APPROACHING A BRISTOL MODEL®)

ASAF KARAGILA

ABSTRACT. The Bristol model is an inner model of L[c], where ¢ is a Cohen
real, which is not constructible from a set. The idea was developed in 2011
in a workshop taking place in Bristol, but was only written in detail by the
author in [8]. This paper is a guide for those who want to get a broader view
of the construction. We try to provide more intuition that might serve as a
jumping board for those interested in this construction and in odd models of
ZF. We also correct a few minor issues in the original paper, as well as prove
new results. For example, that the Boolean Prime Ideal theorem fails in the
Bristol model, as some sets cannot be linearly ordered, and the ground model
is always definable in its Bristol extensions. In addition to this we include a
discussion on Kinna—Wagner Principles, which we think may play an important
role in understanding the generic multiverse in ZF.

1. INTRODUCTION

Mathematicians love classifications. We enjoy classifying objects into different
categories, and for a good reason. Classifications teach us about abstract properties
and help us deepen our understanding of various objects and theories.

Set theorists are generally interested in models of set theory. If V satisfies ZFC,
we want to classify models of set theory which lie between V' and some generic
extension,! V[G]. In the case where “set theory” is understood as ZFC, Vopénka’s
theorem tells us exactly what the intermediate models are: they are generic exten-
sions given by subforcings of the forcing which is used to introduce G over V.

On the other hand, when we are interested in classifying arbitrary intermediate
models of ZF, instead, even if we assume that V satisfied ZFC, the task becomes
significantly harder, and dare we say, nigh impossible. For a start, a generic exten-
sion of a model of ZFC cannot be a model of ZF + —=AC. One might be inclined to
say that such intermediate extension would still be a symmetric extension, which
is a type of inner model of a generic extension defined using automorphisms of the
forcing. While this is true under some additional conditions on the intermediate
model, it turns out that if M is an intermediate model between V' and V[G], even
if M is a symmetric extension of V', it might not be given by any forcing even
remotely related to the one for which G was generic.

The reality is that intermediate models of ZF are far wilder than their ZFC-
counterparts. The Bristol model is the first explicit example of such a model. This
is a model intermediate to L[c], where ¢ is an L-generic Cohen real, which is not
L(z) for any set x, let alone a symmetric extension of L (by any means, not just the
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Cohen forcing). While there is a semi-canonical Bristol model, modulo a particular
choice of ¢, it is immediate from the construction that, in a very good sense of the
word, most models intermediate to L[c] are not even definable. We will clarify this
in section 7.

The idea for this model came about in a small 2011 workshop in Bristol on topics
related to the HOD Conjecture. In attendance were Andrew Brooke-Taylor, James
Cummings, Moti Gitik, Menachem Magidor, Ralf Schindler, Matteo Viale, Philip
Welch, and W. Hugh Woodin, henceforth “the Bristol group”. The details were not
written down in full, and the model remained as a folklore rumour until the author’s
effort to formalise it. The details of the construction are given in [8], which was
part of the author’s Ph.D. dissertation, written under the supervision of Menachem
Magidor. This paper aims to give a bird’s eye view of the construction, from three
different perspectives (for people coming from different walks of set theory). We
will also correct a few minor mistakes in the original paper, and prove a handful of
new theorems about the Bristol model, and about models of ZF in general.

1.1. Structure of this Paper. The Bristol model is presented in [8] as an itera-
tion of symmetric extensions, starting from a Cohen real. The idea is to have, at
successor steps, a “decoding mechanism” which is a symmetric extension over an
intermediate step such that two properties hold: (1) the decoding mechanism has
a generic (relative to the intermediate step) in the Cohen extension, and (2) the
decoding mechanism only adds subsets of sufficiently high rank.

We will cover the basics of the technical tools in section 2. We will define
symmetric extensions, and briefly outline the main ideas related to iterating them
(or rather, why it is hard to iterate symmetric extensions). We will also discuss
the combinatorial ideas needed for the decoding mechanism, both at successors of
limits, as well as double successors.

After covering the preliminary tools, we will present the decoding mechanism,
and the generic argument needed for the proof to work. In section 4 we explain
the three different approaches to constructing the Bristol model. All three are
equivalent, but for different people some of these might be seen as “more natural”
and can help understand the model better. We will not dive into the intimate
details, though. The goal of this paper is to serve as a companion, and help provide
not only the big picture of the construction, but also serve as a first step towards
reading and understanding the construction’s details presented in [8].

Having discussed the construction of the model, we will then point towards
some minor gaps and typos in the original [8]. Then we will discuss Kinna—Wagner
Principles which we expect to play a role in the study of choiceless models such as
the Bristol model. We will make some new observations, and suggest conjectures
for future research. Finally, in section 9 we will prove that some sets in the Bristol
model cannot be linearly ordered, and therefore the Boolean Prime Ideal theorem
is false there. We finish the paper with a long list of open questions related to the
Bristol model.
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thank David Asper6é and Andrés E. Caicedo for providing thorough comments on
early versions of this manuscript, as well as the anonymous referee for their helpful
suggestions in improving this manuscript.
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2. PRELIMINARIES: SYMMETRIC EXTENSIONS, THEIR ITERATIONS, AND MORE

In this paper, the term forcing will denote a preordered set with a maximum,
denoted by 1, unless explicitly mentioned otherwise.? Of course, we will invariably
think about a forcing as a partially ordered set, a separative one, in fact, knowing
full well that this will not limit our generality.> The elements of P are called
conditions, and using them we define P-names. We refer the reader to any of
[4, 6, 12] for the basic methodology of forcing.

Let P be a notion of forcing, we follow the convention that if p,q € P, then
g < p indicates that ¢ is a stronger condition, and we will often say that ¢ extends
p. Two conditions are compatible if they have a common extension, and they are
incompatible otherwise.

Given a collection of P-names, {#; | ¢ € I}, that we want to transform into a
name, we will denote by {&; | i € I'}* the name {(1, ;) | ¢ € I'}, and we say that a
name is a e-name when it has this form. This extends naturally to ordered pairs,
sequences, functions, etc. With this notation we can easily define the canonical
names for ground model sets: & = {y | y € z}°.

Given two P-names, & and g, we say that & appears in g if there is some p € P
such that (p, &) € y. We will use a similar terminology stating that p appears in 3.

2.1. Symmetric extensions. As we remarked, a generic extension of a model of
ZFC is again a model of ZFC. Symmetric extensions are intermediate models to
generic extensions where the axiom of choice may fail.

Let P be a forcing, and let m be an automorphism of P. The action of 7 extends
to the P-names by recursion:

i = {(mp,7y) | (p,9) € £}

Lemma (The Symmetry Lemma). Let w be an automorphism of a forcing P,
and let & be a P-name. For every condition p,

plk (i) < mplk o(ri). O

Fix a group ¥ < Aut(P). We say that Z is a filter of subgroups on ¢ if it is a
filter on the lattice of subgroups, namely, it is a non-empty collection of subgroups
which is closed under finite intersections and supergroups. We will, unless stated
otherwise, assume it is a proper filter, i.e. the trivial group is not in .#.* Finally,
Z is normal if whenever m € 4 and H € %, then tHr ! € F as well. In most
cases we are interested not necessarily in a filter, but in a filter base, and we will
ignore the distinction between the two.

Call (P,¥,.Z) a symmetric system if P is a notion of forcing, ¢4 is a group of
automorphisms of P, and .% is a normal filter of subgroups on 4. We shall fix a
symmetric system (P,¥,.7) for the rest of this subsection.

For a P-name, &, let symy (&) denote the group {m € ¥ | 7& = &}. If it is the
case that symg (%) € %, then we say that & is . % -symmetric. And similarly, we say
that & is hereditarily & -symmetric if being .#-symmetric is hereditarily true for all
names hereditarily appearing in {z}°.

We denote by HS & the class of hereditarily .#-symmetric names. We denote by
IF"S the relativisation of the forcing relation to HS: we restrict the quantifiers and
free variables to this class. It is not hard to check that the Symmetry Lemma applies

2We will, eventually, do a bit of class forcing.

3We still insist on the preorder definition, as it does make the definition of an iteration signif-
icantly more manageable.

4There is no point in using the improper filter when taking a symmetric extension. However,
for the sake of generality it should be noted that this can be useful when iterating. We promise
to never bring this up in the course of this paper again.
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for 5 provided that we use automorphisms from ¢. The following theorem is a
condensation of [6, pp. 253-254].

Theorem. Let G C P be a V-generic filter, and let M denote the interpreted class
HSG = {&% | @ € HSz}. Then M is a transitive class model of ZF such that
V C M C V[G]. Moreover, M |= p(i%) if and only if there is some p € G such
that p IF1S (). O

The class M is also called a symmetric extension of V. It turns out, as shown
by Usuba [22], that M is a symmetric extension of V' if and only if M = V(z) for
some x € V[G]. We will discuss this in more detail in section 7.

We will omit 4 and .# from the notation and terminology when they are clear
from context, which is usually what is going to happen.

2.2. Example. Let P be Add(w,w;). Namely, p € P is a finite partial function
from w; X w — 2. We let our 4 be the group of permutations of w; acting on P
in the natural way: 7p(wa,n) = p(a,n). Finally, for £ C wy, let fix(F) denote
{re¥|n|E=id}, and set F = {fix(E) | E € [w]<%1}.5

For every o < wy, let a,, be the name of the ath Cohen real, {{p,n) | p(a,n) = 1},
and set A = {aq | @ < w;}*.

Claim 2.1. For every m € 4 and o < wy, Tao = Grq- Consequently, rA=A. O

As an immediate corollary, a, € HS for each a < wi, as witnessed by fix({a}),
and so A € HS as well.

Theorem 2.2. 1 F"S A cannot be well-ordered. Consequently, the real numbers
cannot be well-ordered, and therefore 1 1S —AC.

Proof. Let f € HS, and suppose that p is a condition such that p I-HS f:A— 7 for
some ordinal 7. Let E be a countable set such that fix(E) C sym(f). We may also
assume that 7 € fix(F) satisfies 7p = p by adding a finite set to F, and replacing
it with EU {« | 3In (a,n) € dom p}.

Fix a ¢ E, as Pis a c.c.c. forcing, the set X = {€ < | g <p:qIF™ f(aa) = €}
is countable. Note that p IF" f(a,) € X.

For any 8 < wy, let mg denote the 2-cycle (« ). Therefore,

T3P [ Wﬂf:(ﬂ'ﬂda) S WB)V(.

Easily, mg € fix(E) if and only if 3 ¢ E. So for all 5 ¢ E, p |15 f(('zﬁ) e X. In
particular, p must force that f has a countable range. As p and f were arbitrary, we
in fact have shown that every ordinal-valued function in the symmetric extension
defined on A must have a countable range.

To finish the proof we appeal to the c.c.c. of the Cohen forcing again, noting that
w1 is not collapsed, and therefore 1 IFHS |A\ # Ng. Therefore there is no injection
from A into the ordinals, as wanted. O

The standard arguments are usually presented in a slightly different way. We
usually extend p to a condition ¢, which decides the value of f (aa), and then show
that we find 7 € fix(E) such that 7q is compatible with ¢, and ma # «. This then
shows that no extension of p can force f to be injective. Chain condition based
arguments are not very common in results of this type, and we hope that this paper
will help to popularise the idea.%

5The keen-eyed reader will notice that this is a filter base, not a filter.
6See [10] for more examples of this sort.
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2.3. Iterations of symmetric extensions. Iterating symmetric extensions is not
an easy task. While some ad-hoc constructions can be found in the literature from
the very early 1970s,” the only systematic development of such a framework was
done by the author in [9], and so far only for finite support iterations. The goal of
this section is not to fully develop and explain this technique, but instead provide
an intuition as to how the technique works, and what are the difficulties that need
to be overcome in the case of the Bristol model.

The intuition behind iterations of symmetric extensions is as naive and simple
as it can get. We want to have an iteration of forcing notions, in this case with
finite support, and we want to identify a class of names which correspond to the
intermediate model that we would get if we were to iterate symmetric extensions
one step at a time.

Looking at a two-step iteration, say P % Q, we also need to associate ¢ and %
to P, and P-names for a group of automorphisms, # < Aut(Q), and a filter of
subgroups K on H. Now, a P % Q-name is going to be in the iterated symmetric
extension if its projection to P is in HS#,® and it is forced by 1p to be in HS 4,
that is a hereditarily symmetric name in the second step.

But we can weaken this slightly, and much like we only require that the projected
P-name is forced to be a name in HS 5, we can similarly require that the projected
name is forced to be equal to some name in HS &z. That we, we are allowed to “mix”
names from HSz over an antichain.” So the projected name need only be “gener-
ically equal” to an .%#-symmetric P-name, which itself needs only be “generically
equal” to a ¥~ -symmetric Q-name.

