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Abstract. In this research, a novel fusion model which incorporates a type-1 fuzzy logic system (T1FLS) and the Dempster-

Shafer theory (DST) is proposed to model the 3D fused deposition process. First, the experimental data, which are constructed 

based on the Taguchi L18 array for two filaments (i.e., Polyether-ether-ketone and Polyether-ketone-ketone), are used to de-

velop T1FLSs that have different structures. Second, a fusion algorithm integrating fuzzy logic and the DST is presented to 

integrate the predicted values of the T1FLSs after analysing the behaviours of such systems in the space examined. The pro-

posed model can integrate such systems in a way that can resolve possible conflicts among the models developed in the first 

stage and, as a result, it can improve the predictive performance. Validated on a set of experimental data, the proposed fusion 

model has improved the predictive performance with an average improvement of 25.6%. The fusion model developed is em-

ployed to anticipate the mechanical characteristics of a dental part produced by fused deposition. 

Keywords: Dempster-Shafer theory, Fusion model, Taguchi L18 orthogonal array, Type-1 fuzzy logic system 

1.  Introduction 

Additive manufacturing, or the so-called 3D print-

ing and rapid manufacturing, is well established as an 

innovative manufacturing approach for complex 

manufacturing industries [1-3]. In brief, such an ap-

proach involves the generation of complex 3D parts 

from pre-designed 3D structures by adopting material 

additive processes including, for instance, layer-by-

layer or surface-by-surface ones [4]. In addition to its 

considerable effect on innovation and the manufac-

turing and its related industries, additive manufactur-

ing is considered to be a vital constituent of the In-

dustry 4.0 revolution because of its (i) characteristics 

that facilitate low-volume but cost-effective manu-

facturing; (ii) ability to generate highly complex 

monolithic structures; and (iii) capability of handling 

changes and, thus, allowing flexible production of 

customized 3D printed parts using different colours 

and materials at small as well as large scales [5-8]. 

Consequently, many research studies have been di-

rected to investigate the various 3D printing tech-

niques across a vast myriad of industries including, 

but not limited to, aerospace, pharmaceutics and tis-

sue engineering [9-12]. Various state-of-the-art tech-

niques have been, in general, covered under the um-

mailto:w.alaween@ju.edu.jo


2 

 

brella of additive manufacturing. Such techniques 

include fused deposition modelling (FDM), resin 

printing (i.e., stereolithography (SLA)) and selective 

laser sintering (SLS) [13-16]. FDM, whose essence is 

the production of 3D printed parts by controllably 

depositing liquefied thermoplastic polymer layers, is 

considered to be one of the most common techniques 

in various applications (e.g., biomedical science) [17]. 

This is because of the ability of the FDM process to 

deal with different biomedical polymers (e.g., Poly-

ether-ether-ketone (PEEK) and Polyether-ketone-

ketone (PEKK)) [18]. Thus, many studies have con-

centrated on the FDM process and its various appli-

cations.  

The various parts and polymers 3D printed using 

FDM for various applications, in particular, biomedi-

cal ones were examined in order to replace the ag-

gravated autograft and allograft ones [17]. Polylactic 

acid (PLA) scaffolds, for example, were 3D printed 

by employing the FDM technique under different sets 

of FDM parameters, in order to examine their proper-

ties [18]. Furthermore and to enhance its quality at-

tributes and imitate the human bone structure, PLA 

was amalgamated with polyvinyl alcohol, thermal-

stimulus-based hydroxyapatite and nanohydroxyap-

atite and, then, used to produce scaffolds. The prop-

erties of such scaffolds (e.g., mechanical and rheo-

logical properties) were analysed and then compared 

to the PLA ones [9, 19-22]. In addition, various or-

thopaedic and dental 3D printed parts were produced 

using the FDM process by PEEK and carbon-fibre-

reinforced PEEK, and their mechanical and biocom-

patibility characteristics were assessed [23]. Since 

various parameters can play a significant role in de-

fining the fate of the final 3D printed parts, several 

research papers investigated these parameters. These 

parameters can be, in general, categorised into: (i) 

material-related parameters such as the mechanical 

and rheological characteristics of the polymers; (ii) 

process-related parameters such as humidity; and (iii) 

