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ARTICLE INFO ABSTRACT

Keywords: Accurate prediction of electric vehicle (EV) charging demand is pivotal for effective smart grid management
Electric vehicle and renewable energy integration. However, predicting spatio-temporal EV charging patterns remains chal-
Charging demand prediction lenging due to complex data fusion requirements arising from heterogeneous temporal, spatial, and contextual

Spatiotemporal data fusion
Large language models
Model fusion

Low-rank adaptation

features, as well as difficulties in effectively integrating multiple modeling approaches. This paper introduces
EV-STLLM, a novel spatio-temporal data fusion framework based on Large Language Model explicitly designed
for accurate short-term EV charging demand forecasting through innovative integration of data-level and
model-level fusion techniques. At the data level, a multi-source embedding module is developed to seamlessly
fuse temporal features (e.g., time slots, weekdays), spatial heterogeneity (e.g., geographical location), and
contextual charging behaviors into a unified representation via embedding convolutional network. At the model
level, a large language model (LLM) is employed to capture global spatiotemporal dependencies, enhanced
with Low-Rank Adaptation (LoRA) for parameter-efficient fine-tuning, substantially reducing computational
costs while maintaining prediction robustness. Using a comprehensive real-world dataset comprising over
830,000 EV charging records across 16 districts and 331 subdistricts in Beijing, we validate EV-STLLM
across multiple forecasting scenarios (district and subdistrict levels, one-step and two-step ahead predictions).
Extensive comparative evaluations demonstrate that EV-STLLM consistently outperforms classical, graph-based,
and deep learning baselines. Specifically, in one-step ahead district-level forecasting, EV-STLLM achieves up to
a 15.41% reduction in MAE and a 53.51% reduction in MAPE compared to the leading baseline, underscoring
its potential to significantly enhance data-driven smart grid operations.

1. Introduction million, and it is expected to reach 160 million by 2030 [2]. However,
the rapid growth of EV ownership has led to unprecedented scheduling

With the accelerated global transition towards carbon neutrality, pressures on urban power systems [3]. EV charging behavior exhibits
Electric Vehicles (EVs) are shifting from being an “option” in the significant spatiotemporal characteristics, with high volatility and con-
transportation revolution to a “necessity” in urban low-carbon transfor- centration in different time periods and spatial regions, creating new

mation [1]. As of 2023, the number of EVs in China has surpassed 20 challenges for grid stability [4]. Particularly during peak electricity
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usage periods or in specific areas, concentrated EV charging may cause
localized load surges, even leading to power supply bottlenecks [5].

In this context, conducting spatiotemporal predictions of short-term
EV charging demand is of great importance for smart grid management
and pricing strategies [6]-[7]. By accurately predicting the charging
demand distribution in different regions over the next hour or next
few hours, power companies can devise time-of-use pricing strategies,
guiding users to avoid peak load periods and improving the opera-
tional efficiency of the power system [8]. Additionally, the prediction
results can support grid scheduling, enabling dynamic load adjustment
and optimized energy allocation, reducing the peak-valley difference,
and enhancing grid security and flexibility [9]. Moreover, short-term
predictions can improve user experience, such as by intelligently rec-
ommending charging times or locations, reducing queuing time, and
improving charging convenience and cost-effectiveness [10]. There-
fore, short-term spatiotemporal prediction of EV charging demand is
not only an effective means of addressing grid operational pressure,
but also an indispensable technological support in the development
of green transportation and smart energy [11]. However, despite ex-
tensive research on modeling and predicting EV charging demand,
achieving high-accuracy short-term spatiotemporal predictions at the
urban scale still faces several challenges, especially in data fusion and
model fusion [12]. Specifically, data-level fusion focuses on preprocess-
ing and integrating raw or intermediate data from different sources
to create a unified representation for prediction models, while model-
level fusion emphasizes the combination of outputs or intermediate
representations from multiple models to improve overall accuracy and
robustness. The details of data-level fusion and model-level fusion are
described as follows.

On the one hand, although existing research has extracted a large
number of features from temporal, spatial, and user behavior dimen-
sions, efficiently integrating these multi-dimensional and multi-modal
features remains one of the core challenges in short-term EV charging
demand forecasting. Firstly, charging demand exhibits evident tempo-
ral periodicity (e.g., daily and weekly cycles) and temporal burstiness
(e.g., during commuting hours). Traditional time series modeling ap-
proaches often struggle to capture such nonlinear trends and sudden
fluctuations. For example, one study reported that traditional meth-
ods (e.g., ARIMA) underperformed their proposed method (TSAGE)
by a factor of 3.25 in terms of RMSE [8]. Additionally, historical
data often include anomalous time points such as holidays, extreme
weather, or unexpected events, further complicating the modeling and
fusion of temporal features [13]. Secondly, the spatial distribution of
charging stations in urban environments is highly uneven. Charging
behaviors across different regions are influenced by various factors such
as geographic location, traffic conditions, and surrounding facilities.
Effectively modeling spatial correlations (e.g., influence propagation
between neighboring regions) and spatial heterogeneity (e.g., behav-
ioral differences between urban centers and suburban areas) is a key
challenge for spatial feature fusion [14]. Finally, fundamental features
such as user type, charging station category, and pricing mechanisms
represent static information whose influence varies under different
spatiotemporal contexts. These static features interact in complex ways
with dynamic spatiotemporal features. Therefore, dynamically adjust-
ing the weights of static information in the modeling process is an
urgent issue in current data fusion research. Consequently, constructing
a data fusion framework that can flexibly adapt to multi-source het-
erogeneous data and dynamically adjust feature weights is crucial for
improving prediction accuracy.

On the other hand, in spatiotemporal forecasting tasks for short-
term EV charging demand, model fusion has emerged as a key strategy
for enhancing prediction accuracy and system robustness. The current
mainstream prediction models include small models, large models, and,
more recently, large language models (LLMs). Each model category
offers advantages in feature modeling, representation capacity, and
computational efficiency, but also faces specific challenges in practical
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application. Small models, such as linear regression (LR), decision
trees, and support vector machines, offer high training efficiency, low
computational cost, simple structure, and ease of deployment. How-
ever, they are limited in capturing complex nonlinear relationships
or long-term dependencies, making them less suitable for large-scale,
multi-dimensional urban-level charging demand forecasting [15]. Large
models, such as convolutional neural networks (CNNs), recurrent neu-
ral networks (RNNs), and Transformers, possess significant advantages
in spatiotemporal modeling, capable of uncovering deeper sequential
patterns and spatial dependencies in charging behaviors. Nevertheless,
these models require substantial data and computational resources for
training, are costly to implement, and are prone to overfitting [16].
Recently, LLMs, such as GPT and BERT, have achieved remarkable
progress in natural language processing, especially in understanding
complex semantics and generating context-aware content. However,
these models were not originally designed for spatiotemporal sequence
prediction tasks. Directly applying LLMs to structured time series mod-
eling may encounter structural mismatches and task adaptation chal-
lenges [17]. In summary, although integrating small models, large
models, and LLMs could leverage their complementary strengths, in
practice, model fusion faces several difficulties, including inconsisten-
cies in model architectures, heterogeneity in feature input formats, and
complexity in designing effective fusion strategies.

To address the aforementioned challenges, this paper proposes a
spatiotemporal fusion framework that integrates both data-level and
model-level strategies, aiming to enhance the accuracy and robustness
of short-term electric vehicle charging demand forecasting at the urban
scale. Leveraging real-world EV charging data from Beijing—covering
331 sub-districts across 16 administrative districts—this study demon-
strates how multi-source, city-scale data fusion can effectively support
intelligent demand forecasting and urban energy scheduling, providing
critical insights for the development of smart grids and low-carbon
cities. The main contributions of this paper include:

(1) Unified spatiotemporal data fusion through collaborative em-
beddings. To address the heterogeneity of multi-source data
in EV charging demand forecasting, we design a collaborative
embedding mechanism that enables effective data-level fusion
across temporal, spatial, and behavioral dimensions. Specifi-
cally, temporal patterns are encoded via time-slot and weekday
embeddings; spatial heterogeneity is captured through nonlinear
transformations of urban region features; and localized charging
behaviors are represented using pointwise convolution. These
components are integrated via an Embedding Convolutional Net-
work (ECN), constructing a unified spatiotemporal represen-
tation capable of capturing both static and dynamic feature
interactions across time and space.

(2) Model-level fusion via LoRA-enhanced large language model. To
fully leverage the complementary strengths of traditional feature
embeddings and large-scale pretrained models, we propose a
model fusion strategy that integrates lightweight spatiotemporal
encodings with a parameter-efficient fine-tuned LLM. By adopt-
ing Low-Rank Adaptation (LoRA), we insert trainable low-rank
matrices into the Transformer’s Query and Value projections
while keeping the pretrained backbone frozen. This approach
significantly reduces training overhead, enhances scalability,
and enables the LLM to adapt to structured forecasting tasks
without compromising its generalization ability.

