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 A B S T R A C T

Accurate prediction of electric vehicle (EV) charging demand is pivotal for effective smart grid management 
and renewable energy integration. However, predicting spatio-temporal EV charging patterns remains chal-
lenging due to complex data fusion requirements arising from heterogeneous temporal, spatial, and contextual 
features, as well as difficulties in effectively integrating multiple modeling approaches. This paper introduces 
EV-STLLM, a novel spatio-temporal data fusion framework based on Large Language Model explicitly designed 
for accurate short-term EV charging demand forecasting through innovative integration of data-level and 
model-level fusion techniques. At the data level, a multi-source embedding module is developed to seamlessly 
fuse temporal features (e.g., time slots, weekdays), spatial heterogeneity (e.g., geographical location), and 
contextual charging behaviors into a unified representation via embedding convolutional network. At the model 
level, a large language model (LLM) is employed to capture global spatiotemporal dependencies, enhanced 
with Low-Rank Adaptation (LoRA) for parameter-efficient fine-tuning, substantially reducing computational 
costs while maintaining prediction robustness. Using a comprehensive real-world dataset comprising over 
830,000 EV charging records across 16 districts and 331 subdistricts in Beijing, we validate EV-STLLM 
across multiple forecasting scenarios (district and subdistrict levels, one-step and two-step ahead predictions). 
Extensive comparative evaluations demonstrate that EV-STLLM consistently outperforms classical, graph-based, 
and deep learning baselines. Specifically, in one-step ahead district-level forecasting, EV-STLLM achieves up to 
a 15.41% reduction in MAE and a 53.51% reduction in MAPE compared to the leading baseline, underscoring 
its potential to significantly enhance data-driven smart grid operations.
. Introduction

With the accelerated global transition towards carbon neutrality, 
lectric Vehicles (EVs) are shifting from being an ‘‘option’’ in the 
ransportation revolution to a ‘‘necessity’’ in urban low-carbon transfor-
ation [1]. As of 2023, the number of EVs in China has surpassed 20 
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million, and it is expected to reach 160 million by 2030 [2]. However, 
the rapid growth of EV ownership has led to unprecedented scheduling 
pressures on urban power systems [3]. EV charging behavior exhibits 
significant spatiotemporal characteristics, with high volatility and con-
centration in different time periods and spatial regions, creating new 
challenges for grid stability [4]. Particularly during peak electricity 
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usage periods or in specific areas, concentrated EV charging may cause 
localized load surges, even leading to power supply bottlenecks [5]. 

In this context, conducting spatiotemporal predictions of short-term 
EV charging demand is of great importance for smart grid management 
and pricing strategies [6]–[7]. By accurately predicting the charging 
demand distribution in different regions over the next hour or next 
few hours, power companies can devise time-of-use pricing strategies, 
guiding users to avoid peak load periods and improving the opera-
tional efficiency of the power system [8]. Additionally, the prediction 
results can support grid scheduling, enabling dynamic load adjustment 
and optimized energy allocation, reducing the peak–valley difference, 
and enhancing grid security and flexibility [9]. Moreover, short-term 
predictions can improve user experience, such as by intelligently rec-
ommending charging times or locations, reducing queuing time, and 
improving charging convenience and cost-effectiveness [10]. There-
fore, short-term spatiotemporal prediction of EV charging demand is 
not only an effective means of addressing grid operational pressure, 
but also an indispensable technological support in the development 
of green transportation and smart energy [11]. However, despite ex-
tensive research on modeling and predicting EV charging demand, 
achieving high-accuracy short-term spatiotemporal predictions at the 
urban scale still faces several challenges, especially in data fusion and 
model fusion [12]. Specifically, data-level fusion focuses on preprocess-
ing and integrating raw or intermediate data from different sources 
to create a unified representation for prediction models, while model-
level fusion emphasizes the combination of outputs or intermediate 
representations from multiple models to improve overall accuracy and 
robustness. The details of data-level fusion and model-level fusion are 
described as follows.

On the one hand, although existing research has extracted a large 
number of features from temporal, spatial, and user behavior dimen-
sions, efficiently integrating these multi-dimensional and multi-modal 
features remains one of the core challenges in short-term EV charging 
demand forecasting. Firstly, charging demand exhibits evident tempo-
ral periodicity (e.g., daily and weekly cycles) and temporal burstiness 
(e.g., during commuting hours). Traditional time series modeling ap-
proaches often struggle to capture such nonlinear trends and sudden 
fluctuations. For example, one study reported that traditional meth-
ods (e.g., ARIMA) underperformed their proposed method (TSAGE) 
by a factor of 3.25 in terms of RMSE [8]. Additionally, historical 
data often include anomalous time points such as holidays, extreme 
weather, or unexpected events, further complicating the modeling and 
fusion of temporal features [13]. Secondly, the spatial distribution of 
charging stations in urban environments is highly uneven. Charging 
behaviors across different regions are influenced by various factors such 
as geographic location, traffic conditions, and surrounding facilities. 
Effectively modeling spatial correlations (e.g., influence propagation 
between neighboring regions) and spatial heterogeneity (e.g., behav-
ioral differences between urban centers and suburban areas) is a key 
challenge for spatial feature fusion [14]. Finally, fundamental features 
such as user type, charging station category, and pricing mechanisms 
represent static information whose influence varies under different 
spatiotemporal contexts. These static features interact in complex ways 
with dynamic spatiotemporal features. Therefore, dynamically adjust-
ing the weights of static information in the modeling process is an 
urgent issue in current data fusion research. Consequently, constructing 
a data fusion framework that can flexibly adapt to multi-source het-
erogeneous data and dynamically adjust feature weights is crucial for 
improving prediction accuracy.

On the other hand, in spatiotemporal forecasting tasks for short-
term EV charging demand, model fusion has emerged as a key strategy 
for enhancing prediction accuracy and system robustness. The current 
mainstream prediction models include small models, large models, and, 
more recently, large language models (LLMs). Each model category 
offers advantages in feature modeling, representation capacity, and 
computational efficiency, but also faces specific challenges in practical 
2 
application. Small models, such as linear regression (LR), decision 
trees, and support vector machines, offer high training efficiency, low 
computational cost, simple structure, and ease of deployment. How-
ever, they are limited in capturing complex nonlinear relationships 
or long-term dependencies, making them less suitable for large-scale, 
multi-dimensional urban-level charging demand forecasting [15]. Large 
models, such as convolutional neural networks (CNNs), recurrent neu-
ral networks (RNNs), and Transformers, possess significant advantages 
in spatiotemporal modeling, capable of uncovering deeper sequential 
patterns and spatial dependencies in charging behaviors. Nevertheless, 
these models require substantial data and computational resources for 
training, are costly to implement, and are prone to overfitting [16]. 
Recently, LLMs, such as GPT and BERT, have achieved remarkable 
progress in natural language processing, especially in understanding 
complex semantics and generating context-aware content. However, 
these models were not originally designed for spatiotemporal sequence 
prediction tasks. Directly applying LLMs to structured time series mod-
eling may encounter structural mismatches and task adaptation chal-
lenges [17]. In summary, although integrating small models, large 
models, and LLMs could leverage their complementary strengths, in 
practice, model fusion faces several difficulties, including inconsisten-
cies in model architectures, heterogeneity in feature input formats, and 
complexity in designing effective fusion strategies.

To address the aforementioned challenges, this paper proposes a 
spatiotemporal fusion framework that integrates both data-level and 
model-level strategies, aiming to enhance the accuracy and robustness 
of short-term electric vehicle charging demand forecasting at the urban 
scale. Leveraging real-world EV charging data from Beijing—covering 
331 sub-districts across 16 administrative districts—this study demon-
strates how multi-source, city-scale data fusion can effectively support 
intelligent demand forecasting and urban energy scheduling, providing 
critical insights for the development of smart grids and low-carbon 
cities. The main contributions of this paper include:

(1) Unified spatiotemporal data fusion through collaborative em-
beddings. To address the heterogeneity of multi-source data 
in EV charging demand forecasting, we design a collaborative 
embedding mechanism that enables effective data-level fusion 
across temporal, spatial, and behavioral dimensions. Specifi-
cally, temporal patterns are encoded via time-slot and weekday 
embeddings; spatial heterogeneity is captured through nonlinear 
transformations of urban region features; and localized charging 
behaviors are represented using pointwise convolution. These 
components are integrated via an Embedding Convolutional Net-
work (ECN), constructing a unified spatiotemporal represen-
tation capable of capturing both static and dynamic feature 
interactions across time and space.

(2) Model-level fusion via LoRA-enhanced large language model. To 
fully leverage the complementary strengths of traditional feature 
embeddings and large-scale pretrained models, we propose a 
model fusion strategy that integrates lightweight spatiotemporal 
encodings with a parameter-efficient fine-tuned LLM. By adopt-
ing Low-Rank Adaptation (LoRA), we insert trainable low-rank 
matrices into the Transformer’s Query and Value projections 
while keeping the pretrained backbone frozen. This approach 
significantly reduces training overhead, enhances scalability, 
and enables the LLM to adapt to structured forecasting tasks 
without compromising its generalization ability.

(3) Extensive real-world validation with superior quantitative per-
formance across scales. We construct a large-scale EV charging 
dataset spanning 16 districts and 331 subdistricts in Beijing, and 
evaluate the proposed model across multiple forecasting sce-
narios. Compared to strong baselines (e.g., GRU, GraphSAGE), 
EV-STLLM achieves up to 15.45% reduction in MAE and 53.51% 
reduction in MAPE for district-level 1-step prediction, and up to 
19.61% and 26.39% reductions in MAE and RMSE respectively 
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at the subdistrict level. These results demonstrate the model’s su-
perior accuracy, robustness, and fine-grained adaptability across 
both coarse and fine spatial resolutions.

