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Abstract

We used network analysis to examine the structure and development of arithmetic fluency in
Chinese students from Grades 3 to 6—a critical period during which fluency across the four
operations becomes increasingly integrated. In two preregistered studies, students completed
timed fluency tasks in addition, subtraction, multiplication, and division. In Study 1, we
compared network structures in Grade 3 (N = 1,072; Mage = 9.1 years) and Grade 6 (N = 1,160;
Mage = 12.1 years). We found that students in Grade 6 demonstrated more strongly
interconnected and uniformly structured networks than those in Grade 3. In Study 2, students (N
= 1,055; Mage = 9.8 years) were assessed in a longitudinal design at four time points from Grades
4 to 5. Addition and subtraction consistently emerged as central operations, forming the
foundational core of the arithmetic network. Division reflected significant integration of
knowledge from other operations whereas multiplication generally showed weak connections
with the other operations. Overall, development was highly interdependent with improvements in
one operation closely linked to gains in others. This research provides empirical evidence that
arithmetic knowledge evolves from a differentiated structure into a unified and interconnected
system, highlighting the value of viewing arithmetic development as a dynamic network of

associations that consolidate over time.

Abstract Word Count: 212
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Public Significance Statement

We found that, during primary school, students’ development in arithmetic is highly
interdependent, with progress in one operation closely linked to gains in others. Addition and
subtraction emerged as core building blocks of arithmetic fluency, while division showed strong
integration with other operations and multiplication showed weaker connections. These findings
provide developmental evidence that arithmetic skills form increasingly cohesive and interrelated

networks over time.



Capturing the Interconnected Development of Whole Number Arithmetic Operations
Using a Network Approach

Arithmetic fluency — the ability to accurately and efficiently perform computations
involving addition, subtraction, multiplication, and division — is a foundational skill in
mathematics. This proficiency not only underpins academic achievement and predicts later
success in advanced mathematics (McNeil et al., 2025), but also supports everyday decision-
making in areas such as personal finances and health (Reyna et al., 2009; Sunderaraman et al.,
2022). Developing arithmetic fluency involves more than mastering each operation in isolation;
it requires the integration of arithmetic knowledge, that is, the process of building a more
advanced understanding by connecting various number associations into a coherent mental
representation (Clements et al., 2023; Hiebert, 1988; Siegler & Chen, 2008; Xu & LeFevre,
2021). Although researchers have extensively studied arithmetic fluency, both as an outcome and
as a predictor of other mathematical skills (McNeil et al., 2025), few have explored the
interconnections among arithmetic operations and how these connections develop over time. In
the present research, using network analysis, we examined the structure of arithmetic networks in
students from Grades 3 to 6, a critical period during which fluency across all four operations
strengthens and becomes increasingly integrated.
Theoretical Models on the Integration of Arithmetic

The development of arithmetic fluency relies on the integration of a complex set of
number associations. For example, the numbers 9 and 3 may be simultaneously linked to 12, 6,
27, and 3 through addition, subtraction, multiplication, and division. Early in learning, students
undergo a process of differentiation, where they must recognize that solving 9 -3 =6 is

conceptually different from solving 9 x 3 = 27. As students advance in their mathematical



INTEGRATION OF WHOLE NUMBER ARITHMETIC 6

development, these associations no longer remain isolated. Instead, these associations begin to
integrate and coexist within a shared mental network that becomes increasingly interconnected
over time (Deacon, 1997; Hiebert, 1988; LeFevre & Bisanz, 1986; Werner & Kaplan, 1956).
This progressive integration reflects a broader developmental process in which initially separate
numerical concepts are coherently coordinated, supporting the emergence of more advanced
mathematical understanding (Siegler & Lortie-Forgues, 2014).

Several theoretical frameworks, including the Associative Network model (Ashcraft,
1992), the Distribution of Associations model (Siegler, 1988), the Network Interference model
(Campbell, 1995), the Interacting Neighbours model (Verguts & Fias, 2005), the Identical
Elements model (Rickard, 2005), and the Triple-Code model (Dehaene, 1992) operate under the
assumption that arithmetic knowledge is represented through interconnected mental codes or
networks in which associations between numerals and operations vary in strength and
accessibility. Stronger associations are more readily and accurately retrieved, facilitating more
efficient problem solving. Thus, building a well-integrated network of arithmetic associations is
essential for developing proficient arithmetic skills.
The Development of an Integrated Arithmetic Network

As number associations become more readily accessible, students’ approaches to solving
arithmetic problems shift: Less fluent students rely on less efficient strategies, such as counting
and repeated addition for multiplication (LeFevre et al., 1996) whereas more fluent students, who
are able to flexibly manipulate numbers, select more efficient and appropriate strategies for a
given problem (e.g., 19 X 4 = 20 X 4 — 4; Geary, 1994; Hickendorff et al., 2019; McMullen et
al., 2017; Siegler, 1988; Torbeyns et al., 2004). With continued practice, these associations are

further strengthened, enhancing accessibility and flexibility. Over time, this process leads to a
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denser and more integrated mental network that supports the use of efficient strategies across a
wide range of arithmetic tasks (Siegler, 1996; Siegler & Lortie-Forgues, 2014).

Expanding beyond arithmetic, the Hierarchical Symbol Integration model (HSI; Xu et
al., 2019, 2023) proposes a hierarchical structure of mathematical competence. Fundamental
numeracy, including cardinal and ordinal associations, forms the foundation upon which
arithmetic associations are built, progressively supporting the development of more advanced
concepts such as rational numbers and algebra. Within these arithmetic associations, the HSI
model emphasizes that additive associations (i.e., addition and subtraction) form the foundation
for developing multiplicative associations (i.e., multiplication and division). Because addition
and subtraction as well as multiplication and division are conceptually and procedurally
complementary (Robinson, 2017), practicing one operation (e.g., addition) can strengthen its
complementary counterpart (e.g., subtraction; Buckingham, 1927; Campbell & Agnew, 2009;
Campbell & Alberts, 2009; De Brauwer & Fias, 2011). Moreover, multiplicative reasoning
builds upon additive knowledge (Harel & Confrey, 1994; Steffe, 1992), suggesting that additive
associations are essential components that students use to build multiplicative associations.

