
Integrated Knowledge Centric Engineering:
Delivering next-generation aircraft projects at pace

Lewis Humphries
Department Of Computer Science

University of York
Edinburgh, Scotland

lewis.humphries@york.ac.uk

Gianmaria Bullegas
Leonardo UK

Edinburgh, Scotland
Gianmaria.Bullegas@leonardo.com

John Golledge
Leonardo UK

Luton, England
John.Golledge@leonardo.com

Campbell Mccausland
Leonardo UK

Edinburgh, Scotland
campbell.mccausland@leonardo.com

Donald Taylor
Leonardo UK

Edinburgh, Scotland
donald.taylor02@leonardo.com

Dimitris Kolovos
Department Of Computer Science

University of York
York, England

dimitris.kolovos@york.ac.uk

Antonio Garcia-Dominguez
Department Of Computer Science

University of York
York, England

a.garcia-dominguez@york.ac.uk

Simos Gerasimou
Department Of Computer Science

University of York
York, England

simos.gerasimou@york.ac.uk

Abstract—With the advent of new multi-partner, federated
avionics projects for developing next-generation aircraft, there
is increased pressure from the UK’s Ministry of Defence (MOD)
to enhance development speed, a practice known as ”deliver-
at-pace” [6]. This presents a challenge at both the technical and
organisational levels, necessitating a move from the current heav-
ily document-based and manual development process to a more
agile and automated approach. Furthermore, the organisational
culture must shift from a tool-centric mindset to a more data
and knowledge-oriented one. Initiatives like openCAESAR have
addressed this through the Integrated Model-Centric Engineering
(IMCE) practice [8], which lays out principles for effective Model-
Based Systems Engineering (MBSE). The solution proposed in
this paper builds on this work, implementing these principles
to create the Integrated Knowledge-Centric Engineering (IKCE)
methodology, a framework for designing a modern engineering
enterprise. The goal of this methodology is to solve limitations
in current development processes by reducing tool reliance and
increasing automation. This allows an organisation to decrease
development effort, accelerate verification, and protect against
vendor lock-in. Adopting IKCE will aid in achieving the MOD’s
”deliver-at-pace” requirements without sacrificing the rigour of
the development process. By achieving this, upgrades can be
implemented at a far faster pace than historically possible,
moving away from rigid development processes to an inherently
agile way of working. Doing this will have long-lasting benefits
of the ability for future projects to change direction. This paper
discusses the functions of IKCE ”workspaces” and their user
interactions. It uses the FireSat II satellite case study [11] to
demonstrate the requirements gathering process within IKCE,
showing how the framework handles various development aspects

[University of York and Leonardo UK Ltd KTP 22 23 R2, 13372, UKRI,
2023]

in a practical example.
Index Terms—Semantic Web, Knowledge Representation,

Linked Data, Continuous Integration, DevOps, Systems Engi-
neering, Software Engineering, Model-Based Engineering, Digital
Engineering

I. INTRODUCTION

In an effort to reduce the cost of delivering complex
systems, the UK government and MOD are pushing for
next-generation aircraft projects to ”deliver-at-pace” [6]. This
mandate requires that the time for implementing updates and
changes be significantly decreased across the industry. Current
development cycles involve lengthy periods for feedback and
resolution, owing to the high-integrity nature of complex
defence projects. To meet this demand, companies across the
defence industry must examine their development processes
to determine the best approach for meeting the ”deliver-at-
pace” requirement and overcoming the associated challenges.
Section II of this paper discusses the current challenges faced
in achieving this goal. Section III explains the underlying
technologies used in the proposed solution. Section IV details
the proposed IKCE framework. Section V presents a practical
example using the solution, and Section VI concludes the
paper and outlines future work.