The rest of this paper is organized as follows. Section 2 reviews 
the related literature on EV charging demand prediction, spatiotem-
poral modeling, and the application of LLMs in forecasting. Section 3 
formally defines the problem of short-term EV charging demand pre-
diction. Section 4 details the proposed methodology, including the 
overall framework, the spatiotemporal feature embedding process, the 
Transformer-based architecture, and the parameter-efficient fine-tuning 
strategy. Section 5 describes the experimental setup, presents the re-
sults of comparative and ablation studies, and analyzes the model’s 
sensitivity. Finally, Section 6 concludes the paper, summarizing the key 
findings and discussing the practical implications and limitations of the 
work. 

2. Related work

2.1. EV charging demand prediction

EV charging demand prediction has become an important research 
direction in the fields of intelligent transportation and smart energy [18]
Existing EV charging demand prediction methods can be broadly di-
vided into three categories: statistical models, traditional machine 
learning methods, and deep learning methods. Statistical models, such 
as autoregressive integrated moving average (ARIMA) [19] and sea-
sonal ARIMA (SARIMA) [20] are characterized by simplicity in mod-
eling and strong interpretability, making them suitable for relatively 
stable time series prediction tasks. However, their ability to model 
nonlinear relationships is limited, and they perform poorly when deal-
ing with complex and variable charging behaviors. Machine learning 
methods, such as support vector regression (SVR), random forest, 
and gradient boosting decision trees (GBDT) are capable of capturing 
nonlinear features to some extent. These methods are suitable for 
medium- to small-scale datasets, but they heavily depend on feature 
engineering [21]. In recent years, deep learning models based on 
RNN [22], CNN [23], and their variants have been widely applied 
in charging demand prediction. These models possess strong feature 
extraction and pattern recognition capabilities, especially in handling 
high-dimensional complex data and capturing temporal and spatial 
dependencies.

The variation in EV charging demand is driven by multiple factors, 
and constructing a high-quality prediction model requires compre-
hensive consideration and modeling of key influencing factors [24]. 
Temporal features, such as hours, days of the week, holidays, etc., 
reflecting the periodicity and regularity of charging behavior. Spatial 
features, including districts and subdistricts, which reflect regional 
differences in population, traffic, and infrastructure, thereby influ-
encing charging behavior. Central urban areas tend to have higher 
charging demands due to dense commuting, while suburban areas 
are significantly influenced by residential distribution and charging 
station coverage. Proper modeling of spatial hierarchy helps improve 
spatial accuracy and generalization ability in predictions. Environ-
mental factors, such as weather (temperature, precipitation, etc.) and 
air quality, which may indirectly affect vehicle travel frequency and 
charging demand. Therefore, the fusion of multi-source heterogeneous 
data has become an important way to enhance model performance, and 
establishing effective correlations between different data types remains 
a critical research topic.
3 
2.2. Spatiotemporal prediction

Charging demand prediction falls under the broader category of spa-
tiotemporal prediction. Therefore, when constructing prediction mod-
els, time and space features should not be treated separately but should 
be understood in terms of their coupling relationship. During the de-
velopment of spatiotemporal modeling methods, researchers have pro-
posed various architectures to enhance the ability to capture complex 
spatiotemporal features. Early methods often employed combinations 
of CNNs and RNNs, where the former was used to capture spatial 
dependencies and the latter was used to model temporal dynamics. 
Models such as CNN-long short-term memory networks (LSTM) [25] 
and ConvLSTM [26] have improved the accuracy of spatiotemporal 
sequence modeling to some extent but have limitations when dealing 
with non-Euclidean spatial structures, such as urban road networks.

To address these issues, graph neural networks (GNNs) have been 
introduced into spatiotemporal modeling in recent years. Represen-
tative models such as spatiotemporal graph convolutional networks 
(STGCN) [27] and diffusion convolutional recurrent networks
(DCRNN) [28] build spatial graph structures to capture non-Euclidean 
relationships between nodes and integrate time series modeling tech-
niques to efficiently predict spatiotemporal data like traffic flow and 
energy consumption. Xing et al. proposed a spatiotemporal fusion net-
work that integrates GCN with LSTM-Attention, specifically designed 
for urban rail transit OD flow prediction [29]. Xu et al. introduced a 
novel transportation prediction model, the HSTGODE, which employs 
a dual-layer structure combined with spatiotemporal ordinary differen-
tial equation modules to address the over-smoothing problem in GNNs 
and effectively capture hierarchical spatiotemporal features at both 
regional and node levels [30]. These methods have achieved significant 
results in urban traffic, power load, and other fields, further expanding 
the technical boundaries of spatiotemporal prediction.

With breakthroughs in the Transformer model in natural language 
processing (NLP) for sequence modeling, researchers have begun to 
introduce these models into spatiotemporal prediction, developing spa-
tiotemporal Transformer architectures [31]. These models utilize self-
attention mechanisms, dynamically capturing global spatiotemporal 
dependencies, and are better at modeling long-range features. For 
example, models like spatio-temporal attention network (STAN) have 
shown superior performance in multiple transportation and energy 
prediction tasks compared to traditional CNN–RNN structures [32]. Yu 
et al. proposed the MGSFformer, which utilizes a residual redundancy 
elimination module to remove information redundancy across different 
granularities of data. Furthermore, it incorporates spatiotemporal atten-
tion and dynamic fusion modules to achieve efficient air quality predic-
tion [33]. Zhang et al. introduced the EF-former, a deep learning-based 
multistep passenger flow prediction model. By integrating the parallel 
interactive attention module and multi-scale causal multi-Head self-
attention module, EF-former extracts both global and local temporal 
dependencies, enabling precise modeling of spatiotemporal dynamics 
during large-scale events and realizing accurate multistep forecasting 
of passenger flow [34].

2.3. Prediction-oriented applications of large language models

In recent years, LLMs such as the GPT series and Llama series have 
achieved remarkable success in the field of NLP. As the capabilities 
of LLMs continue to expand, researchers have begun exploring their 
potential applications in structured data modeling, especially in spa-
tiotemporal prediction tasks. These applications can be summarized 
into the following three pathways [35].

The first is knowledge extraction and feature enhancement [36]. 
This approach uses LLMs to perform deep semantic understanding 
and implicit knowledge extraction from multimodal data (such as 
text, images, etc.). The extracted semantic features are then input 
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into traditional prediction models (such as LSTM, GNN, etc.) to en-
hance the model’s ability to perceive background information, behav-
ioral patterns, and environmental factors. In this process, LLMs act as 
knowledge encoders, effectively supplementing and enhancing feature 
semantics without changing the original model structure.

The second is text-to-LLM approach [37]. In this method, raw 
spatiotemporal structured data (such as time series, spatial locations, 
weather, etc.) is transformed into natural language descriptions, which 
are then tokenized and input into frozen or fine-tuned LLMs for pre-
diction. This approach has good generality and interpretability, as it 
can flexibly adapt to any pre-trained language model and improve the 
human readability of model outputs. However, due to limitations in 
expressing complex spatiotemporal dependencies, this method faces is-
sues such as high token usage costs, limited context windows, and insuf-
ficient expression accuracy, making it unsuitable for high-dimensional 
and multi-scale complex prediction tasks. Kang et al. proposed an en-
hanced multi-level health event prediction framework, LLM-DG, which 
improves prediction accuracy and robustness by semantically enhanc-
ing the representation of patients and discharge summaries, injecting 
domain knowledge, capturing higher-order correlations, and integrat-
ing dynamic and static features to simultaneously model inter-patient 
clustering and intra-patient disease evolution characteristics [38]. Shen 
et al. introduced a framework that employs reinforcement learning to 
provide decisive subgraph information for Graph LLMs. By utilizing 
a reinforcement subgraph detection module and a node-guidance net-
work, the framework searches for and delivers critical neighborhood 
and node information in textual form to assist LLM predictions, without 
requiring model retraining [39].

The third is fine-tuning LLMs for spatiotemporal tasks [40]. This 
method encodes spatiotemporal data as structured token sequences 
(such as timestamps, region codes, numerical attributes, etc.) and fine-
tunes LLMs under supervision, allowing them to understand the spa-
tiotemporal meaning behind these tokens and perform prediction tasks. 
Compared to natural language descriptions, this approach has higher 
token efficiency and expression accuracy, better modeling higher-order 
temporal dependencies and spatial relationships, and stronger adapt-
ability. However, the fine-tuning process typically requires high com-
putational resources and data quality.

2.4. Research gap

Although significant progress has been made in EV charging de-
mand prediction, spatiotemporal modeling, and the application of 
LLMs, several interconnected challenges remain. In EV charging de-
mand prediction, existing methods struggle to effectively model the 
nonlinear and high-dimensional interactions between temporal, spatial, 
and behavioral features, particularly in short-term urban-scale tasks. 
While deep learning models have improved predictive performance, 
they often fail to adequately fuse multi-source heterogeneous data, 
such as spatial hierarchies, temporal periodicity, and environmental 
factors, leading to suboptimal generalization and scalability. In the 
broader domain of spatiotemporal prediction, traditional architectures 
like CNN–RNN hybrids and ConvLSTM face difficulties in explicitly 
capturing complex feature interactions and balancing the trade-off be-
tween global generalization and local detail fitting. Advanced models, 
such as GNNs and spatiotemporal Transformers, have addressed some 
of these issues but still struggle with multi-scale and highly dynamic 
scenarios, particularly in non-Euclidean spatial structures like urban 
road networks. Meanwhile, the emerging application of LLMs in predic-
tion tasks highlights their potential for semantic knowledge extraction 
and feature enhancement, yet challenges such as efficient tokenization, 
representation of spatiotemporal dependencies, and the computational 
cost of fine-tuning remain significant barriers. These gaps collectively 
indicate the need for a unified framework that integrates the strengths 
of spatiotemporal architectures with the semantic understanding ca-
pabilities of LLMs. The focus should be on achieving efficient data 
fusion across multi-source heterogeneous datasets and model fusion, 
providing high-performance prediction systems for intelligent energy 
and urban-scale applications.
4 
3. Problem definition

This work focuses on the problem of short-term EV charging de-
mand prediction, which aims to estimate the future charging demand 
across multiple spatial locations in a city over discrete time intervals. 
This is a typical spatiotemporal forecasting task, where both temporal 
dynamics and spatial heterogeneity must be jointly modeled.

