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ABSTRACT
Weather surveillance radar (WSR) provide distributed quantitative precipitation estimates (QPEs) of great value to the modelling, 
understanding and management of many hydro-meteorological processes. To obtain these observations over regional or larger 
scale domains it is necessary to composite data from multiple WSRs. These composites are often produced operationally by 
national or international meteorological agencies yet valuable data from ad-hoc sources such as research groups and local-level 
WSR operators are not included in these products. This study presents a methodology for incorporating data from a research 
radar deployment (the National Centre for Atmospheric Science mobile X-band weather radar, NXPol-1) into a national scale 
composite (the UK Met Office British Isles gridded composite) using a quality-index. Firstly a quality-index is developed for 
NXPol-1 using an intuitive, multi-factor approach. The quality-index is then cross-referenced with the existing quality-index 
for the national composite, to allow production of a dynamically merged two source WSR QPE. The method developed is then 
evaluated using surface precipitation measurements from an extensive rain gauge network. Merging QPE from the two sources 
using a quality-index improves the accuracy of WSR QPE when compared to either individual data source, showing it is possible 
to combine ad-hoc WSR data with national products dynamically such that precipitation estimation is improved. Improving local 
QPE using additional radar deployments will benefit flood forecasting accuracy and local incident response, particularly when 
that data is used to enhance existing coverage.

1   |   Introduction

Quantitative precipitation estimates (QPEs) from weather sur-
veillance radars (WSRs) are crucial observations for nowcasting, 
flood-risk modelling, water resources management and clima-
tological assessment (Ravuri et  al.  2021; Saltikoff, Friedrich, 
et al. 2019; Fabry 2018; He et al. 2011; Cole and Moore 2009). 

These observations are a critical component of flood incident 
response with better nowcasts improving the effective lead-
time of flood forecasts and distributed observations allowing a 
more targeted incident response (Kox et  al.  2018; Werner and 
Cranston  2009). WSRs are particularly suited to these appli-
cations as they provide high-resolution (sub-hourly, kilometre 
scale) remote observations over wide geographic areas. To cover 
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even larger areas, observations from multiple WSRs are often 
combined into a single dataset ranging from regional to even 
continental scales (Jurczyk et  al.  2019). These datasets trans-
form the original polar coordinate WSR moment data into a 
processed gridded surface precipitation estimate, which is far 
more accessible to the wider scientific community, government 
agencies and the general public (Villarini and Krajewski 2010).

The accuracy of these gridded datasets depends not only on the 
underlying QPE processing employed in transforming radar 
moments into precipitation intensity, on which there is an exten-
sive body of growing research (Germann et al. 2022; Ryzhkov 
et al. 2022; Fabry 2018), but also on the procedures used for grid-
ding and compositing the WSR observations. The use of a qual-
ity indicator during gridding and compositing, calculated based 
on the underlying WSR processing and radar parameters, has 
been shown to improve accuracy in comparison to using simple 
approaches such as the data from the nearest radar, the maxi-
mum intensity observed by any radar or even distance weighted 
averaging of all overlapping radars (Barbieri et al. 2022; Jurczyk 
et al. 2019; Zhang et al. 2011).

As the majority of WSR observations used for compositing are 
made by national meteorological agencies operating national 
networks consisting of several radars with common hardware 
and standardised processing chains, a single processing, qual-
ity and compositing scheme is often employed. For example, the 
UK Met Office (UKMO) composites 18 C-band weather radars 
(15 operated by the UKMO) to cover the British Isles using the 
Radarnet system for QPE generation and compositing (Harrison 
et al. 2012; Golding 1998).

In contrast, the Pan-European radar composite generated by 
the Operational Programme for the Exchange of Weather Radar 
Information (OPERA) takes in data from 164 radar sites across 
25 countries with significant heterogeneity in terms of weather 
radar hardware, signal processing techniques, and scan strat-
egy. However, a common processing methodology is still applied 
at the OPERA Radar Data Center (Odyssey) to allow the genera-
tion of Europe-wide radar composite products (Saltikoff, Haase, 
et al. 2019; Huuskonen et al. 2014).

Another source of WSR data is the research community which, 
in contrast, tends to deploy either a single radar or a small, local 
network of 2–3 radars (Pejcic et al. 2022; Neely III et al. 2018; 
Junyent et  al.  2010). These radars often operate with shorter 
ranges (up to 150 km) and are deployed for local monitoring pur-
poses or targeted atmospheric science studies. Similarly, local 
water resource agencies and regional agencies have also begun 
to deploy smaller WSRs (Hosseini et al. 2023). These systems all 
have the potential to act as ‘gap-fillers’ in operational networks 
and could provide local enhancements in QPE accuracy when 
combined with wider operational WSR composites if subject to 
effective data processing and compositing procedures.

While the process of combining radars into a multi-radar com-
posite is an ongoing area of research, most studies still focus 
on combining radar observations when using a common pro-
cessing methodology. As the processing used in operational 
networks can often be closed source, with external data require-
ments (including forecast model data) it is not often possible for 

researchers to recreate the same level of processing, especially 
in real time. In this work, we demonstrate a method for merging 
data from a research radar deployment into a wider, pre-existing 
composite generated by a national meteorological service where 
the processing methodologies are distinct. Taking such an ap-
proach has the potential to improve resolution and coverage in 
a local area while retaining the wider details of a national com-
posite for case-study analysis, while the method developed also 
has the potential to be used for real-time data pipelines in the 
future.

In Section 2 the observations used in the work are introduced, 
including data from the National Centre for Atmospheric 
Science (NCAS) X-band research radar (NXPol-1), the oper-
ational Cartesian composite produced by the UK Met Office 
and surface observations used for evaluation of the presented 
methodology. Section 3 then describes a new method of calcu-
lating a quality index for the research radar and Section 4 de-
tails how that index has been used in this work to generate a 
new, Cartesian QPE product. The Cartesian QPE product is then 
evaluated in Section 5 using visual analysis and surface obser-
vations. Section 6 discusses improvements to the methodology 
and how the methodology is more widely applicable beyond this 
example, before concluding with Section 7.

2   |   Data and Background

The following section describes the data used in this study, both 
from research and operational weather radars and surface ob-
servations. It also summarises the research background and 
operational motivation for the study, which contribute to the di-
rection taken here. This study originated as a result of the Radar 
Applications in Northern England (RAiN-E) project, funded 
by the Environment Agency (England, UK). The Environment 
Agency is a non-departmental government body that has the 
responsibility for managing the risk of flooding from main riv-
ers, reservoirs, estuaries, and the sea in England. It co-funds 
the UK weather radar network and jointly operates the Flood 
Forecasting Centre (UK) with the Met Office. The study uses 
observations collected during the RAiN-E project (Section 2.1) 
alongside data from the UK weather radar network (Section 2.2) 
and from UK hydrometric telemetry networks (Section 2.3).

2.1   |   NXPol-1 and the Radar Applications in 
Northern England (RAiN-E) Project

During the Radar Applications in Northern England campaign, 
NCAS's first X-band, dual polarisation weather radar, NXPol-1, 
was deployed from October 2018 to December 2020 at the 
United Utilities reservoir near Sandwith in Cumbria (54.517°N, 
3.615°W).

