ has rank 3 or else pt1,e1 = ptr.

If the rank of wθ is 3, then this forces ϕt1,e1 to be of odd type, and pt1,e1pt2,e2 ∼ pt2,e2 .
If the rank of wθ is 2, then either ϕt1,e1 is of odd type, and we proceed as above. Or,

ϕt1,e1 is of even type and ϕt2,e2 has rank 2 or 3. If ϕt2,e2 has rank 2, then ϕt1,e1ϕt2,e2 = ϕt2,e2
and also by (R4) and (R6) we have pt1,e1pt2,e2 ∼ pt2,e2 . Otherwise, ϕt2,e2 has rank 3, and
since by assumption ϕt1,e1 has rank 3, this contradicts the fact that wθ lies in an essential
orbit.

If wθ has rank 1 we note that, since this orbit is assumed to be essential and by Remark
4.1 there is a unique essential orbit of rank 1, we must have wθ = ϕid,id. Our aim then
is to demonstrate that pt1,e1pt2,e2 ∼ ptr = pid,id. We shall consider all combinations of
types for elements pt1,e1 and pt2,e2 , showing that either pt1,e1pt2,e2 ∼ ptr as required, or else
obtaining a contradiction to the fact the orbit of wθ is essential of rank 1 (meaning that
such a product does not lie in the unique rank 1 essential orbit in the first place). If ϕt1,e1
is of odd type, then we proceed as in the previous cases. If ϕt2,e2 is of trivial type, then
ϕt1,e1ϕt2,e2 = ϕt2,e2 and by (R9) pt1,e1pt2,e2 ∼ pt2,e2 . We therefore assume in what follows
that pt1,e1 is not of odd type, and pt2,e2 is not of trivial type. Notice in particular that this
means that pt2,e2 has rank 2 or 3 (since the only essential orbit of rank 1 is the unique orbit
of trivial type) and e2 is therefore not the identity element (since if e2 = id we require that
t = id, and hence the element has rank 1). If ϕt1,e1 is of even type then ϕt1,e1ϕt2,e2 has
rank 2, contradicting our assumption that wθ has rank 1. If ϕt1,e1 is of non-permutation
type, then ϕt1,e1ϕt2,e2 = ϕe2,e2 ̸= ϕid,id, contradicting the fact the orbit of wθ is essential.
Finally we are left with the case that ϕt1,e1 has trivial type. Then if ϕt2,e2 has odd or even
type we find ϕt1,e1ϕt2,e2 = ϕt2

2
,t2
2

= ϕid,id, giving pt1,e1pt2,e2 ∼ pid,id by (R10), whilst if ϕt2,e2
has non-permutation type we have ϕt1,e1ϕt2,e2 = ϕt2

2
,t2
2

̸= ϕid,id contradicting that the orbit

of wθ is essential. □

We proceed with the proof of Theorem 4.3. Let w1, w2 ∈ X∗ and suppose that w1θ =
w2θ = γ.

If the rank of γ is nn, then all letters of w1 and w2 lie in XΠ and w1 ∼ w2 using the
relations in R0.

Suppose now that the rank of γ is no greater than 3, so that each of w1, w2 has a letter
from XΣ.

If w1 ∼ pt,eqg1 · · · qgm as in Lemma 4.4, then γ lies in an essential orbit. Then Lemma 4.5
gives that w2 ∼ pu,fqh1

· · · qhk
for some k ≥ 0. Since we have chosen a unique generator

corresponding to each essential orbit, we must have that pt,e = pu,f . It immediately follows
that ϕt,eψg1 · · ·ψgm = ϕt,eψh1

· · ·ψhk
, giving that ϕt,eψg1 . . . ψgmψh−1

k
. . . ψh−1

1

= ϕt,e. In

Gn we have ψg1 . . . ψgmψh−1

k
. . . ψh−1

1

= ψd1 . . . ψdℓ where ℓ ≤ n!, so that using R0 we have
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qg1 . . . qgmqh−1

k
. . . qh−1

1

∼ qd1 . . . qdℓ . Now

w1 ∼ pt,eqg1 · · · qgm
∼ pt,eqg1 · · · qgmqh−1

k
. . . qh−1

1

qh1
. . . qhk

∼ pt,eqd1 . . . qdℓqh1
. . . qhk

∼ pt,eqh1
. . . qhk

using (R2)
∼ w2,

as required.
The case where γ does not lie in an essential orbit yields that w1 ∼ pt1,e1pt2,e2qg1 · · · qgm

and w2 ∼ pu1,f1pu2,f2qh1
· · · qhk

, where ϕt1,e1ϕt2,e2 does not lie in an essential orbit. An
argument, similar to that displayed above, this time using (R3), gives that w1 ∼ w2 and
finishes the proof. □

In Section 8 we pose some related questions concerning presentations for En and other
related monoids and semigroups.

5. Green’s relations and ideal structure

Throughout this section we again assume that n ≥ 5 so that the set En \ Gn of singular
endomorphisms is equal to the set of all endomorphisms of the form ϕt,e each having rank
at most three. Here we turn our attention to Green’s relations R, L, D, H and J. It is
well known that in a finite monoid, the R-class and the L-class of the identity coincide,
and are hence equal to the H-class of the identity, which is the group of invertible elements
(see for example [22, Corollary 1.5]). In the case of En is is easy to see this directly, using
considerations of rank.

We first show that the L-classes of En are singletons except for elements of Gn, which
from the above form a single L-class.

Proposition 5.1. Let α, β ∈ En.

(1) If α ∈ En \ Gn then the principal left ideal generated by α is Enα = {α, α+, α−, α0}.
(2) αL β if and only if imα = imβ if and only if α = β or α, β ∈ Gn.

Proof. (1) By Example 2.15 we know that En contains an element of each type, and so
Remark 3.2 applies to give that the principal left ideal is indeed Enα = {α, α+, α−, α0}.