Formally, let the city be partitioned into 𝑁 spatial units (district 
or subdistrict), and time be divided into discrete intervals (30 min). 
For each location and time slot, we observe a set of features describing 
charging behavior and contextual factors. The objective is to predict 
the EV charging demand for each location in the next few time steps 
based on historical data. Let  ∈ R𝑇𝑖𝑛×𝑁𝑛𝑜𝑑𝑒𝑠×𝐶𝑖𝑛  denote the historical 
multivariate input tensor, where: 𝑇𝑖𝑛 is the number of historical time 
steps, 𝑁𝑛𝑜𝑑𝑒𝑠 is the number of spatial locations, 𝐶𝑖𝑛 is the number of 
features per location per time step (e.g., past charging demand, time 
slot index, week of day, etc.).

Let 𝑌 ∈ R𝑇𝑜𝑢𝑡×𝑁𝑛𝑜𝑑𝑒𝑠  be the predicted charging demand over a 
forecasting horizon of 𝑇𝑜𝑢𝑡 time steps for 𝑁𝑛𝑜𝑑𝑒𝑠 locations. The goal is 
to learn a mapping function 𝑓 (⋅) such that: 
𝑌𝑇+1∶𝑇+𝐻 = 𝑓 (1,2,… ,𝑇 ) (1)

Here, 𝑓 is a predictive model capable of learning complex spa-
tiotemporal dependencies from the input data. This prediction function 
should capture: Temporal dependencies, such as daily/weekly charging 
patterns, peak vs. off-peak hours, and holiday effects. Spatial dependen-
cies, such as mobility patterns across districts, charging infrastructure 
density, and population distribution. External factors, such as weather 
conditions, public events, and road traffic status, which may impact trip 
frequency and charging behavior.

4. Methodology

4.1. Framework

The proposed framework for EV charging demand prediction utilizes 
a Spatiotemporal Large Language Model (EV-STLLM) as shown in 
Fig.  1. This framework combines spatiotemporal embeddings with a 
transformer-based architecture to model complex dependencies across 
time and space, aiming to enhance the accuracy and robustness of 
short-term charging demand forecasts in urban environments. Tradi-
national spatio-temporal GCN-based prediction methods typically rely 
on fixed graph structures or predefined attention patterns, which limit 
their ability to adapt to dynamic spatial relationships. Our proposed 
framework is graph-free and leverages position-aware embeddings and 
Transformer attention to model global spatiotemporal dependencies 
without assuming any rigid structure. Furthermore, by integrating 
LoRA for efficient fine-tuning, EV-STLLM achieves a better balance 
between adaptability and computational efficiency, which is especially 
important for real-world urban computing scenarios

The historical input data,  ∈ R𝑇𝑖𝑛×𝑁𝑛𝑜𝑑𝑒𝑠×𝐶𝑖𝑛 , is converted into to-
kens representing spatial and temporal features. Three types of
embeddings—Auxiliary, Temporal, and Spatial—are applied and fused 
into a unified spatiotemporal representation. The spatiotemporal em-
beddings are reshaped and passed into a transformer architecture 
with a masked multi-head self-attention mechanism. This self-attention 
enables the model to capture both global and local dependencies 
in time and space, improving the model’s ability to learn complex 
patterns. To adapt the pretrained language model to the EV charging 
demand task while minimizing overfitting, the LoRA technique is used. 
LoRA allows the model to adjust only a small set of parameters, 
effectively transferring knowledge with fewer computational resources. 
After processing through the transformer layers, the model produces 
the final predictions using a regression convolution layer. The loss 
function combines the prediction error with a regularization term to 
prevent overfitting.
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Fig. 1. Framework of this work, (a) EV-STLLM, (b) Transformer network,(c) decoder-based Transformer, and (d) LoRA mechanism.
4.2. Spatiotemporal feature embedding

As illustrated in Fig.  1(a), we consider the input data 
∈ R𝑇𝑖𝑛×𝑁𝑛𝑜𝑑𝑒𝑠×𝐶𝑖𝑛  as a sequence composed of spatial and temporal 
information. To comprehensively capture its underlying patterns, we 
devise three distinct embedding mechanisms.
Auxiliary feature embedding. We first process the raw input through a 
pointwise convolutional layer to generate an auxiliary feature embed-
ding: 
𝐇𝑎𝑢𝑥 = PointwiseConv( ;𝛩𝑎𝑢𝑥), 𝐇𝑎𝑢𝑥 ∈ R𝑁𝑛𝑜𝑑𝑒𝑠×𝑑𝑚𝑜𝑑𝑒𝑙 (2)

where PointwiseConv(⋅) denotes a 1 × 1 convolution operation with 
trainable parameters 𝛩𝑎𝑢𝑥. 𝐇𝑎𝑢𝑥 is the resulting node embedding ma-
trix, and 𝑑𝑚𝑜𝑑𝑒𝑙 defines the dimension of the embedding vectors. We 
employ pointwise convolution due to its exceptional computational 
efficiency. It effectively captures local inter-feature relationships and 
compresses the high-dimensional input into a more compact embedding 
space, providing a refined feature representation for the subsequent 
spatiotemporal fusion.
Temporal information embedding (hour and day-of-week). To encode 
temporal periodicities, we create learnable embedding vectors for dif-
ferent time slots of the day and days of the week: 
𝐇𝑡𝑖𝑚𝑒 = 𝐖ℎ𝑜𝑢𝑟(ℎ𝑜𝑢𝑟) +𝐖𝑑𝑎𝑦(𝑑𝑎𝑦), 𝐇𝑡𝑖𝑚𝑒 ∈ R𝑁𝑛𝑜𝑑𝑒𝑠×𝑑𝑚𝑜𝑑𝑒𝑙 (3)

Here, ℎ𝑜𝑢𝑟 and 𝑑𝑎𝑦 are the hour-of-day and day-of-week indices for 
each node, respectively. 𝐖 ∈ R𝑇ℎ𝑜𝑢𝑟×𝑑𝑚𝑜𝑑𝑒𝑙  and 𝐖 ∈ R𝑇𝑑𝑎𝑦×𝑑𝑚𝑜𝑑𝑒𝑙
ℎ𝑜𝑢𝑟 𝑑𝑎𝑦

5 
are two learnable embedding lookup tables. 𝐇𝑡𝑖𝑚𝑒 is the final temporal 
embedding matrix.

Spatial information embedding. We extract spatial information directly 
from the input features using a fully connected layer: 

𝐇𝑠𝑝𝑎𝑐𝑒 = 𝜙( ⋅𝐖𝑠𝑝𝑎𝑐𝑒 + 𝐛𝑠𝑝𝑎𝑐𝑒), 𝐇𝑠𝑝𝑎𝑐𝑒 ∈ R𝑁𝑛𝑜𝑑𝑒𝑠×𝑑𝑚𝑜𝑑𝑒𝑙 (4)

where 𝐖𝑠𝑝𝑎𝑐𝑒 ∈ R𝐶𝑖𝑛×𝑑𝑚𝑜𝑑𝑒𝑙  and 𝐛𝑠𝑝𝑎𝑐𝑒 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙  are the weight matrix 
and bias vector of the layer, respectively. 𝜙(⋅) represents a non-linear 
activation function (e.g., ReLU), and 𝐇𝑠𝑝𝑎𝑐𝑒 is the spatial embedding 
matrix derived from the raw features.

Finally, we integrate the three aforementioned embeddings to form 
a unified, multi-faceted feature representation: 

𝐇𝑓𝑢𝑠𝑒𝑑 = FusionLayer(𝐇𝑎𝑢𝑥||𝐇𝑡𝑖𝑚𝑒||𝐇𝑠𝑝𝑎𝑐𝑒;𝛩𝑓𝑢𝑠𝑒), 𝐇𝑓𝑢𝑠𝑒𝑑 ∈ R𝑁𝑛𝑜𝑑𝑒𝑠×3𝑑𝑚𝑜𝑑𝑒𝑙 (5)

In this equation, || denotes the concatenation operation along the 
feature dimension. FusionLayer(⋅) is an ECN function used for fea-
ture fusion, with 𝛩𝑓𝑢𝑠𝑒 as its learnable parameters. 𝐇𝑓𝑢𝑠𝑒𝑑 is the final 
fused spatiotemporal embedding representation. We opt for ECN as 
the spatiotemporal feature fusion method because it efficiently models 
local dependencies, has low computational complexity, and features 
flexible learnable parameters. In our experiments, it demonstrated su-
perior performance compared to both more complex and simpler fusion 
alternatives.
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4.3. Transformer-based decoder-only architecture

As depicted in Fig.  1(b) and (c), we adopt a Transformer-based 
decoder-only architecture to model the complex spatiotemporal depen-
dencies in EV charging demand. The model takes the fused spatiotem-
poral embeddings 𝐇𝑓𝑢𝑠𝑒𝑑 ∈ R𝑁𝑛𝑜𝑑𝑒𝑠×3𝑑𝑚𝑜𝑑𝑒𝑙  and reshapes them into a 
sequence for processing: 