(3) Extensive real-world validation with superior quantitative per-
formance across scales. We construct a large-scale EV charging
dataset spanning 16 districts and 331 subdistricts in Beijing, and
evaluate the proposed model across multiple forecasting sce-
narios. Compared to strong baselines (e.g., GRU, GraphSAGE),
EV-STLLM achieves up to 15.45% reduction in MAE and 53.51%
reduction in MAPE for district-level 1-step prediction, and up to
19.61% and 26.39% reductions in MAE and RMSE respectively
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at the subdistrict level. These results demonstrate the model’s su-
perior accuracy, robustness, and fine-grained adaptability across
both coarse and fine spatial resolutions.

The rest of this paper is organized as follows. Section 2 reviews
the related literature on EV charging demand prediction, spatiotem-
poral modeling, and the application of LLMs in forecasting. Section 3
formally defines the problem of short-term EV charging demand pre-
diction. Section 4 details the proposed methodology, including the
overall framework, the spatiotemporal feature embedding process, the
Transformer-based architecture, and the parameter-efficient fine-tuning
strategy. Section 5 describes the experimental setup, presents the re-
sults of comparative and ablation studies, and analyzes the model’s
sensitivity. Finally, Section 6 concludes the paper, summarizing the key
findings and discussing the practical implications and limitations of the
work.

2. Related work

2.1. EV charging demand prediction

EV charging demand prediction has become an important research

direction in the fields of intelligent transportation and smart energy [18].

Existing EV charging demand prediction methods can be broadly di-
vided into three categories: statistical models, traditional machine
learning methods, and deep learning methods. Statistical models, such
as autoregressive integrated moving average (ARIMA) [19] and sea-
sonal ARIMA (SARIMA) [20] are characterized by simplicity in mod-
eling and strong interpretability, making them suitable for relatively
stable time series prediction tasks. However, their ability to model
nonlinear relationships is limited, and they perform poorly when deal-
ing with complex and variable charging behaviors. Machine learning
methods, such as support vector regression (SVR), random forest,
and gradient boosting decision trees (GBDT) are capable of capturing
nonlinear features to some extent. These methods are suitable for
medium- to small-scale datasets, but they heavily depend on feature
engineering [21]. In recent years, deep learning models based on
RNN [22], CNN [23], and their variants have been widely applied
in charging demand prediction. These models possess strong feature
extraction and pattern recognition capabilities, especially in handling
high-dimensional complex data and capturing temporal and spatial
dependencies.

The variation in EV charging demand is driven by multiple factors,
and constructing a high-quality prediction model requires compre-
hensive consideration and modeling of key influencing factors [24].
Temporal features, such as hours, days of the week, holidays, etc.,
reflecting the periodicity and regularity of charging behavior. Spatial
features, including districts and subdistricts, which reflect regional
differences in population, traffic, and infrastructure, thereby influ-
encing charging behavior. Central urban areas tend to have higher
charging demands due to dense commuting, while suburban areas
are significantly influenced by residential distribution and charging
station coverage. Proper modeling of spatial hierarchy helps improve
spatial accuracy and generalization ability in predictions. Environ-
mental factors, such as weather (temperature, precipitation, etc.) and
air quality, which may indirectly affect vehicle travel frequency and
charging demand. Therefore, the fusion of multi-source heterogeneous
data has become an important way to enhance model performance, and
establishing effective correlations between different data types remains
a critical research topic.
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2.2. Spatiotemporal prediction

Charging demand prediction falls under the broader category of spa-
tiotemporal prediction. Therefore, when constructing prediction mod-
els, time and space features should not be treated separately but should
be understood in terms of their coupling relationship. During the de-
velopment of spatiotemporal modeling methods, researchers have pro-
posed various architectures to enhance the ability to capture complex
spatiotemporal features. Early methods often employed combinations
of CNNs and RNNs, where the former was used to capture spatial
dependencies and the latter was used to model temporal dynamics.
Models such as CNN-long short-term memory networks (LSTM) [25]
and ConvLSTM [26] have improved the accuracy of spatiotemporal
sequence modeling to some extent but have limitations when dealing
with non-Euclidean spatial structures, such as urban road networks.

To address these issues, graph neural networks (GNNs) have been
introduced into spatiotemporal modeling in recent years. Represen-
tative models such as spatiotemporal graph convolutional networks
(STGCN) [27] and diffusion convolutional recurrent networks
(DCRNN) [28] build spatial graph structures to capture non-Euclidean
relationships between nodes and integrate time series modeling tech-
niques to efficiently predict spatiotemporal data like traffic flow and
energy consumption. Xing et al. proposed a spatiotemporal fusion net-
work that integrates GCN with LSTM-Attention, specifically designed
for urban rail transit OD flow prediction [29]. Xu et al. introduced a
novel transportation prediction model, the HSTGODE, which employs
a dual-layer structure combined with spatiotemporal ordinary differen-
tial equation modules to address the over-smoothing problem in GNNs
and effectively capture hierarchical spatiotemporal features at both
regional and node levels [30]. These methods have achieved significant
results in urban traffic, power load, and other fields, further expanding
the technical boundaries of spatiotemporal prediction.

With breakthroughs in the Transformer model in natural language
processing (NLP) for sequence modeling, researchers have begun to
introduce these models into spatiotemporal prediction, developing spa-
tiotemporal Transformer architectures [31]. These models utilize self-
attention mechanisms, dynamically capturing global spatiotemporal
dependencies, and are better at modeling long-range features. For
example, models like spatio-temporal attention network (STAN) have
shown superior performance in multiple transportation and energy
prediction tasks compared to traditional CNN-RNN structures [32]. Yu
et al. proposed the MGSFformer, which utilizes a residual redundancy
elimination module to remove information redundancy across different
granularities of data. Furthermore, it incorporates spatiotemporal atten-
tion and dynamic fusion modules to achieve efficient air quality predic-
tion [33]. Zhang et al. introduced the EF-former, a deep learning-based
multistep passenger flow prediction model. By integrating the parallel
interactive attention module and multi-scale causal multi-Head self-
attention module, EF-former extracts both global and local temporal
dependencies, enabling precise modeling of spatiotemporal dynamics
during large-scale events and realizing accurate multistep forecasting
of passenger flow [34].

2.3. Prediction-oriented applications of large language models

In recent years, LLMs such as the GPT series and Llama series have
achieved remarkable success in the field of NLP. As the capabilities
of LLMs continue to expand, researchers have begun exploring their
potential applications in structured data modeling, especially in spa-
tiotemporal prediction tasks. These applications can be summarized
into the following three pathways [35].

The first is knowledge extraction and feature enhancement [36].
This approach uses LLMs to perform deep semantic understanding
and implicit knowledge extraction from multimodal data (such as
text, images, etc.). The extracted semantic features are then input
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into traditional prediction models (such as LSTM, GNN, etc.) to en-
hance the model’s ability to perceive background information, behav-
ioral patterns, and environmental factors. In this process, LLMs act as
knowledge encoders, effectively supplementing and enhancing feature
semantics without changing the original model structure.

The second is text-to-LLM approach [37]. In this method, raw
spatiotemporal structured data (such as time series, spatial locations,
weather, etc.) is transformed into natural language descriptions, which
are then tokenized and input into frozen or fine-tuned LLMs for pre-
diction. This approach has good generality and interpretability, as it
can flexibly adapt to any pre-trained language model and improve the
human readability of model outputs. However, due to limitations in
expressing complex spatiotemporal dependencies, this method faces is-
sues such as high token usage costs, limited context windows, and insuf-
ficient expression accuracy, making it unsuitable for high-dimensional
and multi-scale complex prediction tasks. Kang et al. proposed an en-
hanced multi-level health event prediction framework, LLM-DG, which
improves prediction accuracy and robustness by semantically enhanc-
ing the representation of patients and discharge summaries, injecting
domain knowledge, capturing higher-order correlations, and integrat-
ing dynamic and static features to simultaneously model inter-patient
clustering and intra-patient disease evolution characteristics [38]. Shen
et al. introduced a framework that employs reinforcement learning to
provide decisive subgraph information for Graph LLMs. By utilizing
a reinforcement subgraph detection module and a node-guidance net-
work, the framework searches for and delivers critical neighborhood
and node information in textual form to assist LLM predictions, without
requiring model retraining [39].

The third is fine-tuning LLMs for spatiotemporal tasks [40]. This
method encodes spatiotemporal data as structured token sequences
(such as timestamps, region codes, numerical attributes, etc.) and fine-
tunes LLMs under supervision, allowing them to understand the spa-
tiotemporal meaning behind these tokens and perform prediction tasks.
Compared to natural language descriptions, this approach has higher
token efficiency and expression accuracy, better modeling higher-order
temporal dependencies and spatial relationships, and stronger adapt-
ability. However, the fine-tuning process typically requires high com-
putational resources and data quality.

