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Artificial intelligence (AI) and Machine learning (ML) are 
transforming colloid and interface science by enabling pre-
dictive modelling, autonomous experimentation, and acceler-
ated material design. This review highlights recent advances 
organised in four topics: (1) prediction of basic physical 
properties; (2) image analysis; (3) process design, monitoring 
and optimisation; and (4) morphology and phase behaviour 
prediction. AI models have improved the prediction accuracy 
of interfacial tension, critical micelle concentration, foam sta-
bility, and complex structure–function relationships, in partic-
ular, integrated generative AI approaches support the design 
of new surfactants and emulsifiers. Image analysis has auto-
mated microstructural characterisation and enabled real-time 
quality control, while AI-enhanced process design has deliv-
ered digital twins, closed-loop optimisation, and sustainability-
oriented workflows. Morphology and phase behaviour pre-
diction has combined simulation-driven neural networks with 
generative approaches to accelerate material discovery. The 
future of AI applications in colloids will be shaped by experi-
mental database design and standardisation, hybrid AI 
methods integrating physics and surrogate modelling, and AI 
agents leveraging large language models for literature mining, 
data curation, and experimental optimisation. Together, these 
developments promise to establish data-rich, physics 
informed, and increasingly autonomous research ecosystems 
for colloids and interface science, accelerating material un-
derstanding and design.
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Introduction
Colloids are multiphase materials (e.g. emulsions, 
foams, solid suspensions) ubiquitous in food, pharma-

ceutical, cosmetic and chemical sectors. The complexity 
of colloidal materials depends on several interconnected 
factors including: (1) their multiphase nature, (2) their 
structural complexity across different length scales, 
from the sub-nano to the macroscopic one, (3) the 
presence of multiple intermolecular interactions and 
microscopic effects (e.g., capillary forces) that are 
strongly related to pH, ionic strength, and tempera-

ture [1].

To understand the complex process-structure—function 
relationship of colloidal materials, experimental tech-

niques to characterise their structure during processing, 
storage and use are combined with multiscale models 
[2]. Due to the multi-phase, multicomponent nature of 
colloidal systems, their characterisation often requires 
the use of multiple techniques (e.g., imaging, light 
scattering, zeta potential), generating a high volume of 
data. In this context the use of AI strategies can be 
extremely beneficial to organise, combine and extrapo-

late significant information from large datasets to better 
understand structural organisation and changes during 
the formation and performance of colloidal materials [3].

Artificial intelligence (AI) is a branch of computer sci-

ence focused on creating systems capable of performing 
tasks that typically require human intelligence, such as 
pattern recognition, decision making, and problem 
solving. A key subset of AI is machine learning (ML), 
where supervised learning uses labelled data to train 
models for tasks such as classification and regression; 
whereas, unsupervised learning finds hidden structure 
in unlabelled datasets through clustering and dimen-

sionality reduction. The recent rise of deep learning, 
based on multi-layer neural networks, has enabled 
breakthroughs in fields including image analysis, natural 
language processing, and scientific modelling [4]. 2023 
was a breakout year for AI and ML with the launch of

Available online at www.sciencedirect.com

ScienceDirect
Current Opinion in

Colloid & Interface Science

www.sciencedirect.com Current Opinion in Colloid & Interface Science 2025, 80:101965

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:n.j.watson@leeds.ac.uk
http://www.sciencedirect.com/science/journal/18796257/vol/issue
https://doi.org/10.1016/j.cocis.2025.101965
https://doi.org/10.1016/j.cocis.2025.101965
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
Delta:1_given-name
Delta:1_surname
Delta:1_given-name
Delta:1_surname
Delta:1_given-name
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cocis.2025.101965&domain=pdf


Large Language Models (LLMs), a type of generative 
AI, trained on massive text corpora to capture linguistic 
patterns which output context-aware responses.

The general workflow for AI applications includes data 
collection, cleaning, and preprocessing, followed by 
feature selection. Models are then trained on subsets of 
data, validated to tune hyperparameters, and tested to 
evaluate performance before deployment [5]. Ongoing 
monitoring and retraining are often required as data or 
conditions can evolve.