machine-related parameters such as print speed [11, 

24]. To design and print 3D printed parts having the 

required quality attributes, such parameters need to 

be controlled and optimized. Therefore, a spectrum 

of experimental techniques has been proposed to con-

trol and optimize these parameters [25]. An analyti-

cal paradigm was, for instance, developed to assess 

the combinatory influences of the material- and ma-

chine-related parameters on the attributes of 3D 

printed specimens [26]. Likewise, the effects of vari-

ous parameters such as orientation, print speed and 

infill type on the attributes of 3D printed PLA parts 

were statistically analysed by determining the corre-

lation coefficient and the P-value using the analysis 

of variance test [27-31]. Moreover, the impact of 

copper electroless plating on 3D printed specimens 

produced using the acrylonitrile butadiene styrene 

(ABS) polymer was also studied [32]. Furthermore, 

digital imaging was utilized to show how the me-

chanical attributes of the 3D printed parts were af-

fected by different thickness values [33]. Likewise, 

the influences of four FDM parameters, namely, lay-

er thickness, raster angle, infill density, and nozzle 

temperature on the mechanical properties were exam-

ined for PLA, ABS and Chlorinated Polyethylene 

(CPE) polymers [34]. In addition, the influence of the 

infill pattern on fatigue life of 3D printed parts pro-

duced using ABS was studied by examining various 

infill pattern geometries [35]. It was proved by com-

parative evaluation of the determined fatigue life that 

infill pattern geometries had considerable effects on 

fatigue life [35]. 

Nowadays, there is a strong need to anticipate the 

quality characteristics of 3D printed specimens accu-

rately, in particular, in biomedical science, pharma-

ceutics and tissue engineering. Therefore, several 

studies have been devoted to implementing and de-

veloping systems-engineering paradigms that can 

simulate the FDM process. For instance, various mul-

ti-criteria decision-making paradigms (e.g., VIKOR) 

were employed to determine the best combination of 

the FDM parameters [36, 37]. In addition, the genetic 

algorithm was embedded in the structure of the artifi-

cial neural network to anticipate the strength of 3D 

printed specimens prepared using various polymers 

[38-41]. Furthermore, a modelling structure based on 

conceptual modelling and neural networks was pro-

posed to better understand and, consequently, model 

the FDM process. For instance, an artificial neural 

network was designed to represent the mechanical 

attributes of three polymers (i.e., PLA, ABS and 

CPE) as a function of four FDM parameters [34]. In 

addition, an interval type-2 fuzzy logic system 

(IT2FLS) was designed to mimic the FDM process 

and to handle the uncertainties in the measurements 

of the quality attributes of the 3D printed parts [42]. 

Such a system had the ability to predict the quality 

attributes of the 3D printed parts and provide a lin-

guistic understanding of the relationships between 

the FDM parameters and the quality attributes. How-

ever, the performance of such a system was repre-

sented by the average predicted performance for all 

the areas in the space examined. In other words, the 

system behaviours at different areas in the spaces 

examined cannot be shown. In addition, a modelling 

paradigm based on basis functions was designed to 
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mimic the FDM process and predict the attributes of 

the parts produced [43]. Such a paradigm consisted 

of a number of radial basis functions that play an 

integral role in extracting the relationships between 

the FDM parameters and the attributes examined. 

However, such a paradigm cannot handle uncertain-

ties and cannot provide users with linguistic repre-

sentation of the relationships extracted. Furthermore, 

some research papers have focused on optimizing the 

FDM process and its different parameters [44, 45]. 

For instance, the process was optimized by defining 

the different challenges faced while printing poly-

mers, composites, geopolymers and novel materials, 

where machine parameters were investigated to op-

timize printing novel polymers for various applica-

tions [44]. Likewise, a right-first-time concept-based 

paradigm that integrated fuzzy logic and multi-

objective swarm optimization was proposed to define 

the best FDM parameters that need to be employed to 

3D print parts with predefined mechanical attributes 

with minimum waste and recycling ratios [45].  

Although a huge body of research has concentrat-

ed on understanding and modelling the FDM process, 

and mapping the quality attributes of the 3D printed 

parts to the FDM parameters, there is an urge to de-

velop a paradigm that can (i) accurately predict the 

quality attributes for a highly dimensional space re-

sulted from the considerable number of the FDM 

parameters that affect these attributes; (ii) deal with a 

limited number of sparse data points because of the 

cost and time required to produce more 3D printed 

test specimens; and (iii) handle measurement uncer-

tainties. Ascertaining all these features may not be 

possible with a single paradigm. Therefore, in this 

paper, a novel fusion model that incorporates the 

Dempster-Shafer theory (DST) and a type-1 fuzzy 

logic system (T1FLS) is presented to simulate the 

FDM process and study the effects of the process 

parameters on the mechanical characteristics of the 

parts produced using PEEK and PEKK. The fusion 

model is developed to (i) integrate various T1FLSs 

that have different structures developed to represent 

the FDM process, such systems can play an integral 

role in extracting all possible relationships between 

the process parameters and the mechanical character-

istics; (ii) examine the behaviours of these systems in 

the space investigated instead of representing the 

predictive performance by its average values in the 

different areas of the space; (iii) resolve possible con-

flicts among the various T1FLSs; (iv) improve the 

modelling predictive performance in the areas with 

unacceptable performance by considering the sys-

tems that provide the best predictive performance; 