Empirical evidence supporting this hierarchical view is limited. Cross-sectional studies
show that the relations between operations vary across grade levels (Thevenot et al., 2023) and
that these relations may be dependent on students’ arithmetic skill level (Huber et al., 2013). To
our knowledge, only one longitudinal study has examined the hierarchical development of
arithmetic. Xu et al. (2021) found that addition and subtraction became increasingly interrelated
from Grade 2 to Grade 3 (approximately aged 7-8 years) for Canadian students. Reciprocal
relations were found, such that Grade 2 addition predicted growth in subtraction and vice versa,

supporting the integration of these additive associations. Interestingly, they also found that
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subtraction, acquired later than addition, uniquely predicted multiplication performance in Grade
3, suggesting that subtraction captures a higher level of associative integration at this age.
Although these prior studies provide insights into the interrelations among arithmetic operations,
to fully understand how arithmetic knowledge becomes integrated, it is important to investigate
all four operations together over a broad developmental span. Additionally, because instruction is
strongly linked to mathematics outcomes, curriculum and educational experiences need to be
considered.

The Chinese educational context is particularly well-suited for studying arithmetic
integration due to its intensive early focus on the four operations. In Grade 1, students are
introduced to addition and subtraction within 100. In the first half of Grade 2, students are
introduced to multiplication (9 x 9 table), often taught through rhymed learning phrases designed
to aid memorization (Zhang & Zhou, 2003). In the latter half of Grade 2, division is introduced
as the inverse of multiplication, and students learn to compute quotients directly. By Grade 3,
students are expected to have developed the skills necessary to accurately solve arithmetic
problems for all four operations and are developmentally positioned to begin integrating them
into a cohesive mental network through sustained practice and application.

The Present Research

Despite the numerous theoretical models of associative networks in arithmetic, there is
little empirical information about the structure and characteristics of an integrated network. In
the present preregistered studies (Xu et al., 2025), we examined the interconnections among
arithmetic operations in Chinese students from Grades 3 to 6, using network analyses to examine
patterns of intercorrelations among the four whole number arithmetic operations. Unlike

traditional regression, network analysis accommodates multicollinearity by estimating partial
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associations, that is, the unique relations between each pair of variables while accounting for all
others. This approach makes it well-suited for examining conceptually related constructs that are
inherently intertwined, like arithmetic operations.

In network models we have nodes (i.e., observed variables — in this study, students’
fluency in addition, subtraction, multiplication, and division) and edges (i.e., the strength of
association between nodes; Borsboom et al., 2021). Each edge has an associated weight. In the
present research, edge weights provide insights into integration, operationalized as the strength
of the interconnections among nodes. More integrated networks are characterized by stronger
interconnections among the four operations, whereas less integrated networks are characterized
by weaker or absent connections between operations. Furthermore, longitudinal network models
capture dynamic, rather than static, relations as they unfold over time, thereby offering insights
into how integration develops. Thus, this method can be used to capture the developing structure
of arithmetic fluency during the critical period when students’ arithmetic skills are expected to
become increasingly integrated. In the present research, we applied this framework to two
datasets collected with students in China: A cross-sectional dataset with children in Grade 3 and
Grade 6 (Study 1) and a longitudinal dataset in which children were assessed at six-month
intervals starting in Term 1 of Grade 4 and continuing into Grade 5 (Study 2).

Study 1

Do students in Grade 3 possess less integrated arithmetic knowledge than students in
Grade 6, as reflected in differences in network structures? To address this question, we compared
the arithmetic network structures of students in Grade 3 and Grade 6, focusing on both the
overall structure of each network and the strength of interconnections between operations. By

Grade 3, Chinese students are expected to have received formal instruction on all four whole
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number arithmetic operations. Grade 3 thus provides insight into an early phase of arithmetic
network development, characterized by limited experience, particularly with division, which is
taught last among the four operations. In contrast, Grade 6 is the last year of elementary
education, by which time students have had three additional years of practice. Several theoretical
frameworks support the view that extended practice fosters both automatization and integration
of skills (e.g., Anderson, 1982; Logan, 1988; Rickard, 2005; Shrager & Siegler, 1998). Within
this broader literature, it has been proposed that fluency is not simply a matter of speed, but
reflects qualitative shifts in cognitive processes from calculation, to retrieval, to automatic
recognition of the answer, with practice leading to faster, more automatic execution and stronger
interconnections among component processes (Anderson, 1982; Tenison & Anderson, 2016).
More broadly, developmental theories, such as Siegler’s overlapping waves framework, suggest
that with increasing experience, students adopt more efficient strategies and strengthen the links
among those strategies (Siegler, 1996). Taken together, these theoretical perspectives suggest
that Grade 6 students should demonstrate more highly integrated arithmetic networks than
students in Grade 3.

To examine whether the networks differed in their overall level of integration, we
compared the global strength of the network structures between Grades 3 and 6 using Multigroup
Network Modelling. Given the substantial differences in arithmetic experience, we expected
students in Grade 6 would show stronger network structure among arithmetic operations
compared to those in Grade 3, reflecting a higher degree of integration in the Grade 6 network
(Hypothesis 1). We also expected the relative strength of connections between pairs of
operations within each network to differ, with students in Grade 3 showing more variability in

edge weights, reflecting a less integrated arithmetic structure, and students in Grade 6 showing
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more uniform edge strengths across operation pairs, reflecting a more coherent network
(Hypothesis 2).
Study 2