AI offers key advantages, including the ability to capture 
complex nonlinear relationships, handle high-

dimensional datasets, and automate time-consuming 
processes. These capabilities have enabled advances in 
sectors ranging from healthcare and finance, to materials 
science and food engineering However, limitations 
remain: AI models are often data-intensive, can act as 
“black boxes” with limited interpretability, may fail 
when applied outside their training domain, and often 
require substantial computational and environmental 
resources [6]. Addressing these challenges is an active 
area of research, with emphasis on explainable AI, 
transfer learning, and data-efficient modelling.

This review will focus on how AI has been used in col-

loids and interface science (section 2) through the 
following sub-sections: Basic physical property predic-

tion (section 2.1); Image analysis (section 2.2); process 
design (section 2.3) and morphology prediction and 
phase behaviour (section 2.4). These sections will detail 
the key work in these areas and their current limitations.

A final summary is also provided with the authors’ 
thoughts on future directions of AI in colloids and 
interface science (section 3). A glossary of AI/ML terms 
which colloid and interface researchers may be unfa-

miliar with is available in supplementary material.

Current artificial intelligence activities in 
colloid and interface science
The first publications mentioning the use of AI and ML 
in colloids and interface science in their keywords or 
abstract started to appear in 2014 with increasing fre-

quency from 2019 (Figure 1) across a broad range of 
topics (Figure 2).

Basic physical property prediction
The prediction of fundamental physical properties in 
colloids and interface science has seen rapid adoption of 
AI approaches, offering alternatives to first-principle 
models and empirical correlations.

For interfacial and surface tension, several studies show 
promising predictive capabilities. Neural networks 
applied to experimental interfacial tension (IFT) data 
outperform conventional time-delay models based on 
prediction error metrics such as RMSE and rRMSE [7]. 
Similarly, boosted regression and other ML models 
predicting surface tension of hydrocarbon surfactants 
demonstrate strong accuracy but are limited to mole-

cules structurally similar to the training set, highlighting 
the need for chemically diverse datasets and physics-

based feature engineering [8]. Critical micelle concen-

tration (CMC) prediction benefits from incorporating

Figure 1
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Number of Scopus documents obtained by searching: (machine AND learning OR ai) AND colloid*. The search was performed on the 29th of July 2025. 
Of the 362 documents identified, around 74 are related to food (around 20 %).
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structural descriptors and surfactant class information, 
and from modelling across multiple experimental con-

ditions, representing a step beyond basic CMC models 
but still largely focused on sodium-based anionic sur-

factants [9,10].

More interpretable ML approaches are emerging, 
including 3D visualization of the relationship between 
surfactant structure and adsorption efficiency, which 
provides chemically meaningful insights but remains 
restricted to air—water interfaces [11], and feature 
attribution methods such as SHapley Additive exPla-

nations (SHAP) and Leave-One-Feature-Out (LOFO), 
which highlight structural drivers of surfactant clus-

tering and adsorption.

Foam and rheological properties have also been inves-

tigated with the use of Machine Learning. For 
polysaccharide-based foams, generalized regression 
neural networks achieved high R 2 (>0.97) when 
predicting density, modulus, and foamability from min-

imal input variables, yet their complexity far exceeds 
what is warranted by the dataset, risking overfitting and 
making model generalisation and interpretability a 
challenge. This is a common issue in applied ML where 
simpler models are often ignored for more complex ones 
[12]. Rheological features have been modelled using 
classical rheological constants (e.g., Bingham, Casson 
models) as input features, showing how combining 
physical priors with ML can improve robustness [13]. 
Other applications, such as predicting viscosity in 
Konjac Glucomannan colloids, identified key micro-

structural features linked to storage modulus but were

limited by small datasets lacking environmental pa-

rameters like pH and ionic concentration [14]. Several 
other studies suffer from similar issues of low sample 
size or narrow scope [15—17]. These examples illustrate 
a broader trend: high model complexity is often applied 
to limited data, with little consideration of overfitting 
or generalizability.