and (v) tackle measurement uncertainties by employ-

ing T1FLS and the DST. The paper is structured as 

follows. Section 2 briefly summarizes the equipment 

used and the experimental work. The development of 

the proposed fusion model and the mathematics be-

hind the DST and the T1FLS are discussed in Section 

3, whereas its results are summarized in Section 4. 

Conclusions are, then, listed in Section 5.  

2.  Experimental Work 

Two types of polymers (i.e., engineering-grade 

PEEK and PEKK) filaments were studied in this pa-

per. PEEK and PEKK are both semicrystalline ther-

moplastic high-temperature polymers that have rela-

tively excellent mechanical as well as chemical re-

sistance characteristics. Such polymers were provid-

ed by 3DXTECH (Michigan, USA). ASTM-D638 

parts were produced using the FUNMAT HT 3D 

printer, as a functional-materials FDM printer, as 

shown in Figure 1, (INTAMSYS Technology Inc., 

Minneapolis, USA). Such a printer is supported by 

InstamSuite 3.6.2 program that was employed to 

convert the 3D designed structure of the ASTM-

D638 parts to a GCODE format. The ASTM-D638 

parts were printed using various sets of operating 

conditions. In addition to the three mechanical char-

acteristics studied in this paper, the eight FDM pa-

rameters with the identified levels, which were stud-

ied for PEEK and PEKK, are listed in Table 1.  

 
Figure 1 The FUNMAT HT 3D printer. 

Table 1 The fused deposition modelling parameters and the mechanical characteristics [40]. 
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Parameters Levels Mechanical characteristics Devices’ parameters 

Infill pattern Cubic and grid Tensile strength (MPa) Load: 50KN and speed: 

1mm/min Thickness 0.1, 0.15 and 0.2 µm Elongation (%) 
Density 20, 60 and 100%   

Speed 10, 30 and 50mm/s Micro-hardness Load: 0.98N and time: 15 

seconds Number of shells 1, 2 and 3  
Cooling rate 0%, 50% and 100%   

Orientation 0, 45 and 90   

Raster width 0.25, 0.4 and 0.6µm   

 

The Taguchi L18 array was utilized to understand 

the relationships and to model the FDM process.  

Therefore, 18 experiments were carried-out for 

each polymer. To ensure good repeatability, each 

experiment was repeated three times. Once they were 

printed, the specimens were removed from the printer 

glass plate. According to manufacturer recommenda-

tions, all specimens produced were annealed. The 

mechanical attributes were experimentally estimated. 

The micro-hardness was measured using the micro 

Vickers hardness (HTMV 2000M, echo LAB, Italy) 

with load and time values of 0.98 N and 15 seconds, 

respectively. Whereas the ultimate tensile strength 

and elongation were determined using Instron (SHI-

MADZU, USA) with load and speed values of 50 kN 

and 1 mm/min, respectively. The parameters of these 

apparatuses are summarized in Table 1. For each 

experiment, the average of the three repetitions was 

then estimated.  

For the various sets of the FDM parameters, vari-

ous fracture patterns occurred at different locations. 

It was apparent that the investigated parameters have 

various influences on the mechanical attributes ex-

amined in terms of the nature of the relationships and 

their strength, which were proved by calculating the 

correlation values that are listed in Table 2. Such 

coefficients are reasonable. In addition, some of the 

FDM parameters have different correlation values for 

PEEK and PEKK. To elucidate, the layer thickness 

has a negligible impact on the strength for PEEK, 

however it has a significant one on that for PEKK. It 

also has a considerable effect on the elongation for 

PEKK but a negligible one for PEEK. It is also worth 

noting that the relationships between the layer thick-

ness and the strength for PEEK and PEKK are direct 

and indirect, respectively. Likewise, the relationships 

between the layer thickness and the elongation for 

PEEK and PEKK are direct and indirect, respectively. 

