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Abstract. In this research, a novel fusion model which incorporates a type-1 fuzzy logic system (T1FLS) and the Dempster-
Shafer theory (DST) is proposed to model the 3D fused deposition process. First, the experimental data, which are constructed
based on the Taguchi L18 array for two filaments (i.e., Polyether-ether-ketone and Polyether-ketone-ketone), are used to de-
velop T1FLSs that have different structures. Second, a fusion algorithm integrating fuzzy logic and the DST is presented to
integrate the predicted values of the T1FLSs after analysing the behaviours of such systems in the space examined. The pro-
posed model can integrate such systems in a way that can resolve possible conflicts among the models developed in the first
stage and, as a result, it can improve the predictive performance. Validated on a set of experimental data, the proposed fusion
model has improved the predictive performance with an average improvement of 25.6%. The fusion model developed is em-

ployed to anticipate the mechanical characteristics of a dental part produced by fused deposition.
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1. Introduction

Additive manufacturing, or the so-called 3D print-
ing and rapid manufacturing, is well established as an
innovative manufacturing approach for complex
manufacturing industries [1-3]. In brief, such an ap-
proach involves the generation of complex 3D parts
from pre-designed 3D structures by adopting material
additive processes including, for instance, layer-by-
layer or surface-by-surface ones [4]. In addition to its
considerable effect on innovation and the manufac-
turing and its related industries, additive manufactur-
ing is considered to be a vital constituent of the In-
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dustry 4.0 revolution because of its (i) characteristics
that facilitate low-volume but cost-effective manu-
facturing; (ii) ability to generate highly complex
monolithic structures; and (iii) capability of handling
changes and, thus, allowing flexible production of
customized 3D printed parts using different colours
and materials at small as well as large scales [5-8].
Consequently, many research studies have been di-
rected to investigate the various 3D printing tech-
niques across a vast myriad of industries including,
but not limited to, aerospace, pharmaceutics and tis-
sue engineering [9-12]. Various state-of-the-art tech-
niques have been, in general, covered under the um-
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brella of additive manufacturing. Such techniques
include fused deposition modelling (FDM), resin
printing (i.e., stereolithography (SLA)) and selective
laser sintering (SLS) [13-16]. FDM, whose essence is
the production of 3D printed parts by controllably
depositing liquefied thermoplastic polymer layers, is
considered to be one of the most common techniques

in various applications (e.g., biomedical science) [17].

This is because of the ability of the FDM process to
deal with different biomedical polymers (e.g., Poly-
ether-ether-ketone (PEEK) and Polyether-ketone-
ketone (PEKK)) [18]. Thus, many studies have con-
centrated on the FDM process and its various appli-
cations.

The various parts and polymers 3D printed using
FDM for various applications, in particular, biomedi-
cal ones were examined in order to replace the ag-
gravated autograft and allograft ones [17]. Polylactic
acid (PLA) scaffolds, for example, were 3D printed
by employing the FDM technique under different sets
of FDM parameters, in order to examine their proper-
ties [18]. Furthermore and to enhance its quality at-
tributes and imitate the human bone structure, PLA
was amalgamated with polyvinyl alcohol, thermal-
stimulus-based hydroxyapatite and nanohydroxyap-
atite and, then, used to produce scaffolds. The prop-
erties of such scaffolds (e.g., mechanical and rheo-
logical properties) were analysed and then compared
to the PLA ones [9, 19-22]. In addition, various or-
thopaedic and dental 3D printed parts were produced
using the FDM process by PEEK and carbon-fibre-
reinforced PEEK, and their mechanical and biocom-
patibility characteristics were assessed [23]. Since
various parameters can play a significant role in de-
fining the fate of the final 3D printed parts, several
research papers investigated these parameters. These
parameters can be, in general, categorised into: (i)
material-related parameters such as the mechanical
and rheological characteristics of the polymers; (ii)
process-related parameters such as humidity; and (iii)
machine-related parameters such as print speed [11,
24]. To design and print 3D printed parts having the
required quality attributes, such parameters need to
be controlled and optimized. Therefore, a spectrum
of experimental techniques has been proposed to con-
trol and optimize these parameters [25]. An analyti-
cal paradigm was, for instance, developed to assess
the combinatory influences of the material- and ma-
chine-related parameters on the attributes of 3D
printed specimens [26]. Likewise, the effects of vari-
ous parameters such as orientation, print speed and
infill type on the attributes of 3D printed PLA parts
were statistically analysed by determining the corre-