(2) Clearly if α = β, then αL β. On the other hand, if α, β ∈ Gn, then as remarked
above αL β.

Conversely, suppose that αL β, so that α = γβ and β = δα for some γ, δ ∈ En. It follows
that imα = imβ. Clearly if this image is the whole of Tn, then α, β ∈ Gn. Otherwise
α, β ∈ En \Gn, so that α = ϕt,e and β = ϕu,f for some (t, e), (u, f) ∈ Pn which gives us that
α = β by Lemma 2.5. □
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Remark 5.2. Recall that if X is one of A,B or C, then X is the union of orbits Xt,e where
(t, e) ∈ Pn is such that ϕt,e ∈ X. Moreover, it is easy to see that

(Xt,e)
+ =

{
(ϕtg ,eg)

+ : g ∈ Sn

}
=

{
ϕ(tg)2,eg : g ∈ Sn

}

=
{
ϕt2,eψg : g ∈ Sn

}
= ϕt2,eGn = ϕ+t,eGn,

and we simply write this set as X+
t,e. Notice that Lemma 3.3 gives C+

t,e ⊆ C whilst A+
t,e ̸⊆ A

and B+
t,e ̸⊆ B.

Proposition 5.1 shows that L that is surprisingly restrictive. However, the R-classes of
En are much larger, as given by the following.

Proposition 5.3. Let α ∈ En. The principal right ideal of En generated by α is equal to:

αEn =





En if α ∈ Gn,

En \ Gn if α ∈ E3,

At,e ∪ E2 ∪ C ∪ E1 if α = ϕt,e ∈ A,

E2 ∪ C ∪ E1 if α ∈ E2,

Bt,e ∪ E1 if α = ϕt,e ∈ B,

Ct,e ∪ E1 if α = ϕt,e ∈ C, or

E1 if α ∈ E1.

Consequently, Gn, E3, E2 and E1 each consist of a single R-class, whilst each remaining
R-class is the orbit of an element in A, B or C.

Proof. First note that if α ∈ Gn, then αEn = En while if α = ϕt,e ∈ En \ Gn, then by
Corollary 2.6 and Remark 3.2, we have that αEn = {ϕtg ,eg : g ∈ Gn} ∪ {γx : γ ∈ En \ Gn}
where γx is one of γ, γ+, γ−, or γ0, depending on the type of α. For example, if α = ϕt,e ∈
B, then αEn = ϕt,eGn ∪ {γ− : γ ∈ En \ Gn} = Bt,e ∪

{
ϕf,f : f

2 = f ∈ Tn
}
= Bt,e ∪ E1.

Similar reasoning demonstrates that the principal right ideal generated by α is as stated
in each of the remaining cases. The description of the R-classes is then immediate. □

Corollary 5.4. In En, we have that H = L ⊆ D =J= R.

Proof. From Propositions 5.1 and 5.3, one can directly see that L ⊆ R, and therefore
H = L∩R = L while D = L ◦R = L∨R = R. Additionally, since En is finite, we have
that D =J(see [11, Proposition II 1.4]). □

Corollary 5.4 determines the J-relation, and hence when two principal ideals coincide.
Nevertheless, it is worthwhile recording their form.
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Proposition 5.5. Let α ∈ En. Then the principal two-sided ideal generated by α is

EnαEn =





En if α ∈ Gn,

En \ Gn if α ∈ E3,

At,e ∪ E2 ∪ C ∪ E1 if α = ϕt,e ∈ A,

E2 ∪ C ∪ E1 if α ∈ E2,

Bt,e ∪ Ct2,e ∪ E1 if α = ϕt,e ∈ B,

Ct,e ∪ E1 if α = ϕt,e ∈ C,

E1 if α ∈ E1.

Proof. We have already given a description of the principal right ideals αEn in Proposi-
tion 5.3. It is clear that EnαEn = αEn for all α ∈ Gn. Suppose then that α ∈ En \ Gn. By
Corollary 2.6 and Remark 3.2 the description of the principal two-sided ideals EnαEn can
therefore be found by taking the closure of the principal right ideal αEn under the operations
γ 7→ γ+, γ 7→ γ− and γ 7→ γ0. By Lemma 3.3 we note that each ideal αEn is closed under
the latter two operations, and if α ̸∈ B then it is closed under all three operations, giving
EnαEn = αEn. For α = ϕtg ,eg ∈ Bt,e we note that α+ = ϕ(tg)2,eg = ϕ(t2)g ,eg ∈ Ct2,e. □

In our considerations of Green’s relations thus far, we have not mentioned that the
relations L,R andJare the equivalence relations associated with pre-orders ≤L, ≤R and
≤J, defined by inclusions of left, right and two-sided ideals, respectively.

As an immediate consequence of the description of all the principal ideals of En we can
describe theJ-order of elements in En as follows:

Corollary 5.6. Let α, β ∈ En. Then β ≤Jα if and only if one of the following holds:

(1) α ∈ Gn;
(2) α ∈ E3 and β ∈ En \ Gn;
(3) α = ϕt,e ∈ A, and β ∈ At,e ∪ E2 ∪ C ∪ E1;
(4) α ∈ E2 and β ∈ E2 ∪ C ∪ E1;
(5) α = ϕt,e ∈ B and β ∈ Bt,e ∪ Ct2,e ∪ E1;
(6) α = ϕt,e ∈ C and β ∈ Ct,e ∪ E1; or
(7) α, β ∈ E1.

Using this, we can now see the structure of theJ-order of En as laid out in Figure 5.1,
where we have added how the maps α 7→ αx for x ∈ {+,−, 0} act on the different compo-
nents of En.