2.4. Research gap

Although significant progress has been made in EV charging de-
mand prediction, spatiotemporal modeling, and the application of
LLMs, several interconnected challenges remain. In EV charging de-
mand prediction, existing methods struggle to effectively model the
nonlinear and high-dimensional interactions between temporal, spatial,
and behavioral features, particularly in short-term urban-scale tasks.
While deep learning models have improved predictive performance,
they often fail to adequately fuse multi-source heterogeneous data,
such as spatial hierarchies, temporal periodicity, and environmental
factors, leading to suboptimal generalization and scalability. In the
broader domain of spatiotemporal prediction, traditional architectures
like CNN-RNN hybrids and ConvLSTM face difficulties in explicitly
capturing complex feature interactions and balancing the trade-off be-
tween global generalization and local detail fitting. Advanced models,
such as GNNs and spatiotemporal Transformers, have addressed some
of these issues but still struggle with multi-scale and highly dynamic
scenarios, particularly in non-Euclidean spatial structures like urban
road networks. Meanwhile, the emerging application of LLMs in predic-
tion tasks highlights their potential for semantic knowledge extraction
and feature enhancement, yet challenges such as efficient tokenization,
representation of spatiotemporal dependencies, and the computational
cost of fine-tuning remain significant barriers. These gaps collectively
indicate the need for a unified framework that integrates the strengths
of spatiotemporal architectures with the semantic understanding ca-
pabilities of LLMs. The focus should be on achieving efficient data
fusion across multi-source heterogeneous datasets and model fusion,
providing high-performance prediction systems for intelligent energy
and urban-scale applications.
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3. Problem definition

This work focuses on the problem of short-term EV charging de-
mand prediction, which aims to estimate the future charging demand
across multiple spatial locations in a city over discrete time intervals.
This is a typical spatiotemporal forecasting task, where both temporal
dynamics and spatial heterogeneity must be jointly modeled.

Formally, let the city be partitioned into N spatial units (district
or subdistrict), and time be divided into discrete intervals (30 min).
For each location and time slot, we observe a set of features describing
charging behavior and contextual factors. The objective is to predict
the EV charging demand for each location in the next few time steps
based on historical data. Let X € RTn*Nuwdes*Cin denote the historical
multivariate input tensor, where: T}, is the number of historical time
steps, N,,4.s is the number of spatial locations, C;, is the number of
features per location per time step (e.g., past charging demand, time
slot index, week of day, etc.).

Let Y € RTw*Nwdes be the predicted charging demand over a
forecasting horizon of 7, time steps for N,,,,, locations. The goal is
to learn a mapping function f(-) such that:

Vrotren = F(X, Xy, . &) )]

Here, f is a predictive model capable of learning complex spa-
tiotemporal dependencies from the input data. This prediction function
should capture: Temporal dependencies, such as daily/weekly charging
patterns, peak vs. off-peak hours, and holiday effects. Spatial dependen-
cies, such as mobility patterns across districts, charging infrastructure
density, and population distribution. External factors, such as weather
conditions, public events, and road traffic status, which may impact trip
frequency and charging behavior.

4. Methodology
4.1. Framework

The proposed framework for EV charging demand prediction utilizes
a Spatiotemporal Large Language Model (EV-STLLM) as shown in
Fig. 1. This framework combines spatiotemporal embeddings with a
transformer-based architecture to model complex dependencies across
time and space, aiming to enhance the accuracy and robustness of
short-term charging demand forecasts in urban environments. Tradi-
national spatio-temporal GCN-based prediction methods typically rely
on fixed graph structures or predefined attention patterns, which limit
their ability to adapt to dynamic spatial relationships. Our proposed
framework is graph-free and leverages position-aware embeddings and
Transformer attention to model global spatiotemporal dependencies
without assuming any rigid structure. Furthermore, by integrating
LoRA for efficient fine-tuning, EV-STLLM achieves a better balance
between adaptability and computational efficiency, which is especially
important for real-world urban computing scenarios

The historical input data, X € R7in*NudesXCin | is converted into to-
kens representing spatial and temporal features. Three types of
embeddings—Auxiliary, Temporal, and Spatial—are applied and fused
into a unified spatiotemporal representation. The spatiotemporal em-
beddings are reshaped and passed into a transformer architecture
with a masked multi-head self-attention mechanism. This self-attention
enables the model to capture both global and local dependencies
in time and space, improving the model’s ability to learn complex
patterns. To adapt the pretrained language model to the EV charging
demand task while minimizing overfitting, the LoRA technique is used.
LoRA allows the model to adjust only a small set of parameters,
effectively transferring knowledge with fewer computational resources.
After processing through the transformer layers, the model produces
the final predictions using a regression convolution layer. The loss
function combines the prediction error with a regularization term to
prevent overfitting.
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Fig. 1. Framework of this work, (a) EV-STLLM, (b) Transformer network,(c) decoder-based Transformer, and (d) LoRA mechanism.

4.2. Spatiotemporal feature embedding

As illustrated in Fig. 1(a), we consider the input data X
€ RTin*Nudes*Cin as a sequence composed of spatial and temporal
information. To comprehensively capture its underlying patterns, we
devise three distinct embedding mechanisms.

Auxiliary feature embedding. We first process the raw input through a
pointwise convolutional layer to generate an auxiliary feature embed-
ding:

H e RNnadas Xdpogel (2)

where PointwiseConv(-) denotes a 1 x 1 convolution operation with
trainable parameters 0,,,. H,,, is the resulting node embedding ma-
trix, and d,,,;,; defines the dimension of the embedding vectors. We
employ pointwise convolution due to its exceptional computational
efficiency. It effectively captures local inter-feature relationships and
compresses the high-dimensional input into a more compact embedding
space, providing a refined feature representation for the subsequent
spatiotemporal fusion.

H,,, = PointwiseConv(X’; 0,,,), aux

Temporal information embedding (hour and day-of-week). To encode
temporal periodicities, we create learnable embedding vectors for dif-
ferent time slots of the day and days of the week:

H.. & RNnodesXdmodel 3)

Here, X}, and X,,, are the hour-of-day and day-of-week indices for
each node, respectively. W, . € RThourXdmoder and W day € RTdayXdmoder

time

Htime = whaur(Xhaur) + Wday(Xday)’

are two learnable embedding lookup tables. H,;,,, is the final temporal

time

embedding matrix.

Spatial information embedding. We extract spatial information directly
from the input features using a fully connected layer:

H € RNnodesXdmodel

space = P(X - W b H

space

C)

space + space)’

where W € RCin*dmodel and b

d . .
space space € R¥model are the weight matrix

and bias vector of the layer, respectively. ¢(-) represents a non-linear

activation function (e.g., ReLU), and H is the spatial embedding

space
matrix derived from the raw features.

Finally, we integrate the three aforementioned embeddings to form
a unified, multi-faceted feature representation:
[IH

aux time

H,,,., = FusionLayer(H Hpee: © i) Hyygea € RNnadesX3dmoser (5
In this equation, || denotes the concatenation operation along the
feature dimension. FusionLayer(-) is an ECN function used for fea-
ture fusion, with ©,,,, as its learnable parameters. H,,,, is the final
fused spatiotemporal embedding representation. We opt for ECN as
the spatiotemporal feature fusion method because it efficiently models
local dependencies, has low computational complexity, and features
flexible learnable parameters. In our experiments, it demonstrated su-
perior performance compared to both more complex and simpler fusion
alternatives.
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4.3. Transformer-based decoder-only architecture

As depicted in Fig. 1(b) and (c), we adopt a Transformer-based
decoder-only architecture to model the complex spatiotemporal depen-
dencies in EV charging demand. The model takes the fused spatiotem-
poral embeddings Hy,,,, € RNwdes*34motel and reshapes them into a

sequence for processing:
7 = Reshape(H ,.,;) € RS*?, where S = N,,40. d =3d,pg0  (6)

Each decoder block consists of a masked multi-head self-attention
layer and a feed-forward network (FFN). During spatiotemporal mod-
eling, we leverage the self-attention mechanism of the Transformer
to capture global spatiotemporal dependencies by computing atten-
tion weights across different time steps and spatial positions in the
input sequence. Specifically, for the /th layer, the attention mechanism
computes the following result:

Attention(Q, K, V) = softmax (QIZT + M) v 7
k

ZE;It)m = Concat(head,, ..., head; )W, + by (€))]

Zi’;jl = LayerNorm(Zfllt)m +2Z4=Dy 9

2 = ¢l WO+ bW + b)) (10)

) _ O] O]
7" = LayerNorm(Z. frn T Z

resl

) 1)

Through this mechanism, the model is able to simultaneously cap-
ture long-range dependencies across multiple time steps and spatial
regions. Moreover, to enable the LLM to handle heterogeneous informa-
tion, we serialize temporal context, spatial identifiers, and auxiliary be-
havioral features into token sequences as inputs to the model, thereby
implicitly integrating information across scales. After L layers, the final
output is:

HD = z(1) g RSXdseq 12)
We then apply a regression layer to generate the final predictions:

Yri1.74n = RConv(H): 0,) 13

4.4. Parameter-efficient LoRA fine-tuning

To adapt the pretrained model to the charging demand prediction
task while retaining its prior knowledge, we employ Low-Rank Adap-
tation (LoRA) for efficient fine-tuning, as shown in Fig. 1(d). LoRA
injects low-rank matrices into specific weight matrices (e.g., the Q
and V projections in multi-head attention) and exclusively trains these
newly introduced matrices while keeping the pretrained weights frozen.
Specifically, for a given weight matrix W, € RY*¢, LoRA modifies it
as:

Wiora =Wy +a-AB (14)

where A € R and B € R™ are low-rank matrices with r < d, and «
is a scaling factor. The original weight matrix W remains frozen, and
only A and B are trainable. The key advantages of this design are as
follows:

» Computational Efficiency: By significantly reducing the number
of trainable parameters (less than 1% of the full model), LoRA
drastically decreases GPU memory usage and training time.