Consider, for example, Cohen’s first model, this is a model similar to the example
above, replacing w; by w. Namely, we add an w-sequence of Cohen reals, permute
them, and consider finite stabilisers. Let a,, be the name for the nth real, then we
can define the name

a={{p,m) | In(p(n,0) =1 AVEk <n,p(k,0) =0Ap(n,m)=1)}

In clearer terms, this is the name for the first a,, which contains 0. We are guar-
anteed that @ will be interpreted as one of the a,. But it is not hard to see that a,
as defined above, is not stabilised by fixing any finite subset of w.'?

Considering names like @ seems like an unnecessary complication. But upon
a closer examination of the general construction of iterations, we see this idea is
somehow necessary. Indeed, the conditions of the iteration are usually defined to be
(p,q) such that p € P and 1p I ¢ € Q with ¢ coming from a “sufficiently rich” set
of names. We will call iterations defined this way “Jech(-style) iterations”. Kunen,
in his book, first introduces iterations more naively: the conditions are pairs (p, ¢)
such that p € P and p I+ ¢ € Q with ¢ appearing in Q. Unlike Jech iterations, this
definition does not generalise well, but it is useful for understanding finite support
iterations; we will refer to this as “Kunen(-style) iterations”.

Remark 2.3. It is worth pointing out at this point that we assume ZFC holds in
our ground model. While the theory of symmetric extensions, as well as that of
iterated forcing, can be developed reasonably well in ZF, it is not clear to what
extent choice is truly necessary for developing the theory of iterated symmetric

"Examples include [13],[19],[20], and to some extent also [16].

8Recall that a P * (Q-name has a naturally defined “P-name of a Q-name”. Here we want this
name to be in HS .

9n general a class of names X has the mixing property if when 1 IF & € X, that is we can find
a (pre-)dense set of conditions p and &, € X such that p I- & = &p, then & € X.

10This shows that typically HS does not have the mixing property. This is not a bad thing,
though, as we are often concerned with particulars when working with symmetric extensions, and
having to specify witnesses is a good thing.
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extensions. We utilise the mixing property quite significantly in the general theory,
and while it is conceivable, and indeed it is our conjecture, that we can remove
choice from the assumptions, there is a certain comfort and simplicity in assuming
it. Moreover, as we want to start with L as our underlying model, ZFC is already
a given. While V' = L is far too strong of an assumption, we will see that at the
very least we will want GCH to hold, which implies choice anyway.

When working with Jech iterations, we can quickly see that even for the con-
ditions of P % Q to be in the intermediate model, we need to allow this so-called
“mixing property”. And so, if we require it to hold for the conditions, we will need
to require it to also hold for the automorphisms of Q, etc., and so the idea itself
is important. We can now proceed towards finding a combinatorial definition that
will allow us to directly define the class of names, much like we did with HS in the
case of a single symmetric extension.

Definition 2.4. Let P be a notion of forcing and let 7 be an automorphism of P.
We say that m respects a name Aif1p IF 7d = A. If <1P’ ¢, F) is a symmetric
system we say that A is . -respected if there is some H € .Z such that every 7 € H
respects A.

Easily, every .#-symmetric name is .%-respected, and much like the definition
of .#-symmetric before it, this definition lends itself to a hereditary version. We
will simply say “respected” when .Z is clear from context. If A carries an implicit
structure (e.g., a forcing notion) then this structure is also required to be respected.

The idea is that being respected is “almost” being symmetric. We will soon
weaken this property a bit further to accommodate the “mixing property” into the
respected names.

Respect is the foremost necessary condition for developing a combinatorial char-
acterisation of iterated symmetric extensions. Given a symmetric system (P, ¥, %)
and a P-name Q, in order to define an automorphism of P % Q using some ™ € ¥,
the first thing we need to ensure is that 7 respects Q. Otherwise, (p, ¢) — (mp, 7q)
is not an automorphism of P x Q.

Definition 2.5. Let (P,%,.%) be a symmetric system, and let (Q,.77,.#)* be a
hereditarily respected name for a symmetric system. Suppose that m € 4 and & is
a name such that 1p IF ¢ € .7, then we denote by f the automorphism defined

by (p,q) = (7p,7(6q)).

Here we utilise the mixing property quite significantly, by defining ¢ to be the
name guaranteed to be interpreted as the action of & on the condition ¢. If we were
using Kunen iterations, we would have to define f 5 asa partial automorphism
which is only defined when p IF & € 4. This is not a formal problem, but it makes
the actual legwork a lot harder.

We will denote by & % # the group of all such automorphisms. In [9] we refer
to this group as the generic semidirect product. Turning our attention to the filters
Z and ¢, we define a support to be (HO, H1> where both of them are P Q-names
such that I+ Ho € % and H1 € . Note that we can always extend whatever

condition to decide the actual group Hy, and likewise we can decide the actual
P-name for H;. However, using this approach allows us to take advantage of the
mixing property.

We can now define the notion of respect relative to the supports. Namely, there
is a pair <H07H1> such that whenever (p,§) I+ (%,5) € (Hy, H,), which is to say
(p,q) IF % € Hy and ¢ € Hy, we have that (p,q) IF f< A = A. Whereas in

Definition 2.4 we required that H, would actually be a concrete group, here we
allow a bit more leeway. If we consider this definition at a single-step forcing, we
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weakened the requirement that H € .# to requiring that H is a name for a group
in .%. If we mix names from HS 4z, then the result will be respected, since we can
mix the groups, sym(i), to obtain a name H which is forced to be in .Z.

A symmetric iteration, or an iteration of symmetric extensions, is defined by
specifying a sequence of names for symmetric systems, (Qg,gg,ﬁg | 8 < a), and
defining IP,, as the finite support iteration of the forcings QB§ G, as the finite support
generic semidirect product of the groups %'5, made of sequences (7g | 8 < a) such
that 14 IF 753 € 95 and for all but finitely many 3, 15 IF 73 = id®; and F, as the
collection of all supports, defined as follows.

We define supports in the general case as P,-names for sequences <H s | B <a)
such that I, Hg € %3, and that IF, {3 | Hz # %3}* is finite. The last part is
crucial, as it allows us the flexibility in “knowing something has a finite definition”
while not committing to its specifics just yet.

Before we continue on, let us expand a bit on these definitions, with the caveat
that the generality of the method is not needed for the Bristol model, as will be
explained later, and so we encourage the interested reader to study the general
framework for iterations as presented in [9]. Given a sequence 7 in G,, the action
on P, denoted by fﬁp, will be defined by recursion. This is easy if there is exactly
one # < « for which 15 J- 75 =id®. In that case [, =id and [ is acting on

Qg as well as on the name of the quotient P, /Qs41. And so,

Jzp=p 18" 75(p(B)) " 7a(p [ (B, ).
Letting C(7) = {8 < a | 1z fF 75 =id°} = {Bo < --- < Bn}, then [, is simply
the composition f#ﬁo "'fffsn M Looking at a support, H = (Hg | B < a), these do
not quite define a subgroup of G, however, for each p € P, we can define a “local
group” which is generated by { . | V8 < a,p IF 5/3 € Hg}.l2 This leads us to the
definition of respect in this case. Namely, & is F-respected if there is a support H
such that whenever p IF 7 € ﬁ, then p I+ fﬁ:b = 1.

Let IS, be the class of Py,-names which are hereditarily respected. This class is
now the class of names which will be interpreted in the intermediate model of stage
. So to complete our definition of a symmetric iteration we need to require that
<Qa, ., ﬁ(X)' is in IS,,, and indeed that it is respected by all automorphisms in G,,
which guarantees that the action of G, extends to P,y;. We also have a forcing
relation IF> which is defined by relativising the names and quantifiers to 1S,,.

Using this definition we can show that when G is V-generic, then ISS is a model
of ZF, and if & = 8 + 1, then this model is a symmetric extension of ISgW using
the fth symmetric system. On the other hand, if we want to continue a symmetric
iteration, that is of course possible, but we need to make sure that the generic
filter used is not only 1SZ-generic, but rather V[G]-generic, and we may need to
shrink the groups g@ in a few places to satisfy the requirement that each symmetric
system is respected by the relevant Gg. This may present an issue if we want to
continue our iteration by infinitely many steps, as we may need to shrink our groups
infinitely many times, which might not be possible, as the filters of groups might
not be sufficiently closed.

Here we arrive to our first obstacle when applying this definition to the Bristol
model. We required the generic filter is V-generic for the entire iteration, whereas
the Bristol model is defined inside a single Cohen real, so we need to find a way to
modify the definition to allow for “pointwise genericity”, so that we can construct

HThe action can be down “upwards” rather than “downwards”.
12In an upcoming work with Jonathan Schilhan we simplify much of this framework, including
the concept of supports.
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the Bristol model one step at a time, while finding “sufficiently generic” objects
inside Llc]. In the case of iterated forcing using pointwise genericity is not an
issue for successor steps,'® but here we run into the first problem we had defining
the whole apparatus using mixing. The use of mixing allows us to use arbitrary
antichains and predense sets to define the names in IS,, and so we end up with
names in IS, which encode some generic information in them. This means that
pointwise generic filters might not be able to correctly interpret such names, since
they might not actually meet the relevant antichains.

The “easy” way to leave this mess is to require that we relativise the definition
pointwise. That is, at each step we only take names which are in the intermediate
model. But this adds a layer of complexity when defining the actual forcing Py,
or the automorphisms in G, or using these in the same manner that we are used
to when working with symmetric extensions. Even worse, while for finite support
iterations all of these different constructions are equivalent, this is not the case if
we want to extend our definition to other types of iterations.

We take a different route instead. Looking at products as a type of degenerate
iterations, we may want to mimic this definition here. But a copy-paste approach
is bound to result in just a product of symmetric extensions. While this is fine, it
is not what we are looking for. We want to force over the symmetric extensions,
but with a “very canonically defined forcing”. The idea is that we want to iterate
P« Q, and in V|G], where G C P, the forcing QC is isomorphic to a forcing in V,
and to some extent, this isomorphism does not even depend on G. This means that
we are really taking a product. But in the symmetric extension given by P, the
forcing QF is not isomorphic to any partial order in V, maybe because it cannot be
well-ordered, or maybe due to a similar consideration. Nevertheless, it is distinct
from forcings in V' as far as HS® is concerned.

A symmetric iteration is called productive if it behaves, essentially as a product.
Namely, each Qu, %,, and .%, are e-names, with 1, deciding all the relevant formu-
las. Namely, 1, decides the truth value of when two conditions, automorphisms,
or groups, are equal; it decides when ¢ = ¢’, etc. In this case, the symmetric
system is “essentially a copy of a ground model system”,'* and the iteration can
be presented as a bona fida product of these names. For this concept to be com-
plete we need to also remove the flexibility in the definition of supports, which is
needed for the iterative definition of IS,. We require, in the productive case, that
<HB | B < ) is an excellent support, meaning that Hg is a name appearing in /g,
and in particular a Pg-name, and the finite set of non-trivial coordinates is decided
in advance. This is in line with the previous demands: everything is decided in
advance, this is “almost a product”.

Now that we have restricted the iteration, we can extend the concept of “generic”.

Definition 2.6. Suppose that (P, G, F) is an iteration of symmetric extensions. We
say that D C P is symmetric if there is an excellent support H such that whenever
pl- 7€ H, thenpl- D = {J-q | ¢ € D}*. In other words, D is stable, as a set,
under a large group of automorphisms. We say that D is symmetrically dense if it
is a symmetric dense set.!> We say that G C P is symmetrically V -generic if it is
a filter meeting every symmetrically dense set in V.

It turns out that symmetrically generic filters are exactly the filters needed to
interpret symmetric names, and that the following theorem holds.

13Although it can be an issue for the limit case.

14Speciﬁcally, in the generic extension this will true, but the isomorphism itself might have
been non-symmetric, so the “current” intermediate model over does not know about it.

15And this extends to predense, open, etc.
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Theorem 2.7. Let P be a productive iteration,'®and let p € P and & € IS be some
symmetric name. The following conditions are equivalent:
(1) pIH® o).
(2) For every symmetrically V -generic filter G such that p € G, 1S€ = (&5).
(3) For every V-generic filter G such that p € G, 1S |= o(9). O

It is not hard to check now that at least for the successor steps, the iteration of
“pointwise” symmetrically generic filters is indeed a symmetrically generic filter.
We finish this overview with a preservation theorem.

Theorem 2.8. Suppose that (Qu,%n, Fo | o < 8) defines a symmetric iteration,
and G is V-generic for the iteration. Moreover, assume that for every a < 4§,
1 IFy Qg is weakly homogeneous and &, is rich enough to witness this.'" Let 7
be an ordinal such that there exists ag < § that for any « € (ag,d) the following
equality holds:

s el

a Glag+1
Then Vfé = V, “°™" . In other words, if no sets of rank <n were added at
successor steps, none were added at limit steps either. O

This theorem is in stark contrast to the familiar case in the usual context of
iterated forcing: iterating, with finite support, forcings which are not c.c.c. will
collapse cardinals; and iterating non-trivial forcings, even if they are c.c.c., will add
Cohen reals at limit steps. But in the case of symmetric iterations, even if the
forcings are non-trivial, as long as they are homogeneous and do not add reals, the
limit steps will not add reals either.