II. CHALLENGES

Achieving the required level of agility while maintaining the
rigour essential for certification presents a significant hurdle.
Traditional engineering processes were established to enforce



this rigour, often relying on extensive human review and
a sequential, stage-gated progression to manage safety and
risk. However, this heavy reliance on manual oversight is not
only slow but also introduces its own weaknesses, including
human error and inconsistent application of standards. The
current implementation of these processes is often too rigid
to support the required pace improvements. This approach is
rooted in the waterfall life-cycle model, whereas most modern
development teams now operate using an Agile model. The
challenge, therefore, is not to sacrifice rigour for speed, but
to implement a new approach where automation and explicit
knowledge management can enhance both simultaneously.
Without successfully updating these processes, the UK defence
industry risks failing to deliver next-generation aircraft within
the proposed time frames.

A. Technical

Data fragmentation and a lack of integration lie at the heart
of the technical challenges. Data is often siloed at the team
or project level, stored in proprietary tool formats that make
it difficult to access and reuse, hindering collaboration. This
leads to vendor and user data lock-in, where platforms retain
control over user data, increasing the cost and complexity of
switching tools or integrating new ones. Compounding this
issue is a lack of overarching workflow management, which
allows different projects to adopt disparate workflows, wors-
ening the siloing effect. Consequently, development processes
remain heavily manual, which enlarges the feedback loop for
any proposed change. Finally, the presence of multiple secu-
rity levels, each with its own network, mandates a federated
approach to data management and access.

B. Organisational

Organisational inertia presents a substantial barrier to
change. A fundamental shift in mentality is required, where
teams must treat data and knowledge as their primary work
products, curating them with the same care as traditional
engineering artefacts. Currently, there is an excessive focus
on tools rather than the data they produce. This is evident
in practices like the use of physical notebooks for critical
data, which is difficult to locate and impossible to search
systematically, and sub-par management of documentation,
which harms usability. These issues are symptoms of devel-
opment processes that remain too rigid and rooted in the
waterfall model. Furthermore, the low granularity with which
data is partitioned results in large amounts of unnecessarily
classified data, increasing the costs of both storage and
development.

III. BACKGROUND

To overcome the challenges outlined above, this work
integrates several key technologies and methodologies. This
section provides a brief overview of the core components that
form the foundation of IKCE.

A. Semantic Web Technologies (RDF & OWL)

The Resource Description Framework (RDF) [12] is a
foundational data model for representing information as triple
statements (subject-predicate-object) in a directed graph. This
structure allows data to be stored in a flexible format within
an RDF store and queried using the SPARQL language [2].
Building upon RDF, the Web Ontology Language (OWL) [1] is
used to create ontologies—formal specifications of a domain’s
classes, properties, and the relationships between them. OWL
enhances RDF by enabling inferencing, which allows for the
automatic deduction of new facts from existing data. These
technologies provide the basis for the vendor-independent data
interchange format.

B. Ontological Modelling Language (OML) and openCAE-
SAR

The Ontological Modelling Language (OML) [8] is a for-
malisation of a subset of OWL, specifically designed to bridge
open and closed-world data models in a systems engineering
context. OML was developed by the openCAESAR project [8],
[9], a set of tools and transformations built around OML and
OWL that promotes a practice for MBSE known as Integrated
Model Centric Engineering (IMCE). IMCE outlines the key
principles and characteristics of a successful MBSE process,
which heavily influenced the design of IKCE.

C. Model-Driven Engineering (MDE) with Epsilon

Epsilon [13] is a family of languages and tools for Model-
Driven Engineering (MDE) that facilitates the automation of
tasks such as model validation, transformation, and generation.
It integrates with common modelling technologies like the
Eclipse Modelling Framework (EMF) and Unified Modelling
Language (UML), providing the technical means to create the
tool adapters required by IKCE.

D. Containerised Development Environments

A containerised development environment uses technology
like Docker to encapsulate the tools, libraries, and configura-
tions needed for development. This ensures consistency across
different machines, simplifies the onboarding of new engi-
neers, and prevents configuration conflicts between projects.
For this Coder [4] is used, which is a platform for managing
these environments from customizable templates, to provide
engineers with consistent and project-specific toolsets.

Fig. 1. Process for using Coder with Containerised Development Environ-
ments



Figure 1 shows a simplified example of an engineer using
coder to request a new development environment.