» Robustness: LoRA preserves the original knowledge and capacity
of the pretrained model, mitigating the risk of overfitting in
low-data scenarios.
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» Stability: By only fine-tuning the Query and Value matrices while
keeping other components (e.g., K and FEN) frozen, LoRA further
reduces the risk of catastrophic forgetting.

In our model, we apply LoRA fine-tuning to the Query and Value
projection matrices of each Transformer block:

QLORA = QO + (lq . Aqu, VLORA = VO + (L AUBU (15)

The remaining matrices, such as for the Key (K), Output (0), and the
FFN, are kept frozen to minimize the number of trainable parameters
and prevent catastrophic forgetting. Through this approach, we achieve
efficient customization for domain-specific tasks without sacrificing
model performance.

4.5. Loss function

After obtaining the output representations HY) € RNwdes*%seq from
the Transformer backbone, a regression convolution layer is applied to
produce the final prediction:

Y;.1 = RConv(HD); 0,) (16)

The loss function is defined as the sum of the prediction error and a
regularization term on the LoRA parameters:

A 2
£ =|[Vra = Yro||, + 4+ 1000rall} a7

where O ra denotes the set of all trainable LoRA parameters and 4 is
the regularization coefficient.

5. Experiments
5.1. Experiment setup

5.1.1. Dataset description

In this section, we demonstrate the effectiveness of the proposed
EV-STLLM framework through a case study based on Beijing, China. As
one of the leading cities in China for EV adoption, Beijing has developed
a robust electric transportation network. We utilized EV charging log
data from December 2020, collected at a 30 min interval, covering
16 districts and 331 subdistrict regions across the city. The dataset
includes 833,439 charging events, each with an average of 22.06 kWh
of energy consumed.

The spatial distribution of charging demand across various districts
and subdistrict regions is depicted in Fig. 2. Specifically, Fig. 2(a) shows
the total EV charging demand aggregated by district. Darker colors
indicate districts with higher total energy consumption, highlighting
that central districts such as Chaoyang and Haidian exhibit significantly
higher demand. Fig. 2(b) provides a finer granularity by illustrating the
spatial distribution of charging demand at the subdistrict level. Brighter
colors represent higher demand densities, revealing hot spots of EV
activity within the city.

Table 1 summarizes the maximum instantaneous charging demand
and the cumulative total charging demand for each district during the
observation period. In addition, Fig. 3 displays the temporal dynam-
ics of EV charging demand throughout December 2020. Specifically,
Fig. 3(a) illustrates the charging demand over time at each district,
segmented into training, validation, and testing periods, with a ratio
of 8:1:1. The split is temporally consistent, meaning earlier days are
allocated to the training set, and more recent days are assigned to the
testing set. This strategy prevents data leakage and ensures the model
is trained on historical data and evaluated on future data, mirroring
real-world forecasting scenarios. The training set is shown in blue,
the validation set in orange, and the testing set in green. Distinct
daily patterns and weekly seasonality can be observed. For feature
standardization, we employed the z-score normalization method. This



Y. Shang et al.

le6

3.0

. 2.5

2.0
Dongcheng

Shijingshan Pingsu

Xicheng

0.5

(a) o

Information Fusion 126 (2026) 103692

400000

300000

r 200000

100000

(b)

Fig. 2. Distribution of the EV charging demand in (a) different districts and (b) different subdistrict.

Table 1

Maximum and total EV charging demand by Beijing districts.
Index 1 2 3 4 5 6 7 8
Name Dongcheng Xicheng Chaoyang Haidian Shijingshan Fengtai Mentougou Fangshan
Mean (kWh) 245.16 434.66 2123.46 2021.02 490.84 1329.92 260.63 693.42
Std 219.65 379.34 1766.87 1695.40 418.29 1129.79 230.64 597.07
Max (kWh) 1776.53 2875.16 13993.56 14218.98 3367.72 10184.80 1991.60 4878.33
Sum (kWh) 364 546.60 646 338.50 3157578.00 3005260.00 729876.70 1977598.00 387558.10 1031116.00
Index 9 10 11 12 13 14 15 16
Name Changping Daxing Shunyi Tongzhou Miyun Pinggu Huairou Yanqing
Mean (kWh) 1094.24 1451.24 748.59 1232.15 143.99 123.60 212.20 103.14
Std 918.04 1211.85 641.65 1030.00 137.96 119.03 191.22 105.14
Max (kWh) 8057.20 9853.18 6074.08 8354.02 1539.35 966.94 1786.56 878.67
Sum (kWh) 1627137.00 2158001.00 1113159.00 1832207.00 214116.00 183791.30 315541.20 153372.30

approach transforms each feature to have zero mean and unit variance,
calculated as:
X—p
o

(18)

where x is the original feature value, y is the mean, and o is the
standard deviation of the feature across the training dataset. Fig. 3(b)
presents violin plots of normalized charging demand for each of the 16
districts. Each violin plot shows the distribution, median, and interquar-
tile range of the normalized demand, highlighting the variability and
central tendency across different zones.

5.1.2. Evaluation metrics

To evaluate the accuracy of parking demand prediction, we em-
ploy four widely used metrics: mean absolute error (MAE), root mean
squared error (RMSE), and mean absolute percentage error (MAPE).
These metrics are defined as follows:

T N
1 X
MAE = —— ;;‘YH —Y,J\ (19)
1 Ll 2
RMSE = | 5577 Z:, IZ, (Y= Y,) (20)
T N Y
_100% Y-V,
MAPE = ——— g{ ; 5 (21)

where T’ denotes the number of time steps in the evaluation period
(validation or testing set), N is the number of parking locations, ¥, is
the predicted demand, and Y, is the ground truth demand at time 7 and
location i.

5.1.3. Benchmark models

To assess the robustness and predictive power of the proposed
model, we compare it with a wide range of classical and deep learning-
based forecasting methods:

RNN [41]: A neural network architecture designed for sequential
data modeling, capable of capturing temporal dynamics through
recurrent connections, suitable for tasks such as parking demand
prediction.

LSTM [42]: An enhanced RNN architecture that introduces mem-
ory cells and gating mechanisms to effectively preserve long-term
dependencies, widely used in complex time series modeling tasks.
Gated Recurrent Unit (GRU) [43]: A lightweight variant of LSTM
that retains gating mechanisms with fewer parameters, offering
efficient training and effective modeling of short- to medium-term
dependencies.

Graph Convolutional Network (GCN) [44]: Captures spatial de-
pendencies among parking locations using a graph structure and
extracts spatial features via graph convolution operations.

Graph Attention Network (GAT) [45]: Extends GCN by incor-
porating attention mechanisms that assign different weights to
neighboring nodes, allowing more flexible modeling of spatial
dependencies.

GraphSAGE [46]: A scalable graph neural network approach that
employs neighborhood sampling and aggregation strategies, en-
abling efficient representation learning on large-scale graphs.
Temporal Graph Convolutional Network (TGCN) [47]: Combines
GCN and GRU to jointly model spatial and temporal dependen-
cies, suitable for spatio-temporal sequence prediction tasks.
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Fig. 3. Distribution of the EV charging demand in one month by Beijing districts, (a) temporal distribution of charging demand, (b) violin plot of normalized

charging demand by zone.

» Temporal Graph Attention Network (TGAT) [48]: Enhances TGCN
by introducing time encoding and attention mechanisms to cap-
ture the temporal dynamics affecting node representations more
precisely.

» Temporal GraphSAGE (TSAGE) [8]: An extension of GraphSAGE
to temporal graphs, using time-aware sampling and aggregation
to capture dynamic features in evolving graph structures.

5.1.4. Model settings

The main hyperparameters of the proposed model are shown in Ta-
ble 2. Besides, to ensure a comprehensive and unbiased comparison, we
structured the experiment as follows: (1) The model’s output comprises
the charging demand of all districts or subdistrict s for the subsequent
1 timeslot and 2 timeslots. (2) For fair comparison, all baseline models
use the same hyperparameters as the proposed model. Additionally,
four prediction scenarios (S) are proposed, as follows:

+ S1: Predicting the charging demand for the next time interval
across 16 districts;

+ S2: Predicting the charging demand for the next two time inter-
vals across 16 districts;

+ S§3: Predicting the charging demand for the next time interval
across 331 subdistricts;

+ S4: Predicting the charging demand for the next two time inter-
vals across 331 subdistricts.