lation coefficient and the P-value using the analysis
of variance test [27-31]. Moreover, the impact of
copper electroless plating on 3D printed specimens
produced using the acrylonitrile butadiene styrene
(ABS) polymer was also studied [32]. Furthermore,
digital imaging was utilized to show how the me-
chanical attributes of the 3D printed parts were af-
fected by different thickness values [33]. Likewise,
the influences of four FDM parameters, namely, lay-
er thickness, raster angle, infill density, and nozzle
temperature on the mechanical properties were exam-
ined for PLA, ABS and Chlorinated Polyethylene
(CPE) polymers [34]. In addition, the influence of the
infill pattern on fatigue life of 3D printed parts pro-
duced using ABS was studied by examining various
infill pattern geometries [35]. It was proved by com-
parative evaluation of the determined fatigue life that
infill pattern geometries had considerable effects on
fatigue life [35].

Nowadays, there is a strong need to anticipate the
quality characteristics of 3D printed specimens accu-
rately, in particular, in biomedical science, pharma-
ceutics and tissue engineering. Therefore, several
studies have been devoted to implementing and de-
veloping systems-engineering paradigms that can
simulate the FDM process. For instance, various mul-
ti-criteria decision-making paradigms (e.g., VIKOR)
were employed to determine the best combination of
the FDM parameters [36, 37]. In addition, the genetic
algorithm was embedded in the structure of the artifi-
cial neural network to anticipate the strength of 3D
printed specimens prepared using various polymers
[38-41]. Furthermore, a modelling structure based on
conceptual modelling and neural networks was pro-
posed to better understand and, consequently, model
the FDM process. For instance, an artificial neural
network was designed to represent the mechanical
attributes of three polymers (i.e., PLA, ABS and
CPE) as a function of four FDM parameters [34]. In
addition, an interval type-2 fuzzy logic system
(IT2FLS) was designed to mimic the FDM process
and to handle the uncertainties in the measurements
of the quality attributes of the 3D printed parts [42].
Such a system had the ability to predict the quality
attributes of the 3D printed parts and provide a lin-
guistic understanding of the relationships between
the FDM parameters and the quality attributes. How-
ever, the performance of such a system was repre-
sented by the average predicted performance for all
the areas in the space examined. In other words, the
system behaviours at different areas in the spaces
examined cannot be shown. In addition, a modelling
paradigm based on basis functions was designed to



mimic the FDM process and predict the attributes of
the parts produced [43]. Such a paradigm consisted
of a number of radial basis functions that play an
integral role in extracting the relationships between
the FDM parameters and the attributes examined.
However, such a paradigm cannot handle uncertain-
ties and cannot provide users with linguistic repre-
sentation of the relationships extracted. Furthermore,
some research papers have focused on optimizing the
FDM process and its different parameters [44, 45].
For instance, the process was optimized by defining
the different challenges faced while printing poly-
mers, composites, geopolymers and novel materials,
where machine parameters were investigated to op-
timize printing novel polymers for various applica-
tions [44]. Likewise, a right-first-time concept-based
paradigm that integrated fuzzy logic and multi-
objective swarm optimization was proposed to define
the best FDM parameters that need to be employed to
3D print parts with predefined mechanical attributes
with minimum waste and recycling ratios [45].
Although a huge body of research has concentrat-
ed on understanding and modelling the FDM process,
and mapping the quality attributes of the 3D printed
parts to the FDM parameters, there is an urge to de-
velop a paradigm that can (i) accurately predict the
quality attributes for a highly dimensional space re-
sulted from the considerable number of the FDM
parameters that affect these attributes; (ii) deal with a
limited number of sparse data points because of the
cost and time required to produce more 3D printed
test specimens; and (iii) handle measurement uncer-
tainties. Ascertaining all these features may not be
possible with a single paradigm. Therefore, in this
paper, a novel fusion model that incorporates the
Dempster-Shafer theory (DST) and a type-1 fuzzy
logic system (T1FLS) is presented to simulate the
FDM process and study the effects of the process
parameters on the mechanical characteristics of the
parts produced using PEEK and PEKK. The fusion
model is developed to (i) integrate various T1FLSs
that have different structures developed to represent
the FDM process, such systems can play an integral
role in extracting all possible relationships between
the process parameters and the mechanical character-
istics; (ii) examine the behaviours of these systems in
the space investigated instead of representing the
predictive performance by its average values in the
different areas of the space; (iii) resolve possible con-
flicts among the various T1FLSs; (iv) improve the
modelling predictive performance in the areas with