IV. PROPOSAL: IKCE

IKCE represents a new approach to systems engineering that
leverages formal knowledge representations (ontologies) and
standardised artefact exchange. It fosters collaboration through
a publish-subscribe network, enabling access to the right
information at the right time while automating version control
and change management. This methodology moves away
from rigid, human-dependent processes toward a machine-
interpretable, dynamic system. The IKCE framework, created
based on the principles of IMCE, provides a unified approach
to managing and integrating system knowledge by adhering to
the following principles:

• Authority/Domain Driven Federation: System data is
federated and belongs to specific domains based on
system and work breakdown structures. Each discipline
continues to use familiar tools to produce domain-specific
models and documents. These information artefacts are
managed using version control and change management
within their native environments. An enterprise-level data
and workflow orchestration service connects to these
disparate data sources and provides a uniform interface
over them. This service is realised through a combination
of CI/CD pipelines and a message bus that listens for
changes in source repositories and triggers the appropriate
data transformation and propagation workflows.

• Knowledge Independent of Representation: System
knowledge resides in information artefacts that are en-
riched with metadata connecting them to the broader
system knowledge graph. This metadata is captured in
a standard, vendor-independent format (OML), which is
integrated into a Knowledge Graph that serves as the
authoritative source of truth for reference throughout the
development lifecycle.

• Logical vs. Temporal Precedence: IKCE enables an
agile approach to large-scale systems development based
on flexible workflows driven by the logical dependencies
between system functions, rather than a rigid temporal
relationship between work packages. For example, a tra-
ditional waterfall model dictates that all systems require-
ments must be completed (a temporal constraint) before
software design can begin. In contrast, IKCE allows the
software team to start designing a user interface as soon
as the relevant UI requirements are published (a logical
dependency), even if requirements for other subsystems
are still being defined.

• Self-serve Data Availability: Data is discoverable and
accessible throughout the organisation via a secure self-
service portal, reducing the time taken to locate required
information.

• Data Governance at the Source: Data governance is ap-
plied where the data is created and produced to ensure the
correct implementation of security and IP concerns. This
makes data quality and security a shared responsibility,

rather than the task of a centralised team with limited
knowledge of the data being governed.

A. How It Works

Fig. 2. Overview of the IKCE Information Architecture

1) The IKCE Stack: The IKCE information architecture
(Figure 2) is designed to create a unified knowledge graph
from diverse and disconnected data sources. The core of
the architecture is the IKCE Stack, a distributed graph that
functions as a unified namespace. It is composed of five key
layers :

Physical Layer: This layer consists of the various engineer-
ing tools (e.g., DOORS, Cameo) and data sources (e.g., Git
repositories) used in projects.

Tool Adapters Layer: This layer is responsible for con-
verting data from proprietary tool formats into a standardised
RDF-based format and managing version control for the
incoming data.

Data Integration Layer: The standardised data is ingested
into this layer, where individual data elements (requirements,
design components, etc.) are organised according to a common
naming convention.

Semantic Mapping and Traceability Layer: This layer
creates meaningful connections between different data ele-
ments by mapping the raw data to a set of common, predefined
vocabularies.

Ontology Layer: This top layer provides the formal, shared
vocabularies (ontologies) that define the core concepts and
relationships across different domains, enabling semantic map-
ping. Figure 2 shows three example vocabularies:

• Requirements and operational analysis (e.g. Concept:
Requirement)



• System Architecture (e.g. Concept: Component, Relation:
Contains)

• Project Management (e.g. Concept: Feature, Relation:
Delivers)

In essence, the IKCE Stack transforms data from various
tools into a standard format and then uses a common set of on-
tologies to build a connected, traceable, and semantically rich
knowledge graph. While Description Logic (DL) reasoning
within this layer can validate classifications and relationships,
it does not replace the specialised analysis (e.g., physics-
based simulations, geometric analysis) performed by tools
in the physical layer. Instead, IKCE serves as a connective
framework to integrate the inputs and outputs of these tools
into a coherent system model.

2) Data Transformations: To ensure that IKCE is tool
agnostic, a process for transforming data from tool-based
formats into the common exchange format has been developed.
For this process the common exchange format chosen is OML,
making use of a mix of Eclipse Epsilon transformations [13]
and the OML adapter library [8] for connecting to the various
tools used.