From the description of the principal ideals of En, we can also give an explicit formu-
lation for each ideal of En. In order to do so, we use the notation introduced in Defini-
tion 2.12. Notice in particular that if Y is a union of orbits of elements of B, that is,



24 V. GOULD, A. GRAU, AND M. JOHNSON

Gn

E3

A t ∈ An,

t ̸= t2 ̸= e ̸= id

· · · · · ·

B t ∈ Tn \ Sn,

t ̸= t2 ̸= e ̸= id

· · · · · ·

C

t ∈ Tn \ Sn,

t2 ̸= e ̸= id

· · · · · ·

E2

E1φid,id φe,e: e
2 = e

φid,e: e ̸= id

φt,e: t ∈ Sn \ An, t ̸= t2 ̸= e ̸= id

At,e Bt,e

Ct2,e

ψg: g ∈ Sn

α+

α+

α+

α− α−
α0

α0

α+,−,0

Figure 5.1. TheJ-order of En for n ≥ 5. Each rectangle represents aJ-
class, whilst the ovals represent the groupings of elements according to the
sets A,B,C. Black lines indicate theJ-order, whilst directed lines indicate
the action of the maps α 7→ αx for x ∈ {+,−, 0}.

Y =
⋃

ϕt,e∈B′ ϕt,eGn =
⋃

ϕt,e∈B′ Bt,e for some B′ ⊆ B, then

Y + =
⋃

ϕt,e∈B′

{
(ϕtg ,eg)

+ : g ∈ Sn

}
=

⋃

ϕt,e∈B′

{
ϕt2,eψg : g ∈ Sn

}

=
⋃

ϕt,e∈B′

ϕt2,eGn =
⋃

ϕt,e∈B′

Ct2,e.

Thus, Y + ⊆ C is again a union of orbits. Since each ideal is a union of principal ideals, we
can call upon Proposition 5.5 to describe the ideals of En, as follows.

Corollary 5.7. Any ideal of En takes one of the following forms:

(1) En (the only ideal containing automorphisms);
(2) En \ Gn (the only proper ideal containing elements of odd type);
(3) X ∪ Y ∪ E2 ∪ C ∪ E1 (ideals containing elements of even type, but no elements of

odd type); or
(4) Y ∪ Y + ∪ Z ∪ E1 (ideals containing only elements of trivial or non-permutation

type),
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where the sets X, Y and Z are (possibly empty) unions of orbits taken from sets A,B and
C respectively.

Remark 5.8. We note that it follows from the multiplication given in Corollary 2.6 that
every singular element squares to an idempotent, and so En \ Gn satisfies the identity x4 =
x2. Moreover, it is easy to see that in En \Gn regular D-classes are aperiodic subsemigroups
(that is, the subgroups are trivial) and in En the regular D-classes are subsemigroups.
Another way of saying this is that En \ Gn belongs to the pseudovariety DA and En to the
pseudovariety DS (see [20]). Since Tn does not belong to DS or DA, this gives one way to
see that Tn does not embed in En or En\Gn (although one can also show this more directly).
Conversely, En does not embed in Tn: this can be seen by a quick counting argument, since
for example the number of idempotents in En is equal to 1+ |E3|+ |E2|+ |E1| which exceeds
the total number of idempotents |E1| in Tn.

6. Extended Green’s relations and generalised regularity properties

We assume once more that n ≥ 5 so that, as shown in Proposition 3.5, the monoid En is
not regular. In order to better understand the structure of these endomorphism monoids,
we turn to the extended Green’s relations. We now recall their precise definitions. The
original sources for the ∗-case is [7] and for the ∼-case [5] (see also [14]).

αR∗ β ⇐⇒
(
γα = δα⇔ γβ = δβ ∀γ, δ ∈ En

)
,

αL∗ β ⇐⇒
(
αγ = αδ ⇔ βγ = βδ ∀γ, δ ∈ En

)
,

α R̃ β ⇐⇒
(
ηα = α⇔ ηβ = β ∀η = η2 ∈ En

)
,

α L̃ β ⇐⇒
(
αη = α⇔ βη = β ∀η = η2 ∈ En

)
,

H∗ = L∗ ∧R∗ = L∗ ∩ R∗, H̃ = L̃∧ R̃ = L̃∩ R̃,

D∗ = L∗ ∨ R∗, D̃ = L̃∨ R̃,

αJ∗β ⇐⇒ J∗(α) = J∗(β), and

αJ̃β ⇐⇒ J̃(α) = J̃(β),

where J∗(α) [resp. J̃(α)] is the smallest ideal containing α that is saturated by L∗ and

R∗
[
resp. by L̃ and R̃

]
.

Before proceeding, we make some additional remarks. These relations come with the
appropriate generalisation of the inclusions H ⊆ R,L ⊆ D ⊆J. As for Green’s relations,

R∗,L∗,J∗, R̃, L̃ andJ̃are the equivalence relations associated with certain preorders; we

do not comment further on these. It is easily seen that R ⊆ R∗ ⊆ R̃ and L ⊆ L∗ ⊆ L̃.

For any regular semigroup S we have R = R∗ = R̃ and L = L∗ = L̃. In fact, if a and

b are any regular elements of a semigroup S and a R̃ b, then with a = axa we have that
ax = (ax)2, so that b = axb; together with the converse we obtain aR b. A dual statement

holds for L and L̃. The converse is not true, as may be seen by (in an extreme case)
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considering a cancellative monoid that is not a group. This gives a hint at the idea that for
non-regular semigroups, decomposing them using ∗-classes or ∼-classes may be useful. It is
also worth remarking that, in general, L∗ and R∗ do not commute, so that D∗ ̸= L∗ ◦R∗;

a similar statement holds for L̃ and R̃.
Before describing these relations on En, notice from the above that Gn is contained in an

H∗-class and hence in an H̃-class.

Lemma 6.1. The group Gn is an R∗-class and an R̃-class of En.

Proof. Since Gn lies in an R∗-class, and that R∗ ⊆ R̃, it only remains to show that if

β /∈ Gn then β is not R̃-related to ε. But this is clear since β = ϕt,eβ for any odd ϕt,e, but
certainly ε ̸= ϕt,eε. □

For the description of the other R∗-classes we can show, using the type of maps in En\Gn,
that it is sufficient to consider idempotents acting on the left in order to characterise the
relation R∗ for elements in En \ Gn.