unacceptable performance by considering the sys-
tems that provide the best predictive performance;
and (v) tackle measurement uncertainties by employ-
ing T1FLS and the DST. The paper is structured as
follows. Section 2 briefly summarizes the equipment
used and the experimental work. The development of
the proposed fusion model and the mathematics be-
hind the DST and the T1FLS are discussed in Section
3, whereas its results are summarized in Section 4.
Conclusions are, then, listed in Section 5.

2. Experimental Work

Two types of polymers (i.e., engineering-grade
PEEK and PEKK) filaments were studied in this pa-
per. PEEK and PEKK are both semicrystalline ther-
moplastic high-temperature polymers that have rela-
tively excellent mechanical as well as chemical re-
sistance characteristics. Such polymers were provid-
ed by 3DXTECH (Michigan, USA). ASTM-D638
parts were produced using the FUNMAT HT 3D
printer, as a functional-materials FDM printer, as
shown in Figure 1, (INTAMSYS Technology Inc.,
Minneapolis, USA). Such a printer is supported by
InstamSuite 3.6.2 program that was employed to
convert the 3D designed structure of the ASTM-
D638 parts to a GCODE format. The ASTM-D638
parts were printed using various sets of operating
conditions. In addition to the three mechanical char-
acteristics studied in this paper, the eight FDM pa-
rameters with the identified levels, which were stud-
ied for PEEK and PEKK, are listed in Table 1.

Figure 1 The FUNMAT HT 3D printer.
Table 1 The fused deposition modelling parameters and the mechanical characteristics [40].



Parameters Levels

Mechanical characteristics

Devices’ parameters

Infill pattern Cubic and grid
Thickness 0.1,0.15and 0.2 pm
Density 20, 60 and 100%
Speed 10, 30 and S0mm/s
Number of shells 1,2and 3

Cooling rate 0%, 50% and 100%
Orientation 0°, 45° and 90°
Raster width 0.25, 0.4 and 0.6um

Tensile strength (MPa)
Elongation (%)

Micro-hardness

Load: 50KN and speed:
Imm/min

Load: 0.98N and time: 15
seconds

The Taguchi L18 array was utilized to understand
the relationships and to model the FDM process.

Therefore, 18 experiments were carried-out for
each polymer. To ensure good repeatability, each
experiment was repeated three times. Once they were
printed, the specimens were removed from the printer
glass plate. According to manufacturer recommenda-
tions, all specimens produced were annealed. The
mechanical attributes were experimentally estimated.
The micro-hardness was measured using the micro
Vickers hardness (HTMV 2000M, echo LAB, Italy)
with load and time values of 0.98 N and 15 seconds,
respectively. Whereas the ultimate tensile strength
and elongation were determined using Instron (SHI-
MADZU, USA) with load and speed values of 50 kN
and 1 mm/min, respectively. The parameters of these
apparatuses are summarized in Table 1. For each
experiment, the average of the three repetitions was
then estimated.

For the various sets of the FDM parameters, vari-
ous fracture patterns occurred at different locations.
It was apparent that the investigated parameters have
various influences on the mechanical attributes ex-
amined in terms of the nature of the relationships and
their strength, which were proved by calculating the
correlation values that are listed in Table 2. Such
coefficients are reasonable. In addition, some of the
FDM parameters have different correlation values for