(3) The proposed model is implemented using PyTorch on a worksta-
tion equipped with a GeForce RTX 3090 Ti GPU. The model utilizes
a mean squared error loss function. The Ranger optimizer, which
integrates the RAdam and LookAhead strategies, is known for its ability
to retain the efficient convergence properties of Adam while enhancing
model generalization through the LookAhead mechanism. In this study,
the learning rate is set to 0.001, with a weight decay coefficient of
0.0001. The training process is conducted over 100 epochs. The li-
braries utilized in code and their exact versions used in the experiments
are specified in Table 2.

5.2. Comparison results

The comparison of performance of different models on various met-
rics at district and subdistrict scales are shown in Table 3. In the task
of multi-scale EV charging demand forecasting, the EV-STLLM model
demonstrates outstanding performance, particularly in district-level
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Table 2

Detailed Python libraries and their exact versions.
Library Version
numpy 1.26.4
pandas 2.2.3
Python 3.12.3
torch 2.3.0+cul2l
torchvision 0.18.0+cul21
transformers 4.49.0
matplotlib 3.9.0

and subdistrict-level predictions across different forecasting horizons.
For the district-level one-step prediction (S1), EV-STLLM achieves a
mean absolute error (MAE) of 218.13, representing a reduction of
approximately 15.4% compared to the next-best model, GRU, which
records an MAE of 257.86. In terms of root mean square error (RMSE),
EV-STLLM scores 680.54, significantly outperforming all other models.
The mean absolute percentage error (MAPE) is only 1.39%, a reduction
of 53.5% compared to GraphSAGE’s 2.99%. These results indicate that
EV-STLLM is more capable of capturing complex spatial dependencies
and short-term temporal dynamics across regions. Furthermore, in the
more challenging district-level two-step prediction (S2), EV-STLLM con-
tinues to lead with an MAE of 242.35, which is approximately 34.0%
lower than GRU’s 366.93. The RMSE reaches 693.39, again outperform-
ing all graph- and sequence-based models. The MAPE further drops to
1.29%, more than halving that of GraphSAGE (2.94%). This controlled
increase in error across time steps highlights EV-STLLM’s superior
ability in long-term temporal dependency modeling and spatiotempo-
ral trend learning, surpassing traditional RNN/LSTM and graph-based
methods in multi-step forecasting tasks.

At a finer granularity, EV-STLLM also exhibits strong generalization
capability in subdistrict-level predictions. For one-step forecasting at
the subdistrict scale (S3), EV-STLLM achieves an MAE of 33.80, which
is 19.6% lower than that of RNN (42.04), and an RMSE of 53.00,
26.4% lower than RNN’s 71.99. Although MAPE slightly exceeds that
of GRU (1.82% vs. 1.21%), this can be attributed to the smaller
magnitude of subdistrict-level demand, making MAPE more sensitive
to small values. Consequently, MAE and RMSE remain the more reli-
able indicators for operational decision-making in this context. In the
two-step subdistrict-level prediction task (S4), EV-STLLM maintains its
advantage, with MAE and RMSE of 36.91 and 66.13, respectively—
representing reductions of approximately 16.7% and 14.0% when com-
pared to GRU. While the MAPE is slightly higher (1.78% vs. 1.23%),
its practical impact can be mitigated through weighted business metrics
that emphasize absolute error control and stability in scheduling.

From a comparative perspective, traditional sequence models such
as RNN, LSTM, and GRU exhibit certain strengths in temporal de-
pendency modeling. However, they often suffer from information loss
and struggle to simultaneously extract both local and global features
in complex urban spatiotemporal interactions. Graph-based models
like GCN, GAT, and GraphSAGE, while effective in capturing spatial
adjacency, tend to lack the capacity to model temporal dynamics,
focusing primarily on static topological relationships. Although spa-
tiotemporal graph models such as TGCN, TGAT, and TSAGE attempt
to integrate both spatial and temporal information, their reliance on
localized convolutional or gated mechanisms constrains their ability to
comprehensively fuse global dependencies. This can be attributed to
several inherent limitations:

« Static Graph Structures: These models rely on fixed, predefined
spatial graphs, which fail to capture dynamic inter-region rela-
tionships arising from temporal shifts in EV charging demand.
For instance, regions that are spatially disconnected might exhibit
strong temporal correlations that static adjacency matrices cannot
represent.
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» Local Dependency Bias: Traditional GNNs aggregate information
from local neighborhoods, lacking the capacity to model global
patterns. While extensions like TGAT attempt to incorporate tem-
poral dynamics, their performance is constrained by the localized
nature of their graph convolution mechanisms.

Dependency on Graph Construction: The effectiveness of these
models heavily depends on the quality of the constructed graphs.
In real-world urban scenarios, accurately modeling human mo-
bility or vehicle flow through adjacency matrices is challenging
and often leads to suboptimal graph structures. Such inaccuracies
propagate through the model, degrading its performance.

In contrast, our proposed EV-STLLM framework eliminates the depen-
dency on explicit graph structures by adopting an attention mech-
anism capable of capturing long-range spatiotemporal dependencies
directly from raw data. This not only addresses the limitations of
graph-based models but also allows EV-STLLM to generalize effectively
across regions with ambiguous or dynamically shifting relationships.
The incorporation of embedding techniques further enhances its abil-
ity to integrate heterogeneous features, offering a more comprehen-
sive understanding of urban dynamics. Moreover, the incorporation of
LoRA enables efficient parameter tuning, facilitating flexible adaptation
across diverse application scenarios. Overall, EV-STLLM achieves lower
errors and higher robustness across multiple forecasting levels and time
horizons, showcasing not only technical sophistication in model archi-
tecture and learning mechanisms but also practical value in supporting
large-scale urban demand forecasting.

Fig. 4 presents a comparison between the EV-STLLM predicted
charging demand curves (orange) and the actual observed curves (blue)
across 16 different districts. It can be observed that the overall trend
fitting is satisfactory, with the model accurately capturing the periodic
variations in daily charging demand, such as the rise in the morning
and the decline at night. The model also exhibits strong adaptability
to pattern shifts between weekdays and weekends. During major peak
periods (e.g., morning and evening peaks) and trough periods, the
predicted curves closely align with the ground truth, demonstrating the
model’s excellent capability in extracting temporal features. Although
certain deviations occur during extreme surges (e.g., around holidays),
the magnitude remains well-controlled, and the fluctuation trends are
consistent, indicating strong robustness in handling abnormal demand
variations. In addition, the model is capable of promptly responding
to sudden load changes, accurately reflecting turning points in the
demand curves, which highlights its sensitivity and rapid adaptabil-
ity to load fluctuations. In summary, at the district scale, EV-STLLM
effectively captures the macroscopic temporal trends of electric ve-
hicle charging demand across wide urban spaces, providing reliable
support for city-level energy scheduling and charging infrastructure
optimization.

Fig. 5 illustrates the prediction results for 16 consecutive subdis-
tricts from zone 279 to zone 294. Compared to the district scale, the
subdistrict data exhibit greater randomness and sparsity, with more
frequent small-scale fluctuations. Due to the smaller base values within
subdistricts, minor variations are amplified, resulting in sharper and
more irregular curves. Nevertheless, EV-STLLM maintains good trend
fitting across most subdistricts, demonstrating strong stability. For sub-
districts with extensive periods of zero or very low demand, the model
effectively avoids overfitting to zero values and preserves reasonable
nonlinear fitting, reflecting sound regularization capabilities. The pre-
dicted curves generally synchronize with the actual changes at turning
points of sudden demand surges or drops, although slight smoothing is
observed in extremely sparse regions. When facing occasional demand
spikes (e.g., caused by local events), the model partially captures the
surges but tends to slightly underfit, suggesting that future improve-
ments could incorporate anomaly detection mechanisms. Overall, the
subdistrict-scale evaluation verifies EV-STLLM’s generalization ability
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Table 3

Comparison of performance of different models on various metrics at district and subdistrict scales.
Zone District Subdistrict
Output 1 2 1 2
Metric MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
RNN 322.13 700.32 3.12 357.78 732.39 3.52 42.04 71.99 1.26 47.28 80.58 1.58
LSTM 260.57 656.21 6.32 377.50 766.39 3.10 47.48 79.99 1.60 47.91 79.13 1.59
GRU 257.86 611.10 3.22 366.93 748.39 3.40 42.16 72.56 1.21 44.31 76.89 1.23
GCN 518.94 956.72 4.63 538.07 994.02 4.28 50.31 93.94 1.38 51.69 96.97 1.37
GAT 464.51 925.70 3.28 501.10 948.86 3.38 50.87 91.93 1.33 50.70 92.33 1.44
GraphSAGE 362.85 828.52 2.99 394.88 813.19 2.94 47.54 83.35 1.27 47.48 83.30 1.28
TGCN 567.90 992.81 5.61 550.34 932.13 6.37 54.55 102.84 1.41 52.32 97.05 1.57
TGAT 557.77 966.54 3.47 499.07 885.13 4.94 54.15 101.84 1.46 51.47 90.69 1.63
TSAGE 468.83 872.62 3.64 474.96 859.45 5.08 46.45 82.62 1.25 47.78 81.71 1.37
EV-STLLM 218.13 680.54 1.39 242.35 693.39 1.29 33.80 53.00 1.82 36.91 66.13 1.78
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Fig. 4. Comparison between ground truth and EV-STLLM predictions across 16 districts.

under small-sample, high-noise environments, confirming its adaptabil-
ity and robustness in fine-grained spatial predictions, thus providing
highly reliable support for regional charging strategy formulation.