Using longitudinal data collected at 6-month intervals over a two-year period, in Study 2
we investigated the developmental process of interconnections among the four operations from
Grade 4 to Grade 5. During these years, formal instruction begins to focus on more advanced
mathematical concepts such as fractions and decimals; however, these topics are deeply rooted in
whole number arithmetic. For example, performing operations with fractions often relies on
whole number arithmetic fluency, particularly in finding common denominators and
understanding equivalence. This foundational reliance makes the upper elementary years a
critical period for examining the continuing integration of core arithmetic operations. Following
the framework proposed by Borsboom et al. (2021), we estimated three complementary network
models: 1) temporal, which captures directional relations over time, allowing us to examine how
performance in one arithmetic operation predicts, and is predicted by, performance in other
operations at subsequent time points; 2) contemporaneous, which captures partial correlations
among operations within the same time point, controlling for temporal influences; and 3)
between subjects, which captures the partial correlations between operations based on
individuals’ average performance across time. Given the absence of prior studies examining the
developmental integration of arithmetic using a network approach, our hypotheses were
exploratory. Broadly, we hypothesized that as students consolidate and apply their arithmetic
knowledge while learning more advanced mathematical concepts, the four operations (i.e.,
addition, subtraction, multiplication, and division) would increasingly support one another’s

development over time (Hypothesis 3). This hypothesis would be reflected in the temporal
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network, where growth in each operation is expected to predict, and be predicted by, growth in
the other operations over time.
Method

Participants
Study 1

Participants in Study 1 were recruited from two public elementary schools located in a
northern Chinese city with a population exceeding 6 million and an economic status
approximately at the national average. Ethical approval for the study was obtained from the
Institutional Review Board at Shandong Normal University and the local school board, with
written informed consent collected from parents or guardians. Grade 3 students were recruited
near the end of their first semester in December 2020 (N = 1,072; Mage = 9.1 years, SD = 0.6;
56% boys). Grade 6 students were recruited near the end of their first semester in December
2021 (N =1,160; Mage = 12.1 years, SD = 0.6; 60% boys).
Study 2

Participants in Study 2 were recruited from three public elementary schools located in a
northern Chinese city with a population exceeding 9 million and an economic status
approximately at the national average. Ethical approval for the study was obtained from the
Institutional Review Board at Shandong Normal University and the local school board, with
written informed consent collected from parents or guardians. Participants (N = 1,055; Mage = 9.8
years, SD = 0.7; 52% boys) were assessed at four time points: the end of the first semester of
Grade 4 in December 2021, the end of the second semester of Grade 4 in June 2022, the end of
the first semester of Grade 5 in December 2022, and the end of the second semester of Grade 5 in

June 2023.
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Measures

For both Study 1 and Study 2, students completed paper-and-pencil whole number
arithmetic tests based on a version of the standardized German Heidelberg Rechen Test (HRT;
Haffner et al., 2005) adapted for use with Chinese students by Wu & Li (2006). The task consists
of four subtests in addition, subtraction, multiplication, and division. For each subtest, students
are presented with 40 problems in two columns on a single page, arranged in order of increasing
difficulty. Students had one minute to solve as many problems as possible, in order. Scoring is
the total number of correct responses, with a maximum possible score of 40. Test-retest
reliability and Cronbach’s a for each subtest have been found to exceed .70 for Chinese students
from a large national assessment in China from Grades 1 through 6 (Wu & Li, 2006).

For the addition subtest, the left column includes a mixture of problems with single- and
double-digit addends with no sums greater than 20 (e.g.,5+3=__,12+3=_). The right
column includes a mixture of problems with single-, double-, and triple-digit addends (e.g., 6 +
16=_,29+42=__, 256 +464 = ). For the subtraction subtest, the left column includes a
mixture of problems with single- and double-digit minuends and subtrahends, with minuends no
greater than 20 (e.9.,7-6=__,10-3=__,17-10=_). The right column includes more
complex problems with double- and triple-digit minuends and subtrahends (e.g., 27 -8 =__, 55
—25=_,120-22=__,452-395=_). For the multiplication subtest, the left column
includes a mixture of problems with single-digit multiplicands and multipliers (e.g.,4x2=__,9
X 6 =__ ). The right column includes a mixture of problems with single- and double-digit
numbers, all less than 20 (e.g., 11 x2=__,8x17=__,15x%x 15=_). For the division subtest,

the left column includes a mixture of problems with single- and double-digit dividends and
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single-digit divisors (e.g.,6 +2=__,20+4=_). The right column includes problems with
double- and triple-digit dividends (e.g.,56 +8=__,100+5=__ ,450+15=_).
Procedure

For both Study 1 and Study 2, students completed testing during a single group session
held in their classrooms during school hours. Testing was administered by two trained
experimenters, each of whom either held or was pursuing a bachelor’s degree in education. Data
were independently entered and cross-checked by research assistants to ensure accuracy.
Transparency and Openness

For both Study 1 and Study 2, we adhered to the Journal Article Reporting Standards
(JARS; Kazak, 2018). We report where and how the data were collected, justify any data
exclusions, report all manipulations, and fully describe all measures used in the study. The
present study was preregistered, with data and code available on the Open Science Framework
(OSF; Xu et al., 2025). The data come from two larger projects focused on the relations between
whole number arithmetic and fractions (see OSF for a full list of publications). The present study
focused on a unique set of theoretical questions that have not been addressed in previous
publications.
Analytical Plan

We followed the guidelines outlined by Burger et al. (2023) and Epskamp and Fried
(2018) for implementing network analysis. To assess hormality, we examined skewness and
kurtosis (i.e., with values between -2 and 2 considered acceptable), identified potential outliers
(i.e., using cutoff |z| = 3.29), and evaluated visualizations of the distributions of each arithmetic
measure. The assumption of redundancy is not of concern in the present research because the

four arithmetic operations were selected based on theoretical justification, with the understanding
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that they represent conceptually related yet distinct constructs. The accuracy of the edge
estimates was evaluated via nonparametric bootstrapping with 2,000 samples, a procedure that
allows us to determine how much the estimated connections between nodes (arithmetic
operations) might vary due to sampling variability (Epskamp & Fried, 2018). The stability of the
edge estimates was evaluated via the Correlation Stability (CS) Index using the case dropping
method, which quantifies the proportion of the sample that can be removed while still
maintaining a correlation of at least .70 between the edge weights estimated from the full sample
and those from a subset, with 95% confidence (Epskamp & Fried, 2018). For the longitudinal
data, stationarity (i.e., the assumption that the mean and variance of a variable remains stable
over time) was assessed using the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) unit root test
(Kwiatkowski et al., 1992).
Study 1

Network estimation for arithmetic measures in Grades 3 and 6 was performed using the
estimateNetwork function from the bootnet package (Epskamp, 2023) in R (R Core Team, 2022),
using the psychonetrics estimator (Epskamp, Borsboom, et al., 2018; Epskamp & Fried, 2018).
There were no missing data in the Grade 3 dataset, and only an extremely small percentage of
cases had missing data in Grade 6 (i.e., 0.1% for multiplication and division). Thus, missing data
were unlikely to influence the interpretation of the results (Enders, 2010) and were handled using
full information maximum likelihood.