AI is also being used to design new molecules and 
colloidal architectures. Reinforcement learning (RL) 
frameworks combining graph neural networks and varia-

tional autoencoders allow bi-directional mapping be-

tween molecular structure and desired properties, 
creating a platform for targeted surfactant design [18]. 
RL has also been used to design novel protein nano-

material assemblies, including icosahedral structures, 
demonstrating its potential for creating previously un-

observed colloidal architectures [19]. Active learning 
methods improve efficiency in capturing complex mo-

lecular interactions [20], while neural-network-potential 
molecular dynamics simulations reveal new mechanisms 
in nanocluster dynamics [21]. These works illustrate a 
shift from descriptive modelling to generative design, 
although most rely on simulated datasets that do not yet 
capture full experimental complexity [22].

Clustering and unsupervised learning methods also 
appear, for example identifying salt concentration as a 
dominant factor controlling aggregation in 
elastin—polyethylenimine complexes [23], while 
consensus ML models, integrating neural networks with 
decision trees, predict microfluidic emulsion droplet 
sizes for unseen fluid—geometry combinations [24].

Figure 2
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Scopus documents obtained by searching: (machine AND learning OR AI) AND colloid* divided by topic. The search was performed on the 29th of July 
2025.
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Gaussian process models within Bayesian frameworks 
demonstrate utility for sol—gel transition prediction in 
data-constrained conditions [25]. Although these ap-

proaches show conceptual breadth, the recurring issues 
of dataset scarcity, model interpretability, and lack of 
rigorous benchmarking persist [26].

AI shows strong potential for property prediction in 
colloids, from interfacial tension to inverse design. Yet 
limited data, lack of uncertainty quantification, and 
absence of open benchmarks are remaining challenges.

Image analysis
Machine learning (ML) applied to image analysis is 
advancing colloid and interface science by enabling 
automated characterisation and quality assessment.

A key area of focus is the use of image analysis to predict 
fundamental physical properties. For example, neural 
network-based models were combined with automated 
image feature extraction to determine the effective 
water diffusion coefficient in dairy powders, providing a 
high-throughput alternative to gravimetric measure-

ments and improving understanding of microstructural 
effects on moisture transport [27]. Hybrid ML frame-

works (combining ML with mechanistic understanding) 
incorporating image-derived particle descriptors have 
also been used to model particle formation kinetics, 
such as nucleation and growth, demonstrating compu-

tational advantages compared to purely mechanistic 
models [28].

Image classification for automated quality control is 
another major application. A convolutional neural 
network was used to classify emulsion images, delivering 
improved product quality evaluation compared to prin-

cipal component discriminant analysis [29]. Comple-

mentary work applied random forest and multinomial 
logistic regression models to pharmaceutical emulsion 
images collected in-process, demonstrating that rela-

tively simple, interpretable models can be effective for 
inline quality monitoring [30].

Image analysis is also being applied to study biological 
and chemical interactions. One study combined random 
forest, k-nearest neighbour, and support vector machine 
models with microscopy images to investigate biological 
effects of food additives and excipients, showing how 
image-derived features can be correlated with biological 
outcomes [31]. Other work focused on particle structure 
classification and state detection, including analysis of 
colloidal aggregation and breakup using deep learning 
and tracking morphological changes in emulsion sys-

tems [32,33].

Several studies have adopted more advanced or hybri-

dised approaches. For example, one framework

integrated image data with spectroscopy and textural 
metrics to enhance classification of heterogeneous sys-

tems [34]. Physics-informed models incorporating 
image features as constraints have been proposed to 
improve extrapolation beyond experimental training 
ranges [35]. Random forest methods have been applied 
for defect detection in manufacturing images, demon-

strating that classical ML remains competitive, espe-

cially when labelled data are limited [36]. Deep learning 
methods have also been used to study surfactant 
adsorption and clustering behaviour [37], and advanced 
architectures such as vision transformers have been 
evaluated for colloidal assembly analysis [38]. These 
studies represent a shift towards multi-modal and 
transferable models, although all rely on curated data-

sets and significant expert involvement.