As a consequence, we can extend our apparatus now to an Ord-length iteration
while preserving ZF in the resulting model. Moreover, the result holds for produc-
tive iterations with symmetrically generic filters, as one can state it in the language
of forcing, rather than talking about V;, of various models. See also §9.2 of [9].

2.4. Permutable families and scales. The key mechanism in the construction
of the Bristol model is “decoding a long sequence from a short sequence”. This can
mean a sequence of length w; from a Cohen real, or a sequence of length w,3 from
one of length wys. We use almost disjoint families in successor steps to repeatedly
decode these sequences, and we use a particular type of a PCF-scale to succeed
at this task when we are at limit steps. This will be as good a place as any to
remind the reader that we are working in ZFC, especially when thinking about
these combinatorial objects that are used here.

Definition 2.9. Let  be a regular cardinal, and fix a family A = {A, | @ < 7} of
unbounded subsets of « such that for oo < 3, sup(A, N Ag) < k. For permutations
m:k — k and I1: kT — kT we say that that = implements I if 7“A, =* An(a)
for all o < k.

Here we use =" to mean equality up to a bounded subset of k. Which , of
course, will be clear from the context, so we will spare the notation =}, or worse,
from the reader.

We are looking for an abstract property of an almost disjoint family which will
ensure that it implements any bounded permutation of x*, that is any permutation
of kT which is the identity on a tail can be implemented.

6These include, of course, actual products, as well as single-step symmetric extensions.
1TWe will say in this case that ¥, witnesses the homogeneity of Qq.
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Definition 2.10. Let x be a regular cardinal, {A, | « < kT} C [k]* is called a
permutable family if it is almost disjoint, that is for a # 3, sup(A, N Ag) < k, and
for every I € [kT]<%" there is a pairwise disjoint family {B¢ | € € I} such that
BE =* A§ and
ael < AN U Be¢ is unbounded in .
el

We call {B¢ | £ € I} as in this definition a disjoint approzimation, and in the
case where By C A¢, we say it is a disjoint refinement. Note that both of these
always exist, as long as |I| < k, by a standard transfinite recursion argument using
the regularity of .

Proposition 2.11. If A is a permutable family of subsets of a reqular cardinal &,
then it implements every bounded permutation of k™.

Proof. Let II be a bounded permutation of T, fix < kT such that II does not
move any ordinals above 7. Next, set I = n and let {B¢ | £ < n} be a disjoint
refinement. Now let m be the function which is the order isomorphism from B, to
Bg when II(«) = f, and the identity elsewhere. Easily, 7 implements II. (I

Having fixed a permutable family, if 7: k — s implements II, we will denote this
by «(7) = IL

Proposition 2.12. Let k be a regular cardinal, then a permutable family exists.

Proof. Let (T, | o < k*) C [k]" be a C*-increasing family of subsets of k. Define
Ay as Toy1 \ Ta, then {A, | @ < kT} is a permutable family. To see that, let
Ie [n+]<”+ and let n = sup I 4+ 1, then every A, for a € I is almost contained in
T,. We let B, for a < n be a disjoint refinement (of a potentially larger set) such
that B, C Ty, in particular Ufel Be C T, If o ¢ I, then either a < 7, in which
case A, =* B,, and B, N Ugel Be = @, or else & > 7, in which case A, NT, is
bounded in &. (]

Remark 2.13. It should be pointed out that one can construct an increasing family
of subsets from a permutable family. Recursively, set Ty = Ag, To11 = Ty U Ag,
and for limit steps recursively construct T, as the union of a disjoint refinement of
{Ap | B < a}, which exists by definition of a permutable family. As long as o < k™
we can ensure that these disjoint refinements are also increasing in inclusion, which
guarantees that T, contains previous limit steps.

Definition 2.14. Given a permutable family on a regular cardinal x, the derived
group is the group ¢ of all permutations of x which implement a bounded permu-
tation of k™. The derived filter is the normal filter of subgroups on ¢ generated by
fix(B), for a disjoint approximation B, where fix(B) = {r € ¢ | = [ |JB = id}.

While these definitions are given for regular cardinals, we will only use them in
the basis case and successor case. For the limit case, where & is a limit cardinal, we
need to use a slightly different machinery, as the goal is to coalesce the information
from previous steps and use it as a kind of “short sequence”. In some way, inacces-
sible cardinals are the “simpler case” compared to singular cardinals. Nevertheless,
there is no need of separating the two.

Definition 2.15. Let X be a limit cardinal, and let SC()\) denote {u™ | u < A}.
Let {fo | @ < AT} be a scale in [[SC()).'® Given a sequence of permutations

I8This is an increasing sequence of functions in the product which is bounding in the eventual
domination order. We actually only need it to be an increasing sequence, it is irrelevant that it is
also bounding.
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7= (mg | 0 € SC(N\)) such that 7y is a permutation of 0, we say that 7 implements
a function II: AT — AT if for every o < AT and for every large enough 8,

f11(0)(0) = To fo(0).
We call a scale permutable if it implements every bounded permutation of A™.

As with the case of permutable families, we denote by (%) the permutation IT
that is implemented by 7.

The fact that inaccessible cardinals are the “simpler case” can be trivially seen
as a consequence of the following proposition, while remembering that working in
V = L we always have the wanted cardinal arithmetic.

Proposition 2.16. Suppose that A is an inaccessible cardinal and 2 = T, then
there is a permutable scale on X.'° ]

This can be shown by a simple transfinite recursion, in a very similar fashion to
the permutable family case.

Proposition 2.17. Suppose that \ is a singular cardinal and 3, then there is a
permutable scale on A. O

The proof of this proposition can be found as Theorem 3.27 in [8]. The idea
of the proof goes back to the Bristol group, and utilises the work of Cummings,
Foreman, and Magidor in [2] where it is shown that [J} implies the existence of
“better scales”. The aforementioned Theorem 3.27 show that a better scale is in
fact permutable.

The key point in proving a better scale is a permutable scale is that given any
Ie [A+]<>‘+, we can find a function d: I — SC(A) such that {f,“[d(a),\) | € I}
is a family of pairwise disjoint sets. The proof of Theorem 3.27 also shows that
even if we are only allowing 7y to be a bounded permutation of 6, this is still
enough to ensure that we can implement every bounded permutation of A* using a
permutable scale. We say that a sequence of permutation groups of each § € SC()\)
is rich enough if we can require my to be in the relevant group when we find an
implementing sequence.

Definition 2.18. Let A be a limit cardinal, and for every 6§ € SC()), let % be a
rich enough group of permutations of . The derived group is the subgroup ¢ of the
full support product [[ycgc(y) %o consisting of all sequences 7 = (mg | § € SC(A))

which implement a bounded permutation of A*.
For n < AT and f € [[SC(A) we let K, s be the group

{F e |u7) I n=1id and for all € SC(\),my | f(#) =id}.
The derived filter is the filter generated by {K, ¢ | n < A*, f € [[SC(\)}.

We can weaken the definition of K, s and replace n by a bounded subset of A*,
ie, I € [A+]<>‘+, and replace f by a sequence of bounded sets of each #. But as
the definition is complicated enough as it is, it is easier to just use n and f as upper
bounds.

3. DECODING LONG SEQUENCES

Assume V = L throughout this section. The Bristol model is constructed as a
symmetric iteration, indeed a productive iteration. We will outline the construction
of the different intermediate steps in this iteration, and the arguments needed for
utilising the iterations apparatus.

9The assumption on 2* can be completely removed by simply limiting ourselves to increasing
sequences instead of scales. Nevertheless, as we are working under GCH anyway, this is just
simpler.
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Definition 3.1. A Bristol sequence is a sequence indexed by the ordinals such that
for a = 0 or a successor we have A, = {Af | { < wa41} which is a permutable
family on w,, and if « is a limit ordinal then we have F, = {fg" | £ < w41} which
is a permutable scale in the product [] SC(wy).

Fix a Bristol sequence. By assuming V = L we not only have a Bristol sequence,
indeed we have a canonical one, where we choose the <j-minimum permutable
family or scale at each point. Our goal is to use these permutable objects and replace
at each stage, «, a sequence of length w, by one of length wq1. In particular the
first step is to replace the Cohen real, which is a sequence of length w, by a sequence
of length wy. But we want to be able to guarantee that the original sequence is not
going to be definable from our longer sequence.

In this sense, we want to decode from a Cohen real a sequence of length w,
which captures “some crucial bits” of the Cohen real, but not really all of it. Then
we want to decode from this w; sequence a new sequence of length wo, forget the
one of length wy, and proceed.

3.1. Example: first steps. Let P be the Cohen forcing, and in this case we mean
p € P is a function from a finite subset of w into 2. Let us omit the index from Ay,
as we are only concerned with the first step at the moment, so A, denotes the ath
set in the first permutable family. We let ¢4 and .# denote the derived group and
filter from A. The action of ¢ on P is the natural one:

mp(mn) = p(n).
We denote by ¢ the canonical name for the Cohen real. For A C w let P A
denote the subforcing {p € P | domp C A}, and let ¢4 denote the name

{{p,n) | p(n) =1 Adomp C A}.

Of course, ¢4 is the canonical name of the generic real added by P A. We have now
that mé4 = ér«a. In general we say that a name & for a set of ordinals is decent if
every name appearing in it is of the form EV for some £ € Ord. We say that a name
for a set of ordinals is an A-name if it is a P | A-name.

Proposition 3.2. Suppose that & € HS and 1 I+ & C w, then there is some disjoint
approximation B and a decent | J B-name &, such that 1 Ik & = ..

Proof. Let B be a disjoint approximation such that fix(B) C sym(z) and define &,
as

&, = {(p,ﬁ> ’plFﬁGi/\dome UB}.
It is clear that 1 IF &, C &, to show equality it is enough to prove that if p IF 1 € &,
thenp [UBIFn €& Let ¢ <p|UB.

By the very definition of a disjoint approximation |J B is co-infinite, so we may
find a finite set E such that EN(|JBUdomp) = & and |E| = |dom ¢\ U B|. Then
let 7 be a permutation which extends a bijection between the two sets dom g\ |J B
and E, and is the identity elsewhere. Being a finitary permutation it implements
the identity function, so indeed m € ¢, and by its very definition 7 € fix(B), so
m& = &. So if ¢ had forced © ¢ &, we would have 7q IF 71 ¢ i, which is the same
as mq IF 1 ¢ &. Alas, mq and p are clearly compatible, and so this is impossible. [J

We let G be a V-generic filter?® and let M denote the symmetric extension HSG,
as is standard, we will “omit the dot” to indicate the interpretation of a name,
so ¢ is going to be ¢, etc. The following is a very easy corollary from the above
proposition.

200r L-generic filter, to be explicit.
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Corollary 3.3. ¢ ¢ M. O

This is where we start seeing the importance of the permutable family, as opposed
to any almost disjoint family. If {X, | @ < w;} is an almost disjoint family, then
{cNX, | @ <wi} is a family of mutually generic Cohen reals, any finitely many of
them are mutually generic over any other finite subfamily. But in our case, where
the almost disjoint family is in fact a permutable one we get countable mutual
genericity. Any countable subset of {¢ N A, | @ < w;} is simultaneously mutually
generic over any other countable subset (provided they are pairwise disjoint).

We can actually prove more. Nothing in the proof of Proposition 3.2 will change
if we assume that £ is a name of an arbitrary set of ordinals. This shows that every
set of ordinals lies in an intermediate model given by ¢ N JB for some disjoint
approximation. Another way to see this fact is to note that L[c] is, after all, only
a Cohen extension by a single real. So every set of ordinals is constructible from a
single real.

Corollary 3.4. M = —-AC.

Proof. Suppose that M |= AC, then there is a set of ordinals A which codes RM (e.g.
by stacking the real numbers one after another, or by the usual coding of a set into a
set of ordinals). Therefore there is 7 € M such that RM = R[], By Proposition 3.2
we see this is impossible, indeed, if B is a disjoint approximation for which r has a
\JB-name, and A, is such that A, N|JB is finite, then ¢N A, ¢ L[r]. O

Of course, we can prove directly that R cannot be well-ordered in M, and this
argument can be found in the proof of Theorem 2.7 in [8].

We can see Proposition 3.2 as somehow indicating not only that the reals of
M are generated by countable parts of A, but in fact if (T, | @ < wq) is a tower
generated by A, then we actually have that RM is the increasing union of REN7al,
This was the original approach of the Bristol group.

At this point, one might expect that the decoded sequence is (¢ N A, | @ < wy)
or somehow (¢ N T, | @ < wy). But of course, this is not the case. For starters,
we want to somehow “fuzzy out” some of the information as to guarantee that c is
not constructible from the sequence. So instead of ¢N Aq, we will look at REeN4a],
But more importantly, the decoded sequence is not even in M. Indeed, if we want
this sequence to play the role of the Cohen real in the next step, that means that
it needs to be forced into M instead.