3) Foundational Vocabularies: To aid in the processes
of mapping between data developed in different projects, a
selection of ontologies has been created at the enterprise
level which are known as foundational vocabularies. These
ontologies consist of foundational concepts at a high level of
abstraction which are designed to be built on and specialised
for the specific domains, as shown in Figure 3. This will
allow for taking data from a domain that uses a foundational
vocabulary and using it within different domains that also
have specialisations of that same vocabulary. By doing this
the amount of mapping vocabularies that are required will be
reduced since using a common vocabulary as a base gives
some of the mappings between different data for free.

Fig. 3. Diagram Showing How Foundational Vocabularies Are Used

4) Mapping Data Models: For cases where having a com-
mon vocabulary is not enough to link data from different
sources and domains together, mapping vocabularies can be
created. Mapping vocabularies are ontologies that contain
all the various pieces of logic that link the types of nodes
from different ontologies together. Figure 4 shows an example
of using mapping vocabularies to link three different OML
vocabularies representing the data models of ReqIF, a project-
specific model, and a foundational model. This allows for data
stored in an OML description based on the ReqIF vocabulary,
project-specific requirements vocabulary, and foundational vo-
cabulary to be treated the same using inferencing due to the
links created by the mapping vocabularies.

Fig. 4. Diagram Showing How Different Data Models Are Mapped

5) Workspaces: Once the IKCE Stack has been put in place,
the next key component of IKCE is workspaces, which is a
logical separation of tools and data within the wider enterprise.
Figure 5 is an overview of an example workspace, showing
how users use the development tools, which then send the
data to a transformation stage, converting it into the common
interchange format and sending the transformed data to the
knowledge graph ready to be published. These are typically
created to perform a specific task within a larger project which
are used by either individuals or entire teams.

Fig. 5. Diagram Showing Overview of a Workspace

Workspaces contain multiple key types of data and pro-
cesses which are used by workspaces to function, which are
shown in Figure 6 and discussed in more detail below:

• Data Source: Data sources are the various places in
which data used within a workspace comes from, such
as repositories and package registries.

• Resource: A resource represents a piece of data used by
a workspace, such as a git project.

• Package Registry: A package registry is a type of reposi-
tory that stores packages published by other workspaces,
which a new workspace can then subscribe to.

• Package: A package is a piece of data that has been
published by a workspace.

• Dependency: A dependency represents a link to a package
that a workspace has subscribed to.

• Workflow: A workflow represents a process used within
a workspace.



• Pipeline: A pipeline is a specific type of workflow within
a workspace that represents a CI/CD pipeline.

• View Point: A viewpoint represents a user interface for
data within a workspace.

• Development Environment Template: A development en-
vironment template is the template that is used to instan-
tiate a containerised development environment for users.

• Development Environment: A development environment
is the set of tools that are used by users to complete
whatever tasks the workspace was created for.

• Tool: A tool is a part of the development environment
that helps the user in completing tasks.

Fig. 6. Diagram Showing the Data Model for a Workspace

Example Workspace
• Master Resource: Ephemeral OML project containing all

data within a workspace.
• Development Resource: Contains the data currently being

developed within the workspace.
• Development Environment Resource: Contains the tem-

plate for generating containerised development environ-
ments

• Smart Documentation Resource: More user-friendly vi-
sualisation of data contained within the master resource

• CI/CD Pipeline: Various workflows for doing tasks such
as publishing packages to package registry

• Package Registry: Type of repository that contains pub-
lished packages to be used by other workspaces.

6) Templates: To allow for quickly creating new
workspaces designed for common tasks and workflows
within the development processes, a templating mechanism
has been developed. This is used to provide a skeleton for
common types of workspaces that can be tailored to fit the
needs of specific tasks. This tailoring process allows for
flexibility within IKCE, reducing the risk of teams attempting
to bypass the processes put in place since the templates can
be modified to mitigate issues with the standard approach to
certain task. These templates can then be discovered through
the discovery portal when creating a new workspace.