NXPol-1 is a dual-polarisation mobile X-band research 
radar manufactured by Leonardo Germany GmbH (Neely 
III et  al.  2018). During the RAiN-E campaign, NXPol-1 col-
lected multi-elevation (ranging from 0.5° to 20°) volume scans 
roughly every 6 min, with a fixed set of parameters, shown 
in Table  1, used at each elevation. Dual-polarisation mo-
ments, including reflectivity in both horizontal and vertical 
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channels, differential reflectivity, cross-polar correlation coef-
ficient, and differential phase shift were collected during the 
campaign (Bennett 2021).

Quantitative precipitation estimates were generated from 
this volume data by applying a multi-step processing chain. 
This included correction for pointing offset, the replacement 
of persistent echoes with Doppler clutter filtered data, partial 
beam-blockage correction, non-meteorological echo removal 
using fuzzy logic, and attenuation correction using the Z-PHI 
method prior to QPE estimation using the Marshall-Palmer 
relationship (as also used by the UK Met Office) (Dufton 
and Collier  2015; Dufton  2016; Dufton et  al.  2023; Neely III 
et  al.  2021). The open-source Py-ART library is used during 
this processing, and to produce several of the plots within 
the paper along with the cmweather package for colormaps 
(Helmus and Collis 2016; Sherman et al. 2024). Although pre-
vious studies have shown the value of adding dual-polarisation 
algorithms into such a QPE processing chain, they have been 
omitted here to focus on the details of quality estimation and 
merging.

RAiN-E was funded by the Environment Agency to assess the 
benefits of placing a weather radar in Cumbria, given previous 
severe flooding in the region and the current coverage of the UK 
radar network (Figure  1). The RAiN-E project demonstrated 
the value of observations of weather systems from NXPol-1 as 
they move into Cumbria from the west over the Irish Sea, but 
these observations were only available to the Environment 
Agency outside of their existing systems. Here we look at the 
scientific feasibility of integrating NXPol-1 QPE from RAiN-E 
with the existing UK radar composite QPE as a precursor to any 
deeper integration of third-party data into UK flood forecasting 
operations.

2.2   |   The UK Met Office Precipitation Composite

The UK Met Office produces a composite surface rainfall 
product for the British Isles. The composite merges data from 
18 weather radars (Figure 1) onto a 1 km resolution Cartesian 
grid using the British National Grid (BNG) reference system 
at 5 min intervals. The radars conduct a volume scan compris-
ing multiple elevations with a combination of long pulse width 
and short pulse width used during the volume where only the 
long pulse scans are used for the precipitation composite (see 
Table 1). The processing chain has evolved significantly over 
the last two decades, particularly since the dual-polarisation 
upgrade of the Met Office network radars was completed in 
2018. The Met Office single-site radar observations are pro-
cessed to correct for beam blockage, clutter contamination, 
non-meteorological echo removal, attenuation and vertical 
profile of reflectivity (VPR) gradients prior to QPE genera-
tion with either the Marshall-Palmer Z-R relation (Marshall 
et al. 1955) or where possible an R-KDP relationship (Harrison 
et al. 2015, 2014; Lewis et al. 2007). After precipitation esti-
mation, the data is also adjusted to account for orographic en-
hancement, and a mean-field bias adjustment is applied using 
data from surrounding operational rain gauges. Once each ra-
dar's QPE has been generated in the polar coordinate system, 
these are then gridded individually before being composited 

TABLE 1    |    Radar parameters for the NXPol-1 (left column) radar 
scans during RAINE and those typically used by the UKMO C-band 
radars when operating in long-pulse (LP, middle column) and short-
pulse (SP, right column) mode.

NXPol-1 C-band LP C-band SP

Frequency 9.4 GHz 5.6 GHz 5.6 GHz

Half-power 
beam width

1.0◦ 1.0◦ 1.0◦

Azimuth 
spacing

1.0◦ 1.0◦ 1.0◦

Gate spacing 150 m 600 m 600 m

Maximum 
range

150 km 255 km 112 km

Pulse width 1.0 �s 2.0 �s 0.5 �s

PRF mode Dual Single Dual

PRF 1000/800 Hz 300 Hz 1200/900 Hz

FIGURE 1    |    Coverage and quality of the British Isles radar compos-
ite, 2018-11-30 00:00 UTC. The colour shading shows the quality index 
for the composite. Grey shading indicates the region beyond the max-
imum range of the radars. White crosses indicate the locations of the 
18 WSRs that contribute to the final product. The red cross shows the 
location of the NXPol-1 radar during RAIN-E. The black line is the 
coastline.
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into the final data product. A quality index is used for com-
positing QPE data from the individual radars. The quality 
index calculation incorporates the impact of signal-to-noise 
ratio, attenuation and the height and distance of each radar 
voxel from the radar (Sandford and Gaussiat 2012; Harrison 
et  al.  2012). Figure  1 shows an example of the composite 
quality index score for the entire composite from 2018-11-30 
at 00:00 UTC. Although the precipitation composite is pub-
lished in the Centre for Environmental Data Analysis (CEDA) 
Archive, the quality information is not, with the data used in 
this study being shared directly from the Met Office archive 
under licence.

2.3   |   Rain Gauge Networks

Rain gauge data from the Environment Agency (152 gauges), 
Scottish Environment Protection Agency (74 gauges), and Isle 
of Man flood hub (14 gauges) hydrometric networks were used 
in this study. In total 240 gauges in the combined network lie 
with 150 km range of the NXPol1's deployment in Sandwith. The 
majority of these gauges were tipping-bucket type, with some 
weighing gauges also included within the hydrometric net-
works. Data from these gauges were available as accumulations 
(in mm) at 15-min time resolution. Rain gauge locations within 
the study area are shown in Figure 2.

3   |   A Quality Methodology for NXPOL-1

A quality index combines a range of individual quality factors 
to provide a singular measure of radar data quality at any given 
radar voxel (three-dimensional equivalent of a pixel). The range 
of quality factors used varies depending on the particularities 

of any given use case. Ośródka et  al.  (2014) describe in detail 
their approach for the Polish weather radar network which has 
since been incorporated into the BALTRAD system (Michelson 
et al. 2018) with a similar approach being taken in this work to 
account for the factors that most impact the overall quality of 
NXPol-1 QPE. In this section, these factors are described and 
formulated into individual quality scores before being combined 
using a geometric mean to determine the final quality score for 
each individual radar voxel.

3.1   |   Individual Quality Indices

The quality factors used here logically follow from the pro-
cessing methodology applied to NXPol-1 data to generate QPE, 
along with considerations of the geometric environmental fac-
tors which also impact radar data quality (beam altitude and 
distance from the radar). They are chosen to represent the main 
factors impacting the quality of NXPol-1 QPE, particularly the 
impact of attenuation (which is greater at X-band) and the im-
pact of partial beam blockage (which is a significant factor given 
the location of the radar). The factors are based on previous im-
plementations of quality indices, with minor modifications to 
account for differences between the NXPol-1 processing chain 
and those studies, particularly that by Ośródka et al. (2014).