Moreover, different natures of the relationships can 

be seen between the FDM parameters and the me-

chanical attributes examined. For instance, the rela-

tionships between the print speed and specimens’ 

strength for PEEK and PEKK are indirect and direct, 

respectively. In addition, the layer thickness had di-

rect and indirect effects on micro-hardness for PEEK 

and PEKK, respectively. It is also apparent that the 

layer orientation can considerably affect the strength 

and elongation. However, it has an inconsiderable 

impact on micro-hardness for both materials. For the 

infill pattern, the analysis of variance was used to 

study its influences. It was found that it significantly 

affected the mechanical attributes examined with P-

values of less than 0.05. It was found that the P-

values for the ultimate tensile strength, elongation 

and microhardness are 0.032, 0.030 and 0.027.     

 

Table 2 The correlation coefficients. 

Parameters 

PEEK PEKK 

Strength 
Elonga-

tion 

Micro-

hardness 
Strength 

Elonga-

tion 

Micro-

hardness 

Thickness  0.04 0.30 0.14 -0.16 -0.09 -0.18 

Density  0.68 -0.42 -0.22 0.39 -0.26 0.02 
Speed  -0.20 -0.21 0.03 0.22 -0.38 -0.61 

Number of shells 0.22 0.00 -0.41 0.50 0.20 -0.16 

Cooling rate  0.04 0.20 -0.51 -0.21 0.07 -0.10 

Orientation  0.10 0.22 0.05 -0.08 -0.44 -0.05 

Raster width 0.33 0.56 -0.15 0.43 -0.25 -0.27 

 

 

3. A Fuzzy Fusion Model 

The advances in the computing power that have 

been witnessed recently make data-driven models an 
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ideal way to represent and model complex processes, 

in particular, when physical models are difficult to 

derive and/or implement [46]. This has been the main 

reason behind the extensive use of various data-

driven models such as linear regression, artificial 

neural networks and fuzzy logic in various areas in-

cluding, for example, pharmaceutics, medicine, au-

tomobile, supply chain and manufacturing [47-49]. 

The core of these models, as the name indicates, rests 

with data in terms of the amount of data available as 

well as the distribution in the space investigated [50, 

51]. To elucidate, having a good number of data 

points is of paramount importance to extract and 

simulate the inputs/outputs relationships of a process. 

In addition, a good distribution of the data in the 

space examined can prevent developing a biased par-

adigm that can perform satisfactorily in those areas 

where the amount of data is enough and unsatisfacto-

rily elsewhere [52]. Therefore, integrating several 

models that may have different structures can cir-

cumvent these challenges and help in extracting rela-

tionships that may not be extractable using a single 

model. However, integrating different models is not 

as simple as it may sound, as one needs to consider 

the behaviours of the models in the space examined 

and, thus, integrate them in a way that can improve 

the predictive performance [53]. Various paradigms 

can be employed to integrate different models. In-

formation fusion, as a concept that simulates the hu-

man cognitive process, is considered to be one of the 

effective ways of integrating information from dif-

ferent sources in a way that improves the reliability 

of such information and, thus, allows decision mak-

ers to take optimal decisions [54].  

Among the various algorithms presented in the re-

lated literature, the DST is considered to be an effi-

cient one, this being due to its ability to consider im-

precision and possible conflicts among various 

sources of information [53]. However, the DST deals 

only with uncertainties due to probabilities and due 

to lack of specifications. Therefore, and in order to 

tackle the uncertainties due to fuzziness, an infor-

mation fusion algorithm based on both fuzzy logic 

and the DST is presented in this research, and incor-

porated with the T1FLS to (i) integrate various 

T1FLSs that have different structures; (ii) examine 

the different behaviours of the T1FLSs developed to 

simulate the FDM process in the space investigated; 

(iii) resolve possible conflicts among the various 

T1FLSs; and (iv) improve the modelling predictive 

performance, in particular when the data available are 

limited and/or sparse.   

Figure 2 depicts the schematic structure of the 

proposed fuzzy fusion model that incorporates the 

DST and the T1FLS. The proposed structure consists 

of several stages. First, the experimental data are 

used to develop M T1FLSs that include different ar-

chitectures (i.e., the number of fuzzy sets and fuzzy 

parameters). Such T1FLSs can capture the process 

behaviours represented by the data and act synergeti-

cally when simulating and extracting the possible 

behaviours of the process in the space examined. 