Lemma 6.2. For any α, β ∈ En, αR∗ β is equivalent to

ηα = ζα ⇐⇒ ηβ = ζβ ∀η, ζ ∈ E(En).

Proof. Suppose first that αR∗ β. By definition we have that for all γ, δ ∈ En we have
γα = δα if and only if γβ = δβ. In particular, this statement holds for all idempotents
γ, δ ∈ En. Conversely, suppose that for all η, ζ ∈ E(En) we have ηα = ζα ⇐⇒ ηβ = ζβ. If
α ∈ Gn then it is clear that this condition is satisfied only if β ∈ Gn (to see this, consider
taking η = ε, and ζ = ϕt,e ∈ E3: their left action will agree on the singular elements, but
will differ on the automorphisms), which by the previous result gives that αR∗ β in this
case. Suppose then that α, β ∈ En \ Gn, and let γ, δ ∈ En be such that γα = δα. Since
there is an idempotent of each type, it follows from Lemma 2.13 that ηα = ζα where η is
an idempotent of the same type as γ and ζ is an idempotent of the same type as δ, and
hence γβ = ηβ = ζβ = δβ. A dual argument shows that γβ = δβ implies γα = δα, and
hence αR∗ β. □

Since R∗ and R̃ only depend on idempotents, we start by showing when a map admits
a left identity.

Lemma 6.3. Let α ∈ En. Then ηα = α for η ∈ En if and only if one of the following
holds:

(1) α has rank nn and η = ε (equivalently, α ∈ Gn, and η = ε);
(2) α has rank 3 and η has group or odd type (equivalently, α ∈ E3 ∪ A ∪ B and

η ∈ Gn ∪ E3);
(3) α has rank 2 and η has group, odd, or even type (equivalently, α ∈ E2 ∪ C and

η ∈ Gn ∪ E3 ∪A ∪ E2); or
(4) α has rank 1 and η ∈ En (equivalently, α ∈ E1 and η ∈ En) .

In particular, if η is an idempotent then, ηα = α if and only if α ≤J η.
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Proof. It is clear that ε is the only left identity for α ∈ Gn. Assume now that α ∈ En \ Gn.
By consideration of rank, we can immediately determine the idempotent left identities.
The result follows from Corollary 5.6 and Lemma 6.2. □

Furthermore, two idempotents η and ζ satisfying ηα = ζα for a given map α ∈ En must
lie above α in theJorder, or have the same type. This is formally given by the following.

Lemma 6.4. Let α = ϕt,e ∈ En \ Gn. Then ηα = ζα for some η, ζ ∈ E(En) if and only if
one of the following happens:

• α ≤J η and α ≤J ζ; or
• η and ζ have the same type.

Proof. If η, ζ ∈ E(En) are such that α ≤J η and α ≤J ζ, then ηα = α and ζα = α by
Lemma 6.3, which shows that ηα = ζα. Similarly, if η and ζ have the same type, then
ηα = ζα by Lemma 2.13 and the fact that ε is the only idempotent of group type.

For the converse, suppose that that ηα = ζα. If α ≤J η, then ηα = α by Lemma 6.3.
Therefore ζα = ηα = α so that α ≤J ζ, which corresponds to the first case. Thus, we

can now assume that α ≰J η and α ≰J ζ. In particular, this means that α /∈ E1 and
so t ̸= e and that η, ζ ∈ E2 ∪ E1. Assume that η is of even type and ζ is of trivial or
non-permutation type, that is, η ∈ E2 and ζ ∈ E1. Then ηα = ζα gives

ϕt2,e =

{
ϕt2,t2 if ζ = ϕid,id,

ϕe,e otherwise,

which shows in either case that t2 = e, so that t = e by Lemma 2.3 part (2), a contradiction.
A similar contradiction arises when considering η of trivial type and ζ of non-permutation
type. Therefore η and ζ must have the same type. □

We can now easily determine the R∗ and R̃ relations.

Proposition 6.5. Let α, β ∈ En. Then the following conditions are equivalent:

(1) αR∗ β;

(2) α R̃ β;
(3) α and β are R-below the same idempotents;
(4) α and β areJ-below the same idempotents;
(5) α and β have the same rank.

Consequently, R̃ = R∗ is a left congruence and the R∗-classes of En are Gn, E3∪A∪B,
E2 ∪ C and E1.

Proof. If (1) holds, then so also does (2), since R∗ ⊆ R̃. In any semigroup S, if ea = a for
some e, a ∈ S, then clearly a ≤R e. On the other hand, if a ≤R f for some idempotent
f ∈ S, then from a = fb for b ∈ S1 we obtain fa = ffb = fb = a. Applying this to En
gives that (2) and (3) are equivalent. Examination of Lemma 6.3 now yields that (3),(4)
and (5) are equivalent.

It remains to show that if α R̃ β then αR∗ β. Suppose therefore that α R̃ β and ηα = ζα
where η, ζ are idempotent. Using Lemma 6.4, either α ≤J η and α ≤J ζ so that the same
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is true for β and ηβ = β = ζβ; or η and ζ have the same type, in which case certainly
ηβ = ζβ by Lemma 2.13. Lemma 6.2 finishes the proof that αR∗ β, that is, (1) holds.

That R̃ is a left congruence then follows from the fact that in any semigroup S the relation
R∗ is a left congruence. By point (5) the congruence classes are as given. □

We now turn our attention toward the relations L∗ and L̃.

Proposition 6.6. The L̃-classes of En are En \ (E3 ∪E2 ∪E1) and all the singletons {η}
where η = η2 ̸= ε.

Proof. In order to show that α L̃ β for some α, β ∈ En, we need to show that they have the
same idempotents as right identities.

