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Artificial intelligence in colloid and interface science: s
Current research, challenges and future directions
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Artificial intelligence (Al) and Machine learning (ML) are
transforming colloid and interface science by enabling pre-
dictive modelling, autonomous experimentation, and acceler-
ated material design. This review highlights recent advances
organised in four topics: (1) prediction of basic physical
properties; (2) image analysis; (3) process design, monitoring
and optimisation; and (4) morphology and phase behaviour
prediction. Al models have improved the prediction accuracy
of interfacial tension, critical micelle concentration, foam sta-
bility, and complex structure—function relationships, in partic-
ular, integrated generative Al approaches support the design
of new surfactants and emulsifiers. Image analysis has auto-
mated microstructural characterisation and enabled real-time
quality control, while Al-enhanced process design has deliv-
ered digital twins, closed-loop optimisation, and sustainability-
oriented workflows. Morphology and phase behaviour pre-
diction has combined simulation-driven neural networks with
generative approaches to accelerate material discovery. The
future of Al applications in colloids will be shaped by experi-
mental database design and standardisation, hybrid Al
methods integrating physics and surrogate modelling, and Al
agents leveraging large language models for literature mining,
data curation, and experimental optimisation. Together, these
developments promise to establish data-rich, physics
informed, and increasingly autonomous research ecosystems
for colloids and interface science, accelerating material un-
derstanding and design.
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Introduction

Colloids are multiphase materials (e.g. emulsions,
foams, solid suspensions) ubiquitous in food, pharma-
ceutical, cosmetic and chemical sectors. The complexity
of colloidal materials depends on several interconnected
factors including: (1) their multiphase nature, (2) their
structural complexity across different length scales,
from the sub-nano to the macroscopic one, (3) the
presence of multiple intermolecular interactions and
microscopic effects (e.g., capillary forces) that are
strongly related to pH, ionic strength, and tempera-
ture [1].

"To understand the complex process-structure—function
relationship of colloidal materials, experimental tech-
niques to characterise their structure during processing,
storage and use are combined with multiscale models
[2]. Due to the multi-phase, multicomponent nature of
colloidal systems, their characterisation often requires
the use of multiple techniques (e.g., imaging, light
scattering, zeta potential), generating a high volume of
data. In this context the use of Al strategies can be
extremely beneficial to organise, combine and extrapo-
late significant information from large datasets to better
understand structural organisation and changes during
the formation and performance of colloidal materials [3].

Artificial intelligence (Al) is a branch of computer sci-
ence focused on creating systems capable of performing
tasks that typically require human intelligence, such as
pattern recognition, decision making, and problem
solving. A key subset of Al is machine learning (ML),
where supervised learning uses labelled data to train
models for tasks such as classification and regression;
whereas, unsupervised learning finds hidden structure
in unlabelled datasets through clustering and dimen-
sionality reduction. The recent rise of deep learning,
based on multi-layer neural networks, has enabled
breakthroughs in fields including image analysis, natural
language processing, and scientific modelling [4]. 2023
was a breakout year for Al and ML with the launch of
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2 VSI: Food Colloids (2025)

Large Language Models (LLMs), a type of generative
Al, trained on massive text corpora to capture linguistic
patterns which output context-aware responses.

The general workflow for Al applications includes data
collection, cleaning, and preprocessing, followed by
feature selection. Models are then trained on subsets of
data, validated to tune hyperparameters, and tested to
evaluate performance before deployment [5]. Ongoing
monitoring and retraining are often required as data or
conditions can evolve.

Al offers key advantages, including the ability to capture
complex nonlinear relationships, handle high-
dimensional datasets, and automate time-consuming
processes. These capabilities have enabled advances in
sectors ranging from healthcare and finance, to materials
science and food engineering However, limitations
remain: Al models are often data-intensive, can act as
“black boxes” with limited interpretability, may fail
when applied outside their training domain, and often
require substantial computational and environmental
resources [6]. Addressing these challenges is an active
area of research, with emphasis on explainable Al,
transfer learning, and data-efficient modelling.

This review will focus on how Al has been used in col-
loids and interface science (section 2) through the
following sub-sections: Basic physical property predic-
tion (section 2.1); Image analysis (section 2.2); process
design (section 2.3) and morphology prediction and
phase behaviour (section 2.4). These sections will detail
the key work in these areas and their current limitations.

Figure 1

A final summary is also provided with the authors’
thoughts on future directions of Al in colloids and
interface science (section 3). A glossary of AI/ML terms
which colloid and interface researchers may be unfa-
miliar with is available in supplementary material.