3.1.1   |   Persistent Clutter Regions (QM)

This factor accounts for the impact of regions of persistent clutter 
within the radar domain, where radar echoes are observed the ma-
jority of the time. Although NXPol-1 implements a Doppler clut-
ter filter within the signal processor to correct radar moments for 
static clutter, previous work has shown this to lead to over-filtering 
along the zero isodop, along with remnant clutter echoes within 
the filtered data (Dufton 2016). To avoid over-filtering, the current 
QPE processing uses unfiltered data except in regions where per-
sistent echoes have been observed. In this case, persistent echoes 
are based on a monthly frequency over threshold analysis (75% of 
total monthly echoes in excess of 10 dBZ). Given these regions are 
still subject to additional quality control checks, including non-
meteorological echo filtering, the quality score for this stage of the 
processing is defined as follows:

This provides a small negative penalty to regions of persistent 
echoes, which therefore use Doppler-filtered data, even if they 
ultimately remain as meteorological echoes during the re-
maining processing. Given that Doppler-filtered data is some-
times considered to be of higher quality than non-filtered data 
(Ośródka et al. 2014), the penalty applied here is minor, reflect-
ing previous experience of using data from NXPol-1.

3.1.2   |   Non-Meteorological Echoes (QN-MET)

Spurious echoes are often observed with WSRs. This factor ac-
counts for the fact that when they are the dominant echoes it 

(1)QM =

{
1, if unfiltered data used.

0.9, if filtered data used.

FIGURE 2    |    Location of rain gauges (black dots) within the study do-
main. Range from the NXPol-1 radar (red cross) at 50 km increments is 
shown by the decreasing grayscale intensity shading. The coastline is 
shown as a solid black line.
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is not also possible to accurately estimate precipitation. Three 
processing functions are used to remove non-meteorological 
and other erroneous echoes. Firstly, second-trip echoes are 
removed using a variable threshold approach based on signal 
quality index (SQI) and ray-to-ray variability in differential 
phase-shift. Then, non-meteorological echoes (insects, noise, 
ground clutter and unknown) are removed using a fuzzy logic 
classifier. Finally, isolated speckles (connected echoes smaller 
than 4 voxels) are removed from the remaining data (Dufton 
and Collier 2015; Dufton 2016). As each of these steps results 
in a clear binary inclusion/exclusion decision for any observed 
echoes the following approach is then taken for defining 
quality:

As QNMET is equal to 0 where echoes are removed, it can act as 
an absolute quality factor when combined with any other quality 
metric, provided they are combined using multiplication (a geo-
metric mean, for example) rather than addition.

3.1.3   |   Partial Beam Blockage (QPbb)

This factor accounts for uncertainties within the corrections for 
partial beam blockage, where the radar beam is blocked by to-
pography or other features. During the processing partial beam 
blockage is corrected using a DTM-derived (SRTM 1-arc sec 
global data (NASA 2013)) beam-blockage model using the open-
source Wradlib processing library (Heistermann et  al.  2013; 
Bech et al. 2007, 2003). During the field campaign, it was found 
that the antenna pointing of NXPol-1 varied and required cor-
rection (Dufton et al. 2023). To reflect the uncertainty in both 
the beam blockage correction and the pointing correction where 
the accuracy of beam-blocked echoes is reduced, there is a cor-
responding reduction in quality. The quality is defined to reflect 
these uncertainties as follows:

where BBF is the beam-blocked fraction.

3.1.4   |   Attenuation (QA)

Attenuation is the reduction in signal power as the beam prop-
agates through the atmosphere due to scattering and absorp-
tion. Although attenuation can be estimated and corrected for, 
these corrections have uncertainties which impact the quality 
of the WSR observations. Here attenuation is corrected using 
an implementation of the Z-PHI methodology to calculate path-
integrated attenuation where differential phase shift is itera-
tively smoothed to remove backscatter differential phase (Testud 
et al. 2000; Hubbert and Bringi 1995; Dufton and Collier 2015; 
Wallbank et  al.  2022). Although specific attenuation is only 
calculated below the melting layer with this method, the path-
integrated attenuation (PIA) within that region still limits the 
quality of all data from above the melting layer; therefore, the 

quality factor is based on PIA rather than specific attenuation. 
The quality metric here scales linearly with PIA between a lower 
limit of 1 dB and an upper limit of 10 dB as follows:

The potential for additional attenuation within the melting layer 
and ice-phase regions of the precipitation is not considered when 
using this metric, although these effects are known to be small 
when compared to attenuation from rain.

3.1.5   |   Beam Height (QH)

The altitude (height above mean sea level) of the radar beam 
impacts the quality of surface precipitation estimates due to 
changes in the atmosphere between the point of observation and 
the surface, along with the potential for advection of observa-
tions as the observed hydrometeors fall (Sandford et  al.  2017; 
Lack and Fox  2007; Berne et  al.  2004). Beam height can also 
contribute to the quality of regions where hydrometeors are not 
observed when considering surface precipitation, as increased 
observation height increases the probability of the radar beam 
overshooting precipitation.

In this work, the height quality metric is defined as a decreasing 
exponential function of height (h) relative to a fixed height (H) 
of the form introduced by Zhang et al. (2011) for the US multi-
sensor QPE system as follows:

where H is set at a fixed value of 1500 m in this study and h is 
measured in metres.

3.1.6   |   Range (QD)

Distance from the radar impacts the quality of radar QPE due 
to the broadening of the radar beam, reducing the resolution of 
the data and increasing the chance of non-uniform beam filling. 
To account for these effects, the decreasing exponential function 
of Zhang et al.  (2011) is used to calculate the distance quality 
metric as follows:

where d is the distance from the radar in metres, and D is a fixed 
reference distance set at 120,000 m in this study.

3.1.7   |   Minimum Detectable Reflectivity (QMDR)

The minimum detectable reflectivity (MDR) depends on 
the radar calibration constant, receiver sensitivity, and 

(2)QN-MET =

{
1, if echoes retained.

0, otherwise.

(3)QPbb =

{
1−BBF, ifBBF≤0.9.

0, otherwise.

(4)QA =

⎧
⎪⎪⎨⎪⎪⎩

1, ifPIA≤1.

0, ifPIA≥10.

1−
PIA−1

10−1
, otherwise.

(5)QH = exp

(
−
h2

H2

)

(6)QD = exp

(
−
d2

D2

)
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range following the standard radar equation (Bringi and 
Chandrasekar  2001). It is a useful factor for hydrological 
applications as it impacts the ability to detect light rainfall, 
particularly at far range. Assessment of the quality of unde-
tected regions of the radar domain must consider the possi-
bility of precipitation existing with an equivalent reflectivity 
factor lower than is possible to detect with the radar system. 
While the minimum detectable observed reflectivity is only 
a function of the radar equation, both partial beam blockage 
and attenuation act to increase the minimum detectable true 
reflectivity and must be accounted for when considering this 
quality factor. As such, the following equation is used to cal-
culate a quality factor for MDR in this study.

where MDR is calculated as follows:

This represents the observable minimum detectable reflectiv-
ity accounting for gaseous attenuation (�g is 0.000024 dB/m), 
rainfall attenuation (PIA) and beam blockage (PBB). Here C is 
−34 dBZ for the field campaign and r is the range from the radar 
in metres.

3.2   |   Combining Individual Indices

While each individual quality index provides information 
relating to a single aspect of radar performance, when com-
bined, they gain more utility as a tool for manipulating and 
compositing radar data. Here, they are combined to provide 
information about detected echoes (i.e., where reflectivity 
from any source is observed) and those regions where no 
echoes are observed. While the latter may seem less informa-
tive, it is important to quantify prior to the applications dis-
cussed in Section 4.