7) Pub/Sub Collaboration: Once a collection of IKCE
workspaces have been setup to handle various tasks within
a project, the next question is how do they collaborate with
each other. The approach taken for collaboration is to use a
publish and subscribe approach, in where a workspace will
publish work that it has completed to its own package registry,
which other workspaces can then subscribe to. Figure 7 shows

an example of this process between two IKCE workspaces,
where a developer of the base package makes a change and
publishes an updated version to the published package registry,
which is then subscribed to by the other workspace. This
creates a link showing how different workspaces depend on
each other for various components, which acts as a logical
precedence between workspaces, showing the order in which
workspaces need to be created. This approach changes the
overall paradigm of the development processes to a more
inherently agile and flexible publish and subscribe process,
compared to the rigid assembly line process.

8) Discovery Portal: To aid teams in reusing existing
data within the wider enterprise, a discovery portal has been
developed to search for data that has been published by other
workspaces within the organisation that can then be subscribed
to within the workspace. This will allow for searching across
the entire organisation’s collection of available data, which
can then be subscribed to and reused by new workspaces.
The discovery portal will also allow for locating templates for
creating new workspaces based on common processes used
within the organisation. This reuse will allow for both reducing
the amount of development time and cost for new projects,
while also reducing the siloing across projects, due to the data
from one project being usable in another.

B. How Users Interact With IKCE

Another concern is the approach taken by the various
different types of users within the organisation when using
IKCE. In most cases, engineers will not need to change their
workflow significantly with IKCE, since one of the goals of
IKCE is to allow for using the current tools in place. This
will work by doing the various different data transformations
required for linking tools together within the background,
being almost invisible to users in their day to day workflow.

1) Workspace Management UI: For the situations where
users require more involved interaction with key IKCE con-
cepts, a UI has been developed that allows for working with the
various aspects of IKCE. Figure 8 shows how the UI is used
to interact with IKCE, which consists of two main services,
which will handle the admin and user level functionality for
workspaces respectively.

IKCE Workspace Admin Service: The IKCE Workspace
Admin Service handles admin-level functions for workspaces,
such as the creation and modification of workspaces.

• Create new workspaces
• Modify existing workspaces
• Add/Remove Users from workspaces

IKCE Workspace User Service: The IKCE Workspace User
Service handles the user-level functions of workspaces, such
as viewing the data within a workspace and creating new
development environments within a workspace.

• Create new development environments
• Access existing development environments
• Approve pull requests
• View data within a workspace
• See available workspaces



Fig. 7. Diagram Showing How Workspaces Publish/Subscribe to Packages

Fig. 8. Diagram of How the User Interacts with IKCE

2) Workflows: To show how users would interact with
IKCE using the UI, the workflows for workspace creation (Fig-
ure 9), containerised development environment setup (Figure
10), and modifying data within a workspace (Figure 11) are
shown below.

Workspace Creation: For the creation of a new workspace
within IKCE, first the Project Manager who will manage the
Workspace needs to go to the IKCE Workspace Admin Service
and request a new workspace.

Fig. 9. Workflow for Creating IKCE Workspace

This will then show a form with the following fields about
the new workspace that the user will need to fill in:

• Workspace Name - The namespace data created inside
the workspace will use.

• Workspace Template - The template that the workspace
will be built from.

• Workspace Dependencies - What packages the newly
created workspace will depend on.

• Workspace Members - Who has access to new workspace.
Once the form has been filled in and submitted, the Workspace
Admin Service will then send this information to the backend,
which will create all the required resources and pipelines for
the workspace, which is determined by the selected template.

Development Environment Creation: When a Developer
within a workspace needs a new Containerised Development
Environment, first they will go to the IKCE Workspace User
Service and request a new Development Environment. This
will send a request to the Containerised Development Environ-
ment Manager to setup a new Development Environment based
on the template for the chosen workspace. The Containerised
Dev Env Manager will then create the Development Environ-
ment and send a reference back to the UI, which will then
give the Developer access to the newly created Development
Environment.