If α ∈ Gn then clearly αη = α if and only if η = ε.
If α ∈ A and η = ϕu,f ∈ E(En), then by Lemma 3.3 we have that αη = η+ ̸= α, since η+

has rank at most 2. Thus the only idempotent right identity for α is ε. A similar argument
shows that ε is the only idempotent right identity for any element of B ∪ C.

Turning our attention to the idempotents, we have remarked at the start of this section

that idempotents are L̃-related if and only if they are L-related, and hence by Proposi-
tion 5.1 if and only if they are equal. Since any idempotent is a right identity for itself, the
result follows. □

Remark 6.7. Unlike the situation for R∗ and R̃, we find that L∗ is a strictly smaller

relation than L̃. Indeed, in general, the relation L∗ on a semigroup S is well-known to be

a right congruence. However, it is easy to see that L̃ is not a right congruence. Indeed,

taking α ∈ A, β ∈ B and ϕt,e ∈ E3 we find that α L̃ β whilst αϕt,e = ϕid,id and βϕt,e = ϕe,e

are distinct idempotents, and hence not L̃-related.

In what follows, for each (t, e) ∈ Pn we write Fix(t, e) = {g ∈ Sn : t
g = t and eg = e}.

Notice in particular that Fix(id, e) = Fix(e, e) for all e2 = e and Fix(id, id) = Gn. The next
lemma is immediate.

Lemma 6.8. For any ϕt,e ∈ En \ Gn and ψg ∈ Gn we have that ϕt,eψg = ϕt,e if and only if
g ∈ Fix(t, e).

We can now give the description of L∗.

Proposition 6.9. Let α, β ∈ En. Then αL∗ β if and only if one of the following occurs:

• α, β ∈ Gn;
• α, β ∈ E3 ∪ E2 ∪ E1 and α = β; or
• α, β ∈ A ∪ B ∪ C are such that α = ϕt,e, β = ϕu,f have the same type and
Fix(t, e) = Fix(u, f).

Proof. Since L ⊆ L∗ ⊆ L̃, we have that all elements of Gn are L∗-related, and that

idempotents of En distinct from ε form their own L̃-class by Proposition 6.6 and thus
they also form their own L∗-class. Therefore, it only remains to show that elements of Gn

cannot be L∗-related to non-regular elements (that is, elements of A ∪ B ∪ C) and that



THE STRUCTURE OF END(Tn) 29

two non-regular elements are L∗-related if and only if they have the same type and are
fixed by the same automorphisms of Gn.

To see first that no elements of Gn can be L∗-related to elements of A∪B ∪C, consider
α ∈ Gn and β ∈ A ∪ B ∪ C, and let t = (1 2), e = c3 ∈ Tn. Since t2 = id and (t, e) ∈ Pn

we have ϕt,e, ϕid,e, ϕe,e ∈ En. Clearly αϕt,e, αϕid,e and αϕe,e are all distinct. If β ∈ A, then
we have that βϕt,e = ϕid,e = βϕid,e, while if β ∈ B ∪ C we have βϕt,e = ϕe,e = βϕid,e.
Therefore elements of Gn cannot be L∗-related to elements of A ∪B ∪ C.

From now on, we assume that α, β are non-regular (i.e. contained in A ∪ B ∪ C), and
that α = ϕv,k and β = ϕu,f for some (v, k), (u, f) ∈ Pn.

Suppose that αL∗ β and consider the maps ϕt,e, ϕid,e and ϕe,e in En as above. To
see that α and β must have the same type, notice that if α ∈ A and β ∈ B ∪ C, then
αϕt,e = ϕid,e ̸= ϕe,e = αϕe,e while βϕt,e = ϕe,e = βϕe,e which contradicts the fact that
αL∗ β. Thus either α, β ∈ A, or α, β ∈ B ∪C which shows that L∗-related maps must be
of the same type. Lemma 6.8 gives that Fix(v, k) = Fix(u, f).

Conversely, assume that α and β have the same type and that Fix(v, k) = Fix(u, f).
By Lemma 2.13 we have that αη = βη for all η ∈ En \ Gn. Suppose now that ψg, ψh in
Gn. If αψg = αψh, then αψgh−1 = α. It follows that gh−1 ∈ Fix(v, k) = Fix(u, f) and so
βψg = βψh. Finally, it is easy to see that if α ∈ A ∪ B ∪ C, γ ∈ Gn and δ ∈ En \ Gn, then
as the rank of αγ is the same as the rank of α, but the rank of αδ is strictly less than
the rank of α, we cannot have that αγ = αδ. Using the symmetry in the arguments used
above concludes the proof. □

Definition 6.10. A semigroup S is left [right] abundant if every R∗-class [resp. L∗-class]

contains an idempotent, while it is left [right] Fountain if every R̃-class [resp. L̃-class]
contains an idempotent.

Proposition 6.11. For n ≥ 5 the semigroup En is left abundant (and hence left Fountain),
right Fountain but not right abundant.

Proof. The result follows from Propositions 6.5, 6.6 and 6.9. □

Proposition 6.12. The D∗-classes of En are Gn, E1 and En \ (Gn ∪ E1) and further,
D∗ =J∗.

Proof. By Propositions 6.5 and 6.9 we know that the elements of Gn form a single R∗-class
and a single L∗-class. Thus it follows that Gn is also a D∗-class.

Let α ∈ E1 and supose that αL∗ ◦R∗ δ for some δ ∈ En\Gn. Then there exists η ∈ En\Gn

such that αL∗ ηR∗ δ. By Proposition 6.9 we find that η = α ∈ E1, and by Proposition 6.5
we see that δ ∈ E1. It follows from this argument together with the fact that E1 is an
R∗-class that E1 is also a D∗-class.

Suppose then that α ∈ En \ (Gn ∪ E1) and αD∗ δ. It follows from the above that
δ ∈ En \ (Gn ∪ E1). We aim to show that if α, δ ∈ En \ (Gn ∪ E1) then αD∗ δ.