𝐙(0) = Reshape(𝐇𝑓𝑢𝑠𝑒𝑑 ) ∈ R𝑆×𝑑 , where 𝑆 = 𝑁𝑛𝑜𝑑𝑒𝑠, 𝑑 = 3𝑑𝑚𝑜𝑑𝑒𝑙 (6)

Each decoder block consists of a masked multi-head self-attention 
layer and a feed-forward network (FFN). During spatiotemporal mod-
eling, we leverage the self-attention mechanism of the Transformer 
to capture global spatiotemporal dependencies by computing atten-
tion weights across different time steps and spatial positions in the 
input sequence. Specifically, for the 𝑙th layer, the attention mechanism 
computes the following result: 

Attention(𝐐,𝐊,𝐕) = softmax
(

𝐐𝐊⊤
√

𝑑𝑘
+𝐌

)

𝐕 (7)

𝐙(𝑙)
𝑎𝑡𝑡𝑛 = Concat(head1,… ,head𝐻 )𝐖𝑂 + 𝐛𝑂 (8)

𝐙(𝑙)
𝑟𝑒𝑠1 = LayerNorm(𝐙(𝑙)

𝑎𝑡𝑡𝑛 + 𝐙(𝑙−1)) (9)

𝐙(𝑙)
𝑓𝑓𝑛 = 𝜙(𝐙(𝑙)

𝑟𝑒𝑠1𝐖
(𝑙)
1 + 𝐛(𝑙)1 )𝐖(𝑙)

2 + 𝐛(𝑙)2 (10)

𝐙(𝑙) = LayerNorm(𝐙(𝑙)
𝑓𝑓𝑛 + 𝐙(𝑙)

𝑟𝑒𝑠1) (11)

Through this mechanism, the model is able to simultaneously cap-
ture long-range dependencies across multiple time steps and spatial 
regions. Moreover, to enable the LLM to handle heterogeneous informa-
tion, we serialize temporal context, spatial identifiers, and auxiliary be-
havioral features into token sequences as inputs to the model, thereby 
implicitly integrating information across scales. After 𝐿 layers, the final 
output is: 

𝐇(𝐿) = 𝐙(𝐿) ∈ R𝑆×𝑑𝑠𝑒𝑞 (12)

We then apply a regression layer to generate the final predictions: 

𝐘̂𝑇+1∶𝑇+𝐻 = RConv(𝐇(𝐿);𝛩𝑟) (13)

4.4. Parameter-efficient LoRA fine-tuning

To adapt the pretrained model to the charging demand prediction 
task while retaining its prior knowledge, we employ Low-Rank Adap-
tation (LoRA) for efficient fine-tuning, as shown in Fig.  1(d). LoRA 
injects low-rank matrices into specific weight matrices (e.g., the 𝐐
and 𝐕 projections in multi-head attention) and exclusively trains these 
newly introduced matrices while keeping the pretrained weights frozen. 
Specifically, for a given weight matrix 𝐖0 ∈ R𝑑×𝑑 , LoRA modifies it
as: 
𝐖LoRA = 𝐖0 + 𝛼 ⋅ 𝐀𝐁 (14)

where 𝐀 ∈ R𝑑×𝑟 and 𝐁 ∈ R𝑟×𝑑 are low-rank matrices with 𝑟 ≪ 𝑑, and 𝛼
is a scaling factor. The original weight matrix 𝐖0 remains frozen, and 
only 𝐀 and 𝐁 are trainable. The key advantages of this design are as 
follows:

• Computational Efficiency: By significantly reducing the number 
of trainable parameters (less than 1% of the full model), LoRA 
drastically decreases GPU memory usage and training time.

• Robustness: LoRA preserves the original knowledge and capacity 
of the pretrained model, mitigating the risk of overfitting in 
low-data scenarios.
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• Stability: By only fine-tuning the Query and Value matrices while 
keeping other components (e.g., 𝐾 and FFN) frozen, LoRA further 
reduces the risk of catastrophic forgetting.

In our model, we apply LoRA fine-tuning to the Query and Value 
projection matrices of each Transformer block: 

𝐐LoRA = 𝐐0 + 𝛼𝑞 ⋅ 𝐀𝑞𝐁𝑞 , 𝐕LoRA = 𝐕0 + 𝛼𝑣 ⋅ 𝐀𝑣𝐁𝑣 (15)

The remaining matrices, such as for the Key (𝐊), Output (𝐎), and the 
FFN, are kept frozen to minimize the number of trainable parameters 
and prevent catastrophic forgetting. Through this approach, we achieve 
efficient customization for domain-specific tasks without sacrificing 
model performance.

4.5. Loss function

After obtaining the output representations 𝐇(𝐿) ∈ R𝑁𝑛𝑜𝑑𝑒𝑠×𝑑𝑠𝑒𝑞  from 
the Transformer backbone, a regression convolution layer is applied to 
produce the final prediction: 

𝐘̂𝑇+1 = RConv(𝐇(𝐿);𝛩𝑟) (16)

The loss function is defined as the sum of the prediction error and a 
regularization term on the LoRA parameters: 

 = ‖

‖

‖

𝐘̂𝑇+1 − 𝐘𝑇+1
‖

‖

‖

2

2
+ 𝜆 ⋅ ‖𝛩LoRA‖

2
2 (17)

where 𝛩LoRA denotes the set of all trainable LoRA parameters and 𝜆 is 
the regularization coefficient.

5. Experiments

5.1. Experiment setup

5.1.1. Dataset description
In this section, we demonstrate the effectiveness of the proposed 

EV-STLLM framework through a case study based on Beijing, China. As 
one of the leading cities in China for EV adoption, Beijing has developed 
a robust electric transportation network. We utilized EV charging log 
data from December 2020, collected at a 30 min interval, covering 
16 districts and 331 subdistrict regions across the city. The dataset 
includes 833,439 charging events, each with an average of 22.06 kWh 
of energy consumed.

The spatial distribution of charging demand across various districts 
and subdistrict regions is depicted in Fig.  2. Specifically, Fig.  2(a) shows 
the total EV charging demand aggregated by district. Darker colors 
indicate districts with higher total energy consumption, highlighting 
that central districts such as Chaoyang and Haidian exhibit significantly 
higher demand. Fig.  2(b) provides a finer granularity by illustrating the 
spatial distribution of charging demand at the subdistrict level. Brighter 
colors represent higher demand densities, revealing hot spots of EV 
activity within the city.

Table  1 summarizes the maximum instantaneous charging demand 
and the cumulative total charging demand for each district during the 
observation period. In addition, Fig.  3 displays the temporal dynam-
ics of EV charging demand throughout December 2020. Specifically, 
Fig.  3(a) illustrates the charging demand over time at each district, 
segmented into training, validation, and testing periods, with a ratio 
of 8:1:1. The split is temporally consistent, meaning earlier days are 
allocated to the training set, and more recent days are assigned to the 
testing set. This strategy prevents data leakage and ensures the model 
is trained on historical data and evaluated on future data, mirroring 
real-world forecasting scenarios. The training set is shown in blue, 
the validation set in orange, and the testing set in green. Distinct 
daily patterns and weekly seasonality can be observed. For feature 
standardization, we employed the z-score normalization method. This 
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Fig. 2. Distribution of the EV charging demand in (a) different districts and (b) different subdistrict.
Table 1
Maximum and total EV charging demand by Beijing districts.
 Index 1 2 3 4 5 6 7 8  
 Name Dongcheng Xicheng Chaoyang Haidian Shijingshan Fengtai Mentougou Fangshan  
 Mean (kWh) 245.16 434.66 2123.46 2021.02 490.84 1329.92 260.63 693.42  
 Std 219.65 379.34 1766.87 1695.40 418.29 1129.79 230.64 597.07  
 Max (kWh) 1776.53 2875.16 13993.56 14218.98 3367.72 10184.80 1991.60 4878.33  
 Sum (kWh) 364546.60 646338.50 3157578.00 3005260.00 729876.70 1977598.00 387558.10 1031116.00 
 Index 9 10 11 12 13 14 15 16  
 Name Changping Daxing Shunyi Tongzhou Miyun Pinggu Huairou Yanqing  
 Mean (kWh) 1094.24 1451.24 748.59 1232.15 143.99 123.60 212.20 103.14  
 Std 918.04 1211.85 641.65 1030.00 137.96 119.03 191.22 105.14  
 Max (kWh) 8057.20 9853.18 6074.08 8354.02 1539.35 966.94 1786.56 878.67  
 Sum (kWh) 1627137.00 2158001.00 1113159.00 1832207.00 214116.00 183791.30 315541.20 153372.30  
approach transforms each feature to have zero mean and unit variance, 
calculated as: 
𝑧 =

𝑥 − 𝜇
𝜎

(18)

where 𝑥 is the original feature value, 𝜇 is the mean, and 𝜎 is the 
standard deviation of the feature across the training dataset. Fig.  3(b) 
presents violin plots of normalized charging demand for each of the 16 
districts. Each violin plot shows the distribution, median, and interquar-
tile range of the normalized demand, highlighting the variability and 
central tendency across different zones.

5.1.2. Evaluation metrics
To evaluate the accuracy of parking demand prediction, we em-

ploy four widely used metrics: mean absolute error (MAE), root mean 
squared error (RMSE), and mean absolute percentage error (MAPE). 
These metrics are defined as follows: 

MAE = 1
𝑁 × 𝑇 ′
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RMSE =
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MAPE = 100%
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(21)

where 𝑇 ′ denotes the number of time steps in the evaluation period 
(validation or testing set), 𝑁 is the number of parking locations, 𝑌𝑡,𝑖 is 
the predicted demand, and 𝑌𝑡,𝑖 is the ground truth demand at time 𝑡 and 
location 𝑖.
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5.1.3. Benchmark models
To assess the robustness and predictive power of the proposed 

model, we compare it with a wide range of classical and deep learning-
based forecasting methods:

• RNN [41]: A neural network architecture designed for sequential 
data modeling, capable of capturing temporal dynamics through 
recurrent connections, suitable for tasks such as parking demand 
prediction.