Fig. 6 shows the spatial distribution comparisons of charging de-
mand across 16 districts at three typical timeslots: 9 AM (weekday
peak), 3 PM (weekday valley), and 8 PM (evening peak). It is ev-
ident that EV-STLLM effectively reconstructs the spatial distribution
characteristics of high-demand (central urban areas) and low-demand
(suburban areas) regions at different times. Throughout the day, the
model accurately captures the dynamic shifts of demand centers, such
as concentration in business areas during the morning and expansion
towards residential areas during the evening. Regarding color scale
variations, the model successfully reflects the demand intensity differ-
ences between regions, further demonstrating its strong capability in
modeling inter-regional demand disparities. Moreover, EV-STLLM not
only maintains the consistency of overall spatial distribution trends

10

but also replicates certain local spatial details, such as small high-
demand clusters in specific districts during particular times, show-
casing its high spatial resolution. These results further confirm that
at the district scale, EV-STLLM possesses outstanding capabilities in
geographic spatial perception and spatiotemporal evolution modeling,
providing a scientific basis for optimizing the layout of urban charging
infrastructure, balancing loads, and energy scheduling.

Fig. 7 presents the heatmap comparisons of charging demand for
331 subdistricts at the same three typical timeslots. Despite the large
number of subdistricts and the complex spatial distribution, EV-STLLM
accurately captures the locations and intensities of most major high-
demand subdistricts. During peak times (9 AM and 8 PM), the model
precisely identifies demand hotspots, such as the core urban areas and
surrounding hotspot subdistricts. At valley times (3 PM), it reason-
ably reflects the overall sparse demand characteristics and accurately
locates small localized hotspots. It is noteworthy that the predictions



Y. Shang et al.

Information Fusion 126 (2026) 103692

600

—— Ground truth
—=- STLLM

200
500 4

400 4 150

300 1 100

200

Demand (kWh)

50
100 4

50
150 4

40
100 30

20
50 4

1

10

1200
200 4
1000

1501 800

1004 600

Demand (kWh)

400

200
w

200

150

100

50 |

1000

800

600

400

Demand (kWh)

200 |

500

300 4 400

300
200

200

100 4 100

300

250

200

150

100

Demand (kWh)

50

600

400

75 100 125 150 25 50 75

50 75 100 125 150 0 25 50 75

Fig. 5. Comparison between ground truth and EV-STLLM predictions across 16 consecutive subdistricts (zone 279 to zone 294).

Table 4

Ablation study of the proposed framework.
Zone District Subdistrict
Output 1 2 1 2
Metric MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
EV-STLLM 218.13 680.54 1.39 242.35 693.39 1.29 33.80 53.00 1.82 36.91 66.13 1.78
FFT 235.25 682.73 1.76 240.39 688.89 1.62 38.83 74.28 2.85 36.56 62.80 1.98
FF 226.77 687.08 1.53 253.78 704.42 1.34 38.39 69.97 2.08 38.14 69.84 1.95
NonLLM 349.10 813.01 4.05 437.87 845.46 5.43 43.90 78.47 1.92 44.02 77.62 2.33

remain stable across numerous low-demand subdistricts without sig-
nificant overestimation or underestimation, demonstrating the model’s
excellent adaptability and stability in sparse data spaces. Further-
more, EV-STLLM effectively captures both spatial continuity and local
spatial heterogeneity, such as sudden demand changes in peripheral
subdistricts. Overall, the subdistrict-scale heatmap analysis verifies EV-
STLLM'’s robust modeling capabilities in ultra-large-scale, micro-spatial
prediction tasks, laying a solid foundation for future dynamic load
forecasting, demand-driven deployment of charging infrastructure, and
intelligent scheduling optimization based on geographic units.

5.3. Ablation study

We conduct a comprehensive comparison among the following
methods:

+ EV-STLLM: The proposed method, utilizing LoRA for efficient
fine-tuning by adjusting only a small subset of parameters, en-
abling effective knowledge transfer while maintaining a
lightweight model design.
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+ Full Fine-Tuning (FFT): A conventional approach where all pa-
rameters of the pre-trained LLM are fine-tuned, resulting in higher
computational cost and risk of overfitting.

+ Full Frozen LLM (FF): A variant where the LLM backbone is kept
frozen, and only the task-specific modules are trained, aiming to
utilize the frozen knowledge of LLM without modification.

* NonLLM: A baseline model without any LLM component, relying
solely on task-specific modules for spatial prediction, serving as a
control to assess the contribution of LLMs.

As shown in Table 4 and Fig. 8, we observe the following key
findings. In Scenario S1 (Fig. 8(a)), EV-STLLM achieves the best per-
formance across all metrics, achieving the lowest MAE (218.13), RMSE
(680.54), and MAPE (1.39). The performance gap is especially evident
in MAPE, highlighting EV-STLLM’s superior capability in controlling
relative errors. FFT and FF perform slightly worse, while NonLLM
shows the worst results with significantly higher errors, confirming the
indispensable role of LLM-based spatial feature extraction. In Scenario
S2 (Fig. 8(b)), although FFT slightly outperforms EV-STLLM in MAE



Y. Shang et al. Information Fusion 126 (2026) 103692

4000
3500
3000
i 2500

[2000

Charging energy (kWh

1500

1000

500

(a1) (a2)

2000

1500

1000

Charging energy (kWh)

500

(b1) (b2)

5000

4000

3000

Charging energy (kWh)

2000

1000

(c1) (c2)

Fig. 6. Heatmap comparisons for 16 districts at different timeslots between ground truth (left) and prediction (right): (a) 9 AM peak; (b) 3 PM valley; (c) 8 PM
peak.

(240.39 vs. 242.35) and RMSE (688.89 vs. 693.39), EV-STLLM main- In Scenario S3 (Fig. 8(c)), EV-STLLM consistently leads with the
tains the lowest MAPE (1.29), suggesting better robustness. This indi- lowest MAE (33.80) and RMSE (53.00). Although NonLLM achieves
cates that EV-STLLM is more reliable for controlling relative deviations, a comparable MAPE (1.92 vs. EV-STLLM’s 1.82), its MAE and RMSE
which is crucial in heterogeneous spatial prediction tasks. are much higher, indicating poor stability and weaker generalization

12
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8 PM peak.

capabilities. In Scenario S4 (Fig. 8(d)), both EV-STLLM and FFT perform Overall, these results consistently demonstrate that EV-STLLM
closely in terms of MAE (36.91 vs. 36.56) and RMSE (66.13 vs. 62.80), strikes the best trade-off between accuracy, efficiency, and scalability.
but EV-STLLM achieves the best MAPE (1.78). FF performs moderately, While FFT occasionally achieves slightly better absolute metrics, it
but NonLLM consistently underperforms across all metrics. requires significantly higher computational resources, making it less
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Fig. 8. Ablation study across different scenarios: (a) S1, (b) S2, (c) S3, (d) S4.
Table 5
Comparison of GPU memory and parameter update fraction across different ablation study Strategies.
Zone District Subdistrict Parameter
Update Fraction
Output 1 2 1 2
EV-STLLM 1.41GB 1.41GB 18.87GB 18.85GB 0.49%
FFT 2.07GB 2.07GB 18.84GB 18.76GB 100%
FF 1.28GB 1.28GB 15.93GB 15.85GB 0%

preferable for practical usage. On the other hand, EV-STLLM, with its
parameter-efficient LoRA-based design, achieves competitive or supe-
rior performance at a much lower cost. Moreover, the consistently poor
performance of NonLLM across all scenarios validates the necessity
of incorporating LLMs for effective spatial modeling. In conclusion,
EV-STLLM stands out as a robust, efficient, and scalable solution for
fine-grained spatial prediction tasks.