Notice that by our partition of En we have that En \ (Gn∪E1) = (E3∪A∪B)∪ (E2∪C),
is the union of all elements of rank 3 and all elements of rank 2. Moreover, it follows from
Proposition 6.5 that if α, δ either both have rank 3 or both have rank 2, then αR∗ δ, and
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hence αD∗ δ. We show that there is an element β ∈ B of rank 3 and γ ∈ C of rank 2 such
that βL∗ γ, which will complete the description of D∗.

We recall from Example 2.15 that for

t =

(
1 2 3 4 i≥5

1 3 2 1 i

)
, u =

(
1 2 3 4 i≥5

1 1 1 4 4

)
, f =

(
1 2 3 4 i≥5

1 1 1 1 1

)
,

we have β := ϕt,f ∈ B and γ := ϕu,f ∈ C, so that β and γ have the same type. We show
that Fix(t, f) = Fix(u, f), so that βL∗ γ by Proposition 6.9.

Since f = c1 we see that that Fix(t, f) = {g ∈ Sn : gt = tg and 1g = 1}. If g ∈ Fix(t, f)
we therefore have 1 = 1g = 4tg = 4gt and hence (since g is a permutation and 1g = 1)
4g = 4. For all i ≥ 5 we have ig = itg = igt, that is, ig is fixed by t from which it follows
that ig ≥ 5 for all i ≥ 5. Finally we have 2g = 3gt and 3g = 2gt. Thus

Fix(t, f) = {g, (2 3)g : g ∈ Sn, ig = i for 1 ≤ i ≤ 4}.

Similarly Fix(u, f) = {g ∈ Sn : gu = ug and 1g = 1}. If g ∈ Fix(u, f) we therefore have
1 = 1g = 1gu = 2gu = 3gu and hence (since g is a permutation and 1g = 1) we must have
{2g, 3g} = {2, 3}. Thus for all i ≥ 4 we have that ig ≥ 4. Moreover, since u fixes 4g we
must have 4g = 4 since 4 is the only value distinct from 1 that is fixed by u. It is then
easy to see that

Fix(u, f) = {g, (2 3)g : g ∈ Sn, ig = i for 1 ≤ i ≤ 4} = Fix(t, f).

We now look at theJ∗ relation.
We know that D∗ ⊆J∗. Clearly for any β ∈ E1 we have E1 = EnβEn is saturated by D∗.

It only remains to show that for some α ∈ En \ (Gn ∪E1) we have that EnαEn is saturated
by D∗. Taking any α ∈ E3 and calling upon Propositions 6.5 and 6.9 yields the result. □

Finally, the D̃ and J̃-relations are only composed of two classes: the minimal ideal E1

and its complement En \ E1.

Proposition 6.13. The D̃-classes of En are En \ E1 and E1 and further, J̃= D̃.

Proof. Propositions 6.5 and 6.6 immediately give us that there are two D̃-classes, namely

En \ E1 and E1. Since E1 is an ideal, it is a J̃-class. The result follows. □

7. The structure of End(Tn) for n ≤ 4

In order to have clean statements with uniform proofs, in the previous sections we
focussed on the case where n ≥ 5. To complete the picture, in this section we describe
the structure of En in the cases where n ≤ 4. We note that the decomposition in terms
of rank and type given in Lemma 2.9 can also be used to describe the structure of En
in these small cases, however, some of the sets turn out to be empty. Indeed, E1 =
G1 = {ε} is a trivial group, and E2 decomposes as a disjoint union E2 = G2 ∪ E2(2) ∪
E1(2) where G2 = {ε, ψ(1 2)} is the automorphism group, whilst E2(2) = {ϕid,c1 , ϕid,c2} and
E1(2) = {ϕid,id, ϕc1,c1 , ϕc2,c2} are the idempotents of rank 2 and 1 respectively. We note
in particular that these two semigroups (consisting of group elements and idempotents
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only) are regular. For n = 3, the endomorphism monoid E3 decomposes as a disjoint
union E3 = G3 ∪E3(3) ∪E2(3) ∪C(3) ∪E1(3). The elements of C(3) are not regular (note
that the reasoning given in the proof of Proposition 3.5 also applies here). For the case
n = 4, recall that the endomorphism monoid E4 = End(T4) was described in Lemma 2.9
as E4 = G4 ∪D(4) ∪E3(4) ∪B(4) ∪E2(4) ∪C(4) ∪E1(4) where each set is non-empty and
D(4) contains idempotents of rank 7, namely the elements in the set E7(4) = {σg : g ∈ K}.

In spite of these differences, certain properties turn out to be common to all endomor-
phism monoids En. Since their proofs are often akin to those presented in Sections 3–6 and
these results could be obtained by direct enumeration using a computer program such as
GAP, we will only highlight the main points that differ or require attention. A detailed
version of these proofs can be found in the thesis of the second author [9].

Proposition 7.1. Let n be a natural number. In the endomorphism monoid En, the fol-
lowing statements hold:

(1) the set of all idempotents is a band, and forms a rank-ordered chain of right zero
semigroups;

(2) the set of idempotents of rank 1 is the minimal ideal of En;
(3) H = L ⊆ R = D =J;

(4) R∗ = R̃ and the classes are the sets of elements with the same rank.

Proof. These facts have already been explicitly proven for n ≥ 5 in the previous sections,
and it is straightforward to check that the details go through in just the same way for all
n ̸= 4. Indeed, for all n ̸= 4, statements (1) and (2) follow in exactly the same way as in
the proof of Proposition 3.4, whilst it is readily verified that the characterisation of the L
and R relations given in Section 5 (αL β if and only if α = β or α, β ∈ Gn; and αR β if
and only if α, β ∈ Ek for some k or α, β ∈ Gn or αGn = βGn) also hold in these cases, from
which statement (3) follows (since L ⊆ R). Part (4) is trivial in the case where n = 1, 2
(since these semigroups are regular) and can be proved in an entirely similar manner in
the case n = 3, using the fact that there is an idempotent of each type.