Fig. 10. Workflow for Creating IKCE Development Environments

Making Changes To Workspace Data: Once the
Workspace and Development Environment has been created,
the next step would be to make changes to the data stored
within the new Workspace. To do this first the Developer will
request access to their Development Environment using the
IKCE Workspace User Service, which will send that request
to the Containerised Development Environment Manager. This
will go and retrieve the specified Development Environment
and be sent back to the UI where the Developer will be
given access, ready to make their required changes. Once
the Developer has their Development Environment, they will



pull down the Git branch required for their task from the
Development Resource. They will then use whichever Devel-
opment Tool is required for the specific task being done to
modify the data within the Workspace. Once this is done, the
changes are committed onto the branch and pushed back to
the Development Resource, where a Review will receive a pull
request and either approve or deny the changes. If the changes
are approved and pushed to the main branch, a pipeline
will automatically start that will take the changes to the
Development Resource and add them to the Master Resource.
This will trigger multiple other pipelines that will propagate
the changes across the workspace, with some examples being
updating the Smart Documentation Environment, or publishing
a new version of the data to the Workspace’s Package Registry.

Fig. 11. Workflow for Making Changes in an IKCE Workspace

V. FIRESAT EXAMPLE

A. The Problem

This example, based on the FireSat II satellite [11], focuses
on the requirements gathering process and its transfer from
the systems engineering to the software engineering domain.

B. Primary Goals

• To reduce the impact of wildfires in the US and Canada.
• To reliably and efficiently operate a space-based asset that

provides critical fire data.

C. Stakeholders

Forest Service (End User):
• Concerns: Primarily concerned with the ”loss of life and

property due to forest fires.”
• Needs: Ability ”to put out a fire in a timely manner to

prevent the loss of life and property.” This implies a need
for rapid detection and accurate location data.

Fire Department (End User):
• Concerns: The operational response to a fire.
• Needs: Receive ”forest fire data in real time” to effec-

tively dispatch resources and manage firefighting efforts
on the ground.

Sponsor (Customer):
• Concerns: Overall value and viability of the project.
• Needs: ”establishing a feasible design to satisfy the mis-

sion requirements within cost and schedule constraints”.
They are the source of the funding and expect a return
on investment.

Development Contractor (Supplier):
• Concerns: Successfully building and delivering the sys-

tem.
• Needs: ”satisfy the mission requirements” while oper-

ating ”within cost and schedule”. Clear, unambiguous
technical specifications required to build against.

Operator (User):
• Concerns: Day-to-day operation of the spacecraft.
• Needs: ”operate the spacecraft to achieve the mission

objectives”. This includes the ability to ”monitor and
maintain the health and safety of FireSat II” and requires
a well-defined command and telemetry interface.

D. Scenario
The scenario will focus on the processes around the gath-

ering of requirements and their transfer from the systems
engineering to software engineering domains, which consists
of the three key stages as shown below:

Fig. 12. First Stage of the System to Software Requirements Process

Figure 12 shows the first stage, where the high-level systems
engineering requirements are received by the customer, which
are then reviewed and broken down into low-level systems
engineering requirements.

Fig. 13. Second Stage of the System to Software Requirements Process

Figure 13 shows the next stage which happens once the low-
level systems requirements have been created and reviewer,



wherein multiple different experimental systems engineering
models are created and reviewed to see which model best
suits the requirements given. Once a model is chosen, it’s
requirements are then compared against the original systems
requirements, which are then updated to reflect the chosen
model.

Fig. 14. Third Stage of the System to Software Requirements Process

Once the final systems requirements have been created, the
final stage (Figure 14) involves going through the requirements
and extracting everything that is applicable to the domain
of software engineering, which are known System Require-
ments Allocated to Software (SRATS). The high-level software
requirements will then be created based off the identified
SRATS, which will be reviewed and used to create the low-
level software requirements, similar to how the low-level
systems requirements are created. Once the low-level software
requirements have been reviewed, they are used in the creation
of the diagrams showing the architecture of the software, using
formats such as UML or C4.

E. Implementation

The implementation follows the third stage of the re-
quirements process (Figure 14) shown above, implementing
it within IKCE. For this example, the tools used are IBM
DOORS for requirements management, Cameo for system
modelling, XText for a custom review DSL, and the C4 model
for software architecture diagrams.