• LSTM [42]: An enhanced RNN architecture that introduces mem-
ory cells and gating mechanisms to effectively preserve long-term 
dependencies, widely used in complex time series modeling tasks.

• Gated Recurrent Unit (GRU) [43]: A lightweight variant of LSTM 
that retains gating mechanisms with fewer parameters, offering 
efficient training and effective modeling of short- to medium-term 
dependencies.

• Graph Convolutional Network (GCN) [44]: Captures spatial de-
pendencies among parking locations using a graph structure and 
extracts spatial features via graph convolution operations.

• Graph Attention Network (GAT) [45]: Extends GCN by incor-
porating attention mechanisms that assign different weights to 
neighboring nodes, allowing more flexible modeling of spatial 
dependencies.

• GraphSAGE [46]: A scalable graph neural network approach that 
employs neighborhood sampling and aggregation strategies, en-
abling efficient representation learning on large-scale graphs.

• Temporal Graph Convolutional Network (TGCN) [47]: Combines 
GCN and GRU to jointly model spatial and temporal dependen-
cies, suitable for spatio-temporal sequence prediction tasks.
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Fig. 3. Distribution of the EV charging demand in one month by Beijing districts, (a) temporal distribution of charging demand, (b) violin plot of normalized 
charging demand by zone.
• Temporal Graph Attention Network (TGAT) [48]: Enhances TGCN 
by introducing time encoding and attention mechanisms to cap-
ture the temporal dynamics affecting node representations more 
precisely.

• Temporal GraphSAGE (TSAGE) [8]: An extension of GraphSAGE 
to temporal graphs, using time-aware sampling and aggregation 
to capture dynamic features in evolving graph structures.

5.1.4. Model settings
The main hyperparameters of the proposed model are shown in Ta-

ble  2. Besides, to ensure a comprehensive and unbiased comparison, we 
structured the experiment as follows: (1) The model’s output comprises 
the charging demand of all districts or subdistrict s for the subsequent 
1 timeslot and 2 timeslots. (2) For fair comparison, all baseline models 
use the same hyperparameters as the proposed model. Additionally, 
four prediction scenarios (S) are proposed, as follows:

• S1: Predicting the charging demand for the next time interval 
across 16 districts;

• S2: Predicting the charging demand for the next two time inter-
vals across 16 districts;
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• S3: Predicting the charging demand for the next time interval 
across 331 subdistricts;

• S4: Predicting the charging demand for the next two time inter-
vals across 331 subdistricts.

(3) The proposed model is implemented using PyTorch on a worksta-
tion equipped with a GeForce RTX 3090 Ti GPU. The model utilizes 
a mean squared error loss function. The Ranger optimizer, which 
integrates the RAdam and LookAhead strategies, is known for its ability 
to retain the efficient convergence properties of Adam while enhancing 
model generalization through the LookAhead mechanism. In this study, 
the learning rate is set to 0.001, with a weight decay coefficient of 
0.0001. The training process is conducted over 100 epochs. The li-
braries utilized in code and their exact versions used in the experiments 
are specified in Table  2.

5.2. Comparison results

The comparison of performance of different models on various met-
rics at district and subdistrict scales are shown in Table  3. In the task 
of multi-scale EV charging demand forecasting, the EV-STLLM model 
demonstrates outstanding performance, particularly in district-level 



Y. Shang et al. Information Fusion 126 (2026) 103692 
Table 2
Detailed Python libraries and their exact versions.
 Library Version  
 numpy 1.26.4  
 pandas 2.2.3  
 Python 3.12.3  
 torch 2.3.0+cu121  
 torchvision 0.18.0+cu121 
 transformers 4.49.0  
 matplotlib 3.9.0  

and subdistrict-level predictions across different forecasting horizons. 
For the district-level one-step prediction (S1), EV-STLLM achieves a 
mean absolute error (MAE) of 218.13, representing a reduction of 
approximately 15.4% compared to the next-best model, GRU, which 
records an MAE of 257.86. In terms of root mean square error (RMSE), 
EV-STLLM scores 680.54, significantly outperforming all other models. 
The mean absolute percentage error (MAPE) is only 1.39%, a reduction 
of 53.5% compared to GraphSAGE’s 2.99%. These results indicate that 
EV-STLLM is more capable of capturing complex spatial dependencies 
and short-term temporal dynamics across regions. Furthermore, in the 
more challenging district-level two-step prediction (S2), EV-STLLM con-
tinues to lead with an MAE of 242.35, which is approximately 34.0% 
lower than GRU’s 366.93. The RMSE reaches 693.39, again outperform-
ing all graph- and sequence-based models. The MAPE further drops to 
1.29%, more than halving that of GraphSAGE (2.94%). This controlled 
increase in error across time steps highlights EV-STLLM’s superior 
ability in long-term temporal dependency modeling and spatiotempo-
ral trend learning, surpassing traditional RNN/LSTM and graph-based 
methods in multi-step forecasting tasks.

At a finer granularity, EV-STLLM also exhibits strong generalization 
capability in subdistrict-level predictions. For one-step forecasting at 
the subdistrict scale (S3), EV-STLLM achieves an MAE of 33.80, which 
is 19.6% lower than that of RNN (42.04), and an RMSE of 53.00, 
26.4% lower than RNN’s 71.99. Although MAPE slightly exceeds that 
of GRU (1.82% vs. 1.21%), this can be attributed to the smaller 
magnitude of subdistrict-level demand, making MAPE more sensitive 
to small values. Consequently, MAE and RMSE remain the more reli-
able indicators for operational decision-making in this context. In the 
two-step subdistrict-level prediction task (S4), EV-STLLM maintains its 
advantage, with MAE and RMSE of 36.91 and 66.13, respectively—
representing reductions of approximately 16.7% and 14.0% when com-
pared to GRU. While the MAPE is slightly higher (1.78% vs. 1.23%), 
its practical impact can be mitigated through weighted business metrics 
that emphasize absolute error control and stability in scheduling.

From a comparative perspective, traditional sequence models such 
as RNN, LSTM, and GRU exhibit certain strengths in temporal de-
pendency modeling. However, they often suffer from information loss 
and struggle to simultaneously extract both local and global features 
in complex urban spatiotemporal interactions. Graph-based models 
like GCN, GAT, and GraphSAGE, while effective in capturing spatial 
adjacency, tend to lack the capacity to model temporal dynamics, 
focusing primarily on static topological relationships. Although spa-
tiotemporal graph models such as TGCN, TGAT, and TSAGE attempt 
to integrate both spatial and temporal information, their reliance on 
localized convolutional or gated mechanisms constrains their ability to 
comprehensively fuse global dependencies. This can be attributed to 
several inherent limitations:

• Static Graph Structures: These models rely on fixed, predefined 
spatial graphs, which fail to capture dynamic inter-region rela-
tionships arising from temporal shifts in EV charging demand. 
For instance, regions that are spatially disconnected might exhibit 
strong temporal correlations that static adjacency matrices cannot 
represent.
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• Local Dependency Bias: Traditional GNNs aggregate information 
from local neighborhoods, lacking the capacity to model global 
patterns. While extensions like TGAT attempt to incorporate tem-
poral dynamics, their performance is constrained by the localized 
nature of their graph convolution mechanisms.

• Dependency on Graph Construction: The effectiveness of these 
models heavily depends on the quality of the constructed graphs. 
In real-world urban scenarios, accurately modeling human mo-
bility or vehicle flow through adjacency matrices is challenging 
and often leads to suboptimal graph structures. Such inaccuracies 
propagate through the model, degrading its performance.

In contrast, our proposed EV-STLLM framework eliminates the depen-
dency on explicit graph structures by adopting an attention mech-
anism capable of capturing long-range spatiotemporal dependencies 
directly from raw data. This not only addresses the limitations of 
graph-based models but also allows EV-STLLM to generalize effectively 
across regions with ambiguous or dynamically shifting relationships. 
The incorporation of embedding techniques further enhances its abil-
ity to integrate heterogeneous features, offering a more comprehen-
sive understanding of urban dynamics. Moreover, the incorporation of 
LoRA enables efficient parameter tuning, facilitating flexible adaptation 
across diverse application scenarios. Overall, EV-STLLM achieves lower 
errors and higher robustness across multiple forecasting levels and time 
horizons, showcasing not only technical sophistication in model archi-
tecture and learning mechanisms but also practical value in supporting 
large-scale urban demand forecasting.

Fig.  4 presents a comparison between the EV-STLLM predicted 
charging demand curves (orange) and the actual observed curves (blue) 
across 16 different districts. It can be observed that the overall trend 
fitting is satisfactory, with the model accurately capturing the periodic 
variations in daily charging demand, such as the rise in the morning 
and the decline at night. The model also exhibits strong adaptability 
to pattern shifts between weekdays and weekends. During major peak 
periods (e.g., morning and evening peaks) and trough periods, the 
predicted curves closely align with the ground truth, demonstrating the 
model’s excellent capability in extracting temporal features. Although 
certain deviations occur during extreme surges (e.g., around holidays), 
the magnitude remains well-controlled, and the fluctuation trends are 
consistent, indicating strong robustness in handling abnormal demand 
variations. In addition, the model is capable of promptly responding 
to sudden load changes, accurately reflecting turning points in the 
demand curves, which highlights its sensitivity and rapid adaptabil-
ity to load fluctuations. In summary, at the district scale, EV-STLLM 
effectively captures the macroscopic temporal trends of electric ve-
hicle charging demand across wide urban spaces, providing reliable 
support for city-level energy scheduling and charging infrastructure 
optimization.