For Hypothesis 1, we conducted multi-group network modelling using the fixed-effects
meta-analytic Gaussian network aggregation framework to compare the global strength between
the networks of Grades 3 and 6 (Epskamp, Isvoranu, et al., 2022). This method allows us to

statistically assess whether the overall level of connectivity differs between Grades 3 and 6 by
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applying equality constraints across groups (i.e., constraining edge weights to be the same across
groups). For Hypothesis 2, we compared edge weights between operation pairs within each
network using the bootstrapped difference test, with Bonferroni corrections applied to reduce the
risk of Type | error. Beyond the primary hypotheses, we also measured centrality, with a focus
on interpreting centrality strengths (Bringmann et al., 2019) to explore whether certain nodes are
more central than others.

Study 2

Following the guidelines outlined by Blanchard et al. (2022), we examined whether the
data met the core assumptions for conducting network analyses using panel data. We built three
networks using panel data: temporal, contemporaneous, and between-person. All models were
implemented using multilevel vector autoregressive models via the mIVAR package in R
(Epskamp, Deserno, et al., 2022). This framework incorporates both fixed effects (i.e., capturing
group-level variability) and random effects (i.e., accounting for individual-level variability;
Epskamp, Waldorp, et al., 2018). For Hypothesis 3, the temporal network analysis allowed us to
examine the directional relations among operations over time, capturing how they dynamically
influence each other’s development.

Missing data were present for a small percentage of cases: 2% at Time 1, 5% at Time 2,
and 14% at both Time 3 and Time 4. To determine whether there were differences between
participants who completed all four waves of testing (n = 911) and those who missed at least one
wave (n = 144), independent t-tests and ¥ tests were conducted on students’ gender and age. No
significant differences were found between the complete and incomplete data groups, ps > .05.

Thus, we were confident that data were missing at random. Missing values were estimated by
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multiple imputation with 20 datasets generated via the mice package in R, using predictive mean
matching (Buuren & Groothuis-Oudshoorn, 2011).
Results

Study 1
Descriptive Statistics

An examination of the skewness and kurtosis (Table S1) revealed negative skewness in
multiplication scores in Grade 3, and positive kurtosis in multiplication scores for Grades 3 and
6, and in division scores for Grade 6 (see Supplementary Materials for detail). Sensitivity
analyses conducted with and without the outliers showed generally similar results; however,
differences emerged in the comparisons of edge weights within each network. Given these
discrepancies, we removed the identified outliers (<1% for each operation in both grades). After
removing these outliers, no concerns regarding normality remained, and we therefore report the
results based on the dataset with outliers excluded in subsequent analyses. Descriptive statistics
for the arithmetic measures for students in Grades 3 and 6 are shown in Table 1. All variables
had positive, strong correlations, ranging from .55 to .76 in Grade 3 and from .65 to .75 in Grade
6 (see Table S2), suggesting that the arithmetic measures were strongly interrelated, reflecting a
shared underlying conceptual structure. Across all operations, students in Grade 6 outperformed

students in Grade 3 (see Table 1).



Table 1

Descriptives Statistics and Comparisons of the Arithmetic Measures for Students in Grade 3 (G3) and Grade 6 (G6)

18

Variable M(SD) Skewness Kurtosis G3 vs. G6 Performance

G3 G6 G3 G6 G3 G6 G3 G6 t df Cohen’s d
Addition 1,068 1,155 23.3(4.4) 31.6(4.8) 0.2 -0.2 01 -03 -423 22210 -1.7
Subtraction 1,068 1,158 23.3(47) 30.1(50) 02 -03 -01 00 -331 22214 -14
Multiplication 1,061 1,152 28.4(29) 336(28) -09 00 20 06 -433 21715 -18
Division 1,070 1,148 21.6(6.4) 34.9(4.4) -0.5 -0.9 -0.2 05 -57.1 1876.8  -2.5
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Global Strength Comparison Across Grades

Accuracy and stability checks (see Supplementary Materials) suggested that the edge
weights were estimated with a high degree of precision, were robust to sampling variation, and
had high stability. Figure 1 presents the estimated network structures showing the relations
among arithmetic operations in Grades 3 and 6. In these networks, edges represent partial
correlations between pairs of operations, controlling for all other nodes. The thickness of each
edge reflects the strength of the partial correlation, ranging from .09 to .54 in Grade 3 and
from .23 to .44 in Grade 6 (see Table 2). As shown in Figure 1, all nodes were interconnected in

both Grades 3 and 6, with the strength of these connections varying across edges.

Table 2
Edge Weights Among the Arithmetic Measures for Students in Grade 3 (Below the Diagonal)

and Grade 6 (Above the Diagonal)

Variable Addition Subtraction ~ Multiplication Division
Addition - 44 .23 .23
Subtraction .54 - 25 .30
Multiplication 24 .09 - 27

Division .25 .28 .19 -
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Figure 1

Estimated Partial Correlation Network of Students’ Arithmetic Fluency in Grades 3 and 6

Grade 3 Grade 6

Note. All relations in the networks are positive. Each node represents one of the arithmetic
operations (i.e., addition, subtraction, multiplication, and division). Edge thickness reflects the
strength of the partial correlation between two nodes, controlling for all other nodes in the

network. No specific minimum/maximum/cut values have been used for network visualization.