3.2.1   |   Quality of Detected Echoes–QDetect

With the exception of the minimum detectable reflectivity, all 
of the factors in Section 3.1 contribute to the overall quality of 
detected echoes. Here, those factors are combined as follows:

The use of a geometric mean rather than an arithmetic mean 
also allows both QA and QPbb, when equal to zero, to act as ab-
solute flags of quality in situations of extreme signal loss. The 
non-meteorological echo index is excluded from the geometric 
mean as it is a binary score. Its inclusion in the mean would only 
increase the quality score of all retained echoes, while filtered 
echoes would still have a score of zero.

3.2.2   |   Quality of Undetected Range Voxels–QUndetect

The most significant factors controlling the quality of unde-
tected regions (i.e., the likelihood that those regions do not con-
tain precipitation) are the minimum detectable reflectivity, the 
occurrence of beam blockage and the height of the radar beam. 
The quality of undetected regions is defined here as the dot prod-
uct of these indices as follows:

A simple dot product was chosen rather than a geometric mean to 
reflect the increasing potential for missed echoes when any one 
of these factors has reduced quality. Height is included as a factor 
here due to the final products of interest in this study being surface 
precipitation rates rather than just observations at a given location 
within the atmosphere. Beam blockage has been included as a fac-
tor, even though it already contributes to MDR due to initial tests 
of the compositing methodology. During these initial tests, beam-
blocked sectors were clearly more evident in rainfall accumula-
tions if the importance of partial beam blockage was not increased 
as a factor in the quality of undetected regions.

3.2.3   |   Total Quality Index–QIND

Here, the total quality index, QIND, is defined as follows:

which is simply to say that the detected quality is used for all 
voxels which initially contained an echo, even if it was subse-
quently filtered and the undetected quality is used elsewhere.

4   |   Application of the Total Quality Index

Following the calculation of the total quality index, it can be ap-
plied to improve the derivation of surface precipitation estimates 
for the NXPol-1 radar (Sections 4.1 and 4.2) and to combine those 
estimates with the national precipitation composite (Section 4.3). 
As the quality index is calculated for each voxel of each radar vol-
ume, it adapts to changes in the conditions, including the extent 
of visible clutter and the amount of attenuation. This adaptation 
can be utilised to improve the single site QPE from NXPol-1 by 
dynamically adjusting the lowest usable data for each point and 
the weighting of each individual voxel within a gridding routine, 
allowing localised changes in quality to be accounted for. This dy-
namic behaviour also improves the compositing of single site data 
into a larger composite (Sandford and Gaussiat 2012).

4.1   |   Dynamic Lowest Usable Elevation

Previous studies using NXPol-1 for QPE have defined a static 
map of the lowest usable radar sweep (elevation angle) across the 
domain, taking into account the minimum detectable reflectiv-
ity modified by partial beam blockage and regions of persistent 
clutter (Wallbank et al. 2022; Neely III et al. 2021). This lowest 

(7)QMDR =

⎧
⎪⎪⎨⎪⎪⎩

1, ifMDR≤10.

0, ifMDR≥15.

1−
15−MDR

15−10
, otherwise.

(8)MDR = C + 20log10

(
r

1000

)
+ �gr + PIAr + PBBr

(9)QDetect = QN-MET.
5
√
QM.QPbb.QA.QH.QD

(10)QUndetect = QMDR.QPbb.QH

(11)QIND =

{
QDetect, where reflectivity observed

QUndetect, otherwise
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usable elevation map was then fixed for the entire field campaign 
analysis, however it has been noted that a dynamic approach 
which also considers the impact of attenuation on the minimum 
detectable reflectivity and the possibility of variations in the ex-
tent of clutter regions due to changing conditions would be ben-
eficial. In this work, the new quality indices defined for both the 
detected and undetected regions of all individual volumes can 
be used to dynamically flatten the radar volume into the lowest 
usable precipitation product. For each individual range/azimuth 
pair the flattening uses the elevation angle with the highest qual-
ity index, subject to the following conditions:

1.	 Detected precipitation at low elevations can not be replaced 
with undetected voxels from higher elevations, even if their 
quality is higher.

2.	 Filtered precipitation at low levels (i.e., Qdetect = 0) can 
only be replaced with detected precipitation from higher 
levels (rather than undetected precipitation).

3.	 Undetected precipitation at the lowest elevation will not 
be replaced with undetected precipitation from a higher 

elevation with higher quality, for that, the quality of un-
detected precipitation remains that of the lowest eleva-
tion even if subsequent elevations also have no detected 
precipitation.

This leads to a 2D product which retains low quality in terms of 
undetected (0) regions at the lowest elevation, considering the 
potential for overshooting, low-quality observations of shallow 
echoes, and filtering of shallow echoes. Figure 3 highlights the 
benefits of this approach when compared to just relying on the 
lowest collected elevation sweep. Comparing the lowest scan 
data (top panels of the figure) to the dynamic flattening ap-
proach (bottom panels), you can clearly see the increase in cov-
erage of the rainfall intensity field. Of particular note is the large 
region of infilling to the north-west of the radar location where 
ground clutter contamination has been filtered from the lowest 
sweep but is then infilled within the dynamic lowest elevation 
precipitation product. In the example, you can see that the in-
filled region has a lower quality than the surrounding regions, 
which are from the lowest collected sweep. This is particularly 
important considering the next two uses of the quality index.

FIGURE 3    |    Radar precipitation intensity (left panels) and QIND (right panels) for radar sweep at 2018-11-01 01:03GMT. The top row shows data 
from the lowest elevation sweep in the radar scan volume (0.5° nominal), while the bottom row shows the results of applying the dynamic flattening 
approach to generate a lowest usable field. Solid lines indicate the coastline. NXPol-1 is located in the centre of the domain.
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8 of 17 Meteorological Applications, 2025

4.2   |   Quality Weighted Gridding

Given the UK composite is produced at 1 km resolution using 
the British National Grid, the same approach has been taken for 
NXPol-1 data. This allows a like for like comparison with the 
national composite while also being suitable to use as input into 
the hydrological models commonly used in the UK (Wallbank 
et al. 2022). In previous studies, the gridding has used an areal 
weighted arithmetic mean of all radar voxels from the flattened 
precipitation product which overlap with the target grid box. In 
this study, the gridding scheme has been modified to include 
quality within the weighting scheme. The computational ap-
proach has also changed to improve calculation times. Here, the 
polar, flattened data is interpolated using nearest neighbour in-
terpolation to an intermediate grid with 10 times the resolution 
of the target grid (100 m intermediate grid for 1 km target in this 
case), with QIND also being interpolated to this grid. The target 
output for each grid cell is then the quality-weighted mean of the 
intermediate points within that cell (100 in this case) as follows:

where i is the index of the target grid cell, j is the index of each 
of the intermediate grid points within that cell and N is the total 
number of intermediate points within the cell (100 in this case). 
In practice, this is achieved through convolutions of Q.R and Q 
with a 10 × 10 unit kernel.