Let us begin by understanding REl€74a] In what way does this set “fuzzy out”
some information? Well, for one, ¢ N A, is not the obvious real from which we
construct this model. Indeed, any finite modification would work, and many more.
In fact, any 7 € ¢ for which «(7)(a) = « will satisfy that w¢4_ is a name generating
the same set of reals, as it is ¢ N A, up to a permutation of A, and a finite set.

We say that a name & is an almost A-name if there exists B such that A =* B
and & is a B-name. We now define

R, = {4 | & is a decent almost A,-name}®.

Proposition 3.5. For every m € 4, TR, = Rb(ﬂ)(a). In particular, R, € HS for
all @, and {Ry | o < w1 }* € HS as well.

Proof. Observe that 7“P | A = P | 7“A. Therefore if «(7)(a) = 8 we have that
m“A, =" Ag, and so an almost A,-name is moved to an almost Ag-name, so
TRy = Ry(r)(a) @ wanted. We now have that {A,} is a disjoint approximation

for which fix({4.}) C sym(R,), and thus witnessing that R, € HS, and indeed
4G =sym({R, | & < w1}*) as wanted. O

Similar arguments as we have seen so far also prove the following statement.
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Proposition 3.6. (Ry | oo < w1)® ¢ HS, but for every countable I € [wi]<“* N L,
(Ro | v € I)® € HS. O

And here we arrive to the key point. Let p denote the sequence (R, | o < wy)
and let ¢ denote its name. We will also write oy and g7 for the restriction of the
sequence to I, similar to ¢4.2! Indeed, o is going to be the decoded sequence, and
it is of course going to be M-generic, but we need to find a suitable partial order.
Proposition 3.6 provides us with a good clue: every initial segment of this sequence
is in fact in M, so we can “safely” approximate this sequence.

It will be somewhat more convenient to use subsets of wq, as we did with the
Cohen forcing, rather than proper initial segments. This makes it easier to talk
about A-names and almost A-names. And again for convenience (and so we can
claim productivity, of course), we are also going to limit ourselves to subsets of w;
which are already in L.

Proposition 3.7. Let Q denote {mo; | 7 € 4,1 € [w1]<“1}*, ordered by reverse
inclusion. Then Q € HS, and indeed IF1S ¢ is HS-generic.

In other words, g is M-generic for Q. The idea behind Q is that we want the
smallest “reasonable” set which contains our generic filter (i.e. partial approxima-
tions of p), and the easiest way to do that is to simply apply all permutations and
obtain a set. But the true intuition behind Q, and really behind the whole decoding
apparatus, comes from understanding mojy.

The model M knows of the set R = {R, | @ < w1}, it just does not know a
well-ordering of this set. And we are trying to remedy that. As we know already
every ™ € ¢ implements a permutation of wy, which induces a permutation of R
moving countably many points. So m shuffles R and thus modifies the range of
or- But R is an extremely impoverished set as far as M is concerned. This is not
particularly important for the construction, and can be skipped entirely, but it is
an interesting fact.

Proposition 3.8. M = R is a strongly Ny-amorphous set. That is, R cannot be
written as a union of two uncountable sets, and every uncountable partition of R
has at most countably many non-singleton cells.

Proof. Suppose that X,Y € HS and p |-HS “X.Y C R and are uncountable”. Let
B be a disjoint approximation such that fix(B) C sym(X) Nsym(Y) and such that
domp C |JB. By uncountability, we can extend p to some ¢ for which there are
«, 3 such that:

(1) ¢S Ry e X and Rg e Y.

(2) Ao nUB and Ag NYB are finite.
By enlarging one of the sets in B, if necessary, we can also assume that dom g C |J B
as well. We can now find a permutation 7 € fix(B) such that «(7) is the 2-cycle
switching o and f.

Applying 7 to the first property of ¢ we have that mq S 7R, € X, ’/TRﬁ eny.
But since 7 € fix(B) we have that mg = ¢ and 7X = X and 7Y =Y. This means
that ¢ I- Rg € X and R, € Y. In particular ¢ forces that X and Y are not disjoint.

Next we want to prove that every partition of R is almost entirely singletons.
We will only sketch the idea behind the argument. If S € HS and p 15 «S is a
partition of R into uncountably many cells”, let B be an approximation such that
fix(B) C sym(S). Pick a, 3 as above, so that we may switch between them without
interfering with B, and we can implement the 2-cycle (« ) without changing any

21We will never use on to denote Ry, so there will not be any confusion in those cases. That
is, on will only ever be used to denote the restriction of the sequence.
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given condition. This means that any point that was in the same cell as a must
have moved to the cell containing 5. But we only moved two points, so a and [
must have been isolated as singletons. And therefore the only non-singleton cells
come from a partition of B itself. (]

Remark 3.9. The above implies that every permutation of R in M only moves
countably many points, of course, as the orbits define a partition. Some of these
are new, as they can be encoded by some generic real, but this is irrelevant. We can
prove that every permutation of R in M only moves countably many points with a
direct argument in the style of Theorem 2.2: given a name for a permutation f and
B a disjoint approximation such that fix(8) C Sym(f)7 the c.c.c. condition ensures
that there is § such that for any « for which A, NJB is infinite, Ry is not in the
same orbit as R,. But now we can utilise the same strategy as we did before and
move « to some other ordinal with a similar property, and therefore showing that
either f is the identity on a cocountable set, or it is constant there.

Getting back to the matter at hand, we want to prove that p is M-generic.
Namely, if D C Q is a dense subset and D € M, we want to prove that there is
some a < wy such that g, € D. In [8] we prove this by proving a technical lemma
about names of dense open sets, Lemma 2.12.22 In the paper we use this lemma
also as a means for proving that Q is o-distributive, and therefore does not add
any new reals to the model (and as a corollary, it does not force AC back into the
universe somehow), which also finishes the proof that g is indeed the sequence we
are looking for.

We will prove the genericity of g using a simplified version of Lemma 2.12, and
provide a separate argument for the distributivity.

Proposition 3.10. g is M-generic. In other words, if D € HS and p I+ “Dis a
dense open subset of Q7, then there is some 1 such that p |- ¢, € D.

Proof. Let D be a name as above, and let B be a disjoint approximation such that
fix(B) C sym(D). Let p IF “D is a dense open subset of Q”. Let « be large enough
such that if Ac N|JB is infinite, then £ < a. Our strategy is to find “enough”
extensions of ¢, so that one of them will be both ¢,,, and in D.

First we prove the following claim: suppose that ¢ < p and ¢ I 794 € D, where
o C Aand u(7) [ a =id, then ¢ I- 94 € D. In other words, if 794 is an extension
of 9o which lies in D, then g4 is in D as well. Of course, this is true because there
is some 7 € fix(B) such that ¢(7) = (7))~} and ¢ = q.

As 7 implemented the identity up to a, ¢(7)~! will also be the identity up to
and thus we can implement it using an automorphism in fix(8) which fixes ¢, since
dom ¢ is a finite set.

This completes the proof of the claim since

7q=qlF TT0A = Oy(r)ou(r)ca = 04 € TD = D.
In turn, this is enough to prove the genericity of ¢: find a maximal antichain below
p of conditions which decide some wg4 as above, and by openness we can assume

each such A is in fact an ordinal. Let 1 be the supremum of this countable set of
ordinals, and we have that p IF ¢, € D. O

The final claim is that Q does not add new reals to M. This, as we remarked,
ensures that M|[g] # L[c]. It has an added effect that Q is not adding any new sets
of ordinals, or any countable sequences of ground model objects. In [8] the proof

22There is a minor mistake in the statement of the original lemma, see subsection 5.1 for details
and corrections.
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utilised a stronger version of the above proof which lets us intersect a countable
sequence of dense open sets. Here we take a slightly different approach.?

Proposition 3.11. M = “Q is o-distributive”. Namely, given (D, | n € w) € M
such that each Dy, is a dense open subset of Q, then [ D,, is dense.

new
Proof. In L[c], Q is naturally isomorphic to Add(w;,1)L. In L this forcing is o-
closed, and so in L[] it is still distributive. If (D,, | n € w) is a sequence of dense
open sets, then its intersection is still dense in L[c|, and therefore in M. ]

3.2. Outline of successor steps. The first two steps are fairly indicative of the
standard successor step. The main change, of course, is that we need to understand
what replaces R, L, and ¢. We have a hint as to what replaces ¢, namely, the
sequence o that we ended up with after forcing with Q. We also have an idea on
what to replace R with, that would be P(R), and L is to be replaced by M itself.

We can make this much clearer if we recast the example above by replacing R
with V,41. We can also replace ¢ with a sequence of elements of V,,, of course,
but this seems to needlessly complicate things. After all, the case of w is separate
anyway.

For a more uniform approach, we denote by M, the ath step in the construction,
which is a model of ZF intermediate between L and L[c]. We will also write g, to
denote the generic sequence for Q,, the ath forcing. So Qg is Cohen forcing and
0o is c itself.

At each successor step we have M1 defined from g, which was the M-generic
sequence for Q,. We will assume that while o, ¢ M,11, for every & < way1,
0o [ Ag € May1, where Af is the {th member of the permutable family we fixed in
advance. Moreover, for every I € [wo1]<“°+' N L, (0o [ AZ [ € € I) is in Maq1.

We now want to define Q.41 and g,+1. For this we replace RLENAe]l that we

M, o [AE .
had in the first step with V, +a¢£g [ 5], let us denote this as R¢ for now. The rest

is more or less the same as above, relying, of course, on the recursive fact that any
previous Mp were defined much in the same way as we are defining Qa+1, Ga+1,
and Myo.

Let Qq+1 denote the set of approximations of go+1 = (Re | { < way1) whose
domains are in L. We are being vague, of course, as to what counts as “approxima-
tion” in this context. The idea is that we may permute the different R amongst
themselves using a permutation of wq,1 which is coming from L.

The lemmas in the general case are exactly the same as we had before. The
genericity of p,+1 is proved by the same argument as Proposition 3.10, and while
the distributivity argument is also similar, it is worth writing down.

Proposition 3.12. M1 F Qa1 is §\VaM“+1 |-distributive. In particular, no new
sets of rank o+ 1 are added.

Proof. As in Proposition 3.11, L[] F Q41 = Add(wai1,1)%, the latter of which
is <N,-distributive in L[c]. Suppose now that {D, | © € V,} € My41 is a family
of dense open subsets of Qy41. By the c.c.c. of the Cohen forcing, and the fact we
only add a single real, Vof\/h‘+1 has the same cardinality as V.2, which by GCH is R,,.
Therefore ({D, | # € Va'+'} is dense in L|c] and thus in My;. In particular, no
new subsets of V,, are added. O

Finally, we define M, o as the symmetric extension obtained by applying the
derived group and filter using the permutable family A,1;. If we now consider

Mot1[oa+1 TA?+1] . .. e
Virato , this set is in M, 12. Indeed, every proper initial segment of 9,2

23The approach we take here is mentioned in a remark at the end of §2 of [8].
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is in M40, where gq42 is the sequence of these V442, and it has length wq 2.
We can now show that it is M,2-generic, etc., and thus all shall prosper.

The successor case can be found in [8] as §4.4, as well as §4.7 and §4.10 for
successor of limit iterands. We are not separating the successor of limit steps in
this text as the idea is the same with very minor variations, so as far as outlines
go, there is essentially no difference.

3.3. Outline of limit steps. The limit step is divided into two parts. We have
to contend with the iteration at a limit step, i.e. the finite support limit of the
previous steps, and we have to deal with the limit step itself. An observant reader
will notice that we did not utilise the full power of the framework of iterating
symmetric extensions until now. Indeed, as far as successor steps are concerned any
automorphism coming from coordinates before « itself will implement the identity
function on the (« + 1)th iterand, rendering it moot.

It is here, at the limit, where we need to utilise the machinery as a whole. In fact,
this machinery will do most of the heavy lifting at this stage. By Proposition 3.12
we have that the rank initial segments of the universe are stabilising, indeed for any
B > o we have Vwﬂ_{_‘;fﬁl = Vﬁi 41+ The work left at this stage is making sure that
the generic sequences we collected thus far are symmetrically generic, and setting
up the stage for the limit step iterand. So it is a good idea to understand the limit
step as a whole before proceeding to the details.

The main idea is that limit steps coalesce the information we have up to that
point. Arriving to the limit is easy, as we said, the machinery of productive itera-
tions is working for us there. But how do we proceed now? We are limited by two
factors that we need to ensure continue to hold when we deal with the ath step:

(1) V4a is stable. That is, no new sets of low rank are added, and
(2) whatever we do is coherent with the other limit steps.

One simple way of ensuring this is by taking products of previous successor steps.
This way, if a < 8 are two limit ordinals, then Q, is going to be, in some sense, a
rank initial segment of Q3. But we can think about this from a different angle.

