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Abstract 

We used network analysis to examine the structure and development of arithmetic fluency in 

Chinese students from Grades 3 to 6—a critical period during which fluency across the four 

operations becomes increasingly integrated. In two preregistered studies, students completed 

timed fluency tasks in addition, subtraction, multiplication, and division. In Study 1, we 

compared network structures in Grade 3 (N = 1,072; Mage = 9.1 years) and Grade 6 (N = 1,160; 

Mage = 12.1 years). We found that students in Grade 6 demonstrated more strongly 

interconnected and uniformly structured networks than those in Grade 3. In Study 2, students (N 

= 1,055; Mage = 9.8 years) were assessed in a longitudinal design at four time points from Grades 

4 to 5. Addition and subtraction consistently emerged as central operations, forming the 

foundational core of the arithmetic network. Division reflected significant integration of 

knowledge from other operations whereas multiplication generally showed weak connections 

with the other operations. Overall, development was highly interdependent with improvements in 

one operation closely linked to gains in others. This research provides empirical evidence that 

arithmetic knowledge evolves from a differentiated structure into a unified and interconnected 

system, highlighting the value of viewing arithmetic development as a dynamic network of 

associations that consolidate over time. 

Abstract Word Count: 212 
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Public Significance Statement 

We found that, during primary school, students’ development in arithmetic is highly 

interdependent, with progress in one operation closely linked to gains in others. Addition and 

subtraction emerged as core building blocks of arithmetic fluency, while division showed strong 

integration with other operations and multiplication showed weaker connections. These findings 

provide developmental evidence that arithmetic skills form increasingly cohesive and interrelated 

networks over time. 



Capturing the Interconnected Development of Whole Number Arithmetic Operations 

Using a Network Approach 

Arithmetic fluency – the ability to accurately and efficiently perform computations 

involving addition, subtraction, multiplication, and division – is a foundational skill in 

mathematics. This proficiency not only underpins academic achievement and predicts later 

success in advanced mathematics (McNeil et al., 2025), but also supports everyday decision-

making in areas such as personal finances and health (Reyna et al., 2009; Sunderaraman et al., 

2022). Developing arithmetic fluency involves more than mastering each operation in isolation; 

it requires the integration of arithmetic knowledge, that is, the process of building a more 

advanced understanding by connecting various number associations into a coherent mental 

representation (Clements et al., 2023; Hiebert, 1988; Siegler & Chen, 2008; Xu & LeFevre, 

2021). Although researchers have extensively studied arithmetic fluency, both as an outcome and 

as a predictor of other mathematical skills (McNeil et al., 2025), few have explored the 

interconnections among arithmetic operations and how these connections develop over time. In 

the present research, using network analysis, we examined the structure of arithmetic networks in 

students from Grades 3 to 6, a critical period during which fluency across all four operations 

strengthens and becomes increasingly integrated.   

Theoretical Models on the Integration of Arithmetic 

The development of arithmetic fluency relies on the integration of a complex set of 

number associations. For example, the numbers 9 and 3 may be simultaneously linked to 12, 6, 

27, and 3 through addition, subtraction, multiplication, and division. Early in learning, students 

undergo a process of differentiation, where they must recognize that solving 9 – 3 = 6 is 

conceptually different from solving 9 × 3 = 27. As students advance in their mathematical 
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development, these associations no longer remain isolated. Instead, these associations begin to 

integrate and coexist within a shared mental network that becomes increasingly interconnected 

over time (Deacon, 1997; Hiebert, 1988; LeFevre & Bisanz, 1986; Werner & Kaplan, 1956). 

This progressive integration reflects a broader developmental process in which initially separate 

numerical concepts are coherently coordinated, supporting the emergence of more advanced 

mathematical understanding (Siegler & Lortie-Forgues, 2014).  

Several theoretical frameworks, including the Associative Network model (Ashcraft, 

1992), the Distribution of Associations model (Siegler, 1988), the Network Interference model 

(Campbell, 1995), the Interacting Neighbours model (Verguts & Fias, 2005), the Identical 

Elements model (Rickard, 2005), and the Triple-Code model (Dehaene, 1992) operate under the 

assumption that arithmetic knowledge is represented through interconnected mental codes or 

networks in which associations between numerals and operations vary in strength and 

accessibility. Stronger associations are more readily and accurately retrieved, facilitating more 

efficient problem solving. Thus, building a well-integrated network of arithmetic associations is 

essential for developing proficient arithmetic skills.  

The Development of an Integrated Arithmetic Network 

As number associations become more readily accessible, students’ approaches to solving 

arithmetic problems shift: Less fluent students rely on less efficient strategies, such as counting 

and repeated addition for multiplication (LeFevre et al., 1996) whereas more fluent students, who 

are able to flexibly manipulate numbers, select more efficient and appropriate strategies for a 

given problem (e.g., 19 × 4 = 20 × 4 − 4; Geary, 1994; Hickendorff et al., 2019; McMullen et 

al., 2017; Siegler, 1988; Torbeyns et al., 2004). With continued practice, these associations are 

further strengthened, enhancing accessibility and flexibility. Over time, this process leads to a 
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denser and more integrated mental network that supports the use of efficient strategies across a 

wide range of arithmetic tasks (Siegler, 1996; Siegler & Lortie-Forgues, 2014).  

Expanding beyond arithmetic, the Hierarchical Symbol Integration model (HSI; Xu et 

al., 2019, 2023) proposes a hierarchical structure of mathematical competence. Fundamental 

numeracy, including cardinal and ordinal associations, forms the foundation upon which 

arithmetic associations are built, progressively supporting the development of more advanced 

concepts such as rational numbers and algebra. Within these arithmetic associations, the HSI 

model emphasizes that additive associations (i.e., addition and subtraction) form the foundation 

for developing multiplicative associations (i.e., multiplication and division). Because addition 

and subtraction as well as multiplication and division are conceptually and procedurally 

complementary (Robinson, 2017), practicing one operation (e.g., addition) can strengthen its 

complementary counterpart (e.g., subtraction; Buckingham, 1927; Campbell & Agnew, 2009; 

Campbell & Alberts, 2009; De Brauwer & Fias, 2011). Moreover, multiplicative reasoning 

builds upon additive knowledge (Harel & Confrey, 1994; Steffe, 1992), suggesting that additive 

associations are essential components that students use to build multiplicative associations.  