The case n = 4 is a little different, since there are extra endomorphisms to consider. We
use extensively the multiplication of elements described in Corollary 2.6 and Lemma 2.7.

For parts (1) and (2): It is clear from the multiplication in Corollary 2.6 that E1(4) <
E2(4) < E3(4) < {ε} is a chain of right-zero semigroups. That E1(4) is the minimal ideal
can be seen by consideration of ranks. Notice that if α = σg ∈ E7(4), then pg = id and

ασh = σh, which means that elements of E7(4) are left identities for elements of D(4),
and hence in particular that E7(4) is also a right-zero semigroup. To complete the proof
it suffices to verify that E7(4)Ek(4) ⊆ Ek(4) and Ek(4)E7(4) ⊆ Ek(4) for all k ≤ 3, which
follows immediately from Lemma 2.7.

For part (3): It is clear from the multiplication in Corollary 2.6 and Lemma 2.7 that
D(4) and E4 \ D(4) are subsemigroups of E4. Elements of D(4) cannot be in the same
L- or R-class as elements of E4 \D(4) since they do not have the same rank. Moreover,
from the multiplication one finds that two elements of E4 \ D(4) will be L (respectively,
R) related in E4 if and only if they are L (respectively, R) related in E4 \D(4), and one
can describe the classes here in a similar manner to the case n ̸= 4. Thus it suffices to
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describe how D(4) splits into L and R classes. Since imσg = {tg : t ∈ S4, 4t = 4} ∪ {c4g},
it follows that imσg = imσh if and only if 4g = 4h. Thus αL β if and only if α = β or
α, β ∈ G4 or α = σg, β = σh both lie in D(4) with 4g = 4h. Also, for all g, h ∈ S4 we have

that p−1
g h, p−1

h g ∈ S4 with σgσp
−1
g h = σh and σhσp

−1

h
g = σg which shows that D(4) is an

R-class. This yields that αR β if and only if α, β ∈ Ek(4) for some 1 ≤ k ≤ 3 or α, β ∈ G4

or α, β ∈ D(4) or αG4 = βG4. Since L ⊆ R we obtain the result.
For part (4): From the multiplication in Lemma 2.7 we see that elements of E7(4) are left

identities of E4 \ G4, but they are not left identities for elements of G4. Likewise, elements
of E3(4) are left identities of E4 \ (G4 ∪D(4)), but they are not left identities for elements

of G4 ∪ D(4). It follows from this that D(4) is an R̃-class, and (since R ⊆ R∗ ⊆ R̃)
an R∗-class. For the remaining elements, similar reasoning to that used in the proofs of
Lemma 6.1 and Proposition 6.5 applies to show that the remaining classes follow the same
pattern as before. □

We recall from the discussion above that E3 is not regular, and so it makes sense to
consider the extended Green’s relations.

Proposition 7.2. In E3 the following statements hold:

(1) L∗ ⊆ R∗ = D∗ = J∗ = R̃ and the R∗-classes are G3, E3(3), E2(3) ∪ C(3) and
E1(3) (i.e. elements of the same rank);

(2) α L̃ β if and only if α = β or α, β ∈ G3 ∪ C(3);
(3) αL∗ β if and only if α, β ∈ G3 or α2 = α = β = β2 or α = ϕt,e, β = ϕu,f both lie

in C(3) with Fix(t, e) = Fix(u, f);

(4) the D̃-classes are G3 ∪ E2(3) ∪ C(3), E3(3) and E1(3);

(5) the J̃-classes are E3 \ E1(3) and E1(3).

Proof. Since E3 contains an idempotent of each type as defined in Section 2.3, almost all of
the arguments given in Section 6 to go through verbatim. The only two notable differences

concern the relations D∗ and D̃. Indeed for D∗ the proof of Proposition 6.12 utilises an
element of B(n) to deduce that certain elements are D∗-related, but since B(3) = ∅, this
argument is not valid for n = 3. The result however follows directly from the observation
that L∗ ⊆ R∗ so that D∗ = R∗, while the proof that D∗ =J∗ is just as before. In a similar

manner in the case of D̃, the proof of Proposition 6.13 relies on the fact that elements of

A(n), B(n) and C(n) are L̃-related in order to show that elements of E2(n), E3(n) and Gn

are D̃-related. Since A(3) = B(3) = ∅ this argument does not hold for n = 3. However, it

is easy to see that elements of E3(3) form a single D̃-class, while elements of G3 and E2(3)

are L̃◦R̃-related. Thus the classes of D̃ are as given in the statement. Finally D̃ ⊆J̃, and

since classes of J̃are ideals saturated by L̃ and R̃, it follows that the only two classes are
E1(3) and E3 \ E1(3). □

Likewise, E4 is not regular, and the extended Green’s relations can be described as
follows:

Proposition 7.3. In the endomorphism monoid E4, the following statements hold:
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(1) αL β if and only if α = β or α, β ∈ G4 or α = σg, β = σh both lie in D(4) with
4g = 4h;

(2) αR β if and only if α, β ∈ Ek(4) for some 1 ≤ k ≤ 3 or α, β ∈ G4 or α, β ∈ D(4)
or αG4 = βG4;

(3) α L̃ β if and only if α = β or α, β ∈ G4 ∪ B(4) ∪ C(4) or α = σg, β = σh both lie
in D(4) with 4g = 4h;

(4) αL∗ β if and only if α, β ∈ G4 or α2 = α = β = β2 or α = σg, β = σh both
lie in D(4) with 4g = 4h or α = ϕt,e, β = ϕu,f both lie in B(4) ∪ C(4) with
Fix(t, e) = Fix(u, f);

(5) D∗ =J∗ and the D∗-classes are G4, D(4), E3(4) ∪B(4) ∪ E2(4) ∪ C(4) and E1(4);

(6) the D̃-classes are D(4), E1(4) and E4 \ (D(4) ∪ E1(4));

(7) the J̃-classes are E4 \ E1(4) and E1(4).