Integration of image analysis with surface chemistry 
models allowed accurate prediction of adsorption and 
wetting behaviour for novel materials [39], while ML-

driven feature extraction from colloidal imaging data-

sets supported droplet coalescence and stability analysis 
in complex emulsions [40]. In polymer systems, ML has 
been used to map relationships between microstructural 
features and mechanical performance [41].

Despite successes, most image analysis models rely on 
small datasets with complex architectures, lack inter-

pretability, and use bespoke workflows that hinder 
mechanistic insight, reproducibility, and transferability. 
Nevertheless, the reviewed literature highlights the 
transformative potential of ML image analysis for colloid 
and interface science. Applications now span property 
prediction [27], process modelling [28], product quality 
evaluation [29,30], biological interactions [31], adsorp-

tion phenomena [37] and material design [39—41].

Process design, monitoring and optimisation
Traditional process design often relies on empirical 
correlations and trial-and-error experimentation, which 
can be resource-intensive and slow to adapt to new 
materials and process conditions. ML provides a 
powerful alternative by learning directly from data, 
enabling the prediction of process performance, opti-

misation of operating conditions, and real-time adapta-

tion based on sensor inputs.

Several studies demonstrate the use of ML to predict 
and optimise nanoparticle production. Ensemble 
models, including random forest, decision trees, and 
extra trees have been used to design and analyse 
continuous chitosan nanoparticle production processes, 
predicting particle size and polydispersity index with 
high accuracy compared to traditional design-of-

experiment methods [42]. Feed-forward neural net-

works have been integrated with hybrid process models 
to predict the kinetics of particle nucleation and

4 VSI: Food Colloids (2025)
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agglomeration, demonstrating the benefits of combining 
physical descriptors with data-driven models to improve 
generalisation [28]. Similarly, random forest and neural 
network models were applied to microfiltration of oil-in-

water emulsions to predict critical flux, allowing for 
rapid assessment of membrane performance under 
varied feed and operating conditions [43].

ML is also being used for process monitoring. For 
example, histogram-based droplet detection combined 
with principal component analysis and machine learning 
classification enabled automated categorisation of 
emulsion quality into four distinct classes, providing a 
non-invasive method for inline image-based process 
monitoring [29]. Supervised ML was also used to mea-

sure solid fat content during oleogelation of cocoa 
butter-based oleogels, in this case pulsed acoustic 
spectroscopy, temperature, and cocoa butter concen-

tration were used as input to a gaussian process regres-

sion model [44].

Similarly, ML-based techno-functional property pre-

diction of ingredients, using spline regression, random 
forest, and neural networks, was applied to food 
formulation and processing, allowing direct estimation 
of gelling, foaming, and emulsifying properties without 
extensive experimental characterisation [45]. These 
studies illustrate the potential for integrating image and 
sensor data into process design, though both noted 
challenges associated with dataset quality, manual 
curation, and variability in image acquisition conditions.

An ML-guided approach to predict properties of poly-

mer composites demonstrated that combining experi-

mental and computational datasets could accelerate 
process optimisation [46]. A curated open dataset 
supporting colloid and interface research was also 
introduced, enabling improved ML model training and 
benchmarking [47]. These resources support the 
development of generalisable models but remain rare 
and most studies rely on proprietary datasets, 
limiting reproducibility.

Hybrid models and physics-informed learning ap-

proaches are a growing modelling method for complex 
processes. For example, an integrated dataset and hybrid 
ML model were used for interface property prediction 
relevant to material design [48], while deep learning was 
used to study material assembly processes where tradi-

tional analytical models are insufficient [49]. These 
approaches demonstrate improved generalisation and 
physical interpretability compared with purely black-

box models.

At the molecular scale, ML models have been used to 
explore interactions relevant to process design. Exam-

ples include modelling interaction potentials from 
quantum chemistry and molecular dynamics simulations

[50] and applying neural networks to predict nanoscale 
assembly pathways for advanced materials [51]. ML has 
also been used to optimise wastewater treatment pro-

cesses, demonstrating broad applicability beyond tradi-

tional colloid systems and membrane 
separations [52,53].