Empirical evidence supporting this hierarchical view is limited. Cross-sectional studies 

show that the relations between operations vary across grade levels (Thevenot et al., 2023) and 

that these relations may be dependent on students’ arithmetic skill level (Huber et al., 2013). To 

our knowledge, only one longitudinal study has examined the hierarchical development of 

arithmetic. Xu et al. (2021) found that addition and subtraction became increasingly interrelated 

from Grade 2 to Grade 3 (approximately aged 7-8 years) for Canadian students. Reciprocal 

relations were found, such that Grade 2 addition predicted growth in subtraction and vice versa, 

supporting the integration of these additive associations. Interestingly, they also found that 
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subtraction, acquired later than addition, uniquely predicted multiplication performance in Grade 

3, suggesting that subtraction captures a higher level of associative integration at this age. 

Although these prior studies provide insights into the interrelations among arithmetic operations, 

to fully understand how arithmetic knowledge becomes integrated, it is important to investigate 

all four operations together over a broad developmental span. Additionally, because instruction is 

strongly linked to mathematics outcomes, curriculum and educational experiences need to be 

considered.  

The Chinese educational context is particularly well-suited for studying arithmetic 

integration due to its intensive early focus on the four operations. In Grade 1, students are 

introduced to addition and subtraction within 100. In the first half of Grade 2, students are 

introduced to multiplication (9 × 9 table), often taught through rhymed learning phrases designed 

to aid memorization (Zhang & Zhou, 2003). In the latter half of Grade 2, division is introduced 

as the inverse of multiplication, and students learn to compute quotients directly. By Grade 3, 

students are expected to have developed the skills necessary to accurately solve arithmetic 

problems for all four operations and are developmentally positioned to begin integrating them 

into a cohesive mental network through sustained practice and application. 

The Present Research 

Despite the numerous theoretical models of associative networks in arithmetic, there is 

little empirical information about the structure and characteristics of an integrated network. In 

the present preregistered studies (Xu et al., 2025), we examined the interconnections among 

arithmetic operations in Chinese students from Grades 3 to 6, using network analyses to examine 

patterns of intercorrelations among the four whole number arithmetic operations. Unlike 

traditional regression, network analysis accommodates multicollinearity by estimating partial 
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associations, that is, the unique relations between each pair of variables while accounting for all 

others. This approach makes it well-suited for examining conceptually related constructs that are 

inherently intertwined, like arithmetic operations.  

In network models we have nodes (i.e., observed variables – in this study, students’ 

fluency in addition, subtraction, multiplication, and division) and edges (i.e., the strength of 

association between nodes; Borsboom et al., 2021). Each edge has an associated weight. In the 

present research, edge weights provide insights into integration, operationalized as the strength 

of the interconnections among nodes. More integrated networks are characterized by stronger 

interconnections among the four operations, whereas less integrated networks are characterized 

by weaker or absent connections between operations. Furthermore, longitudinal network models 

capture dynamic, rather than static, relations as they unfold over time, thereby offering insights 

into how integration develops. Thus, this method can be used to capture the developing structure 

of arithmetic fluency during the critical period when students’ arithmetic skills are expected to 

become increasingly integrated. In the present research, we applied this framework to two 

datasets collected with students in China: A cross-sectional dataset with children in Grade 3 and 

Grade 6 (Study 1) and a longitudinal dataset in which children were assessed at six-month 

intervals starting in Term 1 of Grade 4 and continuing into Grade 5 (Study 2). 

Study 1 

Do students in Grade 3 possess less integrated arithmetic knowledge than students in 

Grade 6, as reflected in differences in network structures? To address this question, we compared 

the arithmetic network structures of students in Grade 3 and Grade 6, focusing on both the 

overall structure of each network and the strength of interconnections between operations. By 

Grade 3, Chinese students are expected to have received formal instruction on all four whole 
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number arithmetic operations. Grade 3 thus provides insight into an early phase of arithmetic 

network development, characterized by limited experience, particularly with division, which is 

taught last among the four operations. In contrast, Grade 6 is the last year of elementary 

education, by which time students have had three additional years of practice. Several theoretical 

frameworks support the view that extended practice fosters both automatization and integration 

of skills (e.g., Anderson, 1982; Logan, 1988; Rickard, 2005; Shrager & Siegler, 1998). Within 

this broader literature, it has been proposed that fluency is not simply a matter of speed, but 

reflects qualitative shifts in cognitive processes from calculation, to retrieval, to automatic 

recognition of the answer, with practice leading to faster, more automatic execution and stronger 

interconnections among component processes (Anderson, 1982; Tenison & Anderson, 2016). 

More broadly, developmental theories, such as Siegler’s overlapping waves framework, suggest 

that with increasing experience, students adopt more efficient strategies and strengthen the links 

among those strategies (Siegler, 1996). Taken together, these theoretical perspectives suggest 

that Grade 6 students should demonstrate more highly integrated arithmetic networks than 

students in Grade 3. 

To examine whether the networks differed in their overall level of integration, we 

compared the global strength of the network structures between Grades 3 and 6 using Multigroup 

Network Modelling. Given the substantial differences in arithmetic experience, we expected 

students in Grade 6 would show stronger network structure among arithmetic operations 

compared to those in Grade 3, reflecting a higher degree of integration in the Grade 6 network 

(Hypothesis 1). We also expected the relative strength of connections between pairs of 

operations within each network to differ, with students in Grade 3 showing more variability in 

edge weights, reflecting a less integrated arithmetic structure, and students in Grade 6 showing 
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more uniform edge strengths across operation pairs, reflecting a more coherent network 

(Hypothesis 2). 

Study 2 

Using longitudinal data collected at 6-month intervals over a two-year period, in Study 2 

we investigated the developmental process of interconnections among the four operations from 

Grade 4 to Grade 5. During these years, formal instruction begins to focus on more advanced 

mathematical concepts such as fractions and decimals; however, these topics are deeply rooted in 

whole number arithmetic. For example, performing operations with fractions often relies on 

whole number arithmetic fluency, particularly in finding common denominators and 

understanding equivalence. This foundational reliance makes the upper elementary years a 

critical period for examining the continuing integration of core arithmetic operations. Following 

the framework proposed by Borsboom et al. (2021), we estimated three complementary network 

models: 1) temporal, which captures directional relations over time, allowing us to examine how 

performance in one arithmetic operation predicts, and is predicted by, performance in other 

operations at subsequent time points; 2) contemporaneous, which captures partial correlations 

among operations within the same time point, controlling for temporal influences; and 3) 

between subjects, which captures the partial correlations between operations based on 

individuals’ average performance across time. Given the absence of prior studies examining the 

developmental integration of arithmetic using a network approach, our hypotheses were 

exploratory. Broadly, we hypothesized that as students consolidate and apply their arithmetic 

knowledge while learning more advanced mathematical concepts, the four operations (i.e., 

addition, subtraction, multiplication, and division) would increasingly support one another’s 

development over time (Hypothesis 3). This hypothesis would be reflected in the temporal 
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network, where growth in each operation is expected to predict, and be predicted by, growth in 

the other operations over time.  