At each step, we gathered V¢ of various intermediate models, for { < a,
our limit ordinal. But these are smoothed out, in a sense, as we progress up the

hierarchy, as each VM?fl contains each Vﬁ?l. But what if we could pick just one

w

sequence, and remem—%er it? In that case we are not going to add bounded sets to
Vita, at least not if we are being careful, and instead we only add this sequence.
This idea should seem somewhat familiar to readers of all walks of set theory. After
all, if we want to add a new subset to XN, it is easy to add Cohen subsets to each
X,, first, and then choose a point from each one, creating a new cofinal sequence.?
Similar ideas, in one way or another, show up through Prikry-style forcings as well.

The coherence of limit steps has another very important use for the limit iterand.

The following definition is very important as well.

Definition 3.13. We say that a two-step iteration P * Q is upwards homogeneous
if whenever (p,¢) and (p, ¢’} are two conditions, there is an automorphism = of P
that respects Q and such that 7p = p and p IF 7¢ = ¢/. In other words, we can
move conditions in Q by automorphisms of P. In the context of iterating symmetric
extensions we require that m comes from the relevant automorphism group.?’

24When forcing like this in the context of ZFC these cofinal sequences are added automatically,
of course, but if one does a symmetric iteration, the cofinal sequences are not added. Then one
can consider such a forcing in a more material sense.

25This requirement is quite stronger than what is actually necessary. The concept of upwards
homogeneity was fully explored and analysed in [18]. We keep this definition here for historical
reasons, as it was the definition which appeared in [8].
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So we want for the limit step that the iteration P, can move about conditions in
Qu- If P, is a finite support iteration, then either Q, needs to have some finitary
flavour to its conditions, or somewhere along the iteration we had to condense the
conditions from finitary to infinitary. Indeed, this is the very meaning of “coalesc-
ing” the successor steps.

To sum up, at the limit step of the iteration we use the properties of the iteration
so far to ensure that the rank initial segments of the models stabilise, and indeed
that the sequence of generic sequences is symmetrically generic for the iteration.
We then want to have a forcing such that the sequences which lie in the product
of the successor-step generics combine to form a generic for it, here the permutable
scales will come in naturally, as we are concerned with products of increasingly
longer sequences modulo the bounded ideal.

We return to the context of the Bristol model’s construction. We denote by P,
the iteration up to a and by Q, the ath iterand, as we did before, and for now we
will assume that those iterands were defined also for limit steps. If this proves to
be somewhat confusing, the section can be read twice, first assuming o = w.

Fact 3.14. For every a, P, * Qy is upward homogeneous.

We have seen this for the case of o being 0 or a successor.?® We will see the rest
of the cases in this section as we progress through it. But for now it is easier to
take this as a working assumption.

Proposition 3.15. Let o be a limit ordinal, then (op | B < ) is symmetrically
L-generic for P,.

This is essentially Proposition 4.4 (« = w) and Proposition 4.15 (« an arbitrary
limit ordinal) in [8]. We will prove this statement in subsection 5.2, as the original
proof had a minor gap that needs to be corrected anyway.

But this means that we can understand the limit iterand fairly well now. We
know that for 8 < «, Vw]‘ﬁa 1= ij\fﬁ 41, and that not only we have a model of ZF
which lies within L[c|, but that it is in fact an iteration of symmetric extensions,
which means that we understand exactly the objects which lie within it and the
truth value of statements about these objects from a forcing-theoretic point of view.
We are now free to examine the iterand Q.

As we reiterate time and time again, we want to ensure that no sets of rank w4+«
are added. In the successor steps we did that by making sure that Q,, is sufficiently
distributive. For the limit step this will pose a problem. If we are to continue with
our successor steps, then the («+1)th step needs to have a sequence of length wg1.
But without adding any sequences of length w,, this would mean that the sequence
must have “mostly existed” already. So the forcing cannot be <w,-distributive, let
alone <|V,,4|-distributive. In fact, if our plan is to add sequences of length « of
sets of the form V,,4 g of some inner model, then at stages where cf(«) = w we must
have added an w-sequence.

The solution, as it turns out, is to not be distributive at all, but ensure that after
applying the symmetric part of the step (rather than just the generic extension) we
managed to remove any new set in V1. So even if we do not have a distributive
forcing, we at least preserve the rank initial segments of the universe.

We define g,, where « is a limit, as a “copy of [ SC(wq)®”. This means that for
every f € [[SC(wa)® we define g4, 5 to be the sequence (os41(f(8+1)) | B < a),
and g, is defined as (gq,r | f € []SC(wa)).

26T be absolutely correct, we only talked about successors of 0 or other successor ordinals,
but the successor of a limit will be just the same as before.
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How should we define Q,,, then? The idea is always “bounded approximations”,
but having the virtue of being a “two-dimensional object” this means that bound-
edness has two sides to it. Let us first deal with the one-dimensional counterparts:
Oa,f-

If A is a subset of a, we write g, r [ A = (0p+1(f(B+1) | B € A), and so our
recursive hypothesis tell us that o,y € M, for every f, and this lets us define Q¢
as the approximations of g, r. More rigorously, recall that we have defined the sym-
metric iteration P, along with the direct limit of the generic semidirect products,
Go. Then Qa, ¢ is the forcing ordered by reverse inclusion on the interpretation of

{[zbas 1 A|supA<a, . € ga}'.
For E C [[SC(wq) we may now define g, [ E = (0a,¢ | f € E), and so if E is
bounded in the product, i.e. there is f € [[ SC(w,) such that for all g € E and for
all B < o, g(B+1) < f(B+1), and A is a bounded subset of «, our conditions

are going to be approximations of g,, up to permutations of course, of the form
(0a,f A | f € E), which we denote by o0, [ (E, A). And so Q, is given by the name

{[.0a 1 (E,A) ’ E, A are bounded and [ € Qa}. .
Proposition 3.16. P, * Q, is upwards homogeneous.

We do not prove this statement here, but the idea is to simply utilise the upwards
homogeneity of the previous steps and “correct” the coordinates one by one. One
might ask how do we deal with the case where o > w, as a condition has seemingly
infinitely many non-trivial coordinates. And the answer, as we repeatedly mention
here, is utilising the previous limit cases where we condense this infinite amount of
information, also in the form of ¥, being a subgroup of the full support product
[ls<a 95.1.2" The complete proof can be found as Propositions 4.5 (for o = w) and
4.15 in [8]. The action of ¥, is coordinatewise, and it is important to stress at this
point that we have this action where the initial segments of g, are “actual objects
in M,”, so this is not applying automorphisms of a forcing, but rather applying
permutations of each wg41.

Proposition 3.17. o, is M,-generic for Q.

This again follows the same pattern as the successor steps, although here there
is a notable complication in the case where o > w. We will outline the proof.

Proof. Let D € 1S, be a name for a dense open subset of Qq, and let H be an
excellent support witnessing that D € IS,,. For each 3 < a, H 5 is a group of either
the form fix(Bs) when f is 0 or successor, or K, ;, when j is itself a limit. We
can use these to define bounded sets E and A such that whenever g, | (E, A) is
extended to a condition in D, we may permute this extension using the upwards
homogeneity without changing D.

In the case where @ = w, the set E is simple. For each n < w we let B,, be
a disjoint approximation such that fix(B,) = H,, then E =[] _  dom B,, where
dom B,, = I such that B,, = {B¢ | £ € I}.?® Let A be the set {n < w | H, # 9.},
which is also bounded by the virtue of H being excellent, and we have ourselves
the condition g, | (E, A).

In the case where @ > w we need to take into consideration some limit point
6 < w, such that either § + w = «, or § is the smallest limit ordinal such that H is

27This is not the same as the group G, which will only include bounded sequences, which
means that it will only implement the identity.

281n the original paper the proof of @« = w is Lemma 4.7, and there is a minor mistake in the
proof: By should be dom B,,—1. Lemma 4.20, which is the general claim, has a correct proof.
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trivial above . We call such § the condensation point of H. So above § there can be
at most finitely many non-trivial coordinates, and only in the case where § = a+w.
We then let E for 8 < ¢ be decided by Hs = K,, s, by taking Eg = f5(5), and
above 0 we do as we did in the case of w.

Now we may proceed as before, using the fact that any extension of g, [ (F, A)
would have the form [.o, [ (E’,A’), where mg will necessarily have 73 | Eg = id,

so we may find the needed automorphisms in H to complete the proof as in the
successor case. O

Now we only need to take care of the preservation of Vw]\f_‘a. Indeed, My[0q]
contains the sequences pg41 for 8 < a, all of which have rank smaller than w + a.

Luckily, the symmetries of Q, will help us get rid of these unwelcomed sets.??

Definition 3.18. Working in M, if & is a Q,-name we say that it is bounded by
f € TISC(wa)* if whenever [.oo | (E,A) Ik § € &, then we may replace E by

EnNfl, where f| = {g € [[SC(wa)¥ | ¥8,9(B) < f(B)}. Similarly, if 3 < a we say
that & is bounded by [ if we can replace A by AN 5.

Theorem 3.19. Suppose that & € M, is a Q,-name such that every name appear-
ing in & is y for some y € M,,.

(1) If & € HS #, and K,y C sym(&), then & is bounded by f.

(2) If Ik rank(%) < & + &, then & is bounded by some § < a.

Combining these we have that if & is a symmetric name for a set of small rank,
then all of its elements are decided by conditions with a uniform bound, meaning &
is equal to an object in M,,. The proof of (1) is the standard homogeneity argument,
and we have used it before in Theorem 2.2, so we will only outline the proof of (2).

Proof. Suppose that & € 1S,41, we denote by [£] the projection of the name to IS,,.
That is, [#] is a name in IS, which is interpreted in M, as a name in HS%;. By
the assumption that each name appearing in # is of the form g for some y € M,,
we may assume that [§], which appears in [Z] (in the broad sense of the term) is a
name in ISg for 8 such that w + § is an upper bound on the forced rank of .

Let 8 < a be large enough such that H is trivial above 53, where H witnesses
that [&] € IS,. Now we can use automorphisms which only move coordinates above
£ to move any names of conditions, fﬁga I (E, A), by changing their “content above
B” to any value. Thus, we may conclude that we may reduce A to AN g. O

The theorem is proved as Lemma 4.10 and Lemma 4.27 in [8]. This almost

completes our decoding apparatus. We only need to worry about the g,+1 now.
M(x[@u,fa]
We define R¢ for £ < waq1 to be V. ¢ . That is, we use Oa,fe as the

“guide” for a new sequence in V,y441. Those who kept track can guess now that
Oa+1 18 (Re | € < wa41). We utilise the fact that the scale is permutable to ensure
that any bounded part will be in M,11, as well as the rest of the permutability
apparatus to ensure the upwards homogeneity. This is also the point where we
see why the definition of Q, works in general, despite P, being a finite support
iteration. The g, s are initial segments of those gg s+ that come in the future, and
even if cf(a) > w, we still end up with what we wanted to have.

With this we finish the discussion on the decoding apparatus. This is the main
technical part of the construction. It is our sword and shield in our journey down-
wards. Now that we have that, we may venture deeper into the Hadean adventure
that is the Bristol model.

29This also highlights the importance of the assumptions in Theorem 2.8 being only about the
symmetric extensions having the same Vj,.
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4. THREE VIEWS OF THE BRISTOL MODEL

Much like Cerberus, the construction of the Bristol model can be seen as a
three-headed dog, guarding the realm of the underworld of models of ZF. The
three heads of Cerberus represent the three causes of strife: nature, cause, and
accident. The three heads of the Bristol model can be seen as representing three
typical approaches to its construction: nature, cause, and accident. All lead us to
the same construction, and indeed when getting down to brass tacks, the details
become suspiciously similar in each approach. But the presentation of one may be
more appealing to some readers over another.

Nature is the way in which the original group in Bristol went about to define the
model: defining the von Neumann hierarchy by hand, and defining a model L(X)
where X is a class of sets in the Cohen extension. Cause is the way in which [§]
presents the construction: defining an iteration of symmetric extensions, and finding
a symmetrically generic filter at each step of the way, thus constructing an iteration
and the von Neumann hierarchy of the Bristol model in tandem. Finally, Accident is
the way in which we define a productive iteration of symmetric extensions, we study
this iteration in an abstract manner, and then we find that by “complete accident”
we can find all the symmetrically generic filters inside the Cohen extension.

Fix a Bristol sequence, a permutable family A, = {A? | € < wat1} for =0
or a successor, and a permutable scale F,, = {fg‘ | € < wat1} for o limit. We will
define M, the Bristol model, in three different, yet equivalent ways. We will argue
that it is a model of ZF 4+ Vz(V # L(x)).

4.1. Nature. In here we will define the Bristol model one step at a time by defining
its von Neumann hierarchy in L[c]. For this purpose it would be easier at times
to use an increasing sequence modulo bounded sets, rather than the permutable
families. Since the two are equivalent, we let {T¢" [ { < wa+1} denote a sequence
obtained from A,,.

We define the g, and ij\ia in tandem, and we will omit the M from the su-
perscript where possible, as the definitions will be complicated enough. Let oo = ¢
and, as VM is just VL' = L, it is defined. Suppose that for a, g, and V,, 4, were
defined.