Current artificial intelligence activities in
colloid and interface science

The first publications mentioning the use of Al and MLL
in colloids and interface science in their keywords or
abstract started to appear in 2014 with increasing fre-
quency from 2019 (Figure 1) across a broad range of
topics (Figure 2).

Basic physical property prediction

The prediction of fundamental physical properties in
colloids and interface science has seen rapid adoption of
Al approaches, offering alternatives to first-principle
models and empirical correlations.

For interfacial and surface tension, several studies show
promising predictive capabilities. Neural networks
applied to experimental interfacial tension (IFT) data
outperform conventional time-delay models based on
prediction error metrics such as RMSE and rRMSE [7].
Similarly, boosted regression and other ML models
predicting surface tension of hydrocarbon surfactants
demonstrate strong accuracy but are limited to mole-
cules structurally similar to the training set, highlighting
the need for chemically diverse datasets and physics-
based feature engineering [8]. Critical micelle concen-
tration (CMC) prediction benefits from incorporating
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structural descriptors and surfactant class information,
and from modelling across multiple experimental con-
ditions, representing a step beyond basic CMC models
but still largely focused on sodium-based anionic sur-
factants [9,10].

More interpretable ML approaches are emerging,
including 3D visualization of the relationship between
surfactant structure and adsorption efficiency, which
provides chemically meaningful insights but remains
restricted to air—water interfaces [11], and feature
attribution methods such as SHapley Additive exPla-
nations (SHAP) and Leave-One-Feature-Out (LOFO),
which highlight structural drivers of surfactant clus-
tering and adsorption.

Foam and rheological properties have also been inves-
tigated with the use of Machine Learning. For
polysaccharide-based foams, generalized regression
neural networks achieved high R? (>0.97) when
predicting density, modulus, and foamability from min-
imal input variables, yet their complexity far exceeds
what is warranted by the dataset, risking overfitting and
making model generalisation and interpretability a
challenge. This is a common issue in applied ML where
simpler models are often ignored for more complex ones
[12]. Rheological features have been modelled using
classical rheological constants (e.g., Bingham, Casson
models) as input features, showing how combining
physical priors with ML can improve robustness [13].
Other applications, such as predicting viscosity in
Konjac Glucomannan colloids, identified key micro-
structural features linked to storage modulus but were

limited by small datasets lacking environmental pa-
rameters like pH and ionic concentration [14]. Several
other studies suffer from similar issues of low sample
size or narrow scope [15—17]. These examples illustrate
a broader trend: high model complexity is often applied
to limited data, with little consideration of overfitting
or generalizability.

Al is also being used to design new molecules and
colloidal architectures. Reinforcement learning (RL)
frameworks combining graph neural networks and varia-
tional autoencoders allow bi-directional mapping be-
tween molecular structure and desired properties,
creating a platform for targeted surfactant design [18].
RL has also been used to design novel protein nano-
material assemblies, including icosahedral structures,
demonstrating its potential for creating previously un-
observed colloidal architectures [19]. Active learning
methods improve efficiency in capturing complex mo-
lecular interactions [20], while neural-network-potential
molecular dynamics simulations reveal new mechanisms
in nanocluster dynamics [21]. These works illustrate a
shift from descriptive modelling to generative design,
although most rely on simulated datasets that do not yet
capture full experimental complexity [22].

Clustering and unsupervised learning methods also
appear, for example identifying salt concentration as a
dominant  factor  controlling  aggregation  in
elastin—polyethylenimine complexes [23], while
consensus ML models, integrating neural networks with
decision trees, predict microfluidic emulsion droplet
sizes for unseen fluid—geometry combinations [24].
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4 VSI: Food Colloids (2025)

Gaussian process models within Bayesian frameworks
demonstrate utility for sol—gel transition prediction in
data-constrained conditions [25]. Although these ap-
proaches show conceptual breadth, the recurring issues
of dataset scarcity, model interpretability, and lack of
rigorous benchmarking persist [26].

Al shows strong potential for property prediction in
colloids, from interfacial tension to inverse design. Yet
limited data, lack of uncertainty quantification, and
absence of open benchmarks are remaining challenges.

Image analysis

Machine learning (ML) applied to image analysis is
advancing colloid and interface science by enabling
automated characterisation and quality assessment.