Method 

Participants 

Study 1 

Participants in Study 1 were recruited from two public elementary schools located in a 

northern Chinese city with a population exceeding 6 million and an economic status 

approximately at the national average. Ethical approval for the study was obtained from the 

Institutional Review Board at Shandong Normal University and the local school board, with 

written informed consent collected from parents or guardians. Grade 3 students were recruited 

near the end of their first semester in December 2020 (N = 1,072; Mage = 9.1 years, SD = 0.6; 

56% boys). Grade 6 students were recruited near the end of their first semester in December 

2021 (N = 1,160; Mage = 12.1 years, SD = 0.6; 60% boys).  

Study 2  

Participants in Study 2 were recruited from three public elementary schools located in a 

northern Chinese city with a population exceeding 9 million and an economic status 

approximately at the national average. Ethical approval for the study was obtained from the 

Institutional Review Board at Shandong Normal University and the local school board, with 

written informed consent collected from parents or guardians. Participants (N = 1,055; Mage = 9.8 

years, SD = 0.7; 52% boys) were assessed at four time points: the end of the first semester of 

Grade 4 in December 2021, the end of the second semester of Grade 4 in June 2022, the end of 

the first semester of Grade 5 in December 2022, and the end of the second semester of Grade 5 in 

June 2023.  
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Measures 

For both Study 1 and Study 2, students completed paper-and-pencil whole number 

arithmetic tests based on a version of the standardized German Heidelberg Rechen Test (HRT; 

Haffner et al., 2005) adapted for use with Chinese students by Wu & Li (2006). The task consists 

of four subtests in addition, subtraction, multiplication, and division. For each subtest, students 

are presented with 40 problems in two columns on a single page, arranged in order of increasing 

difficulty. Students had one minute to solve as many problems as possible, in order. Scoring is 

the total number of correct responses, with a maximum possible score of 40. Test-retest 

reliability and Cronbach’s  for each subtest have been found to exceed .70 for Chinese students 

from a large national assessment in China from Grades 1 through 6 (Wu & Li, 2006).  

For the addition subtest, the left column includes a mixture of problems with single- and 

double-digit addends with no sums greater than 20 (e.g., 5 + 3 = __, 12 + 3 = __). The right 

column includes a mixture of problems with single-, double-, and triple-digit addends (e.g., 6 + 

16 = __, 29 + 42 = __, 256 + 464 = __). For the subtraction subtest, the left column includes a 

mixture of problems with single- and double-digit minuends and subtrahends, with minuends no 

greater than 20 (e.g., 7 – 6 = __, 10 – 3 = __, 17 – 10 = __). The right column includes more 

complex problems with double- and triple-digit minuends and subtrahends (e.g., 27 – 8 = __, 55 

– 25 = __, 120 – 22 = __, 452 – 395 = __). For the multiplication subtest, the left column 

includes a mixture of problems with single-digit multiplicands and multipliers (e.g., 4 × 2 = __, 9 

× 6 = __). The right column includes a mixture of problems with single- and double-digit 

numbers, all less than 20 (e.g., 11 × 2 = __, 8 × 17 = __, 15 × 15 = __). For the division subtest, 

the left column includes a mixture of problems with single- and double-digit dividends and 
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single-digit divisors (e.g., 6 ÷ 2 = __, 20 ÷ 4 = __). The right column includes problems with 

double- and triple-digit dividends (e.g., 56 ÷ 8 = __, 100 ÷ 5 = __, 450 ÷ 15 = __). 

Procedure 

For both Study 1 and Study 2, students completed testing during a single group session 

held in their classrooms during school hours. Testing was administered by two trained 

experimenters, each of whom either held or was pursuing a bachelor’s degree in education. Data 

were independently entered and cross-checked by research assistants to ensure accuracy. 

Transparency and Openness 

For both Study 1 and Study 2, we adhered to the Journal Article Reporting Standards 

(JARS; Kazak, 2018). We report where and how the data were collected, justify any data 

exclusions, report all manipulations, and fully describe all measures used in the study. The 

present study was preregistered, with data and code available on the Open Science Framework 

(OSF; Xu et al., 2025). The data come from two larger projects focused on the relations between 

whole number arithmetic and fractions (see OSF for a full list of publications). The present study 

focused on a unique set of theoretical questions that have not been addressed in previous 

publications. 

Analytical Plan 

We followed the guidelines outlined by Burger et al. (2023) and Epskamp and Fried 

(2018) for implementing network analysis. To assess normality, we examined skewness and 

kurtosis (i.e., with values between -2 and 2 considered acceptable), identified potential outliers 

(i.e., using cutoff |𝑧| ≥ 3.29), and evaluated visualizations of the distributions of each arithmetic 

measure. The assumption of redundancy is not of concern in the present research because the 

four arithmetic operations were selected based on theoretical justification, with the understanding 



INTEGRATION OF WHOLE NUMBER ARITHMETIC 15 

that they represent conceptually related yet distinct constructs. The accuracy of the edge 

estimates was evaluated via nonparametric bootstrapping with 2,000 samples, a procedure that 

allows us to determine how much the estimated connections between nodes (arithmetic 

operations) might vary due to sampling variability (Epskamp & Fried, 2018). The stability of the 

edge estimates was evaluated via the Correlation Stability (CS) Index using the case dropping 

method, which quantifies the proportion of the sample that can be removed while still 

maintaining a correlation of at least .70 between the edge weights estimated from the full sample 

and those from a subset, with 95% confidence (Epskamp & Fried, 2018). For the longitudinal 

data, stationarity (i.e., the assumption that the mean and variance of a variable remains stable 

over time) was assessed using the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) unit root test 

(Kwiatkowski et al., 1992).  

Study 1 

Network estimation for arithmetic measures in Grades 3 and 6 was performed using the 

estimateNetwork function from the bootnet package (Epskamp, 2023) in R (R Core Team, 2022), 

using the psychonetrics estimator (Epskamp, Borsboom, et al., 2018; Epskamp & Fried, 2018). 