To examine whether the overall strength of connections among arithmetic operations
differed between grades, a multigroup network analysis was conducted. Specifically, we
compared a model in which all edge weights were freely estimated across Grade 3 and Grade 6
to a model in which all edge weights were constrained to be equal across groups. The

unconstrained model had a significantly better fit than the constrained model, Ax?(2) = 84.02, p
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<.001. Specifically, the global strength of connections among arithmetic operations was higher
in Grade 6 than in Grade 3 (1.72 vs. 1.60, p <.001), supporting Hypothesis 1.
Differences Between Edge Weights within Each Network

We compared edge weights between operation pairs within each network using the
bootstrapped difference test, with Bonferroni correction applied for multiple comparisons (p
<.003). Of the 15 pairwise comparisons of edge weights within each network, more than half
were significant in Grade 3, whereas one-third were significant in Grade 6 (see Figure 2).
Notably, the edge between addition and subtraction was consistently stronger than all other
edges in both grade levels. In Grade 3, the edge between subtraction and multiplication was
significantly weaker than all other pairs except for multiplication and division (see Figure S2 for
estimated edge weights). In contrast, edge strengths in Grade 6 were not statistically different
across operation pairs, except for the addition—subtraction edge, which was stronger than all
other connections. Together, these results indicate that the network structure in Grade 3 is more
differentiated, whereas in Grade 6, the network structure is more uniform, supporting Hypothesis

2.



Figure 2

Differences Between Edge Weights within Grade 3 and Grade 6 Networks
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Note. Error bars represent bootstrapped 95% confidence intervals, with intervals excluding 0

indicating significant differences, with the Bonferroni correction applied (p < .003). A-S:

Addition—Subtraction, A-M: Addition—Multiplication, A-D: Addition—Division, S—-M:

Subtraction—Multiplication, S-D: Subtraction-Division, M—D: Multiplication-Division.

Centrality Strengths within Each Network

In addition to comparing edge weights within each network, we examined centrality

strengths in an exploratory analysis to determine whether certain nodes were more central.

Central strengths in Grade 3 were 1.05, 0.52, —1.24, and —0.31 for addition, subtraction,

multiplication, and division, respectively. Central strengths in Grade 6 were 0.37, 1.23, —0.99,
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and —0.61 for addition, subtraction, multiplication, and division, respectively. Statistical
comparisons of these values, based on the bootstrapped difference test, are presented in Figure 3,
with the Bonferroni correction applied (p < .008). In Grade 3 and Grade 6 both addition and
subtraction were significantly more central when compared with multiplication and division,
although addition and subtraction did not significantly differ from one another. This pattern
suggests that these two operations were the most central. In Grade 3, multiplication was less
central than addition and subtraction but more central than division, whereas in Grade 6 the

centrality strengths of multiplication and division did not significantly differ.

Figure 3

Differences Between Centrality Strengths within Grade 3 and Grade 6 Networks
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Note. Error bars represent bootstrapped 95% confidence intervals, with intervals excluding 0

indicating significant differences, with the Bonferroni correction applied (p <.008)
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Study 2
Descriptive Statistics

An examination of the skewness and kurtosis (Table S3) revealed positive kurtosis in
multiplication scores across the four time points (see Supplementary Materials for detail).
Sensitivity analyses conducted with and without the outliers showed similar results; however,
noticeable differences in the edge weight strengths emerged in the contemporaneous model.
Thus, we removed the identified outliers (<1.5% for each operation across time points). After
removing these outliers, no concerns regarding normality remained, and we therefore reported
the results based on the dataset with outliers excluded in subsequent analyses. Table 3 shows the
descriptive statistics for the arithmetic measures after removing the outliers. All variables had
positive, strong correlations ranging from .60 to .81 (see Table S4). Students’ arithmetic
performance improved over the two-year period (see Supplementary Materials for ANOVAS).
The KPSS test confirmed that the four arithmetic operations met the assumption of stationarity

(ps > .05).



Table 3

Descriptive Statistics for Students in Grade 4 (T1 and T2), and Grade 5 (T3 and T4)

Variable N M(SD) Skewness Kurtosis
T1 T2 T3 T4 T1 T2 T3 T4 TL T2 T3 T4 T1 T2 T3 T4
Addition 1,033 998 905 904 26.2(4.8) 28.1(4.7) 29.2(46) 29548 01 -02 -03 -05 -02 00 00 01
Subtraction 1,033 999 906 906 24.2(5.1) 25.8(5.2) 27.3(5.2) 27.3(54) 01 -03 -04 -06 -03 -02 00 03
Multiplication 1,023 985 897 898 29.5(3.4) 29.5(3.6) 31.5(29) 31931 -07 -09 -07 -06 06 10 14 11
Division 1,033 1,001 901 903 23.5(7.3) 24.6(74) 27.6(7.1) 30.1(6.7) -04 -04 -08 -09 -05 -04 04 05

Note. T1-T4 represent Grade 4 Fall, Grade 4 Spring, Grade 5 Fall, and Grade 5 Spring, respectively.



26

Temporal Network

Accuracy and stability checks (see Supplementary Materials) suggested that the edge
weights were estimated with a high degree of precision (see Figure S4), were robust to sampling
variation, and had high stability. The estimated edge weights are shown in Table 4, and the
temporal network is shown in the left panel of Figure 4. Interdependency is reflected in the
presence of both incoming and outgoing arrows between operations in the temporal network,
representing significant directional associations over time. These arrows are based on partial
directed correlations that isolate the unique predictive contribution of one operation to another,
after controlling for the influence of all other operations in the model. As seen in Figure 4, the
development of arithmetic fluency appeared to be highly interconnected, with the growth of each
operation statistically predicted by, and predictive of, the others. A notable exception, however,
was multiplication, which showed a more limited role in the broader developmental network: It
significantly predicted growth in division but did not contribute to the development of addition
or subtraction, as indicated by the absence of significant outgoing edges to those nodes.
Conversely, the development of division appeared to be strongly influenced by all three other
operations—addition, subtraction, and multiplication—as reflected in the thicker arrows,
suggesting that gains in division fluency may be particularly dependent on a well-integrated
arithmetic network. Together, Hypothesis 3 was mostly supported: From Grades 4 to 5, the
development of arithmetic operations was highly interdependent, with the exception of

multiplication, which showed limited reciprocal connections.
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Table 4

Edge Weights and Centrality Strengths of the Temporal, Contemporaneous, and Between-Subjects Networks

Addition Subtraction Multiplication  Division Temporal

Temporal In-strength Out-strength
Addition > -.16 12 27 22 0.33 0.61
Subtraction > .16 -.16 22 21 0.29 0.59
Multiplication > NA NA -.18 16 0.68 0.16
Division > .16 17 19 -.08 0.69 0.52