Second, based on the predicted outputs obtained from 

the T1FLSs developed, the fusion algorithm is im-

plemented to integrate the predicted outputs of the 

T1FLSs. The behaviours of the T1FLSs that have 

different structures are evaluated in the space investi-

gated by clustering the performance of these models 

into several clusters described linguistically (e.g., 

Unsatisfactory, Satisfactory and Excellent). For each 

predicted output, the membership degrees are then 

estimated with respect to these clusters. Then, the 

mass functions are assigned. Such a step is followed 

by combining the hypothesis which are the clusters 

indicating the performance of the T1FLSs. In this 

structure, a hypothesis of one T1FLS should be com-

bined with another hypothesis that has an equal or 

better predictive performance value. In other words, a 

high level of conflict needs to be assumed between a 

hypothesis and a one with low predictive perfor-

mance. This can improve the predictive performance. 

The membership degrees with respect to the com-

bined hypotheses are then calculated and defuzzified 

to determine the final predicted outputs. 
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Figure 2 The schematic structure of the fuzzy fusion model. 

The mathematics behind the proposed fuzzy fusion 

model can be presented by including the mathematics 

behind the T1FLS and the DST based on fuzzy logic. 

Although the mathematics behind them have been 

publicised [53-56], in this research, the key develop-

ments are briefly summarized.  

3.1. Type-1 Fuzzy Logic System 

Nowadays, fuzzy systems have been used to simu-

late and represent complicated processes using data 

provided and/or expert knowledge, this being due to 

their ability to (i) represent the relationships among 

inputs and outputs; (ii) handle process uncertainties 

by using fuzzy sets; and (iii) expand the linguistic 

representation of a process by extracting fuzzy 

If/Then rules that can be employed to control such a 

process. Therefore, they have been utilized in many 

applications such as supply chain and pharmaceutics 

[47]. Among the various fuzzy systems in the related 

literature, the T1FLS is utilized in this research paper 

because of its simplicity. 

 

Figure 3 The T1FLS structure. 

Figure 3 depicts the representation of the T1FLS, 

which contains four steps: fuzzification, inference, 

extracting rules and defuzzification. First, the process 

inputs, which are commonly in the crisp/singleton 

form (x1, x2 … xn), are fuzzified to identify the fuzzy 

inputs (i.e., i

jA  that stands for the ith fuzzy set of the 

jth parameter). They are expressed in the form of 

membership functions. Various membership func-

tions (e.g., triangular and trapezoidal) have hitherto 

been utilized. Due to its continuity, the Gaussian 

membership function is exploited in this work. It can 

be represented as follows: 

             2

1
( ) exp

2

i

ji

j j i

x m
x



  −
 = −      

  (1) 

where im and i
 stand for the mean and the standard 

deviation of the ith fuzzy set, respectively. Once the 

crisp inputs are fuzzified, the output sets ( iB ) are 

written as functions of the fuzzy input sets via the 

inference process which utilizes the extracted or pro-

vided IF/Then rules. Such rules are linguistically 

presented as follows: 

Rulei: IF x1 is 
1

iA  … and xn is i

nA , THEN y is iB . 

Application-wise, a single output is needed, there-

fore, the output fuzzy set is defuzzified via the many 

techniques already available. In this research article, 

the centroid defuzzifier was utilized.  

3.2. Dempster-Shafer Theory 

Information fusion is considered to be one of the 

main cognitive processes employed by human to in-

tegrate information from different sources. Such a 

process aims to realise efficient inferences that lead 

to making the best decision [56]. The need for such a 

process stems from the fact that (i) information ob-

tained from a single source may be limited; and (ii) 

information accuracy may not be as required [57]. It 

has been utilized in different areas such as medical, 
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marine and manufacturing to enhance the reliability 

and accuracy of information provided [57].     

Various information fusion algorithms have been 

proposed in the literature. Such algorithms include 

Bayesian, fuzzy logic and the DST [57]. Among the 

various algorithms presented, the DST is considered 

to be an efficient one, this being due to its ability to 

take into consideration imprecision and resolve pos-

sible conflicts among various sources of information 

[53]. However, the DST can only consider uncertain-

ties due to probabilities and lack of specification 

[53]. However, in order to develop a reliable and 

effective fusion paradigm, three types of uncertain-

ties due to probabilities, lack of specification and 

fuzziness need to be carefully considered [53]. How-

ever, the DST can only deal with the first two types 

of uncertainties. Therefore, in this research article, a 

paradigm that integrates the DST and fuzzy logic is 

presented, where the third type of uncertainties can 

be dealt with using fuzzy logic.  