Real-time process monitoring is another emerging focus. 
ML models have been used for droplet stability analysis 
and microstructure classification in emulsions and for 
adsorption behaviour at fluid interfaces [54,55]. Clus-

tering and unsupervised learning have revealed key fac-

tors influencing aggregation in elastin—polyethylenimine 
complexes [23] while Bayesian approaches have been 
applied to sol—gel transitions [56]. Surface adsorption 
and colloidal stability studies using explainable ML 
illustrate how interpretability can support process design 
[57]. ML is also enabling rapid prediction of nanoparticle 
thermodynamic properties and rheological behaviour 
[58,59], while consensus models have been developed for 
microfluidic emulsion droplet sizing across new geome-

tries [24]. Other work has used Gaussian process models 
for uncertainty-aware predictions of colloidal systems 
[25], hybrid models for materials adsorption [60], and 
neural networks for spectroscopic feature—property 
correlations [61].

ML has demonstrated significant potential for 
improving process design, monitoring and optimisation 
in colloid and interface science, from nanoparticle syn-

thesis [42] and filtration optimisation [43] to real-time 
monitoring [29] and advanced materials design [51]. 
Future work should focus on generating larger, open 
datasets, adopting interpretable and uncertainty-aware 
models, and embedding ML tools into digital process 
design frameworks.

Morphology prediction and phase behaviour
Predicting phase diagrams and morphological features is 
essential for understanding formulation stability, mate-

rial performance, and processing efficiency, but experi-

mental mapping and high-fidelity simulations can be 
costly and time-consuming. ML enables rapid explora-

tion of compositional and processing spaces, identifying 
patterns linking molecular structure, thermodynamic 
conditions, and emergent morphologies.

Several works focus on directly predicting phase 
behaviour. For example, phase diagram mapping for 
multicomponent soft matter systems has been acceler-

ated using ML methods capable of interpolating sparse 
experimental data and predicting untested composi-

tions [26]. These approaches often employ classifiers or 
regressors such as random forests or support vector 
machines to classify regions of distinct phase behaviour, 
thereby reducing experimental workload. Similarly, an 
ML framework was developed to predict phase stability
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and critical points for surfactant and polymer sys-

tems [62].

At the interface of morphology and phase behaviour, 
surrogate models have been used to capture nanoscale 
structural transitions. For example, active learning 
methods combined with Bayesian optimisation were 
integrated into self-driving laboratories to map 
morphological changes in block copolymers and nano-

particle assemblies [63]. These frameworks autono-

mously select experimental conditions predicted to 
yield novel structures, reducing human intervention and 
accelerating discovery. Similar ideas have been applied 
in molecular simulations, where neural network accel-

erate morphology prediction by learning interatomic 
forces from quantum calculations, enabling simulations 
at previously inaccessible scales [64].

ML has also been integrated with process simulation to 
predict morphology during complex operations. For 
example, ML-coupled computational fluid dynamics 
simulations were used to predict microstructure

evolution in emulsification processes [65]. Experi-

mental imaging data have also been linked to morpho-

logical descriptors using convolutional neural networks, 
enabling automated classification of colloidal phases and 
droplet size distributions [33].

ML methods have been applied to predict phase 
transformations under variable operating conditions. 
Hybrid physical—ML models have been developed to 
predict interfacial and phase behaviour during chemical 
processing and to optimise nanoparticle self-assembly 
[66,67]. A study on wastewater treatment highlighted 
the value of ML for complex multiphase phase separa-

tion processes [52], while ML-assisted crystallography 
has been used to predict phase structures in soft matter 
systems [68].