There were no missing data in the Grade 3 dataset, and only an extremely small percentage of 

cases had missing data in Grade 6 (i.e., 0.1% for multiplication and division). Thus, missing data 

were unlikely to influence the interpretation of the results (Enders, 2010) and were handled using 

full information maximum likelihood.   

For Hypothesis 1, we conducted multi-group network modelling using the fixed-effects 

meta-analytic Gaussian network aggregation framework to compare the global strength between 

the networks of Grades 3 and 6 (Epskamp, Isvoranu, et al., 2022). This method allows us to 

statistically assess whether the overall level of connectivity differs between Grades 3 and 6 by 
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applying equality constraints across groups (i.e., constraining edge weights to be the same across 

groups). For Hypothesis 2, we compared edge weights between operation pairs within each 

network using the bootstrapped difference test, with Bonferroni corrections applied to reduce the 

risk of Type I error. Beyond the primary hypotheses, we also measured centrality, with a focus 

on interpreting centrality strengths (Bringmann et al., 2019) to explore whether certain nodes are 

more central than others. 

Study 2 

Following the guidelines outlined by Blanchard et al. (2022), we examined whether the 

data met the core assumptions for conducting network analyses using panel data. We built three 

networks using panel data: temporal, contemporaneous, and between-person. All models were 

implemented using multilevel vector autoregressive models via the mlVAR package in R 

(Epskamp, Deserno, et al., 2022). This framework incorporates both fixed effects (i.e., capturing 

group-level variability) and random effects (i.e., accounting for individual-level variability; 

Epskamp, Waldorp, et al., 2018). For Hypothesis 3, the temporal network analysis allowed us to 

examine the directional relations among operations over time, capturing how they dynamically 

influence each other’s development. 

Missing data were present for a small percentage of cases: 2% at Time 1, 5% at Time 2, 

and 14% at both Time 3 and Time 4. To determine whether there were differences between 

participants who completed all four waves of testing (n = 911) and those who missed at least one 

wave (n = 144), independent t-tests and χ² tests were conducted on students’ gender and age. No 

significant differences were found between the complete and incomplete data groups, ps > .05. 

Thus, we were confident that data were missing at random. Missing values were estimated by 



INTEGRATION OF WHOLE NUMBER ARITHMETIC 17 

multiple imputation with 20 datasets generated via the mice package in R, using predictive mean 

matching (Buuren & Groothuis-Oudshoorn, 2011).  

Results 

Study 1 

Descriptive Statistics 

An examination of the skewness and kurtosis (Table S1) revealed negative skewness in 

multiplication scores in Grade 3, and positive kurtosis in multiplication scores for Grades 3 and 

6, and in division scores for Grade 6 (see Supplementary Materials for detail). Sensitivity 

analyses conducted with and without the outliers showed generally similar results; however, 

differences emerged in the comparisons of edge weights within each network. Given these 

discrepancies, we removed the identified outliers (≤1% for each operation in both grades). After 

removing these outliers, no concerns regarding normality remained, and we therefore report the 

results based on the dataset with outliers excluded in subsequent analyses. Descriptive statistics 

for the arithmetic measures for students in Grades 3 and 6 are shown in Table 1. All variables 

had positive, strong correlations, ranging from .55 to .76 in Grade 3 and from .65 to .75 in Grade 

6 (see Table S2), suggesting that the arithmetic measures were strongly interrelated, reflecting a 

shared underlying conceptual structure. Across all operations, students in Grade 6 outperformed 

students in Grade 3 (see Table 1). 
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Table 1 

Descriptives Statistics and Comparisons of the Arithmetic Measures for Students in Grade 3 (G3) and Grade 6 (G6) 

 

Variable N M(SD) Skewness Kurtosis G3 vs. G6 Performance 

G3 G6 G3 G6 G3 G6 G3 G6 t df Cohen’s d 

Addition 1,068 1,155 23.3(4.4) 31.6(4.8) 0.2 -0.2 0.1 -0.3 -42.3 2221.0 -1.7 

Subtraction 1,068 1,158 23.3(4.7) 30.1(5.0) 0.2 -0.3 -0.1 0.0 -33.1 2221.4 -1.4 

Multiplication 1,061 1,152 28.4(2.9) 33.6(2.8) -0.9 0.0 2.0 0.6 -43.3 2171.5 -1.8 

Division 1,070 1,148 21.6(6.4) 34.9(4.4) -0.5 -0.9 -0.2 0.5 -57.1 1876.8 -2.5 
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Global Strength Comparison Across Grades 

Accuracy and stability checks (see Supplementary Materials) suggested that the edge 

weights were estimated with a high degree of precision, were robust to sampling variation, and 

had high stability. Figure 1 presents the estimated network structures showing the relations 

among arithmetic operations in Grades 3 and 6. In these networks, edges represent partial 

correlations between pairs of operations, controlling for all other nodes. The thickness of each 

edge reflects the strength of the partial correlation, ranging from .09 to .54 in Grade 3 and 

from .23 to .44 in Grade 6 (see Table 2). As shown in Figure 1, all nodes were interconnected in 

both Grades 3 and 6, with the strength of these connections varying across edges.  

 

Table 2 

Edge Weights Among the Arithmetic Measures for Students in Grade 3 (Below the Diagonal) 

and Grade 6 (Above the Diagonal)  

 

Variable Addition Subtraction Multiplication Division 

Addition - .44 .23 .23 

Subtraction .54 - .25 .30 

Multiplication .24 .09 - .27 

Division .25 .28 .19 - 
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Figure 1 

Estimated Partial Correlation Network of Students’ Arithmetic Fluency in Grades 3 and 6 

 

Note. All relations in the networks are positive. Each node represents one of the arithmetic 

operations (i.e., addition, subtraction, multiplication, and division). Edge thickness reflects the 

strength of the partial correlation between two nodes, controlling for all other nodes in the 

network. No specific minimum/maximum/cut values have been used for network visualization.  

 

To examine whether the overall strength of connections among arithmetic operations 

differed between grades, a multigroup network analysis was conducted. Specifically, we 

compared a model in which all edge weights were freely estimated across Grade 3 and Grade 6 

to a model in which all edge weights were constrained to be equal across groups. The 

unconstrained model had a significantly better fit than the constrained model, 2(2) = 84.02, p 
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< .001. Specifically, the global strength of connections among arithmetic operations was higher 

in Grade 6 than in Grade 3 (1.72 vs. 1.60, p < .001), supporting Hypothesis 1. 