If a is 0 or a successor ordinal, define

L(Vw+a;9a TTQ)
(1) Vw+o¢+l = U Vw—i—a-‘,—l ) ’
E<wat1
L(Vw a;Qa[AQ)
(2) Qa+1 = <Vw+a++1 ¢ ‘ §< Wa+1> .

If v is a limit ordinal, we define V,, = U3<a Vio+p+1, and we define g, = H5<a 0B+1-
And as before we write g,y to indicate the “thread” of the function f in this
product. To define the next step we need an analogue of the T, we write 94,5 to

L(Vi+B,051T5 4))
denote the sequence of V5, PRI for B < a.

And we now define
L(Vw+uy9a.f§‘)

(3) Vw+a+1 = U Vw+a+1 ’
E<wa+t1
L(Vota+1,0a,fe)
(4) Qa+1 = <Vw+a+1 fle< wa+1> .

Finally, M = U,com VM . .1. The handwritten notes passed on to us by some
of the members of the Bristol group indicate that the original line of thought was
about RM and ’P(R)M , rather than V4, and V,,;2. The arguments, moreover, as
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L(Vat1,011TS) . .
to why V411 = Vw+(1 el ), i.e. why no reals are added when defining P(R)M
was not written down in these notes. Instead it merely suggests “condensation”.
While restoring the original arguments is certainly beyond us, these would be
equivalent, more or less, to the arguments we presented at the first step of section 3.

4.2. Cause. In here we will define the Bristol model in tandem: define a symmetric
extension, find it a generic in L[c], define a symmetric extension again, repeat ad
ordinalum.

This definition was used in [8], and you can very clearly see that this is the
definition that we have in mind, as it very much dominates the approach given in
section 3. As such, we really have done all the work ahead of time.

We define M, o, as in the decoding apparatus, i.e. as the generic objects for the
symmetric iteration. We now define M simply as U,corqa Mo = Uacora VWA_{‘Z“.
4.3. Accident. In here we will first define a class-forcing, and then argue that we
can just happen to find symmetrically generic filters in Llc].

Despite being the guiding view on the construction of the Bristol model, the
actual argument for M = ZF in [8] is the one rising from this approach, as it is less
“ad-hoc” and more structural and general. This is also the reason why the proof
of the distributivity of successor steps in the original paper was proved directly,
rather than the approach used in this paper, which is more in line with “Cause”.

We first define the iteration. Let Py = {1} and Qy = Add(w, 1), % and %, are
the derived group and filter. Finally, ¢¢ is the canonical name for the Cohen real.

Suppose that P, is the finite support iteration of the symmetric extensions de-
fined so far. In the case where a = 3 + 1, we define Q, as the name

) 5 .
{fﬁ <Vﬁi’3 el ’ ce I>

Where Vwﬂg(;] denotes the name of the rank initial segment of the extension of ISg
by the set 2. We then define o, as the name for the generic of Q.
If o is a limit ordinal, we define P, as the finite support iteration. We next

define Q, in the same spirit. For f € []SC(wq41) we define
Qas = {fx(0s1(f(B+1)) [ B € A)| [; € Ga,sup A < a}*,

and we then define Q, by adding the additional dimension of a bounded subset of
[1SC(wea). As before, 4, and %, are the derived group and filter. Finally, g, is
the name of the generic filter. Moving on, the definition Qa+1 and go41 is in line
with what we have done so far.

The properties of the decoding apparatus imply the distributivity of each iterand.
We need to be a bit more careful here, as we are not allowed to argue in L|c],
instead we carry on a recursive hypothesis that for successor steps P, satisfies a
chain condition that allows us to prove that Q, will be isomorphic to Add(wg, 1)%.

The conditions of Theorem 2.8 are therefore satisfied. This implies that if G is
any symmetrically L-generic for P, the class-length iteration, then IS¢ E ZF, at
the very least.

By recursion we can now show that each ¢, has a symmetric interpretation inside
L[c], and therefore we may find an interpretation of the model which is intermediate
between L and L[c].

Jz €Ga I € [wa}<“a} )

4.4. The basic properties of the Bristol model.

Proposition 4.1. M = ZF.
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Proof. We have two slightly different proofs here, the first we mentioned in the
“Accident” approach, utilising Theorem 2.8.3° The second approach works well for
“Nature” and “Cause”.

Since M is very clearly a transitive subclass of L[c] that contains all the ordinals,
it is enough to verify that it is closed under Gédel operations and that it is almost
universal to conclude that it is a model of ZF. The first part is easy: if x,y € M,
there is some M, or some large enough V4, in the “Nature” approach, such that
x,y € M, and therefore {x,y}, = x y, etc. are all in M,, and therefore in M.

The second part is the fact mentioned at the end of “Nature” about condensation;
or in the case of “Cause” this follows from the fact that for each o, VMo —= Ms

wt+a T Ywta
for all @ < 3, and therefore the model is almost universal. O

Proposition 4.2. M = Vz(V # L(x)).

Proof. If x € M, then there is some « such that « € M, and therefore L(z) C M,,.
But since M, € M,+1 € M, we have that L(z) # M. In the “Nature” approach
we need to be slightly more careful, as we have to verify that if x € V, then
Vat1 ¢ L(z). One way of doing this would be to argue that g, [ A are all generic
over L(V,,), and therefore cannot be elements of this model. O

We will see other ways of deducing Proposition 4.2 later on, in ways that will be
significantly more informative and more general.

5. ERRATA TO “THE ABYSS”

Here we correct some minor gaps and mistakes in the original paper. These
mistakes repeat, once with the cases of @« = 0 and o = 8 + 2, and once with the
cases of & = w and a general limit ordinal.

We repeat the remark we made in footnote 28: in [8] the proof of Lemma 4.7,
dealing with the genericity of g,,, contains a typo, whereas B,, is defined as | B,
and it should have been defined as dom B,,_;. This is somewhat inconsequential,
as the more general proof where « is a limit, in Lemma 4.20, is written correctly.

We also point out that there is a minor mistake in the construction’s induction
hypothesis, where the requirement that P, satisfies the N,-c.c. will not hold for
limit ordinals, only for 0 and successor ordinals. We can modify this by defining a
notion of “symmetric chain condition”,®' but this is an unnecessary complication.
We simply do not use the chain condition assumption for limit iterands.

5.1. Corrections to Lemma 2.12/4.1. Lemma 2.12 is read in the context of the
first steps. Namely, P is Cohen forcing, Q is the name of the forcing adding o1,
denoted in that lemma by o. As such HS is the class of hereditarily symmetric
names defined in the very first step.

Lemma ([8], Lemma 2.12). Suppose that DeHSandplF DCQisa dense
open set. There is some n < wy such that for every m and A such that p Ik w64 € D
andn C A, if 764 is a condition such that p |- 76, = 76y, then pl- 1764 € D as
well.

In the paper this lemma was used twice. The first consequence is the genericity
of 01,7 and the second is to show that Q is o-distributive. The proof is very similar
to the proof of Proposition 3.10. Nevertheless, when we have two permutations 7
and 7, we want to move T so that it agrees with .

30This is mentioned after Theorem 2.8, and proved as Theorem 9.4 in [9].

3lyor example, (P, ¥, .7) has k-s.c.c. if every symmetrically dense open set contains a predense
set of size <k.

320r o, in that context.
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For this we need not only that ¢(7) [ A = ¢(7) [ A, but also that their inverses agree
on A. In the case of the genericity of o1 we take m = id, in which case this property
holds trivially. Indeed, this is the very strategy of the proof of Proposition 3.10.

To prove that Q is o-distributive we interpret the lemma above as saying that
for a condition p € P, there is an ordinal 7, such that deciding whether a condition
from , whose domain is at least n, lies in D depends only on the permutation
m. We then utilise the fact P is c.c.c. to show that this 1 can be bound uniformly
depending on D. Now, if D,, are names for a sequence of dense open sets, we
can uniformly bound all of them by some 7. Now if we take any condition whose
domain is at least this 1, we may extend it into each D,,, but this means that such
extension lies, in fact, in all the D,, simultaneously, and therefore the intersection
is also dense.

Once we add the condition that ¢(7) ' [ A = ¢(7) "1 | A, the proof as written in [8]
follows through. Alternatively, and perhaps more wisely, for proving the distribu-
tivity one should rely on the absoluteness proof that we used in this manuscript,
which is also mentioned in the “Abyss”.

Lemma 4.1 is precisely the same, in the context of successor iterations. There is
no need to repeat that which has been said.

5.2. Corrections to Proposition 4.4/4.15. These two propositions are dealing
with limit iterations. They show that (og | 8 < ) is symmetrically generic for Py,
with Proposition 4.4 dealing with the case a = w, which was treated separately in
the paper.

Proposition ([8], Proposition 4.4). Suppose that D C P, is a symmetrically
dense open set, then there is a sequence (B, | n < w) such that (o, 5n | n < w) € D.

In the paper the proof takes a symmetrically dense open set D, and an excellent
support H witnessing that. We then generate some sequence of domains such that
when we extend the condition (gs [ X | 8 < &) into D, then we can “correct” it
using automorphisms which lie in H. Namely, each coordinate of H is of the form
fix(Bg), and we take Xg to be supdom Bg + 1, and therefore our starting condition
is (05 [ Xg | < a).

The idea is fine, and it is somehow intuitively clear what should happen. However
the proof described above, taken from the “Abyss”, will not work. The first hint is
obvious: pg has domain wg, and X3 is a bounded subset of wg;1. We can resolve
this issue by considering pg1 [ X, but this raises the obvious question, what should
we do with limit steps and with g¢?

Let us prove this proposition in its general form.

Proposition 5.1 ([8], Proposition 4.15). Let o be a limit ordinal, then the
sequence (pg | B < a) is symmetrically L-generic for P,.

Proof. Let D be a symmetrically dense open set. Our goal is to find a condition of
the form (o3 [ X | B8 < «), for appropriate Xg, in D.
Let H denote the excellent support witnessing that D is a symmetrically dense
open set. For § < a let £g41 the ordinal defined by either,
(1) when 8 is 0 or a successor let Bg be such that Hg = fix(Bg), and define
£3+1 = sup dom Bg;
(2) when £ is a limit let {g41 be an ordinal £ such that for some f € [ SC(wg),
Hp = K¢ 153
(3) when Hg = 93, set £g41 = 0.
For a limit ordinal 3, let Eg C [[SC(wg) be defined by [ _5(&y+1+1), and let
Ap denote sup{y < B | Hy41 # 9y41}; if B is a limit ordinal such that H, = ¥,
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for all v > 3, set Eg = Ag = &. Now define Yz as 0 for 8 = 0, {g for successors,
and (Eg, Ag) for limit ordinals.

The goal is to find the “domain” over which H must be the identity, and use
that to start our journey into D. Let p be the condition (05 [ Yz | 8 < a). By its
very definition, p is not moved by any 7 € H. Using the density of D we can now
extend p to a condition py € D. Moreover, since D is in L, we may assume that
the first coordinate of py agrees with gg, i.e. the Cohen real ¢, and by shrinking H
if necessary, we may assume that po(0) is not moved by automorphisms in Hy.

If po is not compatible with (gg | 8 < «), let 3 be the least coordinate witnessing
that. By the choice of Y3 we can find ¥ € H [ 3, and if § is not a limit ordinal
then we may assume 7 has a single non-trivial coordinate too, such that by taking
p1 = [.po, the following hold:

(1) supp(po) = supp(p1),
(2) po [ B=p1 18,
(3) p1(B) is indeed compatible with og.

The reason we can do that is exactly upwards homogeneity combined with our
choice of p, which py extended. As we did not increase the non-trivial coordinates
when moving from py to p;, we may proceed by recursion and after finitely many
steps the process must halt with some p,, € D. O

Indeed, the main point is the fact that we may assume that the first coordinate,
for which true genericity is already assumed, is compatible with the Cohen real, and
then we can modify any further coordinates recursively using upward homogeneity,
combined with the fact that we only need to change things outside of the domains
we found, which means that the needed automorphisms can be found in H.

6. REMOVING THE CONSTRUCTIBILITY ASSUMPTIONS

Now that we have constructed the Bristol model, and we have a good idea about
how the construction works, we can ask the obvious question: do we really need
V = L in the ground model? The answer, of course, is not really.

We have merely used three assumptions: GCH, O} for singular A, and global
choice for fixing the Bristol sequence. Of those three, the last one can be easily
dispensed, and we will discuss this in section 7. So we are left with only two
assumptions which are compatible with a large range of models, including all known
inner models from large cardinals below a subcompact.

This raises an interesting question, of course. What kind of large cardinals can
the Bristol model accommodate, assuming they existed in the ground model?

Proposition 6.1. If A is a set of ordinals in the Bristol model, then there is a real
number r such that A € V[r], and moreover r € V or r is Cohen over V.