Emerging research has also emphasised explainability 
and hybrid modelling. A study combining ML with 
fundamental theories of adsorption and interfacial 
phenomena demonstrated improved performance and 
interpretability for predicting emulsion morphology

Figure 3

Examples of different ML workflows used in colloids and interface science. (a) Overview of ML based workflow to incorporate reinforced deep learning to 
generate new surfactant molecules with ideal target properties design [18]; (b) Hybrid ML modeling approach to predict particle processes using 
mechanistic model and data-driven model [28]; (c) Image Analysis based Neural Network Workflow to predict properties of food emulsions [35]. All 
figures reproduced with permission.
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under varying formulations [35]. Similarly, ML-driven 
rheological property prediction supported improved 
understanding of morphological stability [13]. In-

novations in experimental design, such as automated 
crystal structure [69], have been paired with ML to 
accelerate discovery of new phases and morphologies 
[70]. These examples illustrate that integrating ML 
with domain knowledge and automation enhances pre-

dictive power and physical insight.

In summary, ML has been applied successfully to pre-

dict phase behaviour [62], map morphological transi-

tions [64], classify microstructures [33] and accelerate 
structural characterisation [69]. These applications 
demonstrate the transformative potential of ML, but 
also the need for broader datasets, improved interpret-

ability, and integration into experimental and indus-

trial workflows.

Summary, challenges and future directions 
of artificial intelligence in colloid and 
interface science
AI and particularly ML are rapidly transforming colloid 
and interface science, offering predictive power and 
automation for tasks historically dependent on empirical 
models and manual experimentation. However, chal-

lenges remain in dataset availability, model interpret-

ability, and validation workflows. Given the breadth of 
AI and ML applications within the discipline standard 
modelling pipelines don’t exists (different examples in 
Figure 3) making their use challenging for those lack-

ing ML expertise.

The future of AI in colloid and interface science de-

pends on overcoming critical data and integration chal-

lenges, many of which are already being addressed in 
other scientific domains.

First, experimental database design and standardisation 
are essential. Current datasets in colloids are often 
fragmented and lack harmonised metadata. Other fields 
demonstrate the power of standardisation: in materials 
science, the Materials Project and Open Catalyst Project 
have created structured, searchable datasets supporting 
AI-driven discovery of batteries and catalysts [71]. In 
biology, protein structure prediction by AlphaFold relied 
on highly curated and standardised protein databases 
[72]. Recent efforts have also produced standardized, 
multi-domain simulation datasets capturing complex 
dynamical systems, with unified metadata and output 
formats to support the development of first-principle 
models [73].

Similar curated, multi-technique datasets including 
both positive and negative results could accelerate 
colloid research; large language models (LLMs) already 
assist data curation and metadata harmonisation.

Second, hybrid AI modelling combining mechanistic (e. 
g. physics-based) approaches with data-driven methods 
will improve trust and industry adoption and ensure that 
AI integrates existing scientific knowledge and leverages 
the value of traditional modelling approaches. In mo-

lecular modelling, invariance to translation, rotation, and 
permutation is commonly enforced into graph neural 
networks [74]. In fluid dynamics, differentiable pro-

gramming enables neural networks to learn flow 
behavior by minimizing the residuals of the 
Navier—Stokes equations during training [75] or can 
serve as a hard constraint of constitutive laws, boundary 
conditions and physical properties [76].

Third, AI-driven scientific workflows using LLMs and 
autonomous AI agents will streamline research pipe-

lines. In drug discovery, AI agents such as IBM RXN and 
DeepMind’s scientific assistant have automated litera-

ture review, experimental design, and synthesis plan-

ning [77]. In materials science, Bayesian optimisation 
combined with robotic labs has enabled autonomous 
closed-loop discovery of thin-film photovoltaics [78]. 
Similar AI-driven workflows could revolutionise colloid 
research, integrating literature review, automated data 
extraction, Bayesian experiment design, and robotic 
execution [79]. Pioneering efforts in earth system [80] 
and atomistic modelling [81] illustrate the potential of 
this approach to generalise across tasks, enable rapid 
adaptation, and community reuse.

These advances in other scientific fields illustrate how 
curated experimental databases, hybrid modelling, and 
autonomous AI agents can create a new research para-

digm for colloid and interface science―one that is data-

rich, mechanistically informed, and capable of acceler-

ating discovery.
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