Differences Between Edge Weights within Each Network 

We compared edge weights between operation pairs within each network using the 

bootstrapped difference test, with Bonferroni correction applied for multiple comparisons (p 

< .003). Of the 15 pairwise comparisons of edge weights within each network, more than half 

were significant in Grade 3, whereas one-third were significant in Grade 6 (see Figure 2). 

Notably, the edge between addition and subtraction was consistently stronger than all other 

edges in both grade levels. In Grade 3, the edge between subtraction and multiplication was 

significantly weaker than all other pairs except for multiplication and division (see Figure S2 for 

estimated edge weights). In contrast, edge strengths in Grade 6 were not statistically different 

across operation pairs, except for the addition–subtraction edge, which was stronger than all 

other connections. Together, these results indicate that the network structure in Grade 3 is more 

differentiated, whereas in Grade 6, the network structure is more uniform, supporting Hypothesis 

2.  
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Figure 2 

Differences Between Edge Weights within Grade 3 and Grade 6 Networks 

 

Note. Error bars represent bootstrapped 95% confidence intervals, with intervals excluding 0 

indicating significant differences, with the Bonferroni correction applied (p < .003). A–S: 

Addition–Subtraction, A–M: Addition–Multiplication, A–D: Addition–Division, S–M: 

Subtraction–Multiplication, S–D: Subtraction–Division, M–D: Multiplication–Division. 

 

Centrality Strengths within Each Network 

In addition to comparing edge weights within each network, we examined centrality 

strengths in an exploratory analysis to determine whether certain nodes were more central. 

Central strengths in Grade 3 were 1.05, 0.52, −1.24, and −0.31 for addition, subtraction, 

multiplication, and division, respectively. Central strengths in Grade 6 were 0.37, 1.23, −0.99, 
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and −0.61 for addition, subtraction, multiplication, and division, respectively. Statistical 

comparisons of these values, based on the bootstrapped difference test, are presented in Figure 3, 

with the Bonferroni correction applied (p < .008). In Grade 3 and Grade 6 both addition and 

subtraction were significantly more central when compared with multiplication and division, 

although addition and subtraction did not significantly differ from one another. This pattern 

suggests that these two operations were the most central. In Grade 3, multiplication was less 

central than addition and subtraction but more central than division, whereas in Grade 6 the 

centrality strengths of multiplication and division did not significantly differ.  

 

Figure 3 

 

Differences Between Centrality Strengths within Grade 3 and Grade 6 Networks 

 

Note. Error bars represent bootstrapped 95% confidence intervals, with intervals excluding 0 

indicating significant differences, with the Bonferroni correction applied (p < .008)
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Study 2 

Descriptive Statistics 

An examination of the skewness and kurtosis (Table S3) revealed positive kurtosis in 

multiplication scores across the four time points (see Supplementary Materials for detail). 

Sensitivity analyses conducted with and without the outliers showed similar results; however, 

noticeable differences in the edge weight strengths emerged in the contemporaneous model. 

Thus, we removed the identified outliers (≤1.5% for each operation across time points). After 

removing these outliers, no concerns regarding normality remained, and we therefore reported 

the results based on the dataset with outliers excluded in subsequent analyses. Table 3 shows the 

descriptive statistics for the arithmetic measures after removing the outliers. All variables had 

positive, strong correlations ranging from .60 to .81 (see Table S4). Students’ arithmetic 

performance improved over the two-year period (see Supplementary Materials for ANOVAs). 

The KPSS test confirmed that the four arithmetic operations met the assumption of stationarity 

(ps > .05). 
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Table 3 

 

Descriptive Statistics for Students in Grade 4 (T1 and T2), and Grade 5 (T3 and T4)  

Variable N M(SD) Skewness Kurtosis 

T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 T1 T2 T3 T4 

Addition 1,033 998 905 904 26.2(4.8) 28.1(4.7) 29.2(4.6) 29.5(4.8) 0.1 -0.2 -0.3 -0.5 -0.2 0.0 0.0 0.1 

Subtraction 1,033 999 906 906 24.2(5.1) 25.8(5.2) 27.3(5.2) 27.3(5.4) 0.1 -0.3 -0.4 -0.6 -0.3 -0.2 0.0 0.3 

Multiplication 1,023 985 897 898 29.5(3.4) 29.5(3.6) 31.5(2.9) 31.9(3.1) -0.7 -0.9 -0.7 -0.6 0.6 1.0 1.4 1.1 

Division 1,033 1,001 901 903 23.5(7.3) 24.6(7.4) 27.6(7.1) 30.1(6.7) -0.4 -0.4 -0.8 -0.9 -0.5 -0.4 0.4 0.5 

 

Note. T1–T4 represent Grade 4 Fall, Grade 4 Spring, Grade 5 Fall, and Grade 5 Spring, respectively.  
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Temporal Network 

Accuracy and stability checks (see Supplementary Materials) suggested that the edge 

weights were estimated with a high degree of precision (see Figure S4), were robust to sampling 

variation, and had high stability. The estimated edge weights are shown in Table 4, and the 

temporal network is shown in the left panel of Figure 4. Interdependency is reflected in the 

presence of both incoming and outgoing arrows between operations in the temporal network, 

representing significant directional associations over time. These arrows are based on partial 

directed correlations that isolate the unique predictive contribution of one operation to another, 

after controlling for the influence of all other operations in the model. As seen in Figure 4, the 

development of arithmetic fluency appeared to be highly interconnected, with the growth of each 

operation statistically predicted by, and predictive of, the others. A notable exception, however, 

was multiplication, which showed a more limited role in the broader developmental network: It 

significantly predicted growth in division but did not contribute to the development of addition 

or subtraction, as indicated by the absence of significant outgoing edges to those nodes. 