To further evaluate the efficiency of the proposed EV-STLLM frame-
work, we present a comparison of GPU memory usage and parameter
update fraction across different ablation strategies, as shown in Table
5. This analysis highlights the computational cost and fine-tuning effi-
ciency associated with each approach. Specifically, EV-STLLM demon-
strates remarkable memory efficiency, requiring only 1.41 GB of GPU
memory for District-level outputs and approximately 18.86 GB for
Subdistrict-level outputs. Despite its low memory footprint, EV-STLLM
updates merely 0.49% of the total parameters, owing to its LoRA-based
fine-tuning strategy. This minimal update fraction enables efficient
adaptation while preserving the general knowledge of the frozen LLM
backbone. In contrast, the FFT strategy consumes more GPU memory
than EV-STLLM at the District level (2.07 GB vs. 1.41 GB), and requires
a full 100% parameter update, which significantly increases the com-
putational burden. At the Subdistrict level, however, the GPU memory
usage of FFT (18.84 GB and 18.76 GB) is slightly lower than that of
EV-STLLM (18.87 GB and 18.85 GB), suggesting comparable memory
demands in larger-scale scenarios. Nevertheless, the full parameter
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update requirement of FFT still makes it computationally intensive
and less scalable for deployment in resource-constrained environments.
The FF variant is the most memory-efficient approach, requiring only
1.28 GB (District) and 15.89 GB (Subdistrict) of GPU memory. How-
ever, since it keeps the LLM backbone entirely frozen (0% parameter
update), its performance is generally inferior to EV-STLLM, as it lacks
adaptability to task-specific spatial patterns.

Overall, these results reinforce that EV-STLLM strikes an optimal
balance between performance and efficiency. By leveraging LoRA for
lightweight fine-tuning, it significantly reduces memory consumption
and training overhead while maintaining or exceeding the predictive
accuracy of more resource-intensive methods. This makes EV-STLLM a
practical and scalable solution for large-scale spatial prediction tasks.

5.4. Sensitive analysis

Table 6 and Fig. 9 present the sensitivity analysis results with regard
to different input sequence lengths (6, 12, 18, 24, 30). The evaluation
is conducted for both district- and subdistrict-level tasks across two
output scenarios.

For the district-level tasks, as shown in Figs. 9 (al) and (bl),
the MAE and RMSE metrics generally fluctuate within a moderate
range with varying sequence lengths. In Output 1, the lowest MAE
(231.82) and RMSE (681.53) are observed at a sequence length of
18, indicating that moderate-length sequences provide more stable and
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Table 6
Sensitivity analysis of different sequence lengths.
Zone Output Metric Statistic 6 12 18 24 30
MAE Mean 234.96 237.98 231.82 258.57 249.07
Std 6.62 13.20 11.16 22.50 15.87
1 RMSE Mean 695.44 691.72 681.53 708.96 701.95
Std 3.13 12.14 7.98 13.56 12.39
Mean 1.53 1.55 1.69 1.93 1.76
District MAPE Std 0.31 0.27 0.18 0.45 0.26
MAE Mean 252.60 258.87 248.06 259.33 244.53
Std 8.69 26.30 11.42 20.75 14.10
9 RMSE Mean 700.96 704.94 695.69 708.57 702.81
Std 11.35 26.56 11.98 18.63 16.07
Mean 1.39 1.41 1.52 1.64 1.52
MAPE Std 0.17 0.21 0.13 0.22 0.13
MAE Mean 37.56 36.67 36.23 36.23 36.78
Std 1.07 0.80 1.26 1.43 1.57
Mean 69.29 63.43 62.15 64.33 65.98
! RMSE Std 3.59 4.51 6.15 6.01 6.01
Mean 1.96 2.16 211 1.93 1.98
Subdistrict MAPE Std 0.35 0.23 0.27 0.14 0.28
MAE Mean 37.61 37.42 37.02 37.97 37.59
Std 0.68 0.53 0.70 0.84 0.89
Mean 67.36 67.49 65.72 68.45 66.99
2 RMSE Std 3.20 2.08 3.27 2.38 2.97
Mean 2.00 1.94 2.02 2.09 2.09
MAPE Std 0.14 0.14 0.12 0.13 0.19

accurate predictions. However, overly long sequences (24 or 30) tend to
slightly deteriorate the performance, possibly due to the introduction of
noise and overfitting issues. The MAPE metric follows a similar trend,
with longer sequences leading to higher relative errors. For Output 2 at
the district level, a similar pattern is observed. The best performance
is obtained around sequence lengths of 18 and 30, while 24 shows a
noticeable increase in both MAE and MAPE. The standard deviations
are also larger for longer sequences, suggesting less stability across
different runs.

In the subdistrict-level tasks shown in Figs. 9 (c1) and (d1), the
system demonstrates higher robustness to sequence length variations.
The MAE and RMSE remain relatively stable across different lengths,
but the shortest sequence (6) shows slightly inferior performance. In
particular, the RMSE is minimized at a length of 18 for Output 1 and
at 18-30 for Output 2, indicating that moderately long input sequences
are advantageous for subdistrict predictions as well. The MAPE trends
at the subdistrict level (Figs. 9 (c2) and (d2)) show that sequence
lengths around 18 yield slightly better relative error control. However,
the differences are minor compared to district-level results, showcasing
the relatively smooth dynamics at finer spatial granularity.

The sensitivity analysis results provide practical insights that can
guide the deployment of the proposed model in real-world scenarios:

» Recommended default configuration: Based on our results, we
recommend using an input window of 12 to 18 time steps (i.e., 6
to 9 h) as a reliable and generalizable setting for short-term EV
charging demand forecasting in urban environments. This range
provides a practical balance between capturing sufficient tem-
poral dependencies and maintaining computational efficiency,
making it suitable for deployment in both real-time and resource-
constrained scenarios.

Long Sequences can Cause Prediction Instability: When input se-
quences exceed 18 time steps (9 h), prediction instability emerges,
particularly at the district level, as indicated by increased variabil-
ity in performance metrics (MAE, RMSE, MAPE). This instability
stems from factors such as noise and redundancy introduced
by irrelevant or outdated time dependencies, increased risk of
overfitting due to longer sequences, and higher computational
complexity, which amplifies inference time and resource chal-
lenges in real-time scenarios. Practically, this insight suggests that
longer sequences should be avoided in deployment, especially for
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district tasks, to ensure stability and scalability in operational
systems.

Subdistrict Tasks are Less Sensitive to Sequence Length: Sensi-
tivity analysis reveals that subdistrict-level predictions are more
robust to sequence length variations than district-level predic-
tions. This is due to smoother temporal dynamics in subdistrict
data, which often exhibit less external interference and more
stable demand patterns. Furthermore, subdistrict tasks mitigate
the noise amplification associated with aggregated district-level
data, offering clearer and more distinctive temporal signals. These
findings can guide future deployment strategies by advocating for
the adoption of adaptive sequence length approaches at the sub-
district level, leveraging shorter sequences to enhance computa-
tional efficiency during periods of low variability while extending
sequence lengths to maintain accuracy during high-variability pe-
riods. These findings can guide future deployment by supporting
the use of adaptive sequence length strategies at the subdistrict
level, enabling computational efficiency during low-variability
periods and maintaining accuracy during high-variability periods.

These interpretations underline the importance of tailoring the in-
put sequence length to specific operational conditions. They also pro-
vide actionable guidelines to enhance both the accuracy and efficiency
of the forecasting model in deployment scenarios.

5.5. Comparative evaluation of PEFT methods

This Section presents a comparative analysis of six mainstream
Parameter-Efficient Fine-Tuning (PEFT) methods in terms of their pre-
diction performance. The selected methods represent current research
hotspots, including LoRA, IA3, Prefix Tuning, P-Tuning, P-Tuning-v2,
and BitFit. Overall, LoRA consistently achieves the best results across
all evaluation metrics and testing dimensions. In the District level, it
attains the lowest MAE (218.13 in 1 output length and 242.35 in 2
output lengths), and also significantly outperforms other methods in
terms of RMSE and MAPE. This suggests that LoRA possesses strong
modeling ability in capturing local structural variations of the target
function. Particularly at the Subdistrict level, LoRA achieves a remark-
ably low RMSE of 53.00 in 1 output length, substantially outperforming
competitors such as IA3 (68.50) and BitFit (69.72), demonstrating its
superior capacity to adapt to fine-grained spatial heterogeneity.
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Fig. 9. Sensitivity analysis with MAE (1) and MAPE (2) across different time sequences lengths, (a) S1, (b) S2, (c) S3, (d) S4.