1) Tools: IKCE is designed to support any tool with an
adapter for transferring data from the tool to the common
interchange format, but for this example the following tools
have been selected:

DOORS: IBM DOORS [3] is a tool used for capturing
and managing the requirements used in the development of
projects.

Cameo: Cameo [7] is a system modelling tool that is
typically used by systems engineers to create models of the
product being developed for a project, but it also has some
capabilities of storing and editing requirements.

XText: XText [10] is a software framework that is designed
for developing domain-specific language, which are program-
ming languages that have been created for a specific purpose.
In this scenario, XText has been used to create a DSL that
allows for reviewing requirements.

C4: For designing the software architecture, the C4 model
[5] has been used, which is a framework for designing
architecture diagrams for software systems.

2) Workflow: To represent this, the process will be split
into workspaces based on the following tasks:

Updated Systems Requirements: In this first step, a
workspace (Figure 15) is created with the goal of taking the
chosen experimental systems model and creating the final
set of systems requirements that will be used for allocating
requirements to software.

Fig. 15. Overview of Workspace Used For Updating Systems Requirements

This works by first creating a new workspace that subscribes
to the Chosen Experimental Systems Model package. Once
the workspace has been created, the systems engineer will
then need to request a new development environment for that
workspace, which in this instance will contain an instance of
Cameo.

Fig. 16. Updated Systems Requirements within Cameo

Once the user has the development environment, they will
then pull down the required branch from the System Require-
ments resource into Cameo (Figure 16), which will transform
the data from OML into Cameo’s data model using an adapter.

Once that is done, the user will modify the systems require-
ments based on the chosen model and push their changes back
to the System Requirements resource, transforming the data
back into OML where it is ready to be reviewed and sent to
the master resource (Figure 17).

System Requirements Allocated To Software (SRATS):
Now that the system requirements have been updated, the
next step is to extract the requirements that are applicable
to software, known as SRATS.



Fig. 17. Updated Systems Requirements as an OML Description

This will begin by creating a new workspace (Figure 18)
that subscribes to the updated systems requirements package,
where a new development environment containing a DOORS
instance will be created.

Fig. 18. Overview of Workspace Used For Extracting SRATS

Once in this new DOORS instance, the required branch in
the SRATS resource will be pulled down and transformed from
OML to the DOORS data model (Figure 19). The user will
then extract the SRATS and push the changes back to the
SRATS resource when completed, transforming the data back
to OML (Figure 20).

Fig. 19. Updated Systems Requirements in DOORS

The SRATS will then be reviewed and if accepted pushed
to the master resource and published to the package registry
in the same way as the updated systems requirements were.

Fig. 20. SRATS as an OML Description

System Requirements Allocated To Software (SRATS)
Review: The next workspace to be created is for the review of
the selected SRATS, which will make use of a custom domain-
specific language (DSL) that was created with XText, using
adapters in the same way as the previous workspaces to convert
between OML and the review DSL.

Fig. 21. Review for SRATS within the Review DSL

When the data is in the editor for the review DSL, the
reviewer will analyse the SRATS for any potential concerns
and issues, recording any observations in a report using the
format shown in Figure 21.

Once the review is complete, the data is sent from the
SRATS review resource to the master resource and published,
where it can be used to create high-level software requirements
if accepted, or used to help with the process of fixing any
identified issues in the SRATS if not.

Create High-Level Software Requirements: This next
workspace subscribes to the reviewed SRATS and puts them
into DOORS, where the user can analyse them and create a
new set of high-level requirements that are purely software-
focussed. These are then sent to the High-Level Software
Requirements resource and published using the same process
as above.

Review High-Level Software Requirements: The high-
level requirements are then reviewed the same way as the
SRATS were, using a workspace containing DOORS where
the high-level requirements package is subscribed to.

Create Low-Level Software Requirements: Now the high
level software requirements have been reviewed, this process
is repeated for the low-level software requirements. This
consists of a workspace that subscribes to the reviewed high-
level software requirements and uses DOORS to create more
focused lower level software requirements. The data is then



pushed back to the low level software requirements resource
and published the same way as before.