Proof. Note that V[A] is a model of ZFC intermediate to V and V|c], and therefore
V4] is equivalent to some V|r]. O

This leads to an immediate corollary: if k is a large cardinal defined by the
existence (or lack thereof) of sets of ordinals, and this largeness is preserved by
adding a Cohen real, then x remains large in the Bristol model.

For example, if x is Mahlo, then the stationary set of regular cardinals remain
stationary in M, and thus x remains Mahlo. If we define a weakly compact cardinal
by stating that every colouring of [k]? in 2 colours has a homogeneous subset, this
too is given by sets of ordinals, and so it continues to hold in M.

We will see in section 9 that this can be extended from sets of ordinals to sets
of sets of ordinals, and so on, as long as we iterate power sets less than x times,
the largeness remains. So for example, any measure on a ground model measurable
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cardinal will have a unique extension in the Bristol model. Strong cardinals, defined
by extenders, are also preserved.

6.1. Limitations. Despite this handsome accommodation of large cardinal as-
sumptions in the ground model, as well as in the Bristol model itself, we can
put a stop to this. Indeed, if k is a supercompact cardinal, then there is a notable
shortage of 0§ sequences for singular A such that cf(A\) < x < A. We may ask
ourselves, perhaps we can salvage permutable scales without having (137

Theorem 6.2 (The Bristol group). Suppose that k is a supercompact cardinal
and A > k > cf(\). Then there are no permutable scales on [ SC(A).

Recall that we are still working under the assumption of GCH. Removing it will
require adding 2* < 2’\+, which itself is a harmless assumption as it holds for all
strong limit cardinals above k.

Proof. Let F = {fo | @« < AT} be a scale in [[SC()), and let m be a permutation
of AT, not necessarily bounded, which is not implemented by any sequence of
permutations, 7. Pick j: V — W an elementary embedding with critical point
k witnessing that s is at least AT-supercompact, so in particular j(x) > AT. We
denote by G = {go | @ < j(A1)} the scale j(F), which is a scale in j(J[]SC(N))
which is equal to [JSC(5()\))M.

Let v = sup AT, then v is closed under j(r), so we can let 7 denote j(m) [ v,
which is a bounded permutation of j(AT).

Suppose that there was a sequence of permutations 7 that implemented 7, then
for a < A+ and p < A, we have g (j(1+)) = j(fa(u)) and 7(j(a)) = j(r(a)).
Combining this with the assumption that 7 implements 7, we get that

Ty (G (fa (1)) = 5(fr) (17))-

We use this to define 7+ : p™ — p*. If 7;,4)(j(€)) = j(¢) for some ¢, define
7+ (§) = ¢; otherwise 7,+(§) = & This is well-defined, since 7;(,+) is itself a
permutation of j(u™), and so j(¢) < j(u™). This is also a permutation by similar
reasons.

Finally, we claim that # implements 7. Fix a < AT, then for any large enough
<X, T (G (fa(w))) = §(fa(a)(#T)), which means that we defined 7+ to be
exactly fﬂ(a) (,LL+)

We have shown that if F' can be used to implement all bounded permutations,
then it can be used to implement all permutations, but that is definitely impossible
on grounds of cardinal arithmetic. O

7. GAPS IN THE MULTIVERSE

The Bristol model, as we said at first, is a particularly striking counterexample to
our understanding of intermediate models when the axiom of choice is not assumed.
Working in V’s meta-theory, we can consider the collection of all intermediate
models between V' and V[c]. We remarked before, those models which satisfy ZFC
are exactly V itself or Cohen extensions of the form V[r] for some r € RV

What about models of ZF? We have, of course, symmetric extensions. These
were studied extensively by Grigorieff in [3], and later by Usuba in [23]. Grigorieff
proved that if M is a model such that V' C M C V[G], then M is a symmetric
extension given by the same forcing used to add G if and only if M = (HODy-, )V
for some set z € V[G]. Usuba extended this and showed that in general, M is a
symmetric extension of V' if and only if M = V' (z) for some set .

The construction of the Bristol model shows that there is indeed a difference
between the two results. Indeed, by counting the number of possible automorphism



APPROACHING A BRISTOL MODEL 27

groups and filters of groups we can see that there cannot be more than N3 distinct
symmetric extensions of Add(w,1) over L.*® Yet, the construction of the Bristol
model goes through a proper class of steps, and even if we did not formally prove
that each separate one is of the form L(z), we may take L(VM) as our models. By
Usuba’s result, these are all symmetric extensions of L, but of course most of them
are not symmetric extensions where the forcing used is the Cohen forcing.

So when we consider the multiverse of symmetric extensions of L, even those
that are landlocked inside L[c], we seem to have two different options. But we want
to study all intermediate models, and these include the Bristol model, which is very
much not a symmetric extension of L, by any means, as Usuba’s result indicate.
So what can we say about the multiverse of ZF models?

First, let us ask, how many Bristol models are there? Of course, there is the
canonical one, given by the <y-minimal Bristol sequence. But there are certainly
more. Simply by removing some of the sets or functions in any given point in the
Bristol sequence we invariably create a new Bristol model.

Proposition 7.1. Assuming GCH and that 05 holds for all singular A, there is a
class forcing which does not add sets whose generic is a Bristol sequence. O

This is done, of course, by approximating the Bristol sequence with set-length
initial segments. This is also the way we can remove global choice from the assump-
tions. Indeed, if V' was a model of ZFC, add a generic Bristol sequence, use it to
define a Bristol model between V' and V[c|, where ¢ is a Cohen real, and promptly
forget about this generic sequence.

As very clearly the Bristol model is definable from its Bristol sequence in V[,
this means that there may be undefinable Bristol models. And indeed, this can
very much be the case.

Theorem 7.2. Suppose that V is a countable transitive model of ZFC+ GCH 4 0%
for all singular cardinals X\, and let ¢ be a Cohen real over V. Then there are
uncountably many Bristol models intermediate between V and Vc|.

Proof. Given two Bristol sequences such that Ay and A{, are the two permutable
families on w and such that |JAo N JAj is finite, the two Bristol models are
distinct. This can be easily arranged, for example taking Ag to only have subsets
of even integers and Aj, only has subsets of odd integers. This can be extended to
any other step in the Bristol sequence. We can now easily construct uncountably
many distinct Bristol models by simply considering with each subset of Ord" how
to modify a given, or indeed a generic, Bristol sequence. 0

This is in stark contrast to the case of intermediate models of ZFC of which there
are only not just countably many, but there is a set of all the necessary generators
in V[c], and the same can be said about symmetric extensions given by the Cohen
forcing itself, as Grigorieff’s theorem shows. And while there is a proper class of
symmetric extensions of V', it is still enumerated by the sets in Vc|, making it
countable in the meta-theory.

Therefore between V' and V]c] most models are models of ZF, they are not
symmetric extensions of V', and in fact they are not definable in V[c]. To make
matters worse, inside each Bristol model, we can find a different real, and use that
real to interpret the Bristol sequence. Just as well, we may also use one of the
Oa+1 [Ag‘ to interpret the Bristol model construction above a certain stage.

Which truly indicates that the Bristol models are intertwined through this mul-
tiverse of models. But to truly appreciate the Bristol model(s), and to understand
a bit more its internal structure, we need to have a refined sense of choicelessness.

33We can improve this counting argument to show no more than Xy, actually.
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8. KINNA—WAGNER PRINCIPLES

The axiom of choice can be simply stated as “every set can be injected into an
ordinal”, or in other words, “every set is equipotent with a set ordinals”. This, in
conjunction with the following theorem, makes a nice way of understanding models
of ZFC.

Theorem (Balcar—Vopénka). Suppose that M and N are two models of ZF with
the same sets of ordinals. If M = ZFC, then M = N. O

Commonly this is stated when M and N are both models of ZFC, but that is in
fact unnecessary. The proof relies on the fact that a relation on a set of ordinals can
be coded as a set of ordinals. But can we extend the idea of this characterisation?
Yes, yes we can.

Definition 8.1. We say that A is an a-set of ordinals, or simply “a-set”, if there
is an ordinal 7 such that A C P(n).

Definition 8.2. Kinna—Wagner Principle for «, denoted by KWP,,, is the state-
ment that every set is equipotent with an a-set. We write KWP to mean da KWP,,.

For a = 0 this is simply AC. The principle for a« = 1 was defined by Kinna and
Wagner, although formulated differently using selection functions, and was studied
extensively. One of the immediate results is that KWP; implies that every set can
be linearly ordered, but as the work of Pincus shows in [17], KWP; is stronger than
the existence of linear orderings, and in fact independent of the Boolean Prime
Ideal theorem (which also implies every set can be linearly ordered).

These general principles were defined by Monro in [13] for @ < w, and later
extended by the author in [9]. Monro extended the result of Balcar and Vopénka,
and this result can be further extended as well.

Theorem 8.3 (The Generalised Balcar—Vopénka—Monro Theorem).
Suppose that M and N are models of ZF with the same a-sets. If M = KWP,,
then M = N.

Proof. Note that for every «, we can code relations on a-sets by using a-sets in a
robust and definable way by extending Godel’s pairing function. So we can simply
repeat the proof of Balcar—Vopénka. If x € M, we can encode tcl({z}) and its
membership relation as an a-set, X. So X € N, and by decoding the membership
relation and applying Mostowski’s collapse lemma, € N. Therefore M C N.

In the other direction, suppose that VnM = VnN , then we can encode it as an
a-set in M N N. Now given any v C V,, in N, ie. v € Vn]ih by looking at the
a-set encoding V;,, we can identify the subset corresponding to z, in V. But as M
and N share the same a-sets, this implies that this subset is in M as well, and we
can therefore find x € M. Now by transfinite induction, VnM = VnN for all n, and
equality ensues. O

Monro proved in [13] that KWP,, 11 - KWP,, for all n. This result was extended
to show that KWP,, - KWP,, for all n by the author in [9], and was later extended
as well by Shani in [21] to show that for all & < w1, KWP4,41 - KWP,,.

Definition 8.4. Small Violation of Choice holds if there exists a set A such that
for any set x there is an ordinal 5 and a surjection f: nx A — z. We write SVC(A)
to specify this set A, or SVC to mean JASVC(A).

This axiom is due to Blass in [1], and it turns out to play an important role in
the study of symmetric extensions. Blass proved in [1] that SVC is equivalent to the
statement “The axiom of choice is forceable [by a set forcing]”, and that SVC holds
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in every symmetric extension. Usuba showed in [23] that the latter implication can
be reversed. Namely, V' = SVC if and only if V' is a symmetric extension of a model
of ZFC.

Proposition 8.5. Suppose that SVC(A) holds, if A is equipotent with an «-set,
then KWP 411 holds.

Proof. We may assume that A is an a-set itself, and so if f:n x A — z is a
surjection, by coding we may replace n x A by an a-set as well, say A,. Now the
function mapping y € = to yy = {a € A, | f(a) =y} is injective, and each y; is an
a-set. Therefore z is equipotent to the (« + 1)-set {ys | y € z}. O

In the other direction, however, the implication fails. It is consistent that KWP
holds, but SVC fails. For example, in [14] a class-symmetric extension is constructed
which easily fails SVC, but the proof that KWP; holds in the Cohen model can be
adapted for it as well.3*

Before we return to study the Bristol model, let us study Kinna-Wagner Prin-
ciples a bit more in depth.

Theorem 8.6. Suppose that V = KWP,, if V[G] is a generic extension, then
V[G] E KWP,,-, where a* =sup{f+2| B < a}.?

Proof. For every x € V[G] there is a name ¢ in V, so & [ G = {{(p,y) € & | p € G}
in V]G], and the interpretation map is a surjection onto z, which we can extend to
a surjection from & itself. Therefore every set in V[G] is the surjective image of a
set in V.

If o« < a* the above completes the proof, as we may assume that & was an
a-set, and conclude that x is an (« + 1)-set. For o = 0 or a limit ordinal, we use
Lemma 8.7. (]

Lemma 8.7. Let A be an a-set for « = 0 or a limit ordinal. If f: A — z is a
surjection, then there exists an a-set B which is equipotent with x.

Proof. For a =0, A is a set of ordinals, so we may simple choose the least ordinal
from the pre-image of each y € z. Suppose that « is a limit ordinal, and define for
B<a,Ag={a€ Alaisa f-set}. Foreveryy €z, let 8, be the least § such that
for some a € Ag, f(a) =y.

Now define B, = {a € Ag, | f(a) =y}, thisis a (8, + 1)-set, and y # y' implies
B, # B,;. Therefore B = {B, | y € z} is an a-set equipotent with x. O

On the other hand, ground models need not satisfy the same KWP, as their
generic extension: as we have seen in the construction of the Bristol model, L[]
has a proper class of ground models, L(V,M), and as we will see in the next section,
the various KWP,, fails as we go up the hierarchy.

The next obvious question is whether or not Theorem 8.6 can be improved.
Unfortunately, it cannot. The Cohen model famously satisfies KWP;,3¢ but as
Monro demonstrated in [15], there is a generic extension of the Cohen model in
which there exists an amorphous set, which cannot be linearly ordered, in particular,
KWP; must fail in that generic extension. Nevertheless, by the theorem above,
KWP; must hold. This leads us to the following conjecture.?”