Fig.  5 illustrates the prediction results for 16 consecutive subdis-
tricts from zone 279 to zone 294. Compared to the district scale, the 
subdistrict data exhibit greater randomness and sparsity, with more 
frequent small-scale fluctuations. Due to the smaller base values within 
subdistricts, minor variations are amplified, resulting in sharper and 
more irregular curves. Nevertheless, EV-STLLM maintains good trend 
fitting across most subdistricts, demonstrating strong stability. For sub-
districts with extensive periods of zero or very low demand, the model 
effectively avoids overfitting to zero values and preserves reasonable 
nonlinear fitting, reflecting sound regularization capabilities. The pre-
dicted curves generally synchronize with the actual changes at turning 
points of sudden demand surges or drops, although slight smoothing is 
observed in extremely sparse regions. When facing occasional demand 
spikes (e.g., caused by local events), the model partially captures the 
surges but tends to slightly underfit, suggesting that future improve-
ments could incorporate anomaly detection mechanisms. Overall, the 
subdistrict-scale evaluation verifies EV-STLLM’s generalization ability 
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Table 3
Comparison of performance of different models on various metrics at district and subdistrict scales.
 Zone District Subdistrict

 Output 1 2 1 2

 Metric MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 
 RNN 322.13 700.32 3.12 357.78 732.39 3.52 42.04 71.99 1.26 47.28 80.58 1.58  
 LSTM 260.57 656.21 6.32 377.50 766.39 3.10 47.48 79.99 1.60 47.91 79.13 1.59  
 GRU 257.86 611.10 3.22 366.93 748.39 3.40 42.16 72.56 1.21 44.31 76.89 1.23  
 GCN 518.94 956.72 4.63 538.07 994.02 4.28 50.31 93.94 1.38 51.69 96.97 1.37  
 GAT 464.51 925.70 3.28 501.10 948.86 3.38 50.87 91.93 1.33 50.70 92.33 1.44  
 GraphSAGE 362.85 828.52 2.99 394.88 813.19 2.94 47.54 83.35 1.27 47.48 83.30 1.28  
 TGCN 567.90 992.81 5.61 550.34 932.13 6.37 54.55 102.84 1.41 52.32 97.05 1.57  
 TGAT 557.77 966.54 3.47 499.07 885.13 4.94 54.15 101.84 1.46 51.47 90.69 1.63  
 TSAGE 468.83 872.62 3.64 474.96 859.45 5.08 46.45 82.62 1.25 47.78 81.71 1.37  
 EV-STLLM 218.13 680.54 1.39 242.35 693.39 1.29 33.80 53.00 1.82 36.91 66.13 1.78  
Fig. 4. Comparison between ground truth and EV-STLLM predictions across 16 districts.
under small-sample, high-noise environments, confirming its adaptabil-
ity and robustness in fine-grained spatial predictions, thus providing 
highly reliable support for regional charging strategy formulation.

Fig.  6 shows the spatial distribution comparisons of charging de-
mand across 16 districts at three typical timeslots: 9 AM (weekday 
peak), 3 PM (weekday valley), and 8 PM (evening peak). It is ev-
ident that EV-STLLM effectively reconstructs the spatial distribution 
characteristics of high-demand (central urban areas) and low-demand 
(suburban areas) regions at different times. Throughout the day, the 
model accurately captures the dynamic shifts of demand centers, such 
as concentration in business areas during the morning and expansion 
towards residential areas during the evening. Regarding color scale 
variations, the model successfully reflects the demand intensity differ-
ences between regions, further demonstrating its strong capability in 
modeling inter-regional demand disparities. Moreover, EV-STLLM not 
only maintains the consistency of overall spatial distribution trends 
10 
but also replicates certain local spatial details, such as small high-
demand clusters in specific districts during particular times, show-
casing its high spatial resolution. These results further confirm that 
at the district scale, EV-STLLM possesses outstanding capabilities in 
geographic spatial perception and spatiotemporal evolution modeling, 
providing a scientific basis for optimizing the layout of urban charging 
infrastructure, balancing loads, and energy scheduling.

Fig.  7 presents the heatmap comparisons of charging demand for 
331 subdistricts at the same three typical timeslots. Despite the large 
number of subdistricts and the complex spatial distribution, EV-STLLM 
accurately captures the locations and intensities of most major high-
demand subdistricts. During peak times (9 AM and 8 PM), the model 
precisely identifies demand hotspots, such as the core urban areas and 
surrounding hotspot subdistricts. At valley times (3 PM), it reason-
ably reflects the overall sparse demand characteristics and accurately 
locates small localized hotspots. It is noteworthy that the predictions 
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Fig. 5. Comparison between ground truth and EV-STLLM predictions across 16 consecutive subdistricts (zone 279 to zone 294).
Table 4
Ablation study of the proposed framework.
 Zone District Subdistrict

 Output 1 2 1 2

 Metric MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 
 EV-STLLM 218.13 680.54 1.39 242.35 693.39 1.29 33.80 53.00 1.82 36.91 66.13 1.78  
 FFT 235.25 682.73 1.76 240.39 688.89 1.62 38.83 74.28 2.85 36.56 62.80 1.98  
 FF 226.77 687.08 1.53 253.78 704.42 1.34 38.39 69.97 2.08 38.14 69.84 1.95  
 NonLLM 349.10 813.01 4.05 437.87 845.46 5.43 43.90 78.47 1.92 44.02 77.62 2.33  
remain stable across numerous low-demand subdistricts without sig-
nificant overestimation or underestimation, demonstrating the model’s 
excellent adaptability and stability in sparse data spaces. Further-
more, EV-STLLM effectively captures both spatial continuity and local 
spatial heterogeneity, such as sudden demand changes in peripheral 
subdistricts. Overall, the subdistrict-scale heatmap analysis verifies EV-
STLLM’s robust modeling capabilities in ultra-large-scale, micro-spatial 
prediction tasks, laying a solid foundation for future dynamic load 
forecasting, demand-driven deployment of charging infrastructure, and 
intelligent scheduling optimization based on geographic units.

5.3. Ablation study

We conduct a comprehensive comparison among the following 
methods:

• EV-STLLM: The proposed method, utilizing LoRA for efficient 
fine-tuning by adjusting only a small subset of parameters, en-
abling effective knowledge transfer while maintaining a
lightweight model design.
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• Full Fine-Tuning (FFT): A conventional approach where all pa-
rameters of the pre-trained LLM are fine-tuned, resulting in higher 
computational cost and risk of overfitting.

• Full Frozen LLM (FF): A variant where the LLM backbone is kept 
frozen, and only the task-specific modules are trained, aiming to 
utilize the frozen knowledge of LLM without modification.

• NonLLM: A baseline model without any LLM component, relying 
solely on task-specific modules for spatial prediction, serving as a 
control to assess the contribution of LLMs.

As shown in Table  4 and Fig.  8, we observe the following key 
findings. In Scenario S1 (Fig.  8(a)), EV-STLLM achieves the best per-
formance across all metrics, achieving the lowest MAE (218.13), RMSE 
(680.54), and MAPE (1.39). The performance gap is especially evident 
in MAPE, highlighting EV-STLLM’s superior capability in controlling 
relative errors. FFT and FF perform slightly worse, while NonLLM 
shows the worst results with significantly higher errors, confirming the 
indispensable role of LLM-based spatial feature extraction. In Scenario 
S2 (Fig.  8(b)), although FFT slightly outperforms EV-STLLM in MAE 
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Fig. 6. Heatmap comparisons for 16 districts at different timeslots between ground truth (left) and prediction (right): (a) 9 AM peak; (b) 3 PM valley; (c) 8 PM 
peak.
(240.39 vs. 242.35) and RMSE (688.89 vs. 693.39), EV-STLLM main-
tains the lowest MAPE (1.29), suggesting better robustness. This indi-
cates that EV-STLLM is more reliable for controlling relative deviations, 
which is crucial in heterogeneous spatial prediction tasks.
12 
In Scenario S3 (Fig.  8(c)), EV-STLLM consistently leads with the 
lowest MAE (33.80) and RMSE (53.00). Although NonLLM achieves 
a comparable MAPE (1.92 vs. EV-STLLM’s 1.82), its MAE and RMSE 
are much higher, indicating poor stability and weaker generalization 
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Fig. 7. Heatmap comparisons for 331 subdistricts at different timeslots between ground truth (left) and prediction (right): (a) 9 AM peak; (b) 3 PM valley; (c) 
8 PM peak.
capabilities. In Scenario S4 (Fig.  8(d)), both EV-STLLM and FFT perform 
closely in terms of MAE (36.91 vs. 36.56) and RMSE (66.13 vs. 62.80), 
but EV-STLLM achieves the best MAPE (1.78). FF performs moderately, 
but NonLLM consistently underperforms across all metrics.
13 
Overall, these results consistently demonstrate that EV-STLLM
strikes the best trade-off between accuracy, efficiency, and scalability. 
While FFT occasionally achieves slightly better absolute metrics, it 
requires significantly higher computational resources, making it less 
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Fig. 8. Ablation study across different scenarios: (a) S1, (b) S2, (c) S3, (d) S4.
Table 5
Comparison of GPU memory and parameter update fraction across different ablation study Strategies.
 Zone District Subdistrict Parameter 

Update Fraction
 

 Output 1 2 1 2  
 EV-STLLM 1.41GB 1.41GB 18.87GB 18.85GB 0.49%  
 FFT 2.07GB 2.07GB 18.84GB 18.76GB 100%  
 FF 1.28GB 1.28GB 15.93GB 15.85GB 0%  
preferable for practical usage. On the other hand, EV-STLLM, with its 
parameter-efficient LoRA-based design, achieves competitive or supe-
rior performance at a much lower cost. Moreover, the consistently poor 
performance of NonLLM across all scenarios validates the necessity 
of incorporating LLMs for effective spatial modeling. In conclusion, 
EV-STLLM stands out as a robust, efficient, and scalable solution for 
fine-grained spatial prediction tasks.