A key area of focus is the use of image analysis to predict
fundamental physical properties. For example, neural
network-based models were combined with automated
image feature extraction to determine the effective
water diffusion coefficient in dairy powders, providing a
high-throughput alternative to gravimetric measure-
ments and improving understanding of microstructural
effects on moisture transport [27]. Hybrid ML frame-
works (combining ML with mechanistic understanding)
incorporating image-derived particle descriptors have
also been used to model particle formation kinetics,
such as nucleation and growth, demonstrating compu-
tational advantages compared to purely mechanistic
models [28].

Image classification for automated quality control is
another major application. A convolutional neural
network was used to classify emulsion images, delivering
improved product quality evaluation compared to prin-
cipal component discriminant analysis [29]. Comple-
mentary work applied random forest and multinomial
logistic regression models to pharmaceutical emulsion
images collected in-process, demonstrating that rela-
tively simple, interpretable models can be effective for
inline quality monitoring [30].

Image analysis is also being applied to study biological
and chemical interactions. One study combined random
forest, k-nearest neighbour, and support vector machine
models with microscopy images to investigate biological
effects of food additives and excipients, showing how
image-derived features can be correlated with biological
outcomes [31]. Other work focused on particle structure
classification and state detection, including analysis of
colloidal aggregation and breakup using deep learning
and tracking morphological changes in emulsion sys-
tems [32,33].

Several studies have adopted more advanced or hybri-
dised approaches. For example, one framework

integrated image data with spectroscopy and textural
metrics to enhance classification of heterogeneous sys-
tems [34]. Physics-informed models incorporating
image features as constraints have been proposed to
improve extrapolation beyond experimental training
ranges [35]. Random forest methods have been applied
for defect detection in manufacturing images, demon-
strating that classical MLL remains competitive, espe-
cially when labelled data are limited [36]. Deep learning
methods have also been used to study surfactant
adsorption and clustering behaviour [37], and advanced
architectures such as vision transformers have been
evaluated for colloidal assembly analysis [38]. These
studies represent a shift towards multi-modal and
transferable models, although all rely on curated data-
sets and significant expert involvement.

Integration of image analysis with surface chemistry
models allowed accurate prediction of adsorption and
wetting behaviour for novel materials [39], while ML-
driven feature extraction from colloidal imaging data-
sets supported droplet coalescence and stability analysis
in complex emulsions [40]. In polymer systems, ML has
been used to map relationships between microstructural
features and mechanical performance [41].

Despite successes, most image analysis models rely on
small datasets with complex architectures, lack inter-
pretability, and use bespoke workflows that hinder
mechanistic insight, reproducibility, and transferability.
Nevertheless, the reviewed literature highlights the
transformative potential of ML image analysis for colloid
and interface science. Applications now span property
prediction [27], process modelling [28], product quality
evaluation [29,30], biological interactions [31], adsorp-
tion phenomena [37] and material design [39—41].

Process design, monitoring and optimisation
Traditional process design often relies on empirical
correlations and trial-and-error experimentation, which
can be resource-intensive and slow to adapt to new
materials and process conditions. ML provides a
powerful alternative by learning directly from data,
enabling the prediction of process performance, opti-
misation of operating conditions, and real-time adapta-
tion based on sensor inputs.

Several studies demonstrate the use of ML to predict
and optimise nanoparticle production. Ensemble
models, including random forest, decision trees, and
extra trees have been used to design and analyse
continuous chitosan nanoparticle production processes,
predicting particle size and polydispersity index with
high accuracy compared to traditional design-of-
experiment methods [42]. Feed-forward neural net-
works have been integrated with hybrid process models
to predict the kinetics of particle nucleation and
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agglomeration, demonstrating the benefits of combining
physical descriptors with data-driven models to improve
generalisation [28]. Similarly, random forest and neural
network models were applied to microfiltration of oil-in-
water emulsions to predict critical flux, allowing for
rapid assessment of membrane performance under
varied feed and operating conditions [43].

ML is also being used for process monitoring. For
example, histogram-based droplet detection combined
with principal component analysis and machine learning
classification enabled automated categorisation of
emulsion quality into four distinct classes, providing a
non-invasive method for inline image-based process
monitoring [29]. Supervised ML was also used to mea-
sure solid fat content during oleogelation of cocoa
butter-based oleogels, in this case pulsed acoustic
spectroscopy, temperature, and cocoa butter concen-
tration were used as input to a gaussian process regres-
sion model [44].

Similarly, ML-based techno-functional property pre-
diction of ingredients, using spline regression, random
forest, and neural networks, was applied to food
formulation and processing, allowing direct estimation
of gelling, foaming, and emulsifying properties without
extensive experimental characterisation [45]. These
studies illustrate the potential for integrating image and
sensor data into process design, though both noted
challenges associated with dataset quality, manual
curation, and variability in image acquisition conditions.