3.3. Dempster-Shafer Theory Based on Fuzzy Logic  

In general, the DST, or the so-called the evidence 

theory, is a commonly used framework in the cogni-

tive process for reasoning with uncertainties. Such a 

theory can only handle uncertainties due to probabili-

ties and lack of specifications. In addition, determin-

ing the mass function of the hypothesis to be com-

bined is considered to be a challenge in performing 

the DST [53, 56]. It can be estimated using various 

approaches including distance or probabilities. In 

order to circumvent such a challenge and consider 

uncertainties due to fuzziness, the DST is integrated 

with fuzzy logic in this research to successfully iden-

tify the mass function.  

The hypotheses are identified based on the per-

formance of the predictive models in the space inves-

tigated. The performance of the developed models is 

measured using the error residuals. In this research 

paper, unsupervised clustering is utilized to identify 

such hypotheses by classifying the predictive per-

formance values into three classes: Unsatisfactory, 

Satisfactory and Excellent. The input parameters and 

the error values for each data point from all the mod-

els developed are then classified. The membership 

degree for each point is calculated with respect to the 

three clusters as follows:  

                                  

2

1
exp

2

e e
e i
i e

x m




  −
 = −     

  (2) 

where e

ix  represents the residual error of the ith data 

point and the rest of the parameters used are as iden-

tified in Section 3.1. The superscript (e) is employed 

to distinguish the error residuals related parameters 

of the DST from those used to develop the T1FLSs 

presented in Section 3.1 Such membership degrees 

are then utilized to estimate the mass function as fol-

lows [56]: 

                                        

max

max

1

1

1 ( )

arg max

J
e e e

p j j p

j
j t

e

j
j J

m    

 

=


 

 
 = −  − 
  
 

=


       (3)                                     

where 
pm  and   stand for the mass function of the 

pth hypothesis (i.e., clusters) and the maximum mem-

bership function, respectively. Various hypotheses 

(i.e., H1, H2 … HJmax) can then be integrated using 

Eq(4). 

                                        

1 2 maxmax

1 2 maxmax

1

1

1

1
J

J

F j

H H H j J

j

H H H j J

m m
K

K m





   

 =  

 
=    −  

 
=   

 

 

 





    (4)                                       

where 
Fm  represents the mass function of the fu-

sion model. A measure of conflict is denoted K, 

which is also utilized to determine the normalization 

factor (i.e., 1-K). It is worth emphasising that a hy-

pothesis of a model needs to be integrated with the 

hypotheses of other models that have the same or 

better predictive performance. This can lead to im-

proving the predictive performance. To illustrate, a 

Satisfactory cluster of a T1FLS can only be com-

bined with Satisfactory and Excellent clusters of the 

other T1FLSs, a considerable conflict value is as-

sumed between such a cluster and the Unsatisfactory 

ones of the other T1FLSs. Once the mass functions 

are calculated for the three clusters, the membership 

functions are then estimated and used to estimate a 

defuzzified predicted output using the height defuzzi-

fier presented in [58]. 
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4.  Implementation and Results  

4.1. Fusion Model: Implementation and Results 

In this research work and as depicted in Figure 2, 

10 T1FLSs that have different structures, as previ-

ously stated, were developed for each output (i.e., a 

mechanical characteristic). Each T1FLS was estab-

lished by partitioning the data into training (28) and 

testing (8) sets. The training and testing sets are gen-

erally utilized to extract the relationships and evalu-

ate the T1FLS’s generalization capabilities, respec-

tively [47]. The training and testing sets of the 10 

T1FLSs have the same numbers of data points. How-

ever, such points have different distributions in the 

space examined. Therefore, the various T1FLSs de-

veloped can simulate the input/output relationships. 

To develop a representative system for the FDM pro-

cess, the FDM parameters needs to be carefully con-

sidered. For instance, material type and infill pattern 

were considered as singleton variables (i.e., crisp or 

discrete), whereas the remaining FDM parameters 

were considered as continuous variables. Various 

numbers of rules were examined for each T1FLS. 

The optimal one that was chosen was the one that 

provided the optimal predictive performance deter-

mined by the root mean square error (RMSE) (i.e., 

the minimum RMSE value). For a specific number of 

rules, the system’s parameters were initially assigned 

via the hierarchical approach presented in [59]. These 

parameters were then optimized during the training 

process by utilizing the steepest descent procedure 

that was embedded in the back-propagation paradigm 

[58].  

For the ultimate tensile strength, 11 rules, as the 

best number of rules, were used to develop the 

T1FLS. Figure 4 shows an example of one of these 

rules. The linguistic representation of such a rule is 

presented in Figure 4. 