Taking this approach has improved the gridding of NXPol-1 pre-
cipitation estimates both in terms of processing speed and data 
quality. As QIND dynamically adjusts, localised filtered data is 
ignored within the scheme, provided the filtering does not fill 
the entire grid cell. At the same time, more weight is given to 
higher quality data (less attenuation, lower height, for example), 
which is particularly relevant where data has been infilled from 
higher elevations within a grid cell.

4.3   |   Merging With a National Composite

Merging NXPol-1 and UKMO gridded precipitation datasets to-
gether requires them to have a common spatial and temporal index. 
While they natively have a common spatial grid the temporal in-
dices are different (in terms of both resolution and timestamps). 
To allow merging on a common temporal index, the NXPol-1 data 
was linearly interpolated in time to match the finer temporal reso-
lution of the UKMO dataset. Where NXPol-1 data was missing for 
an extended period of time, it was infilled for a maximum of 5 min 
using the nearest (in time) available valid data before time steps 
were then set to missing. After this adjustment it is then necessary 
to consider how to merge them when both precipitation intensity 
and quality information are available for both products.

Recent studies have compared several techniques for compositing 
gridded WSR data, ranging from simply taking the highest avail-
able precipitation rate for a given cell to complex weighted com-
binations incorporating quality data along with other weighting 
factors (Barbieri et al. 2022; Jurczyk et al. 2019). Although Jurczyk 
et  al.  (2019) suggest using a weighted combination including 

quality and distance from the radar is most effective (for their use 
case), they also show that this only marginally outperforms using 
only the data with the highest quality (QMAX) for a given pixel. In 
this case the national composite data available does not contain 
information about which radar the data has come from, therefore 
calculating distance metrics for weighting is not feasible while the 
composite itself is based on using QMAX as the determining fac-
tor (Sandford and Gaussiat 2012). Given the nature of this study, 
taking the maximum quality as the determining factor in merg-
ing research data into the national composite can act as a proof of 
concept that could be expanded upon in future work. As the qual-
ity indices of the two QPE products are calculated using different 
methodologies, using maximum quality is not guaranteed to be an 
optimal approach and this will be reviewed in the discussion.

Figure  4 shows a single example of merging precipitation fields 
using QMAX. In this case several isolated showers are observed off 
the coast of Cumbria. These showers (regions of high-intensity 
precipitation) have a greater extent when observed by NXPol-1 
(right panels) when compared to the national composite (left pan-
els). The quality index for NXPol-1 (lower, left panel) is strongly 
influenced by partial beam blockage, particularly to the east of the 
radar. The showers have a high quality index as they are located 
close to the radar, in an unblocked region that is not subject to fil-
tering or ground clutter contamination. In contrast this region is 
further from the Met Office radars leading to a comparably lower 
quality index, particularly offshore (lower right panel). Given the 
proximity of these showers to NXPol-1, and considering all other 
quality factors, they are merged into the combined product (central 
panels). Similarly, the national composite contributes the moder-
ate intensity precipitation observed in the far north and far south 
of the domain (which has a slightly higher intensity in the national 
composite) to the combined product, as you would also expect 
from the quality panels. However the precipitation due east of the 
NXPol-1 location is not merged into the combined product due to 
the impact of partial beam blockage (and higher radar elevations) 
on quality scoring in that region (NXPol-1 quality is below that of 
the UKMO product). It is clear in this example that despite using 
only QMAX and not averaging the fields, significant discontinuities 
are not observed within the combined product, which reflects the 
similarities between the two independent WSR QPE products.

5   |   Product Evaluation

A two-dimensional gridded surface precipitation product at 
1 km/5-min resolution was produced for the entire campaign, 
which merged NXPol-1 research data into the national com-
posite (limited to the field campaign domain) using precipita-
tion data with the maximum total quality index for each grid 
cell. To evaluate this product, it can be compared to the origi-
nal Cartesian gridded radar products, particularly the national 
composite, as well as to surface observations of precipitation. 
The evaluation considers both whether the method outlined 
in the paper represents a viable methodology for merging re-
search radar data into wider radar composites and whether, 
in this case, adding NXPol-1 data into the UKMO compos-
ite improves the resulting surface precipitation estimates. 
In the first instance, precipitation accumulations from the 
three products can be compared to provide a visual indication 
of the effectiveness of the methodology (Section  5.1), which 

(12)Ri =

∑N
j=1 Qj.Rj
∑N

j=1 Qj
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9 of 17

has previously been used as an effective qualitative assess-
ment of WSR processing performance (Harrison et al. 2014). 
Comparison to rain gauge observations then provides a quan-
titative evaluation of the products (Section  5.2) using com-
monly utilised statistical metrics (Dufton et al. 2023; Barbieri 
et al. 2022; Hyndman and Koehler 2006).

5.1   |   Precipitation Accumulations

Visual comparisons of areal precipitation datasets often pro-
vide the first indication of their quality, particularly if a ref-
erence dataset of known quality is available. Although data 
from NXPol-1 has previously been compared to surface ob-
servations a significant proportion (> 25%) of the domain 
observes over the sea where ground truth data is not avail-
able (Figure 2). Accumulating precipitation in time is a well-
established technique for the evaluation of radar data as it 
often highlights errors due to beam blockage and clutter in 
the datasets, and is equally applicable over the sea as it is for 
observations over land (Harrison et al. 2014). Daily accumu-
lations were produced for all the products for the entire cam-
paign, allowing visual evaluation of the entire dataset. These 
accumulations are a simple time integration of the precipita-
tion rates from the radar products over a 24 h period begin-
ning at 00:00 without intermediate advection being applied to 
either dataset. Here a single example is presented in Figure 5 
before a wider, qualitative assessment of the three datasets 
based on 697 daily accumulations from the 2 year data record 
is discussed.

Figure 5 shows daily precipitation accumulations over the do-
main for the 12th November 2018 for each of the three radar 

datasets, along with the mean quality score for the day. During 
the day a low pressure system passed across the north of the UK, 
travelling west to east, with two general periods of precipitation 
crossing the domain, first in the early hours of the morning and 
then again in the evening. Considering the national composite 
(left panels) first, the highest rainfall accumulations occur over 
the high topography in Cumbria and southern Scotland, which 
is also the case within the NXPol-1 accumulation. The most ob-
vious artefacts within the WSR accumulations are coincident 
with where they have a lower quality score. This indicates that 
the quality methodology is generally characterising the perti-
nent features well; for example, the hole in the accumulation 
off the Cumbrian coast, where wind turbine interference is re-
moved, is highlighted by a reduction in mean quality as is the 
beam blockage off the Cumbrian coast. The other reductions in 
mean quality are regions of ground clutter in upland areas to 
the north of the domain (in Scotland) and to the east over the 
Pennines. However there are noticeable discontinuities within 
the accumulation in the south of the domain due to beam block-
age, which are not coincident with decreases in the mean quality 
observed. The other noticeable feature is the reduction in quality 
with distance highlighting the transition zones between radars, 
the most obvious of which runs down the Irish Sea and over the 
Isle of Man.