An ML-guided approach to predict properties of poly-
mer composites demonstrated that combining experi-
mental and computational datasets could accelerate
process optimisation [46]. A curated open dataset
supporting colloid and interface research was also
introduced, enabling improved ML model training and
benchmarking [47]. These resources support the
development of generalisable models but remain rare
and most studies rely on proprietary datasets,
limiting reproducibility.

Hybrid models and physics-informed learning ap-
proaches are a growing modelling method for complex
processes. For example, an integrated dataset and hybrid
ML model were used for interface property prediction
relevant to material design [48], while deep learning was
used to study material assembly processes where tradi-
tional analytical models are insufficient [49]. These
approaches demonstrate improved generalisation and
physical interpretability compared with purely black-
box models.

At the molecular scale, MLL models have been used to
explore interactions relevant to process design. Exam-
ples include modelling interaction potentials from
quantum chemistry and molecular dynamics simulations

Al in colloids and interface science Sridharan et al. 5

[50] and applying neural networks to predict nanoscale
assembly pathways for advanced materials [51]. ML has
also been used to optimise wastewater treatment pro-
cesses, demonstrating broad applicability beyond tradi-
tional colloid systems and membrane
separations [52,53].

Real-time process monitoring is another emerging focus.
ML models have been used for droplet stability analysis
and microstructure classification in emulsions and for
adsorption behaviour at fluid interfaces [54,55]. Clus-
tering and unsupervised learning have revealed key fac-
tors influencing aggregation in elastin—polyethylenimine
complexes [23] while Bayesian approaches have been
applied to sol—gel transitions [56]. Surface adsorption
and colloidal stability studies using explainable ML
illustrate how interpretability can support process design
[57]. ML is also enabling rapid prediction of nanoparticle
thermodynamic properties and rheological behaviour
[58,59], while consensus models have been developed for
microfluidic emulsion droplet sizing across new geome-
tries [24]. Other work has used Gaussian process models
for uncertainty-aware predictions of colloidal systems
[25], hybrid models for materials adsorption [60], and
neural networks for spectroscopic feature—property
correlations [61].

ML has demonstrated significant potential for
improving process design, monitoring and optimisation
in colloid and interface science, from nanoparticle syn-
thesis [42] and filtration optimisation [43] to real-time
monitoring [29] and advanced materials design [51].
Future work should focus on generating larger, open
datasets, adopting interpretable and uncertainty-aware
models, and embedding ML tools into digital process
design frameworks.

Morphology prediction and phase behaviour
Predicting phase diagrams and morphological features is
essential for understanding formulation stability, mate-
rial performance, and processing efficiency, but experi-
mental mapping and high-fidelity simulations can be
costly and time-consuming. ML enables rapid explora-
tion of compositional and processing spaces, identifying
patterns linking molecular structure, thermodynamic
conditions, and emergent morphologies.

Several works focus on directly predicting phase
behaviour. For example, phase diagram mapping for
multicomponent soft matter systems has been acceler-
ated using MLL methods capable of interpolating sparse
experimental data and predicting untested composi-
tions [26]. These approaches often employ classifiers or
regressors such as random forests or support vector
machines to classify regions of distinct phase behaviour,
thereby reducing experimental workload. Similarly, an
ML framework was developed to predict phase stability
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Examples of different ML workflows used in colloids and interface science. (a) Overview of ML based workflow to incorporate reinforced deep learning to
generate new surfactant molecules with ideal target properties design [18]; (b) Hybrid ML modeling approach to predict particle processes using
mechanistic model and data-driven model [28]; (c) Image Analysis based Neural Network Workflow to predict properties of food emulsions [35]. All

figures reproduced with permission.

and critical points for surfactant and polymer sys-
tems [62].

At the interface of morphology and phase behaviour,
surrogate models have been used to capture nanoscale
structural transitions. For example, active learning
methods combined with Bayesian optimisation were
integrated into self-driving laboratories to map
morphological changes in block copolymers and nano-
particle assemblies [63]. These frameworks autono-
mously select experimental conditions predicted to
yield novel structures, reducing human intervention and
accelerating discovery. Similar ideas have been applied
in molecular simulations, where neural network accel-
erate morphology prediction by learning interatomic
forces from quantum calculations, enabling simulations
at previously inaccessible scales [64].