Conversely, the development of division appeared to be strongly influenced by all three other 

operations—addition, subtraction, and multiplication—as reflected in the thicker arrows, 

suggesting that gains in division fluency may be particularly dependent on a well-integrated 

arithmetic network. Together, Hypothesis 3 was mostly supported: From Grades 4 to 5, the 

development of arithmetic operations was highly interdependent, with the exception of 

multiplication, which showed limited reciprocal connections. 
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Table 4 

 

Edge Weights and Centrality Strengths of the Temporal, Contemporaneous, and Between-Subjects Networks 

 

 Addition Subtraction Multiplication Division Temporal 

Temporal In-strength Out-strength 

Addition → -.16 .12 .27 .22 0.33 0.61 

Subtraction → .16 -.16 .22 .21 0.29 0.59 

Multiplication → NA NA -.18 .16 0.68 0.16 

Division → .16 .17 .19 -.08 0.69 0.52 

 Contemporaneous, lower triangle; Between-Subjects, upper triangle Contemporaneous  Between-Subjects 

Addition — .58 .31 .16 0.43 1.05 

Subtraction .14 — NA .39 0.45 0.97 

Multiplication .09 .19 — .39 0.47 0.70 

Division .20 .12 .19 — 0.51 0.94 

 

Note. NA (not available) indicates the absence of an edge (i.e., partial correlation between the two nodes is not significantly different 

from zero, after controlling for other nodes in the network). For the temporal network, the operations in the columns and rows 

represent directional edge weights: The operations with → (rows) indicate nodes that predict operations (columns), with same-

operation cells representing autoregressive loops. Negative autoregressive loops in the temporal network were observed, likely 

reflecting a regression-to-the-mean effect, where students who scored unusually high or low at one time point tended to return closer 

to their average level subsequently (Hamaker et al., 2021).  
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Figure 4 

Temporal, Contemporaneous, and Between-Subjects Network 

 

Note. Edge thickness indicates the strength of associations, controlling for other effects. In the temporal network (left), loops reflect 

autoregressive effects, while arrows indicate predictive relations between operations across time points. The contemporaneous 

network (middle) shows associations within the same time point, accounting for temporal effects. The between-subjects network 

(right) represents correlations between students’ average performance on each operation over time.
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Centrality strengths, reported in Table 4, were compared using the bootstrapped 

difference test, with the Bonferroni correction applied (p < .008). As shown in Figure 5, addition 

and subtraction showed higher out-strength (i.e., the extent to which a node predicts other nodes 

over time) than multiplication and division, with no difference between addition and subtraction. 

Moreover, division had higher out-strength than multiplication. In contrast, multiplication and 

division showed higher in-strength (i.e., the extent to which a node is predicted by other nodes 

over time) than addition and subtraction. There were no in-strength differences between addition 

and subtraction, or between multiplication and division. 

Contemporaneous Network 

Next, we examined the contemporaneous network, which captures within-person 

associations between nodes measured at the same time point, after accounting for their relations 

with all other nodes at that time point, as well as temporal effects from the preceding time point. 

As shown in the middle panel of Figure 4, there were positive associations between all pairs of 

arithmetic operations within each time point, after controlling for all temporal effects, suggesting 

that arithmetic operations are not only longitudinally interconnected over time but also 

functionally linked within each measurement occasion, possibly reflecting shared cognitive 

processes or overlapping task demands. No significant differences in centrality strength were 

found among any pairs of operations within the contemporaneous network (see Figure 6). 
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Figure 5 

 

Differences Between Centrality Strengths for the Temporal Network 

 

Note. Error bars represent bootstrapped 95% confidence intervals, with intervals excluding 0 

indicating significant differences, with Bonferroni correction applied (p < .008). Out-strength 

refers to the extent to which a node predicts other nodes over time; in-strength refers to the 

extent to which node is predicted by other nodes over time. 
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Figure 6 

 

Differences Between Centrality Strengths for the Contemporaneous and Between-Subjects 

Networks 

 

Note. Error bars represent bootstrapped 95% confidence intervals, with intervals excluding 0 

indicating significant differences, with the Bonferroni correction applied (p < .008). 

 

Between-Subjects Network 

Lastly, we examined the between-subjects network, which captures dependencies 

between nodes after controlling for all other nodes in the network. Unlike cross-sectional models 

that reflect relations at a single time point, the between-subjects network reflects how the 

variables are related on average across all time points. As shown in the right panel of Figure 4, 

the presence of undirected edges among most of the operations indicates conditional 

dependencies between nodes, after accounting for all other nodes in the network. Lastly, in terms 

of centrality strength within the between-subjects network, all pairs of operations differed 

significantly, except for subtraction and division. Specifically, addition was the most central 

node, followed by subtraction and division, with multiplication being the least central.  
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Discussion 

Arithmetic fluency is a foundational skill that supports not only accurate and efficient 

computation but also facilitates conceptual understanding, flexible problem-solving, and the 

acquisition of advanced mathematical knowledge (McNeil et al., 2025). In the present research, 

we used network analysis to examine the interconnections among the four core arithmetic 

operations in Chinese students during a critical period of mathematical development. In Study 1, 

we found that the arithmetic networks of students in Grade 6, compared to those of students in 

Grade 3, were more strongly interconnected and had more consistent connections across 

operations. In Study 2, longitudinal analyses revealed that the development of these 

interconnections from Grades 4 to 5 was highly interdependent — improvement in one operation 

was predicted by advancements in the others. Furthermore, addition and subtraction formed the 

core building blocks of arithmetic fluency, whereas division reflected significant integration with 

the other operations, and multiplication generally showed weak connections with other 

operations. These findings offer the first developmental evidence for the integration of arithmetic 

operations, showing increasingly cohesive and interrelated arithmetic networks.  

From Differentiation to Integration: Developing Interconnected Arithmetic Associations 

Broadly, the results of the present research demonstrate a developmental progression 

from differentiated to integrated arithmetic knowledge between Grades 3 and 6. In Grade 3, the 

youngest and least experienced group in our sample, students demonstrated the most 

differentiated network, with strong connections between addition and subtraction and weaker or 

less consistent connections with multiplication and division. This pattern presumably reflects 

their limited exposure to the latter operations at this phase of learning. From Grade 4 to Grade 5, 

students’ arithmetic operations became more strongly and evenly interconnected, with most 
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operations developing interdependently, except for multiplication, which only predicted division. 

By Grade 6, the most experienced group in our sample, students demonstrated a uniform and 

highly interconnected network, with a particularly strong connection between addition and 

subtraction.  

Our results suggest that from Grades 3 to 6, students show progress from a differentiated 

to a more integrated and coherent arithmetic network. The findings are consistent with prior 

research suggesting that the associative relations among numbers change with increased 

experience and exposure (LeFevre et al., 1991; LeFevre & Bisanz, 1987). Notably, these 

behavioural developments mirror patterns observed at the neural level, with research showing 

that brain regions involved in arithmetic processing become increasingly specialized and 

functionally segregated between the ages of 9 and 12 (Istomina & Arsalidou, 2024; Wang et al., 

2022). Moreover, the absence of distinct neural signatures for individual arithmetic operations 

suggests that they have overlapping neutral networks (Istomina & Arsalidou, 2024), supporting 

the idea of integration at both cognitive and neural levels.  