The NXPol-1 accumulation (right panels) indicates the new 
quality methodology is characterising the main features within 
the precipitation product, with the eastern blockages due to the 
Cumbrian fells being indicated with a significant reduction in 
quality in that region. While the mean quality field indicates 
significant removal of sea clutter, this is not evident within the 
accumulation, suggesting either that the fuzzy logic classifier 
successfully retained precipitation within that region or that the 

FIGURE 4    |    Example of merging single time-step precipitation fields (top row), 2018-11-12 06:15 UTC and associated instantaneous quality index 
(bottom row). Data is from the national composite (left column), the merged precipitation product (central column) and NXPol-1 (right column). Each 
panel is a 310 km box centred on the location of NXPol-1. The solid black lines are the coastlines of the British Isles. Only precipitation in excess of 
0.01 mm/h intensity is plotted.
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10 of 17 Meteorological Applications, 2025

infill from higher elevations provided equivalent estimates (i.e., 
no discontinuities) even though they were from higher altitudes. 
Similarly to the national composite, there is one noticeable re-
gion of beam blockage within the accumulation to the south-
west, which is not reflected in the quality field.

The merged accumulation maintains the characteristics of the 
underlying datasets, with the most noticeable difference to the 
national composite being in the Irish Sea, where the daily pre-
cipitation accumulations increase from around 10 to 30 mm. 
As for the national composite, the approach taken here has not 
introduced any of the obvious discontinuities that can occur 
within radar composites at the boundaries between radars with 
smooth transitions moving both northwards and eastwards. The 
dynamic nature of the merging processes is best highlighted 
by the region of sea clutter in the centre of the domain, where 
again, there is no visible impact on the daily precipitation accu-
mulation and the daily mean Q has increased when compared to 
either of the stand-alone radar products (suggesting a blending 
through time rather than always using one product in the same 
location). Unfortunately, the blockages to the south of the do-
main are not in-filled during the merging process, nor is the fine 
blockage in the NXPol-1 dataset, as neither is reflected in the 
quality scores of their respective datasets.

While a single daily example is informative, both quality scores 
are time variant depending on atmospheric conditions, and the 
whole dataset should be considered to provide a more informed 
assessment. In total, daily accumulations from the 697 days 
where NXPol-1 was operating were considered and the follow-
ing conclusions have been drawn:

•	 The general behaviour seen in the example continues within 
the whole dataset, particularly the smooth transitions 

between products in the merged accumulations, the pres-
ence of blockages which are not reflected in the quality 
scores and the difficulty of QPE estimation in regions af-
fected by wind turbines.

•	 The national composite exhibits very strong temporal vari-
ations. During some periods within the dataset, the quality 
“troughs” between radars almost vanish, with almost the 
entire domain having quality scores in excess of 0.8.

•	 The merged dataset varies most from the national compos-
ite in the Irish Sea, while the east of the domain almost ex-
clusively uses data from the national composite. Averaged 
across the whole domain, NXPol-1 data is used 14% of the 
time in the merged product.

Although accumulations provide a powerful visual assessment 
of precipitation products, obtaining a quantitative measure of 
performance across the whole domain is not feasible with this 
approach. To provide a quantitative measure of performance, 
rain gauges can provide an external reference dataset for sta-
tistical analysis. These statistical measures can provide further 
verification of the quality and merging methods employed here.

5.2   |   Rain Gauges

To provide a quantitative assessment of the new precipitation 
product, each of the radar precipitation estimates has been 
compared to rain gauge observations across the region. For this 
analysis the statistical error, � (Equation  13), is defined as the 
difference between the hourly precipitation estimates from the 
radar composite products, R, and those from the rain gauges, G.

(13)� = R − G

FIGURE 5    |    Gridded surface precipitation accumulations for 2018-11-12 (top row) and temporal mean quality for the day (bottom row). Data is 
from the national composite (left column), the merged precipitation product (central column) and NXPol-1 (right column). Precipitation accumula-
tions are daily totals in mm, the mean quality is the arithmetic mean through time for that day. The black lines show the coastlines of the British Isles.
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Each of the following six statistical error metrics is computed for 
verification, where angular brackets denote time averaging in the 
following equations. In all cases, the metrics are computed for 
each individual rain gauge, with the radar QPE Cartesian grid 
box containing that gauge being used for comparison (as opposed 
to the polar data or any other spatially averaged/interpolated ap-
proach). The statistics are the root mean square error (RMSE) 
in millimetres of rainfall per hour (mm/h), the percentage bias 
(PBias), the weighted mean absolute percentage error (wMAPE), 
the mean absolute scaled error (MASE), the Nash-Sutcliffe effi-
ciency (NSE) and the Pearson's correlation coefficient (r).

These metrics provide a complimentary assessment of the sta-
tistical similarity of hourly accumulations from the radar prod-
ucts at 1 km resolution and the surface rain gauge observations. 
Previous studies have shown that perfect statistical equivalence 
should not be expected, given the temporal and spatial sampling 
differences between the datasets. However, the statistical mea-
sures are an effective tool for comparing different radar QPEs. 
Figure 6 summarises the distribution of all the statistical metrics 
across the 240 rain gauges for each of the three gridded radar 
products. As stand-alone products, it is clear that the national 
composite outperforms the NXPol-1 dataset across the domain, 
particularly in terms of correlation.

Given the national composite contains data from multi-
ple radars, each of which is adjusted to account for VPR and 
orographic enhancement while also being corrected with a 
temporally varying mean-field bias adjustment through com-
parison to rain gauges, this disparity is unsurprising with that 
dataset better coping with dynamic changes compared to the 
less sophisticated approach taken with the research data. There 
is also a clear difference in behaviour when looking at the per-
centage bias, with the majority of the gauges being underesti-
mated by NXPol-1 and overestimated by the national composite; 
this behaviour also impacts the distribution of the results for 
the wMAPE and the MASE. Analysing the results spatially in-
dicates that NXPol-1's performance is strongly correlated with 
the distance and height of the radar observations. This is less 
so for the national composite as it already contains data from 
multiple radars, thereby reducing the distance to the closest 
radar for most gauges, and due to its VPR correction improving 

(14)RMSE =
√⟨�2⟩

(15)PBias = 100.
⟨
�

G

⟩

(16)wMAPE = 100.
⟨� �� ⟩
⟨G⟩

(17)MASE =
⟨� ��⟩��Gi − G��

(18)NSE = 1 −

∑n
i=1

�
�i

�2
∑n

i=1

�
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�2

(19)r =
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i=1

�
Ri − R

��
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�
�∑n

i=1

�
Ri−R

�2�∑n
i=1

�
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FIGURE 6    |    Violin plots showing the 6 statistical metrics when comparing radar products to radar observations. The plots show results for RMSE 
(top-left), wMAPE (top-centre), MASE (top-right), correlation (bottom-left), percentage bias (bottom-centre) and the Nash-Sutcliffe efficiency (bottom-
right). Each plot contains the comparison for NXPol-1 (left violin), the merged product (centre violin) and the national composite (right violin).
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12 of 17 Meteorological Applications, 2025

performance where it is only possible to observe precipitation at 
relatively high altitudes.

Despite these marked differences, there is still an improvement 
in each of the metrics when the datasets are merged using the 
quality scores. This is seen as a small shift in the mean of each 
distribution and a shift in the shape of the distribution towards 
improved statistical representation. These shifts indicate that 
the quality merging approach developed here successfully 
makes a dynamic selection of precipitation data that improves 
the overall statistical performance of the final dataset, despite 
the obvious performance differences between NXPol-1 and the 
national composite.