ML has also been integrated with process simulation to
predict morphology during complex operations. For
example, ML-coupled computational fluid dynamics
simulations were used to predict microstructure

evolution in emulsification processes [65]. Experi-
mental imaging data have also been linked to morpho-
logical descriptors using convolutional neural networks,
enabling automated classification of colloidal phases and
droplet size distributions [33].

ML methods have been applied to predict phase
transformations under variable operating conditions.
Hybrid physical-ML models have been developed to
predict interfacial and phase behaviour during chemical
processing and to optimise nanoparticle self-assembly
[66,67]. A study on wastewater treatment highlighted
the value of ML for complex multiphase phase separa-
tion processes [52], while ML-assisted crystallography
has been used to predict phase structures in soft matter
systems [68].

Emerging research has also emphasised explainability
and hybrid modelling. A study combining ML with
fundamental theories of adsorption and interfacial
phenomena demonstrated improved performance and
interpretability for predicting emulsion morphology
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under varying formulations [35]. Similarly, ML-driven
rheological property prediction supported improved
understanding of morphological stability [13]. In-
novations in experimental design, such as automated
crystal structure [69], have been paired with ML to
accelerate discovery of new phases and morphologies
[70]. These examples illustrate that integrating ML
with domain knowledge and automation enhances pre-
dictive power and physical insight.

In summary, ML has been applied successfully to pre-
dict phase behaviour [62], map morphological transi-
tions [64], classify microstructures [33] and accelerate
structural characterisation [69]. These applications
demonstrate the transformative potential of ML, but
also the need for broader datasets, improved interpret-
ability, and integration into experimental and indus-
trial workflows.

Summary, challenges and future directions
of artificial intelligence in colloid and
interface science

Al and particularly ML are rapidly transforming colloid
and interface science, offering predictive power and
automation for tasks historically dependent on empirical
models and manual experimentation. However, chal-
lenges remain in dataset availability, model interpret-
ability, and validation workflows. Given the breadth of
Al and ML applications within the discipline standard
modelling pipelines don’t exists (different examples in
Figure 3) making their use challenging for those lack-
ing ML expertise.

The future of Al in colloid and interface science de-
pends on overcoming critical data and integration chal-
lenges, many of which are already being addressed in
other scientific domains.

First, experimental database design and standardisation
are essential. Current datasets in colloids are often
fragmented and lack harmonised metadata. Other fields
demonstrate the power of standardisation: in materials
science, the Materials Project and Open Catalyst Project
have created structured, searchable datasets supporting
Al-driven discovery of batteries and catalysts [71]. In
biology, protein structure prediction by AlphaFold relied
on highly curated and standardised protein databases
[72]. Recent efforts have also produced standardized,
multi-domain simulation datasets capturing complex
dynamical systems, with unified metadata and output
formats to support the development of first-principle
models [73].

Similar curated, multi-technique datasets including
both positive and negative results could accelerate
colloid research; large language models (LLLMs) already
assist data curation and metadata harmonisation.

Al in colloids and interface science Sridharan et al. 7

Second, hybrid Al modelling combining mechanistic (e.
g. physics-based) approaches with data-driven methods
will improve trust and industry adoption and ensure that
Al integrates existing scientific knowledge and leverages
the value of traditional modelling approaches. In mo-
lecular modelling, invariance to translation, rotation, and
permutation is commonly enforced into graph neural
networks [74]. In fluid dynamics, differentiable pro-
gramming enables neural networks to learn flow
behavior by minimizing the residuals of the
Navier—Stokes equations during training [75] or can
serve as a hard constraint of constitutive laws, boundary
conditions and physical properties [76].

Third, Al-driven scientific workflows using LLLLMs and
autonomous Al agents will streamline research pipe-
lines. In drug discovery, Al agents such as IBM RXN and
DeepMind’s scientific assistant have automated litera-
ture review, experimental design, and synthesis plan-
ning [77]. In materials science, Bayesian optimisation
combined with robotic labs has enabled autonomous
closed-loop discovery of thin-film photovoltaics [78].
Similar Al-driven workflows could revolutionise colloid
research, integrating literature review, automated data
extraction, Bayesian experiment design, and robotic
execution [79]. Pioneering efforts in earth system [80]
and atomistic modelling [81] illustrate the potential of
this approach to generalise across tasks, enable rapid
adaptation, and community reuse.

These advances in other scientific fields illustrate how
curated experimental databases, hybrid modelling, and
autonomous Al agents can create a new research para-
digm for colloid and interface science—one that is data-
rich, mechanistically informed, and capable of acceler-
ating discovery.
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