 

Figure 4 One of the 11 rules used for the ultimate tensile strength rule (Materials (1) PEEK and (2) PEKK; Infill pattern (1) Cubic and (2) 
Grid). 
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Figure 5 shows the predictive performance for one 

of the T1FLSs developed using 11 rules, as the best 

number of rules for this system. The RMSE values 

for training and testing sets are 9.65 MPa and 8.97 

MPa, respectively, whereas the R2 values for the cor-

responding sets are 0.81 and 0.78, respectively. Such 

performance measures represent the average values 

of all points, in other words, they do not show how 

the model behaves in the space examined. To eluci-

date, it is apparent from Figure 5 that 14 data points 

in the training set out of 28 and 4 data points in the 

testing set out of 8 lay outside the 90% confidence 

interval. Furthermore, the data points in both sets are 

scattered around the best-fit line. Such behaviours 

were not detected by looking at both the RMSE and 

R2 values. Such behaviours can be attributed to (i) the 

highly nonlinear relationships between the FDM pa-

rameters and the ultimate tensile strength; (ii) the 

limited number of data points that are used to devel-

op a T1FLS, as a data-driven model; and (iii) the 

number of input parameters (i.e., nine) examined 

which can result in the phenomenon of the “curse of 

dimensionality” when the data points are limited. 

Therefore, and based on the results of the 10 T1FLSs 

developed that have similar behaviours to the system 

presented in Figure 5 but different in the space exam-

ined, it was obvious that a single T1FLS cannot be 

used to simulate the FDM process and anticipate the 

mechanical characteristics using such limited data 

points. Therefore, there is a need for the new fusion 

model presented in Section 3.  

Once the 10 T1FLSs were developed, their per-

formance behaviours in the space were classified into 

the three abovementioned classes using the k-means 

clustering algorithm. Therefore, the FDM parameters 

and the residuals of these 10 T1FLSs were employed 

to identify the behaviours of the models (i.e., areas 

where the performance of a model is Unsatisfactory, 

Satisfactory and Excellent). The parameters of the 

identified clusters were estimated. Figure 6 depicts 

the membership functions for these three clusters 

with their parameters for the 10 T1FLSs developed.  

Figure 7 shows how one of the developed T1FLSs 

behaved in an area for the strength. It indicates that 

the performance of such a T1FLS is Excellent when 

the material is PEEK, infill pattern is grid, layer 

thickness is high, infill density is high, print speed is 

high, number of shells is medium, cooling rate is 

small, layer orientation is 45o and raster width is me-

dium.  

 

 
Figure 5 The performance of a T1FLS for the ultimate tensile 
strength with a 90% confidence level: (a) Training and (b) Testing 
sets. 

 
Figure 6 The three clusters of the predictive performance of the 

T1FLSs. 

Based on the identified clusters for the 10 T1FLSs, 

the defined membership was utilized to determine the 

mass functions, as described in Section 3. Such mass 

functions were then integrated as mathematically 

shown in Equation (4) in order to find the ones for 

the fusion model that integrated the 10 T1FLSs. Then, 

the membership function values of such a model 

were estimated by numerically solving Equation (3). 
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Finally, the outputs were then determined by the 

height defuzzification. Figure 8 depicts the perfor-

mance of the proposed fusion model for the strength, 

where the RMSE (training, testing) and R2 (training, 

testing) are [3.57, 6.99] MPa and [0.96, 0.96], respec-

tively. The testing RMSE value is twice the training 

one. However, such a high value is due to that 6 data 

points that have values of 60MPa or greater, whereas 

the majority of the data points in the training set have 

values that are less than 60MPa. Therefore, such a 

high value is not due to overfitting. This can be prov-

en by looking at the R2 values. It is apparent that the 

performance of such a newly model outperformed the 

single system with an average overall improvement 

of 20% in R2 for the ultimate tensile strength. It is 

also noticeable that all the points are within the con-

fidence band. Furthermore, they are scattered neatly 

around the best-fit line. 

In a similar manner, a T1FLS and the fusion mod-

el based on 10 T1FLSs were utilized to predict the 

elongation values and micro-hardness. The predictive 

performance for these models is listed in Table 3. 

Such a table shows that the predictive performance 

values of T1FLSs developed for both elongation and 

micro-hardness were not acceptable. Therefore, the 

fusion model was used to improve the predictive per-

formance. The performance values of the fusion 

models developed for the two mechanical character-

istics are better than those of the T1FLSs with aver-

age overall improvements of 27% and 30% in R2, 

respectively.   