Contemporaneous, lower triangle; Between-Subjects, upper triangle Contemporaneous Between-Subjects
Addition — .58 31 .16 0.43 1.05
Subtraction 14 — NA .39 0.45 0.97
Multiplication .09 19 — .39 0.47 0.70
Division .20 A2 19 — 0.51 0.94

Note. NA (not available) indicates the absence of an edge (i.e., partial correlation between the two nodes is not significantly different
from zero, after controlling for other nodes in the network). For the temporal network, the operations in the columns and rows
represent directional edge weights: The operations with - (rows) indicate nodes that predict operations (columns), with same-
operation cells representing autoregressive loops. Negative autoregressive loops in the temporal network were observed, likely
reflecting a regression-to-the-mean effect, where students who scored unusually high or low at one time point tended to return closer

to their average level subsequently (Hamaker et al., 2021).



Figure 4
Temporal, Contemporaneous, and Between-Subjects Network

Temporal Contemporaneous Between-Subjects

Note. Edge thickness indicates the strength of associations, controlling for other effects. In the temporal network (left), loops reflect
autoregressive effects, while arrows indicate predictive relations between operations across time points. The contemporaneous
network (middle) shows associations within the same time point, accounting for temporal effects. The between-subjects network

(right) represents correlations between students’ average performance on each operation over time.
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Centrality strengths, reported in Table 4, were compared using the bootstrapped
difference test, with the Bonferroni correction applied (p <.008). As shown in Figure 5, addition
and subtraction showed higher out-strength (i.e., the extent to which a node predicts other nodes
over time) than multiplication and division, with no difference between addition and subtraction.
Moreover, division had higher out-strength than multiplication. In contrast, multiplication and
division showed higher in-strength (i.e., the extent to which a node is predicted by other nodes
over time) than addition and subtraction. There were no in-strength differences between addition
and subtraction, or between multiplication and division.

Contemporaneous Network

Next, we examined the contemporaneous network, which captures within-person
associations between nodes measured at the same time point, after accounting for their relations
with all other nodes at that time point, as well as temporal effects from the preceding time point.
As shown in the middle panel of Figure 4, there were positive associations between all pairs of
arithmetic operations within each time point, after controlling for all temporal effects, suggesting
that arithmetic operations are not only longitudinally interconnected over time but also
functionally linked within each measurement occasion, possibly reflecting shared cognitive
processes or overlapping task demands. No significant differences in centrality strength were

found among any pairs of operations within the contemporaneous network (see Figure 6).



Figure 5

Differences Between Centrality Strengths for the Temporal Network
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Note. Error bars represent bootstrapped 95% confidence intervals, with intervals excluding 0
indicating significant differences, with Bonferroni correction applied (p < .008). Out-strength
refers to the extent to which a node predicts other nodes over time; in-strength refers to the

extent to which node is predicted by other nodes over time.
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Figure 6
Differences Between Centrality Strengths for the Contemporaneous and Between-Subjects

Networks
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Note. Error bars represent bootstrapped 95% confidence intervals, with intervals excluding 0

indicating significant differences, with the Bonferroni correction applied (p < .008).

Between-Subjects Network

Lastly, we examined the between-subjects network, which captures dependencies
between nodes after controlling for all other nodes in the network. Unlike cross-sectional models
that reflect relations at a single time point, the between-subjects network reflects how the
variables are related on average across all time points. As shown in the right panel of Figure 4,
the presence of undirected edges among most of the operations indicates conditional
dependencies between nodes, after accounting for all other nodes in the network. Lastly, in terms
of centrality strength within the between-subjects network, all pairs of operations differed
significantly, except for subtraction and division. Specifically, addition was the most central

node, followed by subtraction and division, with multiplication being the least central.
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Discussion

Arithmetic fluency is a foundational skill that supports not only accurate and efficient
computation but also facilitates conceptual understanding, flexible problem-solving, and the
acquisition of advanced mathematical knowledge (McNeil et al., 2025). In the present research,
we used network analysis to examine the interconnections among the four core arithmetic
operations in Chinese students during a critical period of mathematical development. In Study 1,
we found that the arithmetic networks of students in Grade 6, compared to those of students in
Grade 3, were more strongly interconnected and had more consistent connections across
operations. In Study 2, longitudinal analyses revealed that the development of these
interconnections from Grades 4 to 5 was highly interdependent — improvement in one operation
was predicted by advancements in the others. Furthermore, addition and subtraction formed the
core building blocks of arithmetic fluency, whereas division reflected significant integration with
the other operations, and multiplication generally showed weak connections with other
operations. These findings offer the first developmental evidence for the integration of arithmetic
operations, showing increasingly cohesive and interrelated arithmetic networks.
From Differentiation to Integration: Developing Interconnected Arithmetic Associations

Broadly, the results of the present research demonstrate a developmental progression
from differentiated to integrated arithmetic knowledge between Grades 3 and 6. In Grade 3, the
youngest and least experienced group in our sample, students demonstrated the most
differentiated network, with strong connections between addition and subtraction and weaker or
less consistent connections with multiplication and division. This pattern presumably reflects
their limited exposure to the latter operations at this phase of learning. From Grade 4 to Grade 5,

students’ arithmetic operations became more strongly and evenly interconnected, with most
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operations developing interdependently, except for multiplication, which only predicted division.
By Grade 6, the most experienced group in our sample, students demonstrated a uniform and
highly interconnected network, with a particularly strong connection between addition and
subtraction.

Our results suggest that from Grades 3 to 6, students show progress from a differentiated
to a more integrated and coherent arithmetic network. The findings are consistent with prior
research suggesting that the associative relations among numbers change with increased
experience and exposure (LeFevre et al., 1991; LeFevre & Bisanz, 1987). Notably, these
behavioural developments mirror patterns observed at the neural level, with research showing
that brain regions involved in arithmetic processing become increasingly specialized and
functionally segregated between the ages of 9 and 12 (Istomina & Arsalidou, 2024; Wang et al.,
2022). Moreover, the absence of distinct neural signatures for individual arithmetic operations
suggests that they have overlapping neutral networks (Istomina & Arsalidou, 2024), supporting
the idea of integration at both cognitive and neural levels.