To further evaluate the efficiency of the proposed EV-STLLM frame-
work, we present a comparison of GPU memory usage and parameter 
update fraction across different ablation strategies, as shown in Table 
5. This analysis highlights the computational cost and fine-tuning effi-
ciency associated with each approach. Specifically, EV-STLLM demon-
strates remarkable memory efficiency, requiring only 1.41 GB of GPU 
memory for District-level outputs and approximately 18.86 GB for 
Subdistrict-level outputs. Despite its low memory footprint, EV-STLLM 
updates merely 0.49% of the total parameters, owing to its LoRA-based 
fine-tuning strategy. This minimal update fraction enables efficient 
adaptation while preserving the general knowledge of the frozen LLM 
backbone. In contrast, the FFT strategy consumes more GPU memory 
than EV-STLLM at the District level (2.07 GB vs. 1.41 GB), and requires 
a full 100% parameter update, which significantly increases the com-
putational burden. At the Subdistrict level, however, the GPU memory 
usage of FFT (18.84 GB and 18.76 GB) is slightly lower than that of 
EV-STLLM (18.87 GB and 18.85 GB), suggesting comparable memory 
demands in larger-scale scenarios. Nevertheless, the full parameter 
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update requirement of FFT still makes it computationally intensive 
and less scalable for deployment in resource-constrained environments. 
The FF variant is the most memory-efficient approach, requiring only 
1.28 GB (District) and 15.89 GB (Subdistrict) of GPU memory. How-
ever, since it keeps the LLM backbone entirely frozen (0% parameter 
update), its performance is generally inferior to EV-STLLM, as it lacks 
adaptability to task-specific spatial patterns.

Overall, these results reinforce that EV-STLLM strikes an optimal 
balance between performance and efficiency. By leveraging LoRA for 
lightweight fine-tuning, it significantly reduces memory consumption 
and training overhead while maintaining or exceeding the predictive 
accuracy of more resource-intensive methods. This makes EV-STLLM a 
practical and scalable solution for large-scale spatial prediction tasks.

5.4. Sensitive analysis

Table  6 and Fig.  9 present the sensitivity analysis results with regard 
to different input sequence lengths (6, 12, 18, 24, 30). The evaluation 
is conducted for both district- and subdistrict-level tasks across two 
output scenarios.

For the district-level tasks, as shown in Figs.  9 (a1) and (b1), 
the MAE and RMSE metrics generally fluctuate within a moderate 
range with varying sequence lengths. In Output 1, the lowest MAE 
(231.82) and RMSE (681.53) are observed at a sequence length of 
18, indicating that moderate-length sequences provide more stable and 
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Table 6
Sensitivity analysis of different sequence lengths.
 Zone Output Metric Statistic 6 12 18 24 30  
 

District

1

MAE Mean 234.96 237.98 231.82 258.57 249.07 
 Std 6.62 13.20 11.16 22.50 15.87  
 RMSE Mean 695.44 691.72 681.53 708.96 701.95 
 Std 3.13 12.14 7.98 13.56 12.39  
 MAPE Mean 1.53 1.55 1.69 1.93 1.76  
 Std 0.31 0.27 0.18 0.45 0.26  
 

2

MAE Mean 252.60 258.87 248.06 259.33 244.53 
 Std 8.69 26.30 11.42 20.75 14.10  
 RMSE Mean 700.96 704.94 695.69 708.57 702.81 
 Std 11.35 26.56 11.98 18.63 16.07  
 MAPE Mean 1.39 1.41 1.52 1.64 1.52  
 Std 0.17 0.21 0.13 0.22 0.13  
 

Subdistrict

1

MAE Mean 37.56 36.67 36.23 36.23 36.78  
 Std 1.07 0.80 1.26 1.43 1.57  
 RMSE Mean 69.29 63.43 62.15 64.33 65.98  
 Std 3.59 4.51 6.15 6.01 6.01  
 MAPE Mean 1.96 2.16 2.11 1.93 1.98  
 Std 0.35 0.23 0.27 0.14 0.28  
 

2

MAE Mean 37.61 37.42 37.02 37.97 37.59  
 Std 0.68 0.53 0.70 0.84 0.89  
 RMSE Mean 67.36 67.49 65.72 68.45 66.99  
 Std 3.20 2.08 3.27 2.38 2.97  
 MAPE Mean 2.00 1.94 2.02 2.09 2.09  
 Std 0.14 0.14 0.12 0.13 0.19  
accurate predictions. However, overly long sequences (24 or 30) tend to 
slightly deteriorate the performance, possibly due to the introduction of 
noise and overfitting issues. The MAPE metric follows a similar trend, 
with longer sequences leading to higher relative errors. For Output 2 at 
the district level, a similar pattern is observed. The best performance 
is obtained around sequence lengths of 18 and 30, while 24 shows a 
noticeable increase in both MAE and MAPE. The standard deviations 
are also larger for longer sequences, suggesting less stability across 
different runs.

In the subdistrict-level tasks shown in Figs.  9 (c1) and (d1), the 
system demonstrates higher robustness to sequence length variations. 
The MAE and RMSE remain relatively stable across different lengths, 
but the shortest sequence (6) shows slightly inferior performance. In 
particular, the RMSE is minimized at a length of 18 for Output 1 and 
at 18–30 for Output 2, indicating that moderately long input sequences 
are advantageous for subdistrict predictions as well. The MAPE trends 
at the subdistrict level (Figs.  9 (c2) and (d2)) show that sequence 
lengths around 18 yield slightly better relative error control. However, 
the differences are minor compared to district-level results, showcasing 
the relatively smooth dynamics at finer spatial granularity.

The sensitivity analysis results provide practical insights that can 
guide the deployment of the proposed model in real-world scenarios:

• Recommended default configuration: Based on our results, we 
recommend using an input window of 12 to 18 time steps (i.e., 6 
to 9 h) as a reliable and generalizable setting for short-term EV 
charging demand forecasting in urban environments. This range 
provides a practical balance between capturing sufficient tem-
poral dependencies and maintaining computational efficiency, 
making it suitable for deployment in both real-time and resource-
constrained scenarios.

• Long Sequences can Cause Prediction Instability: When input se-
quences exceed 18 time steps (9 h), prediction instability emerges, 
particularly at the district level, as indicated by increased variabil-
ity in performance metrics (MAE, RMSE, MAPE). This instability 
stems from factors such as noise and redundancy introduced 
by irrelevant or outdated time dependencies, increased risk of 
overfitting due to longer sequences, and higher computational 
complexity, which amplifies inference time and resource chal-
lenges in real-time scenarios. Practically, this insight suggests that 
longer sequences should be avoided in deployment, especially for 
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district tasks, to ensure stability and scalability in operational 
systems.

• Subdistrict Tasks are Less Sensitive to Sequence Length: Sensi-
tivity analysis reveals that subdistrict-level predictions are more 
robust to sequence length variations than district-level predic-
tions. This is due to smoother temporal dynamics in subdistrict 
data, which often exhibit less external interference and more 
stable demand patterns. Furthermore, subdistrict tasks mitigate 
the noise amplification associated with aggregated district-level 
data, offering clearer and more distinctive temporal signals. These 
findings can guide future deployment strategies by advocating for 
the adoption of adaptive sequence length approaches at the sub-
district level, leveraging shorter sequences to enhance computa-
tional efficiency during periods of low variability while extending 
sequence lengths to maintain accuracy during high-variability pe-
riods. These findings can guide future deployment by supporting 
the use of adaptive sequence length strategies at the subdistrict 
level, enabling computational efficiency during low-variability 
periods and maintaining accuracy during high-variability periods.

These interpretations underline the importance of tailoring the in-
put sequence length to specific operational conditions. They also pro-
vide actionable guidelines to enhance both the accuracy and efficiency 
of the forecasting model in deployment scenarios.

5.5. Comparative evaluation of PEFT methods

This Section presents a comparative analysis of six mainstream 
Parameter-Efficient Fine-Tuning (PEFT) methods in terms of their pre-
diction performance. The selected methods represent current research 
hotspots, including LoRA, IA3, Prefix Tuning, P-Tuning, P-Tuning-v2, 
and BitFit. Overall, LoRA consistently achieves the best results across 
all evaluation metrics and testing dimensions. In the District level, it 
attains the lowest MAE (218.13 in 1 output length and 242.35 in 2 
output lengths), and also significantly outperforms other methods in 
terms of RMSE and MAPE. This suggests that LoRA possesses strong 
modeling ability in capturing local structural variations of the target 
function. Particularly at the Subdistrict level, LoRA achieves a remark-
ably low RMSE of 53.00 in 1 output length, substantially outperforming 
competitors such as IA3 (68.50) and BitFit (69.72), demonstrating its 
superior capacity to adapt to fine-grained spatial heterogeneity.
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Fig. 9. Sensitivity analysis with MAE (1) and MAPE (2) across different time sequences lengths, (a) S1, (b) S2, (c) S3, (d) S4.
Table 7
Comparison of prediction performance of different parameter efficient fine-tuning methods.
 Zone District Subdistrict