For comparison purposes, IT2FLS and the radial 

based integrated network presented in [42] and [43], 

respectively, were employed to predict the three me-

chanical characteristics. The results obtained are also 

summarized in Table 3. It is noticeable that the fu-

sion model outperformed these models with a con-

siderable improvement. This can be attributed to (i) 

its structure that consists of several T1FLSs that can 

play an integral role in extracting and representing 

the relationships between the FDM parameters and 

the mechanical characteristics; (ii) its ability to ana-

lyse the behaviours of these systems in the different 

areas of the space examined; and (iii) its ability to 

integrate the predicted outputs in these areas in a way 

that can improve the predictive performance. In addi-

tion, the fusion model can provide a linguistic under-

standing of the relationships between the FDM pa-

rameters and the mechanical characteristics that can 

be utilized to control and understand the process.        

 

 

Figure 7 The performance of a T1FLS in the space area of the ultimate tensile strength. 
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Table 3 The performance values. 

Model     Strength (MPa) Elongation (%) Microhardness  

T1FLS 

R2 
Train 0.81 0.74 0.71 

Test 0.78 0.75 0.7 

RMSE 
Train 9.65 5.8 2.76 

Test 8.97 5.8 2.85 

IT2FLS 

R2 
Train 0.88 0.8 0.76 

Test 0.87 0.81 0.75 

RMSE 
Train 6.57 4.48 2.27 

Test 6.79 4.51 2.28 

Integrated 

network 

R2 
Train 0.94 0.93 0.90 

Test 0.91 0.91 0.91 

RMSE 
Train 5.4 2.3 1.30 

Test 5.9 7.6 1.40 

Fusion 
model 

R2 
Train 0.96 0.94 0.92 

Test 0.96 0.95 0.93 

RMSE 
Train 3.57 3.72 1.41 

Test 6.99 3.71 1.38 

 

4.2. Model Verification: Medical Applications  

The capabilities of the fusion paradigm in anticipat-

ing the three mechanical characteristics of the 3D-

printed parts were demonstrated by predicting these 

attributes for a dental implant (i.e., MidFace Rim) 

presented in Figure 9. Such a part was produced by 

the same printer mentioned in the second section 

using PEEK. The printing parameters in terms of 

infill pattern and its density, thickness, printing 

speed, number of shells, cooling rate, printing orien-

tation and raster width were cubic, 100%, 0.12mm, 

20mm/s, 3, 0%, 0° and 0.4mm, respectively. It is 

worth noting that measuring the strength and elonga-

tion for such a part, which is not printed according to 

the specifications of the standard test parts, is not as 

simple as it may seem and may not provide accurate 

measurements. Therefore, the new fusion model can 

be employed in this case and perhaps similar ones to 

anticipate these attributes. Therefore, the mechanical 

characteristics were predicted using the fusion mod-

els developed in Section 4.1. The anticipated values 

of the MidFace rim were 102.4MPa, 19.5 and 29.3 

for the strength, elongation and micro-hardness re-

spectively. The average of measured values of the 

micro-hardness for the MidFace Rim is 30.5 which is 

close to the anticipated one (i.e., 29.3).  

  

Figure 8 The predictive performance of the proposed fused model 
for the strength with a 90% confidence band: (a) Training and (b) 

Testing sets. 
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Figure 9 MidFace Rim. 

 

5. Conclusion 

A novel fusion model based on incorporating a type-

1 fuzzy logic system (T1FLS) and the Dempster-

Shafer theory (DST) was presented in this research 

article to simulate the 3D fused deposition process. 

Such a model was developed in two stages. First, sev-

eral T1FLSs having different structures were devel-

oped. Second, the fuzzy based DST was employed to 

integrate the predicted outputs of the T1FLSs after 

analysing their behaviours in the space examined. In 

addition to integrating and analysing the behaviours of 

the T1FLSs, such a model can resolve possible con-

flicts among these systems and, as a result, can lead to 

a better predictive performance. In summary, the fu-

sion model presents a promising advancement not only 

in 3D printing and its techniques but also in other 

equally complex processes with highly dimensional 

spaces and a limited number of sparsely distributed 

data points. In the future, the fusion model can be in-

corporated with multi-objective optimization para-

digms in order to identify the best 3D printing parame-

ters that need to be employed to produce 3D printed 

specimens with predefined attributes. This incorpora-

tion can lead to minimizing waste and recycling ratio 

and reducing time-to-market.     
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