In the context of the RAIN-E campaign, the significant ob-
jective of this study was to develop a methodology that would 
allow integration of the research data while not degrading the 
performance of the newly merged product when compared to 
the national composite. To evaluate this, the performance of the 
new product is directly compared to that of the original national 
composite in Figure 7. The figure shows that within a limited 
geographic area to the north and west of the radar (enclosed 

within the higher topography beyond) performance improves 
when QPEs from NXPol-1 are merged into the national compos-
ite, while outside that region, the performance largely remains 
unchanged. This is seen through an increase in both the correla-
tion of hourly radar accumulations with rain gauge accumula-
tions and an increase in the Nash-Sutcliffe efficiency along the 
coastlines of both Cumbria and south-west Scotland and across 
the Isle of Man. Both the RMSE and MASE decrease in these 
regions too, and again show no increases (decreasing perfor-
mance) in the regions to the north and east of the domain.

6   |   Discussion

The quality methodology and applications detailed in Sections 3 
and 4 provide a framework that has been shown to successfully 
merge research radar precipitation estimates into a national 
composite despite the differences in radar hardware, scan 
strategy and processing methodologies. This process leads to 
an improvement in the statistical performance of the resulting 
Cartesian QPE product when rain gauges are used as a surface 
benchmark.

FIGURE 7    |    Spatial distribution of changes in 4 statistical metrics between the new merged precipitation product and the national composite. 
The change in correlation is shown on the top left plot, the change in Nash-Sutcliffe efficiency is shown on the top right plot, the change in RMSE is 
shown on the bottom-left plot, and the change in MASE is shown on the bottom-right plot. Each gauge is shown by an open circle, which is coloured 
to show the change in the statistical measure (new merged minus national composite). Positive changes represent an improved statistical represen-
tation between radar and gauge observations on the top row, while negative changes represent an improved statistical representation on the bottom 
row, with the colour bars reflecting this difference such that black is always an improvement and red a worsening in statistical performance.
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As seen in Figure  7, the methodology developed would allow 
integration of NXPol-1 research data while not degrading the 
performance of the newly merged product when compared to 
the national composite; however, there is a question of whether 
modification of the quality indices to more closely align with the 
national method would improve the results further. Section 6.1 
outlines modifications to the methodology following discus-
sions with the UK Met Office, which create closer alignment 
with their own quality methodology while retaining the overall 
structure of the intuitive approach outlined in Section 3. This 
modified quality metric is then evaluated using the same mea-
sures as in Section 5.

Section 6.2 then discusses the wider applicability of the methods 
developed along with potential future research questions which 
naturally follow from this proof of concept.

6.1   |   Closer Alignment With the UKMO 
Quality Index

One of the primary differences in the quality metrics for NXPol-1 
and the UK Met Office composite as observed in Section 5.1 is the 
temporal variation of quality seen within the UK Met Office pre-
cipitation composite. This impacts the extent to which NXPol-1 
data is merged into the new product during periods of elevated 
UK Met Office precipitation composite quality. Sandford and 
Gaussiat (2012) discuss the current quality approach at the Met 
Office in terms of using physically realistic error estimates to de-
fine Q, however they leave open the question of how to deal with 
height and range as additional factors impacting quality. Since 
then, internal work at the UK Met Office has led to both of these 
factors being incorporated, with their quality factor varying as 
a function of the melting layer height (T. Darlington and S. Best, 
personal communication, 2024). In addition, the UK Met Office 
take a more conservative approach to beam blockage correction 
than used in the NXPol-1 QPE, and their physically based ap-
proach to quality leads to an inherent maximum quality value of 
0.93 being observed at any point during the dataset. To account 
for these differences, a new quality methodology was devised for 
NXPol-1, which included the following changes.

Firstly QH and QD have been changed to both be a function of the 
melting layer height. The functional forms have been chosen to 
match the behaviour of the Met Office quality calculation below 
the melting layer while maintaining both height and distance 
as individual factors. The functional forms chosen to ensure 
that quality for NXPol-1 decreases rapidly above the melting 
layer in contrast to the Met Office quality, reflecting the fact that 
NXPol-1 has no VPR correction while the UK Met Office precip-
itation composite does. Equation (5) has been replaced with the 
following new formulation for QH:

where ΔH is the difference between the bright band top and the 
voxel altitude measured in kilometres (i.e., the height of the bright-
band minus the radar altitude). In this case, the bright-band top 
is taken as a single value for the entire radar domain as used 

within the NXPol-1 attenuation processing (Dufton 2016) while 
a lower limit of 1500 m is imposed as is also the case in the Met 
Office's own quality scheme (Darlington and Best). In addition, 
Equation  (6) has been replaced with the following for calculat-
ing QD:

where d0 is a scaling factor dependent on the height of the melt-
ing layer, calculated as follows:

where MLH is the height of the melting layer in metres.

Changing both QH and QD to factor in the melting layer height 
ensures that the quality index for NXPol-1 varies temporally in 
a manner consistent with the temporal fluctuations seen in the 
Met Office quality index. Another change made to the quality 
calculation was to reduce the acceptable level of partial beam 
blockage from 0.9 to 0.75, in essence reformulating Equation (3) 
to the following:

Finally, to account for the fact that the Met Office quality index 
never exceeds 0.93, the final computed NXPol-1 quality index 
has been scaled by a fixed adjustment factor (of 0.93) when com-
pared to the UK Met Office quality for merging to the combined 
composite.

An example of the new quality index for NXPol-1 is shown in 
Figure 8 for the same time as shown originally in Figure 4. In 
contrast to the original quality method the new technique has a 
much narrower transition zone from high to low quality in un-
detected regions (to the south and west in this example), thus 
increasing the likely zone of influence of the NXPol-1 radar 
when incorporating it into the national composite. This effect 
will increase when the melting layer is higher given the new 
QH is now calculated as a function of melting layer height. The 
same change will also impact detected regions, especially in the 
absence of partial beam blockage and attenuation. In the case 
of the NXPol-1 stand-alone product the changes will lead to an 
increase in infilling from higher elevation angles when those ob-
servations are below the melting layer as the new QH has a very 
shallow response to altitude changes below the melting layer.

To understand the effectiveness of these changes, the entire dataset 
has then been reprocessed to allow these changes to also impact 
the flattening and gridding process when generating Cartesian 
NXPol-1 QPE, before being re-evaluated as done in Section 5 for 
the original method. After these changes, NXPol-1 data is used 21% 
of the time in the merged product, when averaged across the whole 
domain, in contrast to 14% of the time in the original version.

The results of the statistical comparison are shown in Figure 9, 
which is directly analogous to Figure  6. The same trends as 

(20)QH =
1

1 + exp
(
−

ΔH

0.1

)

(21)QD =
exp

(
− d2

)

d0
2

(22)d0 = 100000 + (50.MLH)

(23)QPbb =

{
1−BBF, ifBBF≤0.75.

0, otherwise.
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previously noted for the original method are visible for the new 
approach, with the new Cartesian product being a statistical im-
provement on either of the original datasets as seen when using 
the original method.