The development of an increasingly interconnected and largely uniform arithmetic 

network observed in the present research may reflect the instructional approach used in China. 

Arithmetic fluency is a strong pedagogical focus in the Chinese education system, where early 

instruction emphasizes mastery of basic operations as a foundation for developing deeper 

conceptual understanding (Dahlin & Watkins, 2000; Ma, 2010; Marton et al., 1996). Beginning 

in Grade 2, the national mathematics curriculum incorporates progressively complex mixed-

operation problems that integrate addition, subtraction, multiplication, and division (e.g., 35 - 23 

+ 18; 63 ÷ 9 + 8 × 4; Ministry of Education of the People’s Republic of China, 2022). These 

problems are designed to not only reinforce procedural fluency, but also to encourage conceptual 
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integration across operations. Unlike single-operation problems, mixed-operation problems 

require students to distinguish between operations, understand their relational structures, and 

apply strategies based on the problem demands. Regular engagement with such problems may 

help students develop a deeper awareness of how operations are interconnected and promote 

flexible application of arithmetic knowledge. However, empirical research directly examining 

how mixed-operation practice supports arithmetic integration is still limited and represents a 

valuable direction for future research. 

The Central Role of Additive Skills in Arithmetic Development 

To further unpack arithmetic development, in the present study we closely examined the 

development of each operation in relation to the others. Across both studies, we observed a 

strong link between addition and subtraction. This strong link was expected, given that these 

operations are conceptually and procedurally complementary (Robinson, 2017), and are 

introduced together early in the Chinese elementary education. Prior research has shown that 

teaching and practicing addition facts enhances access to related subtraction facts (Buckingham, 

1927; Campbell & Agnew, 2009). Thus, in the present study, students’ extensive experience with 

additive operations likely contributed to the strengthened associative connections between these 

skills.   

In relation to the other operations, addition and subtraction consistently emerged as the 

most central nodes in the arithmetic network, serving as critical hubs that support and integrate 

the development of other operations. This pattern aligns with the HSI model, which posits that 

arithmetic competence develops through a hierarchy of integrated associations, with additive 

knowledge forming the foundation from which multiplicative knowledge emerges (Xu et al., 

2023). Our findings build on previous research demonstrating the predictive role of additive 
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skills in multiplicative skills (Thevenot et al., 2023; Xu et al., 2021). Extending this line of work, 

we show that both addition and subtraction, which are conceptually and procedurally 

complementary, are equally central in supporting the development of multiplication and division. 

These results emphasize the view that additive operations precede and may play a predictive role 

in the integration of more complex multiplicative skills.  

These findings underscore the critical importance of emphasizing addition and 

subtraction in early education, not simply as isolated skills, but as foundational and related 

building blocks for broader arithmetic development. Given their central role in supporting the 

integration of multiplication and division, instructional practices should prioritize helping 

students develop a deep conceptual understanding of how additive reasoning relates to 

multiplicative reasoning. While additive operations involve representing quantities as collections 

of individual units, multiplicative operations require students to conceptualize quantities as 

composed of equal groups of units (Clark & Kamii, 1996; Harel & Confrey, 1994; Nunes et al., 

2016; Steffe, 1992). From this perspective, multiplicative representations are constructed on the 

foundation of existing additive understanding (Steffe, 1992). Thus, early mastery of additive 

associations may help support students’ multiplicative reasoning by reinforcing the conceptual 

links between operations. Interventions targeting arithmetic fluency could benefit from ensuring 

that students develop a strong foundation in addition and subtraction to better support the 

acquisition of more advanced skills. 

 

 

The Differing Roles of Multiplication and Division in Arithmetic Development 
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Although addition and subtraction were shown to be central to the arithmetic network, the 

connections between multiplication and the other operations were less consistent. In Study 1, the 

connections between multiplication and the other operations were generally weak in Grade 3, 

with the connection between subtraction and multiplication being the weakest. This contrasts 

with findings from Xu et al. (2021), who found that for Canadian students, subtraction uniquely 

predicted multiplication performance in Grade 3. In Study 2, multiplication served primarily as a 

predictor of division, but did not contribute to the development of addition or subtraction and it 

was the least central operation. Moreover, the lack of association between subtraction and 

multiplication in the between-subjects network suggests there are weaker cognitive or 

instructional links between these two operations.  

These findings may reflect the curriculum and instructional approach for learning 

multiplication facts in China. Specifically, students are expected to fully memorize the 

multiplication table, using rhyming phrases by the end of Grade 2, promoting automatic retrieval. 

In contrast, in Canada and other countries, full memorization is not typically expected until later 

grades. As a result, subtraction, which reflects integrated additive associations, may play a more 

prominent role in supporting the development of multiplicative skills in the Canadian context, 

where these operations are still being consolidated. In contrast, in the Chinese context, 

multiplication may be more independently developed through rote memorization, resulting in 

weaker integration with other operations. Across time points and studies, most Chinese students 

were able to solve problems beyond the basic 9 × 9 multiplication table within a brief one-minute 

time limit, suggesting some memorization and possibly the use of partial retrieval strategies (e.g., 

for 14 × 6, a student might recall 10 × 6 = 60 and 4 × 6 = 24, then combine: 60 + 24 = 84). Taken 
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together, these differences in curriculum and instruction likely account for the contrasting 

patterns of association observed between subtraction and multiplication. 

In contrast to multiplication, division emerged as the most dependent operation, strongly 

associated with prior knowledge of addition, subtraction, and multiplication. Division is often 

considered the most conceptually demanding of the four arithmetic operations (Greer, 1992; 

Parmar, 2003; Thompson & Saldanha, 2003). In the early phase of mathematics education in 

China, division is introduced as the inverse of multiplication—requiring students to have already 

memorized multiplication facts and understand their relational structure (Ministry of Education 

of the People’s Republic of China, 2022). For example, to comprehend that 12 ÷ 3 = 4, a student 

must recall the corresponding multiplication fact 3 × 4 = 12 and apply it in reverse.  