The development of an increasingly interconnected and largely uniform arithmetic
network observed in the present research may reflect the instructional approach used in China.
Arithmetic fluency is a strong pedagogical focus in the Chinese education system, where early
instruction emphasizes mastery of basic operations as a foundation for developing deeper
conceptual understanding (Dahlin & Watkins, 2000; Ma, 2010; Marton et al., 1996). Beginning
in Grade 2, the national mathematics curriculum incorporates progressively complex mixed-
operation problems that integrate addition, subtraction, multiplication, and division (e.g., 35 - 23
+18; 63 + 9 + 8 X 4; Ministry of Education of the People’s Republic of China, 2022). These

problems are designed to not only reinforce procedural fluency, but also to encourage conceptual
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integration across operations. Unlike single-operation problems, mixed-operation problems
require students to distinguish between operations, understand their relational structures, and
apply strategies based on the problem demands. Regular engagement with such problems may
help students develop a deeper awareness of how operations are interconnected and promote
flexible application of arithmetic knowledge. However, empirical research directly examining
how mixed-operation practice supports arithmetic integration is still limited and represents a
valuable direction for future research.

The Central Role of Additive Skills in Arithmetic Development

To further unpack arithmetic development, in the present study we closely examined the
development of each operation in relation to the others. Across both studies, we observed a
strong link between addition and subtraction. This strong link was expected, given that these
operations are conceptually and procedurally complementary (Robinson, 2017), and are
introduced together early in the Chinese elementary education. Prior research has shown that
teaching and practicing addition facts enhances access to related subtraction facts (Buckingham,
1927; Campbell & Agnew, 2009). Thus, in the present study, students’ extensive experience with
additive operations likely contributed to the strengthened associative connections between these
skills.

In relation to the other operations, addition and subtraction consistently emerged as the
most central nodes in the arithmetic network, serving as critical hubs that support and integrate
the development of other operations. This pattern aligns with the HSI model, which posits that
arithmetic competence develops through a hierarchy of integrated associations, with additive
knowledge forming the foundation from which multiplicative knowledge emerges (Xu et al.,

2023). Our findings build on previous research demonstrating the predictive role of additive
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skills in multiplicative skills (Thevenot et al., 2023; Xu et al., 2021). Extending this line of work,
we show that both addition and subtraction, which are conceptually and procedurally
complementary, are equally central in supporting the development of multiplication and division.
These results emphasize the view that additive operations precede and may play a predictive role
in the integration of more complex multiplicative skills.

These findings underscore the critical importance of emphasizing addition and
subtraction in early education, not simply as isolated skills, but as foundational and related
building blocks for broader arithmetic development. Given their central role in supporting the
integration of multiplication and division, instructional practices should prioritize helping
students develop a deep conceptual understanding of how additive reasoning relates to
multiplicative reasoning. While additive operations involve representing quantities as collections
of individual units, multiplicative operations require students to conceptualize quantities as
composed of equal groups of units (Clark & Kamii, 1996; Harel & Confrey, 1994; Nunes et al.,
2016; Steffe, 1992). From this perspective, multiplicative representations are constructed on the
foundation of existing additive understanding (Steffe, 1992). Thus, early mastery of additive
associations may help support students’ multiplicative reasoning by reinforcing the conceptual
links between operations. Interventions targeting arithmetic fluency could benefit from ensuring
that students develop a strong foundation in addition and subtraction to better support the

acquisition of more advanced skills.

The Differing Roles of Multiplication and Division in Arithmetic Development
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Although addition and subtraction were shown to be central to the arithmetic network, the
connections between multiplication and the other operations were less consistent. In Study 1, the
connections between multiplication and the other operations were generally weak in Grade 3,
with the connection between subtraction and multiplication being the weakest. This contrasts
with findings from Xu et al. (2021), who found that for Canadian students, subtraction uniquely
predicted multiplication performance in Grade 3. In Study 2, multiplication served primarily as a
predictor of division, but did not contribute to the development of addition or subtraction and it
was the least central operation. Moreover, the lack of association between subtraction and
multiplication in the between-subjects network suggests there are weaker cognitive or
instructional links between these two operations.

These findings may reflect the curriculum and instructional approach for learning
multiplication facts in China. Specifically, students are expected to fully memorize the
multiplication table, using rhyming phrases by the end of Grade 2, promoting automatic retrieval.
In contrast, in Canada and other countries, full memorization is not typically expected until later
grades. As a result, subtraction, which reflects integrated additive associations, may play a more
prominent role in supporting the development of multiplicative skills in the Canadian context,
where these operations are still being consolidated. In contrast, in the Chinese context,
multiplication may be more independently developed through rote memorization, resulting in
weaker integration with other operations. Across time points and studies, most Chinese students
were able to solve problems beyond the basic 9 x 9 multiplication table within a brief one-minute
time limit, suggesting some memorization and possibly the use of partial retrieval strategies (e.g.,

for 14 x 6, a student might recall 10 x 6 = 60 and 4 x 6 = 24, then combine: 60 + 24 = 84). Taken
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together, these differences in curriculum and instruction likely account for the contrasting
patterns of association observed between subtraction and multiplication.

In contrast to multiplication, division emerged as the most dependent operation, strongly
associated with prior knowledge of addition, subtraction, and multiplication. Division is often
considered the most conceptually demanding of the four arithmetic operations (Greer, 1992;
Parmar, 2003; Thompson & Saldanha, 2003). In the early phase of mathematics education in
China, division is introduced as the inverse of multiplication—requiring students to have already
memorized multiplication facts and understand their relational structure (Ministry of Education
of the People’s Republic of China, 2022). For example, to comprehend that 12 + 3 = 4, a student
must recall the corresponding multiplication fact 3 x 4 = 12 and apply it in reverse.