The new distributions shown in Figure  9 are nearly identi-
cal to those in Figure 6, with the means of the distributions 
differing by less than 3% when comparing the two NXPol-1 
products. When considering changes to the statistical met-
rics for individual rain gauges there is a near even split in the 
number showing improvement and degradation for both the 
NXPol-1 dataset and the merged dataset with the majority 
differing only slightly. However, there are some very subtle 
differences between the original and the new results when an-
alysed closely. Firstly, the highest performing rain gauges in 
terms of correlation coefficient and Nash-Sutcliffe efficiency 
all show a reduction in the statistical accuracy of the gridded 
NXPol-1 QPE when using the new, more aligned quality scor-
ing. However, for the 24 rain gauges that have a correlation in 
excess of 0.8 using the first methodology the average decrease 
is still only 0.02 (with the maximum decrease being less than 

0.04). While a noticeable effect in the data analysis when con-
sidering the overall changes it still remains a small variation 
in accuracy between the two methods. In contrast to this ef-
fect, the final merged product now has a subtle, positive (in 
the sense of improving goodness of metric) shift in the statisti-
cal distributions, indicating that while the targeted approach 
has degraded the original underlying dataset, it has improved 
the final dual source merged product. Again these changes are 
all small, with only the average of percentage bias varying by 
more than 3%. While this highlights the importance of having 
an overall objective in mind when considering the develop-
ment of quality indices, the statistical comparisons show the 
two methods to be similar in performance for the majority of 
the reference region.

6.2   |   Wider Applications and Future Research

The intuitive quality methodology developed in Section  3 has 
been shown to work effectively both as a tool for manipulating 
NXPol-1 QPE into a Cartesian grid and when used to actively 
compare to the Met Office quality index for dual source QPE 
merging. The comparison with rain gauges indicates that the 
quality index developed successfully characterises the radar per-
formance issues so that they can effectively integrate with the 
existing methodology of the UK Met Office. This indicates that 
the seven factors outlined characterise the biggest sources of 
error for NXPol-1 such that poor-performing data is not inadver-
tently merged when creating the dual-source QPE product. To 
paraphrase Ośródka and Szturc  (2015) this is only possible be-
cause the NXPol-1 processing is complete and efficient enough to 
produce QPE of comparable accuracy to the national composite 
with which it is being merged, even though the processing chains 
are not identical in scope or method.

Following this, it is clear that the method developed can not be 
viewed as directly transferable to another radar system, but the 
approach taken can be considered as a guide. Given that each 
system and processing chain is unique, what is important is that 
the quality scheme developed effectively characterises each stage 
within the processing while acknowledging any deficiencies and/
or omissions therein. The results of this study indicate that if that 
is the case, then it is possible to combine radar QPE from differ-
ent sources effectively, even when the quality calculations are not 
directly aligned (due to processing differences or knowledge gaps, 
for example). This has significant potential to allow research 
radar data to be incorporated into wider, existing composites 
allowing their use to enhance now-casting or flood modelling 
across a wider area, provided that the existing composite data-
sets are published with a quality index. We encourage that to be 
the case wherever possible. At the same time, it is also preferable 
that the precise methodology of both QPE generation and quality 
determination are also published to allow further research in this 
area. Doing so would allow third-party data to be incorporated in 
this way, even when it is not possible to fully replicate the process-
ing applied to large-scale (national/international) composites.

When undertaking any such studies, it is worth considering the 
final objective of the study. As we have seen here, the best quality 
methodology for one outcome, deriving QPE for NXPol-1, may 
not necessarily be the best for another outcome, merging that 

FIGURE 8    |    Example of the new quality index (bottom row) and as-
sociated precipitation field (top row) for 2018-11-12 06:15 UTC, as previ-
ously shown for the original method in Figure 4. Both panels are 310 km 
squares centred on the NXPol-1 radar.
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QPE with existing data in this case. Targeting the approach to the 
specific application as done in Section 6.1 may lead to better final 
results should the available information allow, while it is even 
possible that taking different approaches for the X-band process-
ing and then the merging could be more optimal. It is encouraging 
that even the more broadly applicable approach taken in Section 3 
still produces effective results (almost identical to the targeted ap-
proach), indicating its viability for combining QPE datasets even 
in situations where imperfect knowledge is available.

One potential unknown during the study was how effective using 
maximum quality alone as a decision factor in the merging would 
be given the different quality calculations being used for the Met 
Office and NCAS radar precipitation estimates. In this case it has 
proven effective due to the comparable underlying accuracy of 
the two datasets (in optimal conditions) and the very similar un-
derlying principles being applied to each quality calculation. It is 
likely that maximum quality would be effective as a determining 
factor in other use cases provided these two conditions are also 
considered, though it may not be the optimal choice.

While taking the intuition-led approach of Ośródka 
et al. (2014) and adjusting it to fit the specifics of the NXPol-1 
radar has provided a viable proof of concept, another possible 
avenue of future work in this area is the introduction of ma-
chine learning to optimise the quality factor parameters more 
effectively. In this work, the quality methodology was devel-
oped entirely independently of the statistical performance 
analysis; however, given the length of the dataset available 

along with the number and distribution of surface observa-
tions, there is potential for applying optimisation schemes for 
each of these factors. This is beyond the scope of this initial 
study but could provide interesting future insight into the ef-
ficacy of optimising quality calculation as opposed to taking 
the intuitive approach.

7   |   Conclusions

This study demonstrates how weather surveillance radar QPE 
products produced by different organisations can be effectively 
merged using a quality-index approach. The quality method 
developed for NXPol-1 QPE clearly characterises the main fac-
tors influencing the accuracy of the dataset. Given the UK Met 
Office also takes a compatible, multi-factor, best-endeavours ap-
proach to quality scoring, it was possible to successfully merge 
the research radar data into the national composite and improve 
its performance as evaluated by both surface observations and 
visual analysis of the resulting data product. The method pre-
sented is easily adaptable to other WSR QPE datasets, even in sit-
uations where a single operator may not generate them. While 
the fact remains that it is almost impossible to provide a fully 
comprehensive and objective quality-index estimation method-
ology (Jurczyk et al. 2019), taking the intuitive, best-endeavours 
approach shown here provides valuable information for dy-
namic merging over and above just using factors relating to the 
geographic position (distance and height) of the WSR radars. 
Although the methodology clearly works in this case, merely 

FIGURE 9    |    Violin plots showing the six statistical metrics when comparing radar products to radar observations for the 2nd version of the qual-
ity methodology. As for Figure 6, each plot contains the comparison for NXPol-1 (left violin), the merged product (centre violin) and the national 
composite (right violin) and the plots are RMSE (top-left), wMAPE (top-centre), MASE (top-right), correlation (bottom-left), percentage bias (bottom-
centre) and the Nash-Sutcliffe efficiency (bottom-right). The results for the national composite are identical on these plots to Figure 6.
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defining quality indices does not guarantee this outcome; it still 
requires that the myriad factors impacting radar QPE accuracy 
have been accounted for as effectively as possible during the data 
processing such that the QPE estimates from the data products to 
be merged have comparable accuracy levels during ideal condi-
tions, as eloquently expressed by Ośródka and Szturc (2015). The 
results shown here indicate that it is these underlying principles 
that are most important for effective merging rather than the pre-
cise mathematical formulation of the quality metrics themselves.

Improving local and regional precipitation composites by merg-
ing in ad-hoc WSR observations from different sources has the 
potential to improve local flood forecasting and incident man-
agement efforts. In particular, regions where existing WSR net-
works have reduced coverage would particularly benefit from this 
approach.
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