Building on this foundation, a more advanced understanding of division involves flexibly 

applying both additive and multiplicative reasoning. For example, solving 48 ÷ 4 can be 

approached not only by recalling the related multiplication fact (4 × 12 = 48), but also through 

repeated subtraction (i.e., determining how many times 4 can be subtracted from 48), or by 

decomposing the dividend into simpler parts (e.g., 40 ÷ 4 + 8 ÷ 4). More complex division 

problems, such as dividing a three-digit number by a two-digit number using a standard 

algorithm, require the coordination of multiple arithmetic skills – multiplication to estimate 

partial quotients, subtraction to track remainders, and addition to verify or adjust intermediate 

results. These examples show that division is not an isolated skill – it draws on a broad 

foundation of arithmetic knowledge and highlights the importance of integrating addition, 

subtraction, and multiplication.  

Our findings offer empirical support for the view that division functions as a capstone 

operation, appearing to build on earlier-learned arithmetic knowledge and emerging only when 
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foundational operations are well integrated. This conclusion aligns with the HSI model, which 

emphasizes that arithmetic competence develops through successive integration of operations, 

with division positioned at the top of the arithmetic hierarchy (Xu et al., 2022, 2023). Practically, 

this finding reinforces the pedagogical principle that instruction should be scaffolded to move 

students beyond procedural fluency, guiding them to recognize the relational structure among 

operations to foster a more flexible and interconnected understanding of arithmetic (Parmar, 

2003). 

Implications for Theoretical Models of Arithmetic 

Several theoretical models of arithmetic converge on the idea that arithmetic knowledge 

is organized as an interconnected mental network (Ashcraft, 1992; Campbell, 1995; Rickard, 

2005; Siegler, 1988; Verguts & Fias, 2005;). A common challenge for these frameworks, 

however, is the lack of empirical evidence on the structure and developmental dynamics of such 

networks. By applying network analysis, the present study provides an early empirical account of 

how the four operations become integrated across late primary school. Although most 

frameworks assume that associative strength underpins fluency, they rarely specify which 

operations should emerge as central or how their roles may shift over time.  

Our network analyses revealed a strong association between addition and subtraction, 

which contrasts with predictions of the Triple-Code Model (Dehaene, 1992). According to this 

model, addition and multiplication should be closely related, as both are assumed to rely on 

verbal retrieval and to share representational pathways. One possible explanation for our 

different finding is that subtraction is often conceptualized and taught as the inverse of addition, 

fostering stronger links between these operations. Developmental and instructional factors may 

also play a role: in Chinese classrooms, addition and subtraction are introduced and reinforced 
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together well before multiplication and division, further consolidating their integration (Ministry 

of Education of the People’s Republic of China, 2022). Right from the initial introduction in 

Grade 1, students are taught addition and subtraction in an inverse format (e.g., 3 + 5 = 8, 8 – 3 = 

5), with workbook exercises further reinforcing the close connection between these operations. 

This instructional emphasis may help explain why we observed such a strong addition – 

subtraction association in our networks. Taken together, these results suggest that the structure of 

arithmetic networks is not static but dynamic, shaped by both cognitive mechanisms and 

cultural–instructional experiences. Future theoretical work should account for these 

developmental differences and more explicitly integrate the role of instructional practices in 

shaping network organization.  

Limitations and Future Research 

One limitation of the present research is that we were unable to capture the full 

developmental trajectory of arithmetic integration from Grades 3 to 6. Although our longitudinal 

study (Study 2) tracked students from Grades 4 to 5, this period likely reflects a phase in which 

much of their basic arithmetic fluency has already been established, as evidenced by the 

relatively modest gains observed between time points. A longer-term panel study spanning 

Grades 3 to 6 would provide a more comprehensive picture of how integration evolves over time 

and may reveal more substantial developmental changes between time points. Future research 

using such a design could offer valuable insights into how students build connections among 

different arithmetic operations and how these connections are consolidated over the course of 

elementary education. Temporal network analysis in particular holds promise for tracing these 

dynamic patterns longitudinally. 
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Additionally, our ability to examine the mechanisms of arithmetic integration was limited 

by the constraints of group testing, which precluded the collection of item-level data such as 

response time and accuracy. It is possible that the observed lack of dependency between 

multiplication and other operations is specific to single-digit problems, where rote memorization 

plays a central role. In contrast, multiple-digit multiplication may require greater integration with 

other operations, such as addition, particularly in problems that involve carrying digits (e.g., 

17 × 4). Thus, future research distinguishing between single- and multi-digit multiplication 

problems and capturing item response time would add important information about development. 

Moreover, in addition to capturing item-level responses, future research should consider 

incorporating measures of students’ problem-solving strategies—for instance, whether they 

relied on retrieval, decomposition, or compensation. These data would shed light on the 

cognitive processes that underlie network integration and show how students flexibly draw on 

arithmetic associations as their mental networks become more interconnected. Such research 

could expand the HSI model by showing how integration supports efficient arithmetic problem 

solving. 

Finally, although our primary interpretation emphasizes mathematics-specific experience 

and instruction, another possibility is that the increased integration among arithmetic operations 

from Grades 3 to 6 may reflect not only mathematics-specific development but also broader 

cognitive mechanisms. Research on the positive manifold suggests that as development 

progresses, cognitive abilities across domains become increasingly interrelated (van der Maas et 

al., 2006), and these skills can mutually reinforce one another over time (van der Maas et al., 

2017). From this perspective, the increasingly strong interconnections among arithmetic 

operations observed over time in the present study may partly reflect domain-general processes, 
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rather than solely mathematics instruction and practice. Future work that incorporates both 

domain-general tasks (e.g., working memory, processing speed, reasoning) and domain-specific 

tasks (e.g., arithmetic operations) within the same network framework will help clarify whether 

the observed integration is mathematics-specific or reflects broader cognitive processes. 

Conclusion 

The present research is the first to provide empirical evidence that arithmetic knowledge 

becomes increasingly integrated, progressing from differentiated, operation-specific knowledge 

to a more unified and interconnected system. Using network analysis, which eliminates 

constraints on interpretation imposed by the influence of strong correlations amongst the 

operations, we investigated the connections and overlap between operations that support a 

unified arithmetic network. Building on theoretical models, the present research provides 

empirical support for the representation of arithmetic knowledge in an interconnected mental 

network. Furthermore, we show that additive associations form the foundation for the 

development of multiplicative associations. These findings highlight the value of viewing 

arithmetic as a dynamic network of interrelated associations that consolidate over time. Solid 

whole number arithmetic skills provide the foundation for learning more advanced mathematical 

concepts and thus are crucial for students’ mathematical development and achievement.  
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