Building on this foundation, a more advanced understanding of division involves flexibly
applying both additive and multiplicative reasoning. For example, solving 48 + 4 can be
approached not only by recalling the related multiplication fact (4 x 12 = 48), but also through
repeated subtraction (i.e., determining how many times 4 can be subtracted from 48), or by
decomposing the dividend into simpler parts (e.g., 40 + 4 + 8 + 4). More complex division
problems, such as dividing a three-digit number by a two-digit number using a standard
algorithm, require the coordination of multiple arithmetic skills — multiplication to estimate
partial quotients, subtraction to track remainders, and addition to verify or adjust intermediate
results. These examples show that division is not an isolated skill — it draws on a broad
foundation of arithmetic knowledge and highlights the importance of integrating addition,
subtraction, and multiplication.

Our findings offer empirical support for the view that division functions as a capstone

operation, appearing to build on earlier-learned arithmetic knowledge and emerging only when
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foundational operations are well integrated. This conclusion aligns with the HSI model, which
emphasizes that arithmetic competence develops through successive integration of operations,
with division positioned at the top of the arithmetic hierarchy (Xu et al., 2022, 2023). Practically,
this finding reinforces the pedagogical principle that instruction should be scaffolded to move
students beyond procedural fluency, guiding them to recognize the relational structure among
operations to foster a more flexible and interconnected understanding of arithmetic (Parmar,
2003).

Implications for Theoretical Models of Arithmetic

Several theoretical models of arithmetic converge on the idea that arithmetic knowledge
is organized as an interconnected mental network (Ashcraft, 1992; Campbell, 1995; Rickard,
2005; Siegler, 1988; Verguts & Fias, 2005;). A common challenge for these frameworks,
however, is the lack of empirical evidence on the structure and developmental dynamics of such
networks. By applying network analysis, the present study provides an early empirical account of
how the four operations become integrated across late primary school. Although most
frameworks assume that associative strength underpins fluency, they rarely specify which
operations should emerge as central or how their roles may shift over time.

Our network analyses revealed a strong association between addition and subtraction,
which contrasts with predictions of the Triple-Code Model (Dehaene, 1992). According to this
model, addition and multiplication should be closely related, as both are assumed to rely on
verbal retrieval and to share representational pathways. One possible explanation for our
different finding is that subtraction is often conceptualized and taught as the inverse of addition,
fostering stronger links between these operations. Developmental and instructional factors may

also play a role: in Chinese classrooms, addition and subtraction are introduced and reinforced
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together well before multiplication and division, further consolidating their integration (Ministry
of Education of the People’s Republic of China, 2022). Right from the initial introduction in
Grade 1, students are taught addition and subtraction in an inverse format (e.g.,3+5=8,8 -3 =
5), with workbook exercises further reinforcing the close connection between these operations.
This instructional emphasis may help explain why we observed such a strong addition —
subtraction association in our networks. Taken together, these results suggest that the structure of
arithmetic networks is not static but dynamic, shaped by both cognitive mechanisms and
cultural—instructional experiences. Future theoretical work should account for these
developmental differences and more explicitly integrate the role of instructional practices in
shaping network organization.
Limitations and Future Research

One limitation of the present research is that we were unable to capture the full
developmental trajectory of arithmetic integration from Grades 3 to 6. Although our longitudinal
study (Study 2) tracked students from Grades 4 to 5, this period likely reflects a phase in which
much of their basic arithmetic fluency has already been established, as evidenced by the
relatively modest gains observed between time points. A longer-term panel study spanning
Grades 3 to 6 would provide a more comprehensive picture of how integration evolves over time
and may reveal more substantial developmental changes between time points. Future research
using such a design could offer valuable insights into how students build connections among
different arithmetic operations and how these connections are consolidated over the course of
elementary education. Temporal network analysis in particular holds promise for tracing these

dynamic patterns longitudinally.
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Additionally, our ability to examine the mechanisms of arithmetic integration was limited
by the constraints of group testing, which precluded the collection of item-level data such as
response time and accuracy. It is possible that the observed lack of dependency between
multiplication and other operations is specific to single-digit problems, where rote memorization
plays a central role. In contrast, multiple-digit multiplication may require greater integration with
other operations, such as addition, particularly in problems that involve carrying digits (e.g.,

17 X 4). Thus, future research distinguishing between single- and multi-digit multiplication
problems and capturing item response time would add important information about development.
Moreover, in addition to capturing item-level responses, future research should consider
incorporating measures of students’ problem-solving strategies—for instance, whether they
relied on retrieval, decomposition, or compensation. These data would shed light on the
cognitive processes that underlie network integration and show how students flexibly draw on
arithmetic associations as their mental networks become more interconnected. Such research
could expand the HSI model by showing how integration supports efficient arithmetic problem
solving.

Finally, although our primary interpretation emphasizes mathematics-specific experience
and instruction, another possibility is that the increased integration among arithmetic operations
from Grades 3 to 6 may reflect not only mathematics-specific development but also broader
cognitive mechanisms. Research on the positive manifold suggests that as development
progresses, cognitive abilities across domains become increasingly interrelated (van der Maas et
al., 2006), and these skills can mutually reinforce one another over time (van der Maas et al.,
2017). From this perspective, the increasingly strong interconnections among arithmetic

operations observed over time in the present study may partly reflect domain-general processes,
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rather than solely mathematics instruction and practice. Future work that incorporates both
domain-general tasks (e.g., working memory, processing speed, reasoning) and domain-specific
tasks (e.g., arithmetic operations) within the same network framework will help clarify whether
the observed integration is mathematics-specific or reflects broader cognitive processes.
Conclusion

The present research is the first to provide empirical evidence that arithmetic knowledge
becomes increasingly integrated, progressing from differentiated, operation-specific knowledge
to a more unified and interconnected system. Using network analysis, which eliminates
constraints on interpretation imposed by the influence of strong correlations amongst the
operations, we investigated the connections and overlap between operations that support a
unified arithmetic network. Building on theoretical models, the present research provides
empirical support for the representation of arithmetic knowledge in an interconnected mental
network. Furthermore, we show that additive associations form the foundation for the
development of multiplicative associations. These findings highlight the value of viewing
arithmetic as a dynamic network of interrelated associations that consolidate over time. Solid
whole number arithmetic skills provide the foundation for learning more advanced mathematical

concepts and thus are crucial for students” mathematical development and achievement.
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