Table 7

Comparison of prediction performance of different parameter efficient fine-tuning methods.
Zone District Subdistrict
Output 1 2 1 2
Metric MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE
1A3 234.17 690.95 1.53 256.22 695.52 1.73 37.56 68.50 1.97 38.44 70.65 1.84
P-Tuning-v2 585.26 998.78 8.08 580.53 993.93 7.55 39.67 72.70 1.97 38.68 70.04 1.89
P-Tuning 579.21 997.06 7.82 572.94 993.51 7.00 38.78 70.57 212 39.70 72.79 1.80
Prefix 574.49 996.52 7.53 569.65 993.61 6.85 40.16 73.13 2.16 40.07 72.01 2.06
BitFit 242.02 688.16 1.74 255.79 705.31 1.41 38.10 69.72 1.97 38.13 70.28 1.79
LoRA 218.13 680.54 1.39 242.35 693.39 1.29 33.80 53.00 1.82 36.91 66.13 1.78

IA3, which introduces a different parameter injection mechanism, modifying only a small subset of bias parameters, performs mod-
performs comparably to LoRA at the District level, but its RMSE and erately or even second-best in many settings. It shows better MAE

MAPE at the Subdistrict level are slightly worse, indicating limited performance than the P-Tuning family, highlighting its relatively high
generalization when modeling at finer spatial scales. BitFit, despite
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Table 8

Comparison of training and inference time (in seconds) of different parameter-efficient fine-tuning methods.
Zone District Subdistrict
Output 1 2 1 2
Type Training Inference Training Inference Training Inference Training Inference
1A3 0.4605 0.0547 0.4532 0.0528 8.5828 0.8325 8.5588 0.8330
P-Tuning-v2 0.7531 0.0865 0.7498 0.0860 8.3898 0.8287 8.3490 0.8274
P-Tuning 0.6846 0.0822 0.6853 0.0824 8.3174 0.8257 8.2929 0.8241
Prefix 0.6769 0.0815 0.6744 0.0816 8.3057 0.8233 8.2796 0.8228
BitFit 0.4332 0.0491 0.4299 0.0489 8.1539 0.7955 8.1389 0.7962
LoRA 0.5042 0.0581 0.5062 0.0582 8.9191 0.8816 8.2929 0.8241

cost-effectiveness in constrained parameter-update scenarios. The per-
formance of P-Tuning and its variant P-Tuning-v2 is relatively poor
in this experimental setup, especially at the District level, where their
MAE and RMSE scores are significantly higher than those of other
methods—sometimes approaching the performance of an unadapted
base model. This may be due to the heavy reliance of these methods on
extensive prompt token tuning, which is sensitive to task structure and
less effective. Prefix Tuning, while enhancing prompt expressiveness
relative to P-Tuning, still falls short of matching the performance of
LoRA or IA3. Notably, at the Subdistrict level in 1 output length, it
yields the highest MAPE of 2.16 among all methods, indicating poten-
tial limitations in modeling complex hierarchical spatial dependencies.
Further analysis of prediction errors across different levels reveals that
all methods exhibit significantly lower MAE and RMSE at the Subdis-
trict level compared to the District level. This may partially reflect
the fact that fine-grained spatial prediction tasks are associated with
smoother target functions or are easier to fit. However, the MAPE at the
Subdistrict level shows greater variability, suggesting that normalized
error metrics are more sensitive to prediction targets with low magni-
tude. This highlights the need to carefully choose evaluation metrics
based on specific business requirements in real-world applications.

In addition to prediction accuracy, computational efficiency is a
crucial factor when selecting PEFT strategies, particularly for deploy-
ment in resource-constrained environments. Table 8 presents a de-
tailed comparison of training and inference time. We observe that
BitFit consistently exhibits the fastest training and inference times
across all scenarios, owing to its minimal parameter update design—
only tuning bias parameters. IA3 also demonstrates low computational
overhead, particularly in the District-level tasks, with training times
under 0.5 s per epoch and inference times around 0.05 s. LoRA, while
not the fastest, strikes a compelling balance between efficiency and
performance. At the District level, its training and inference times
(approximately 0.5 and 0.058 s respectively) are only marginally higher
than those of IA3 and BitFit, but it far surpasses all other methods in
prediction accuracy (see Table 7). For instance, LoRA achieves the low-
est MAE and RMSE across all regions and output lengths, and delivers
particularly strong results at the Subdistrict level—demonstrating its
ability to model fine-grained spatial heterogeneity.

At the Subdistrict level, LoRA’s training time ( 8.9 s per epoch for 1
output length) is slightly higher than other methods, but this overhead
is justifiable given its substantial gains in predictive performance.
Inference times remain comparable with other methods (e.g., 0.8816 s
vs. 0.8325 for IA3), ensuring that LoRA remains practical for real-
time or near-real-time applications. On the other hand, the P-Tuning
family and Prefix Tuning methods, despite their expressiveness through
prompt-based parameterization, incur longer training times (around
0.68-0.75 s at the District level and over 8.3 s at the Subdistrict level)
and fail to offer competitive prediction accuracy. This suggests that
their computational cost is not well-compensated by corresponding
gains in model performance, making them less favorable in this context.
In summary, combining both predictive accuracy and computational
efficiency, LoRA emerges as the most balanced and effective PEFT
method for the studied spatial-temporal prediction tasks.
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6. Conclusions

In this paper, we propose a novel spatiotemporal learning frame-
work, EV-STLLM, for short-term EV charging demand prediction in
urban environments to tackle the core challenges of data fusion and
model fusion. At the data level, our model constructs a collaborative
embedding mechanism that fuses token-level, temporal, and spatial
features, enabling fine-grained modeling of the nonlinear and dynamic
patterns inherent in EV charging behavior. At the model level, we
integrate a pretrained LLM as the backbone for deep spatiotemporal de-
pendency modeling while significantly reducing training cost through
LoRA, which freezes the bulk of model parameters and only tunes a
small set of low-rank matrices.

Extensive experiments conducted on a large-scale real-world dataset
from Beijing—covering 16 districts and 331 subdistricts, with over
830,000 charging records—demonstrate the superior performance of
EV-STLLM across multiple evaluation metrics and prediction scenarios.
Compared to classical sequence models (RNN, LSTM, GRU), graph-
based models (GCN, GAT, GraphSAGE), and spatiotemporal graph mod-
els (TGCN, TGAT, TSAGE), EV-STLLM achieves consistent improve-
ments across all tasks and scales: In district-level one-step prediction,
EV-STLLM reduces MAE by 15.41% and MAPE by 53.51% compared
to the best-performing baseline. In subdistrict-level prediction, despite
the greater spatial granularity, EV-STLLM maintains a significant lead
in both MAE and RMSE, showecasing its strong generalization capac-
ity and robustness at fine spatial resolutions. To better understand
the impact of input sequence length on prediction performance, we
conduct a temporal sensitivity analysis by varying the length of his-
torical time windows used in the model input. The results reveal the
importance of selecting an appropriate temporal window that balances
context depth and relevance. They also suggest potential for adaptive
sequence learning, where the model dynamically adjusts its receptive
field based on forecast horizon or local temporal patterns. Additionally,
our ablation study confirms the effectiveness of each key component.
Removing the LLM component (NonLLM) leads to substantial perfor-
mance degradation, especially in MAPE, indicating the critical role of
LLMs in capturing global dependencies. Compared with full fine-tuning
(FFT) and fully frozen (FF) setups, our LoRA-based approach achieves
comparable or even better prediction accuracy while significantly re-
ducing computational cost, validating its practical value for scalable
deployment.

6.1. Practical implications and limitations

The proposed EV-STLLM framework holds significant promise for
real-world deployment in smart grid management and urban energy
systems. However, its practical application also entails several consid-
erations and limitations that must be carefully addressed.

On the one hand, for practical implications, Firstly, EV-STLLM en-
ables accurate short-term forecasts of charging demand at both district
and subdistrict levels. This allows grid operators to proactively allocate
electricity resources, mitigate peak loads, and implement dynamic load
balancing strategies. The fine-grained spatial resolution also supports
zonal demand-response mechanisms. Secondly, by predicting temporal
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variations in charging activity, EV-STLLM can inform adaptive time-
of-use pricing strategies. This enables utility providers to incentivize
off-peak charging, reduce grid stress, and align user behavior with
system-level optimization objectives. And then, EV-STLLM facilitates
hotspot detection and demand clustering at subdistrict scale, support-
ing optimal siting of new charging stations or mobile charging units.
Long-term deployment planning can benefit from short-term demand
dynamics, especially in rapidly evolving urban environments. Finally,
given its efficient architecture with LoRA-based fine-tuning, EV-STLLM
can be integrated into real-time decision support systems, such as
charging station management platforms or urban energy digital twins,
offering timely and localized predictions.

On the other hand, for limitations and future works, Firstly, while
EV-STLLM performs well on Beijing data, its generalization to other
cities with different urban topologies, charging behaviors, or infrastruc-
ture densities may be limited. Domain adaptation or federated learning
approaches may be required for cross-city deployment. Secondly, the
effectiveness of EV-STLLM depends heavily on the availability and
accuracy of fine-grained charging logs, spatial metadata, and contextual
features. In data-scarce regions, performance may degrade. Synthetic
data generation or transfer learning could be explored to mitigate this
issue. Thirdly, although LLM-based models offer strong representation
capabilities, their decision-making process remains relatively opaque.
For high-stakes applications (e.g., grid reliability or public safety), aug-
menting the model with explainable AI modules is crucial to enhance
transparency and stakeholder trust. Last but not least, urban charging
patterns are dynamic, affected by policy changes, infrastructure up-
grades, and behavioral shifts. The model requires periodic retraining
or online learning capabilities to remain accurate over time. Auto-
mated model updating pipelines should be considered in large-scale
deployments.
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