Review Low-Level Software Requirements: These low-
level software requirements are then reviewed by a workspace
in the same manner as the SRATS and high-level software
requirement were.

Software Architecture Diagrams: A final workspace is
created that subscribes to the reviewed low-level requirements
that is used to create a software architecture diagram using the
C4 model, as shown in Figure 22.

Fig. 22. C4 Container Diagram for FireSat

Once created, this model will be pushed to the software
architecture resource and sent to the master resource and
published in the same way as the previous workspaces, ready
to be used in the next stage of the software engineering
domain. This completes the process of going from the systems
engineering domain to software engineering domain.

VI. CONCLUSION AND FUTURE WORK

This paper presents the Integrated Knowledge-Centric Engi-
neering (IKCE) approach, designed to address the challenges
faced by the defence industry in meeting the MOD’s ”deliver-
at-pace” mandate. By moving from rigid, manual development
processes to a more flexible and automated framework, IKCE
reduces the size and number of feedback loops within large-
scale avionics projects. The methodology provides a path to
increasing development velocity without compromising the
rigour required for high-integrity systems.

Future work will focus on maturing these concepts and
beginning their implementation within the organisation. A key
activity will be to increase the number of supported tool
adapters to enable more engineering domains to benefit from
the IKCE framework. The creation and maintenance of domain
ontologies are also recognised as a significant undertaking.
Therefore, there are plans to investigate how AI, particularly
Large Language Models (LLMs), could be leveraged to assist
in generating and refining ontologies from existing engineering
documents and unstructured data. Furthermore, another point
that needs addressing are the challenges of scalability. While
the federated workspace architecture is designed to be more
scalable than a single monolithic knowledge graph, studies
to analyse performance and adoption hurdles in a full-scale
industrial deployment will need to be conducted.

REFERENCES

[1] Owl 2 web ontology language document overview. W3C Recommen-
dation, 10 2009. Accessed: 2025-07-07.

[2] SPARQL 1.1 Query Language. Technical report, W3C, 2013. Accessed:
2025-07-07.

[3] Ibm engineering requirements management doors. Software, 2024.
Accessed: 2025-07-07.

[4] Coder : Cloud development environment: Remote & self hosted, 2025.
Accessed: 2025-07-07.

[5] Simon Brown. The c4 model for visualising software architecture.
Context, Containers, Components, and Code. URl: https://c4model.
com/.(accessed: 07.07.2025), 2018.

[6] Defence Comittee. Report favc0018: Written evidence submitted by the
ministry of defence (pdf), November 2023.

[7] Dassault Systemes. Cameo Systems Modeller, 2024. Accessed: 2025-
07-07.

[8] Maged Elaasar, Nicolas Rouquette, Steve Jenkins, and Sebastien Gerard.
The case for integrated model centric engineering. Proceedings of the
10th model-based enterprise summit (MBE 2019). National Institute of
Standards and Technology, Gaithersburg, MD, pages 9–16, 2019.

[9] Maged Elaasar, Nicolas Rouquette, David Wagner, Bentley James Oakes,
Abdelwahab Hamou-Lhadj, and Mohammad Hamdaqa. opencaesar:
Balancing agility and rigor in model-based systems engineering. In 2023
ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C), pages 221–230.
IEEE, 2023.

[10] Moritz Eysholdt and Heiko Behrens. Xtext: implement your language
faster than the quick and dirty way. In Proceedings of the ACM
international conference companion on Object oriented programming
systems languages and applications companion, pages 307–309, 2010.

[11] Sanford Friedenthal and Christopher Oster. Architecting Spacecraft with
SysML: A Model-Based Systems Engineering Approach. CreateSpace
Independent Publishing Platform, 2017.

[12] Graham Klyne and Jeremy J. Carroll. Resource description framework
(RDF): Concepts and abstract syntax. W3C Recommendation, 2004.
Accessed: 2025-07-07.

[13] Dimitrios Kolovos, Louis Rose, Richard Paige, and A Garcia-
Dominguez. The Epsilon Book. Eclipse, 2010. Accessed: 2025-07-07.