3410 most class-symmetric extensions a similar thing should happen, if each component of the
product preserves KWP,,, then the product as a whole will satisfy KWP. We invite the interested
reader to prove this.

35Tn other words, a* is the successor of @ when « itself is a successor, or « itself otherwise.

36 An implicit proof can be found as Lemma 5.25 in [7].

37These are not directly related to the Bristol model, so we include them here instead of
section 10
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Conjecture 8.8 (The a* Conjecture). Suppose that KWP,+ holds in every generic
extension of V, then KWP,, must hold in a ground of V.3®

It is also easy to see that if M = —KWP, then also any generic extension of
M must satisfy this. Which points out to a particularly poignant feature of a
generic multiverse, and indeed a symmetric multiverse,>® KWP hold or fails uni-
formly throughout the entire multiverse.

Conjecture 8.9 (The Kinna—Wagner Conjecture). Suppose that V' = KWP and
G is a V-generic filter. If M is an intermediate model between V and V[G] and
M = KWP, then M = V (z) for some set x.

The Bristol model was an exercise in finding an intermediate model which is
not constructible from a set. And we conjecture that having any such model,
intermediate to a generic extension, will fail KWP, and vice versa: any intermediate
model of KWP is constructible from a set over the ground model.

Remark 8.10. The Kinna—Wagner Conjecture was proved by the author and
Jonathan Schilhan in [11], along with a more thorough study of Kinna—Wagner
Principles in the generic multiverse, including improvements to several of the the-
orems presented in this section.

It may also be the case that KWP implies ground model definability, which is a
notoriously difficult problem in ZF. Usuba proved [22, Corollary 6] that under a
certain condition ground models are definable in ZF, but currently the only known
models to satisfy these conditions are models satisfying SVC.** Nevertheless, as
a-sets can be used to characterise a model of ZF in the presence of KWP,,, it stands
to reason that it may play a role in ground model definability as well.

We can also define SVC,, to mean that we replace the ordinal, n, by an a-set.
And in that case we can easily see that SVC, is equivalent to “KWP,« is forceable”.
And one is now left wondering if SVC,, is equivalent to being a symmetric extension
of a model satisfying KWP,,.

One can also take a different approach and define SVCy,, for a class M, where
we may replace the ordinal n by a set from M, so SVC = SVCp,q and SVC, is a
shorthand for SVCpa(orq). For this to be truly useful, we need to modify KWP,, so
that 0-sets are subsets of M. These ideas may play a role in the ultimate answers
regarding ground model definability in ZF, and we hope this discussion will help to
inspire some of the readers to think about that.

Question 8.11. Is ground model definability equivalent to KWP?

Note that this question is meaningful since as we observed, KWP is absolute
through the generic, and indeed the symmetric, multiverse.

9. CHOICE PRINCIPLES IN BRISTOL

We want to investigate the failure of the axiom of choice in the Bristol model,
M, and provide alternative proofs to the key property of the Bristol model, namely

Va(V # L(x)).

Proposition 9.1 ([8], Theorem 5.5). Let M denote the Bristol model, and M, be
the ath model in the construction. Suppose that A € M is an a-set, then A € My1.

387 previous version of this manuscript suggested that the ground can be taken as V itself.
However Monro’s generic extension of the Cohen model satisfies KWPy +-KWP7, and any generic
extension of that model is also a generic extension of the Cohen model, so will also satisfy KWP,.

39Allowing symmetric extensions and grounds. See [23] for more information.

40The existence of a proper class of Lowenheim—Skolem cardinals, which follows from SVC.
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We will not prove this proposition here, but the idea extends the homogeneity
argument used in Proposition 3.2. Indeed, L(V,}{,) contains all the a-sets of M.

Corollary 9.2. Suppose that W is a model of ZFC + GCH 4T3 for every singular
cardinal A, and let M be a Bristol extension of V.. Then W is definable in M.

Proof. Note that N = L(P(Ord))™ contains W, since it contains P(Ord)™ and
W E ZFC. It is therefore equal to W(Vw”il), since by Proposition 6.1 every set
of ordinals is either in W or in W{r] for some real. That is to say, N is a sym-
metric extension of W. By Usuba’s result [23, Corollary 5.6], W is definable in its
symmetric extensions, so W is definable in N, and therefore in M. (|

Corollary 9.3. If § > «, then Mg |= =KWP,,. In particular, M = -KWP.
Proof. M, Mg and M, have the same a-sets. If one of them would satisfy KWP,,

by The Generalised Balcar-Vopénka—Monro Theorem, M = Mg = Mq41. O
Corollary 9.4. M = —SVC, and consequently M |=Vz(V # L(x)), as well as “the
azxiom of choice is not forceable (by a set forcing)”. O

It follows from this that at least for a proper class A C Ord, if a < 8 are both
in A, then KWPg - KWP,. But we want to understand the gradation, or rather
the degradation, of KWP through the construction.

Proposition 9.5. M; = -KWP; A —-BPI
L[enAY] .

Proof. We proved that R, the set of R¢ =V ¢ for £ < wy, is Ry-amorphous
in M; in Proposition 3.8, and the same argument shows that it cannot be linearly
ordered. In particular, it cannot be equipotent to any 1-set and it also witnesses
that BPI fails.

Briefly, the argument starts by taking a name < € IS; and some p IF'® “(R, <)* is
a linearly ordered set”. Let B be a disjoint approximation such that fix(B) C sym(R)
and domp C |JB. We pick a, 8 ¢ dom B and distinct, and we let ¢ < p decide,
without loss of generality, R, < Rs. But now we can find © € fix(B) such that
1(m) = (a B) and g = ¢, which is impossible if < was a name for a linear order. O

This is a remarkable point, as the elements of R themselves can be well-ordered
separately. So you may think we can replace them by 0-sets, but we cannot do that
uniformly, and this forces us to treat them as 1-sets instead, and R itself as a 2-set.

Proposition 9.6. M, = -BPI.

Proof. We show that R still cannot be linearly ordered when passing to My. Of
course the forcing that led us there, Q, linearly orders (and in fact well-orders)
R. But it is easy to see that this well-order is promptly discarded, and instead we
only remember bits and pieces of it in the form of g [A%. To show that there is
no linear ordering in Ms we need to use the full power of the symmetric iteration.
We are going to start with a rather naive attempt, which may not work, but we
can identify the problem and circumvent it.

Suppose that < € IS, is such that (p,q) IFy “X linearly orders R”. Let By
and B; be disjoint approximations such that (fix(By), fix(B1)) is a support of <.
Let a, 8 < wy be such that a, 8 ¢ dom By U |JB; and moreover Ra,Rﬁ are not
mentioned in ¢.

Let (p',¢’) be a condition extending (p,¢) such that (p’, ") H—'QS Ro < RB- We
would like to apply upwards homogeneity and counsider m € fix(By) which imple-
ments (« 3) while also not moving p’. But we have to contend with the fact that m¢’
may have moved. Luckily, we know exactly where it moved to: 7 simply permutes
the range of ¢, so if R, and R5 appear in ¢’, which is the likely case, then we simply
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need to switch them back using some o € fix(B;), that is an automorphism of Qy,
and that will be enough, since automorphisms of Q; do not change R, and Rg.

Alas, we have a problem. For ¢ to exist, we need to make sure that R, and Rj
appear in ¢’ in coordinates which are not in |J B1, otherwise we cannot move these
coordinates at all. So this naive approach cannot work.

Luckily, we assumed that R, and RB are not mentioned in our original ¢. So to
find ¢/, first add both of these in coordinates that are not in | J By, and if this was
not enough to decide how < will order them we can extend further to find ¢’. In
other words, we may assume without loss of generality that ¢’ mentions R, and R,@
in coordinates which are eligible to be switched from within fix(By).

Therefore, if (p/,¢') Iy Ra < Rg, then also (p/,¢’) 5 Rg < R,. Therefore
(p’,¢’) cannot force < to be a linear ordering, which is a contradiction, since it
extends a condition which did force just that. O

One may think that this is enough to prove that there are sets which cannot be
linearly ordered in the Bristol model, as we just exhibited that the second symmetric
extension will not linearly order R either. Alas, we already concluded that R is a
2-set, so a linear ordering of R will also be a 2-set. But we know that 2-sets are
only determined in Ms. But luckily, we are not very far behind completing this
part of the journey.

Theorem 9.7. M = —BPI, and in fact there is a set in M which cannot be linearly
ordered.

Proof. Suppose that (p, ¢, 7) € P3 is a condition that for some < € 1S3 forces that <
is a linear order of R. We can actually run the proof of Proposition 9.6 again. First
of all, = will not affect the condition extending 7 at all, but more importantly, o
can be chosen as a permutation moving only two points which means it implements
the identity. So it also will not modify the condition extending 7-.

And so as long as we were careful to choose the extension ¢’ in a way that allows
o to be taken from fix(B;), the argument is not affected. Therefore we showed that
M3 = “R cannot be linearly ordered”, and therefore M does as well. O

10. OPEN QUESTIONS RELATED TO THE BRISTOL MODEL

There is still so much to learn about the Bristol model, both in the specific
context of L, as well as many natural questions that come up from generalisations
and details in the proof. We cannot possibly include all of these, but we will give four
families of questions which are interconnected, but also seem to have independent
interest.

10.1. The Bristol models in the multiverse.

Question 10.1. Is there a condition characterising the equivalence classes on Bris-
tol sequences (definable or otherwise) based on the Bristol model they generate
using a fixed Cohen real?

Question 10.2. Is the theory of any two Bristol models the same? Does the theory
depend on the sequence or its properties?

Question 10.3. Are there any non-trivial grounds of any Bristol model?

Question 10.4. Is there a Bristol model which is definable in its generic extensions,
or maybe is there one that is not definable in some of its generic extensions?

Question 10.5. Is there a generic extension of a Bristol model which itself is a
Bristol model?
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Question 10.6. Is there a maximal Bristol model, namely, is there a Bristol model
M C Llc] such that for any « € L[]\ M, M (z) = L[¢]?

Question 10.7. Is it true in general that for « € L[c|, either L(x) = L[] or there
is a Bristol model M such that z € M?

10.2. Large cardinals in the Bristol model.

Question 10.8. We saw that measurable cardinals remain measurable. Do they
remain critical cardinals in the sense of [5]? What about weakly critical cardinals?

Question 10.9. Principles like [0} are considered to witness failure of compactness.
Suppose that A is singular and no permutable scale exists on [[SC(A). Can this
compactness be harnessed to restart the Bristol model construction? (Note that
a positive answer would indicate that Woodin’s Axiom of Choice Conjecture is
possibly false, which may imply also the eventual failure of the HOD Conjecture.
As such the answer to this question is most likely negative, and a positive answer
would be extremely hard to prove.)

Question 10.10. Suppose that elementary embeddings can be lifted and Woodin
cardinals are preserved. Starting from strong enough hypotheses, can we construct
Bristol model-like objects that satisfy AD?

10.3. Other type of Bristol models.

Question 10.11. Can we start the construction of the Bristol model with a dif-
ferent type of real? Clearly not every real is useful, minimal reals do not have
intermediate models, for example. But what about reals that admit sufficiently
many automorphisms and intermediate models such as random reals? What about
“Cohen + condition” type of reals (Hechler, Mathias, etc.)? Will this also impact
the type of forcing we need to do in the following steps (namely, will that force us
to use something which is not isomorphic to Add(ws, 1)% in successor steps)?

Question 10.12. Can we start the construction with a Prikry-like forcing instead
of a Cohen forcing?

Question 10.13. While there is no good definition for iteration of symmetric
extensions with countable support, it is imaginable that for productive iterations
such as the one used in the Bristol model this is doable by hand. What would
this be? Can we have an w;-Bristol model starting with an L-generic sequence for
Add(wy, 1) for example?

Question 10.14. Can we find similar constructions over arbitrary models of ZF,
or at least some reasonable combinatorial property which involves the V, hierarchy,
rather than the ordinals?

10.4. Weak choice principles.

Question 10.15. Does DC hold in the Bristol model?*!

Question 10.16. Are there any free ultrafilters on w in the Bristol model?
Question 10.17. Does M, = KWP,..”

Question 10.18. Are there any choice principles that can be forced over the Bristol
model?

41y an upcoming work with Jonathan Schilhan we answer this question to the positive. In
particular, countable choice holds in the Bristol model. We do not know about ACwqo.
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Question 10.19. Is countable choice true in the Bristol model? If so, is ACwo,
the axiom of choice for families that can be well-ordered, true? (Note that this will
provide a positive answer about DC, as well as the lifting of elementary embeddings
for measurable cardinals.)

Question 10.20. Say that A is xz-amorphous if it cannot be well-ordered, and it
cannot be written as the union of two sets that are not well-orderable. That is, for
some K, A is k-amorphous. Are there any z-amorphous sets in the Bristol model?

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
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