 Output 1 2 1 2

 Metric MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 
 IA3 234.17 690.95 1.53 256.22 695.52 1.73 37.56 68.50 1.97 38.44 70.65 1.84  
 P-Tuning-v2 585.26 998.78 8.08 580.53 993.93 7.55 39.67 72.70 1.97 38.68 70.04 1.89  
 P-Tuning 579.21 997.06 7.82 572.94 993.51 7.00 38.78 70.57 2.12 39.70 72.79 1.80  
 Prefix 574.49 996.52 7.53 569.65 993.61 6.85 40.16 73.13 2.16 40.07 72.01 2.06  
 BitFit 242.02 688.16 1.74 255.79 705.31 1.41 38.10 69.72 1.97 38.13 70.28 1.79  
 LoRA 218.13 680.54 1.39 242.35 693.39 1.29 33.80 53.00 1.82 36.91 66.13 1.78  
IA3, which introduces a different parameter injection mechanism, 
performs comparably to LoRA at the District level, but its RMSE and 
MAPE at the Subdistrict level are slightly worse, indicating limited 
generalization when modeling at finer spatial scales. BitFit, despite 
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modifying only a small subset of bias parameters, performs mod-
erately or even second-best in many settings. It shows better MAE 
performance than the P-Tuning family, highlighting its relatively high 
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Table 8
Comparison of training and inference time (in seconds) of different parameter-efficient fine-tuning methods.
 Zone District Subdistrict

 Output 1 2 1 2

 Type Training Inference Training Inference Training Inference Training Inference 
 IA3 0.4605 0.0547 0.4532 0.0528 8.5828 0.8325 8.5588 0.8330  
 P-Tuning-v2 0.7531 0.0865 0.7498 0.0860 8.3898 0.8287 8.3490 0.8274  
 P-Tuning 0.6846 0.0822 0.6853 0.0824 8.3174 0.8257 8.2929 0.8241  
 Prefix 0.6769 0.0815 0.6744 0.0816 8.3057 0.8233 8.2796 0.8228  
 BitFit 0.4332 0.0491 0.4299 0.0489 8.1539 0.7955 8.1389 0.7962  
 LoRA 0.5042 0.0581 0.5062 0.0582 8.9191 0.8816 8.2929 0.8241  
cost-effectiveness in constrained parameter-update scenarios. The per-
formance of P-Tuning and its variant P-Tuning-v2 is relatively poor 
in this experimental setup, especially at the District level, where their 
MAE and RMSE scores are significantly higher than those of other 
methods—sometimes approaching the performance of an unadapted 
base model. This may be due to the heavy reliance of these methods on 
extensive prompt token tuning, which is sensitive to task structure and 
less effective. Prefix Tuning, while enhancing prompt expressiveness 
relative to P-Tuning, still falls short of matching the performance of 
LoRA or IA3. Notably, at the Subdistrict level in 1 output length, it 
yields the highest MAPE of 2.16 among all methods, indicating poten-
tial limitations in modeling complex hierarchical spatial dependencies. 
Further analysis of prediction errors across different levels reveals that 
all methods exhibit significantly lower MAE and RMSE at the Subdis-
trict level compared to the District level. This may partially reflect 
the fact that fine-grained spatial prediction tasks are associated with 
smoother target functions or are easier to fit. However, the MAPE at the 
Subdistrict level shows greater variability, suggesting that normalized 
error metrics are more sensitive to prediction targets with low magni-
tude. This highlights the need to carefully choose evaluation metrics 
based on specific business requirements in real-world applications.

In addition to prediction accuracy, computational efficiency is a 
crucial factor when selecting PEFT strategies, particularly for deploy-
ment in resource-constrained environments. Table  8 presents a de-
tailed comparison of training and inference time. We observe that 
BitFit consistently exhibits the fastest training and inference times 
across all scenarios, owing to its minimal parameter update design—
only tuning bias parameters. IA3 also demonstrates low computational 
overhead, particularly in the District-level tasks, with training times 
under 0.5 s per epoch and inference times around 0.05 s. LoRA, while 
not the fastest, strikes a compelling balance between efficiency and 
performance. At the District level, its training and inference times 
(approximately 0.5 and 0.058 s respectively) are only marginally higher 
than those of IA3 and BitFit, but it far surpasses all other methods in 
prediction accuracy (see Table  7). For instance, LoRA achieves the low-
est MAE and RMSE across all regions and output lengths, and delivers 
particularly strong results at the Subdistrict level—demonstrating its 
ability to model fine-grained spatial heterogeneity.

At the Subdistrict level, LoRA’s training time ( 8.9 s per epoch for 1 
output length) is slightly higher than other methods, but this overhead 
is justifiable given its substantial gains in predictive performance. 
Inference times remain comparable with other methods (e.g., 0.8816 s 
vs. 0.8325 for IA3), ensuring that LoRA remains practical for real-
time or near-real-time applications. On the other hand, the P-Tuning 
family and Prefix Tuning methods, despite their expressiveness through 
prompt-based parameterization, incur longer training times (around 
0.68–0.75 s at the District level and over 8.3 s at the Subdistrict level) 
and fail to offer competitive prediction accuracy. This suggests that 
their computational cost is not well-compensated by corresponding 
gains in model performance, making them less favorable in this context. 
In summary, combining both predictive accuracy and computational 
efficiency, LoRA emerges as the most balanced and effective PEFT 
method for the studied spatial–temporal prediction tasks.
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6. Conclusions

In this paper, we propose a novel spatiotemporal learning frame-
work, EV-STLLM, for short-term EV charging demand prediction in 
urban environments to tackle the core challenges of data fusion and 
model fusion. At the data level, our model constructs a collaborative 
embedding mechanism that fuses token-level, temporal, and spatial 
features, enabling fine-grained modeling of the nonlinear and dynamic 
patterns inherent in EV charging behavior. At the model level, we 
integrate a pretrained LLM as the backbone for deep spatiotemporal de-
pendency modeling while significantly reducing training cost through 
LoRA, which freezes the bulk of model parameters and only tunes a 
small set of low-rank matrices.

Extensive experiments conducted on a large-scale real-world dataset 
from Beijing—covering 16 districts and 331 subdistricts, with over 
830,000 charging records—demonstrate the superior performance of 
EV-STLLM across multiple evaluation metrics and prediction scenarios. 
Compared to classical sequence models (RNN, LSTM, GRU), graph-
based models (GCN, GAT, GraphSAGE), and spatiotemporal graph mod-
els (TGCN, TGAT, TSAGE), EV-STLLM achieves consistent improve-
ments across all tasks and scales: In district-level one-step prediction, 
EV-STLLM reduces MAE by 15.41% and MAPE by 53.51% compared 
to the best-performing baseline. In subdistrict-level prediction, despite 
the greater spatial granularity, EV-STLLM maintains a significant lead 
in both MAE and RMSE, showcasing its strong generalization capac-
ity and robustness at fine spatial resolutions. To better understand 
the impact of input sequence length on prediction performance, we 
conduct a temporal sensitivity analysis by varying the length of his-
torical time windows used in the model input. The results reveal the 
importance of selecting an appropriate temporal window that balances 
context depth and relevance. They also suggest potential for adaptive 
sequence learning, where the model dynamically adjusts its receptive 
field based on forecast horizon or local temporal patterns. Additionally, 
our ablation study confirms the effectiveness of each key component. 
Removing the LLM component (NonLLM) leads to substantial perfor-
mance degradation, especially in MAPE, indicating the critical role of 
LLMs in capturing global dependencies. Compared with full fine-tuning 
(FFT) and fully frozen (FF) setups, our LoRA-based approach achieves 
comparable or even better prediction accuracy while significantly re-
ducing computational cost, validating its practical value for scalable 
deployment.

6.1. Practical implications and limitations

The proposed EV-STLLM framework holds significant promise for 
real-world deployment in smart grid management and urban energy 
systems. However, its practical application also entails several consid-
erations and limitations that must be carefully addressed.

On the one hand, for practical implications, Firstly, EV-STLLM en-
ables accurate short-term forecasts of charging demand at both district 
and subdistrict levels. This allows grid operators to proactively allocate 
electricity resources, mitigate peak loads, and implement dynamic load 
balancing strategies. The fine-grained spatial resolution also supports 
zonal demand-response mechanisms. Secondly, by predicting temporal 
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variations in charging activity, EV-STLLM can inform adaptive time-
of-use pricing strategies. This enables utility providers to incentivize 
off-peak charging, reduce grid stress, and align user behavior with 
system-level optimization objectives. And then, EV-STLLM facilitates 
hotspot detection and demand clustering at subdistrict scale, support-
ing optimal siting of new charging stations or mobile charging units. 
Long-term deployment planning can benefit from short-term demand 
dynamics, especially in rapidly evolving urban environments. Finally, 
given its efficient architecture with LoRA-based fine-tuning, EV-STLLM 
can be integrated into real-time decision support systems, such as 
charging station management platforms or urban energy digital twins, 
offering timely and localized predictions.

On the other hand, for limitations and future works, Firstly, while 
EV-STLLM performs well on Beijing data, its generalization to other 
cities with different urban topologies, charging behaviors, or infrastruc-
ture densities may be limited. Domain adaptation or federated learning 
approaches may be required for cross-city deployment. Secondly, the 
effectiveness of EV-STLLM depends heavily on the availability and 
accuracy of fine-grained charging logs, spatial metadata, and contextual 
features. In data-scarce regions, performance may degrade. Synthetic 
data generation or transfer learning could be explored to mitigate this 
issue. Thirdly, although LLM-based models offer strong representation 
capabilities, their decision-making process remains relatively opaque. 
For high-stakes applications (e.g., grid reliability or public safety), aug-
menting the model with explainable AI modules is crucial to enhance 
transparency and stakeholder trust. Last but not least, urban charging 
patterns are dynamic, affected by policy changes, infrastructure up-
grades, and behavioral shifts. The model requires periodic retraining 
or online learning capabilities to remain accurate over time. Auto-
mated model updating pipelines should be considered in large-scale 
deployments.
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