Proof. The proof of parts (1) and (2) is contained in that of Proposition 7.1. For parts (3)

and (4): Much of the proof from the previous section regarding L̃ applies here, with the
additional note that if α ∈ B(4) ∪ C(4) and η ∈ E7(4), then αη ∈ E1(4) so that the only
right identity for elements in B(4) ∪ C(4) is ε. Now if α = σg ∈ D(4) and η = σf ∈ E7(4)

are such that αη = α, it follows that 4g = 4f . Thus σg L̃ σh forces 4g = 4h and thus

σg L σh. This shows that for α, β ∈ D(4) we have αL β if and only if α L̃ β if and only

if αL∗ β (since L ⊆ L∗ ⊆ L̃, and the description of L has been given in the proof of
Proposition 7.1). The proof that the remaining classes are as stated follows the reasoning
of Proposition 6.9, noting that this is unaffected by the presence of elements in D(4) and
the absence of elements in A(4). Indeed the presence of elements in D(4) could only
separate classes listed in Proposition 6.9, but these are either already L-classes, or they
are classes in B(4) ∪ C(4). However, it is easy to see that if for some γ ∈ D(4), δ ∈ En
and α ∈ B(4) ∪ C(4) one has αγ = αδ then βγ = βδ for all β ∈ B(4) ∪ C(4). For part
(5): The proof of D∗ andJ∗ is exactly the same as in Proposition 6.12 by considering the
restrictions of elements t, u and f to the set {1, 2, 3, 4}, that is, by using the elements

t =

(
1 2 3 4
1 3 2 1

)
, u =

(
1 2 3 4
1 1 1 4

)
, and f =

(
1 2 3 4
1 1 1 1

)
,

since we then have that ϕt,f ∈ B(4) and ϕu,f ∈ C(4) are L∗-related.

For parts (6) and (7): We have that D(4) is a D̃-class on its own since it is a single

R̃-class as well as the union of the L̃-classes of its elements, and the other classes as given

in the statement follow from the proof of Proposition 6.13. However, since D̃ ⊆J̃and the
principal ideal generated by elements of D(4) is not ∼-saturated, this forces elements of

E4 \ E1(4) to form a single J̃-class as required. □

8. Related problems

As mentioned in the Introduction, this article is an opener in the discussion of the
structure of endomorphism monoids of full transformation semigroups of various natural
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kinds. We present here a number of questions and possible further directions worthy of
investigation.

Minimal presentations and counting problems. The presentation constructed in Sec-
tion 4 uses a minimal generating set, whose size has a nice combinatorial interpretation
in terms of directed coloured graphs of certain types. Using the machinery of generating
functions, it seems possible that one could give (recurrence) formulae for r3(n) (the number
of orbits of rank 3) and r2(n) (the number of essential orbits of rank 2), and hence give
a formula for the size m(n) of a minimal generating set of En. A natural question in this
regard is how m(n) grows asymptotically, in particular as compared with the size of the
endomorphism monoid En itself. We note that some similar counting problems (concerning
solutions to the system of equations X2 = X, Y 2 = Y , XY = Y X in Tn) have been
considered in [13].

Whilst our generating set is minimal, we make no claim, however, as to the minimality
of our presentation. Indeed, the number of relations of the form (R2) and (R3) and the
length of the words involved in these relation is dependent upon the chosen presentation
⟨XΠ : RΠ⟩ of the symmetric group Sn. Specifically, it is dependent upon FΠ(n), that is,
the smallest number such that any element of Sn has a representation as a word of length
at most FΠ(n) in the generators XΠ.

Other questions concerning presentations. We have considered a presentation for
the monoid En, based on a minimal set of generators. If we allowed ourselves to chose a
generator from each orbit, then our relations would naturally simplify. Previous articles
have considered presentations for the singular part of Tn [2, 4]. We could equally well
consider (now semigroup) generators and presentations for En \ Gn.

Other semigroups of transformations. We have focussed on En = End(Tn) as Tn
is perhaps the most natural semigroup of finite transformations.The automorphisms and
endomorphisms of PT n and In have already been described by different authors (see [8,
Chap. 7]), where PT n and In are, respectively, the semigroups of partial (partial one-one)
maps of a finite set, under composition of (partial) maps. What can be said of the structure
of End(PT n), End(In) or End(Sn)?

Moving away from transformation semigroups, one could consider related semigroups,
such as Brauer monoids and partition monoids (see, for example, [3]), where here the
endomorphisms have been determined [18].

We have started with an unordered set {1, . . . , n} and defined Tn to be all maps from this
set to itself. There are ordered analogues of Tn obtained by considering order preserving
maps of {1, . . . , n}. The study of their endomorphisms has begun in [15, 16], and it would
be interesting to develop these ideas further to describe the structure of the endomorphism
monoids.

In another direction, one can drop the constraint of finiteness. Specifically, what of the
endomorphism monoid of the full transformation monoid (and related semigroups) on an
infinite set, such as N?
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Semigroup vs. monoid endomophisms. For any monoid S we may consider the
monoid of monoid endomorphisms (that is, semigroup endomorphisms also fixing the iden-
tity) or the monoid of semigroup endomorphisms. Here we have considered the latter for
Tn, but it would also be possible to adapt our results to consider the former.

Endomorphisms of endomorphism monoids of other algebras. We may regard
regard Tn as the monoid of endomorphisms of an algebra with no operations. This is a de-
generate case of a free algebra. One could consider endomorphisms of other endomorphism
monoids of free algebra, perhaps starting with their automorphisms. A useful reference
here is [1].

Iteration. The structure of Tn is quite rich: it forms a chain of D = J-classes, which
are non-trivial, and it has elements of every rank. It is, of course, the semigroup of
endomorphisms of an algebra with no operations. By contrast, the structure of En is
rather thin - for example, L is trivial outside of the group of units. Will this make the
structure of End(En) richer? In general, what can one say about the sequence of monoids

Tn, End(Tn), End(End(Tn)), . . .?
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