PEEK and PEKK. To elucidate, the layer thickness
has a negligible impact on the strength for PEEK,
however it has a significant one on that for PEKK. It
also has a considerable effect on the elongation for
PEKK but a negligible one for PEEK. It is also worth
noting that the relationships between the layer thick-
ness and the strength for PEEK and PEKK are direct
and indirect, respectively. Likewise, the relationships
between the layer thickness and the elongation for
PEEK and PEKK are direct and indirect, respectively.
Moreover, different natures of the relationships can
be seen between the FDM parameters and the me-
chanical attributes examined. For instance, the rela-
tionships between the print speed and specimens’
strength for PEEK and PEKK are indirect and direct,
respectively. In addition, the layer thickness had di-
rect and indirect effects on micro-hardness for PEEK
and PEKK, respectively. It is also apparent that the
layer orientation can considerably affect the strength
and elongation. However, it has an inconsiderable
impact on micro-hardness for both materials. For the
infill pattern, the analysis of variance was used to
study its influences. It was found that it significantly
affected the mechanical attributes examined with P-
values of less than 0.05. It was found that the P-
values for the ultimate tensile strength, elongation
and microhardness are 0.032, 0.030 and 0.027.

Table 2 The correlation coefficients.

PEEK PEKK

Parameters Elonga- Micro- Elonga- Micro-

Strength tion ¢ hardness Strength tion ¢ hardness
Thickness 0.04 0.30 0.14 -0.16 -0.09 -0.18
Density 0.68 -0.42 -0.22 0.39 -0.26 0.02
Speed -0.20 -0.21 0.03 0.22 -0.38 -0.61
Number of shells 0.22 0.00 -0.41 0.50 0.20 -0.16
Cooling rate 0.04 0.20 -0.51 -0.21 0.07 -0.10
Orientation 0.10 0.22 0.05 -0.08 -0.44 -0.05
Raster width 0.33 0.56 -0.15 0.43 -0.25 -0.27

3. A Fuzzy Fusion Model

The advances in the computing power that have
been witnessed recently make data-driven models an



ideal way to represent and model complex processes,
in particular, when physical models are difficult to
derive and/or implement [46]. This has been the main
reason behind the extensive use of various data-
driven models such as linear regression, artificial
neural networks and fuzzy logic in various areas in-
cluding, for example, pharmaceutics, medicine, au-
tomobile, supply chain and manufacturing [47-49].
The core of these models, as the name indicates, rests
with data in terms of the amount of data available as
well as the distribution in the space investigated [50,
51]. To elucidate, having a good number of data
points is of paramount importance to extract and
simulate the inputs/outputs relationships of a process.
In addition, a good distribution of the data in the
space examined can prevent developing a biased par-
adigm that can perform satisfactorily in those areas
where the amount of data is enough and unsatisfacto-
rily elsewhere [52]. Therefore, integrating several
models that may have different structures can cir-
cumvent these challenges and help in extracting rela-
tionships that may not be extractable using a single
model. However, integrating different models is not
as simple as it may sound, as one needs to consider
the behaviours of the models in the space examined
and, thus, integrate them in a way that can improve
the predictive performance [53]. Various paradigms
can be employed to integrate different models. In-
formation fusion, as a concept that simulates the hu-
man cognitive process, is considered to be one of the
effective ways of integrating information from dif-
ferent sources in a way that improves the reliability
of such information and, thus, allows decision mak-
ers to take optimal decisions [54].

Among the various algorithms presented in the re-
lated literature, the DST is considered to be an effi-
cient one, this being due to its ability to consider im-
precision and possible conflicts among various
sources of information [53]. However, the DST deals
only with uncertainties due to probabilities and due
to lack of specifications. Therefore, and in order to
tackle the uncertainties due to fuzziness, an infor-
mation fusion algorithm based on both fuzzy logic
and the DST is presented in this research, and incor-
porated with the TI1FLS to (i) integrate various

TIFLSs that have different structures; (ii) examine
the different behaviours of the TIFLSs developed to
simulate the FDM process in the space investigated;
(iii) resolve possible conflicts among the various
T1FLSs; and (iv) improve the modelling predictive
performance, in particular when the data available are
limited and/or sparse.

Figure 2 depicts the schematic structure of the
proposed fuzzy fusion model that incorporates the
DST and the T1FLS. The proposed structure consists
of several stages. First, the experimental data are
used to develop M T1FLSs that include different ar-
chitectures (i.e., the number of fuzzy sets and fuzzy
parameters). Such TIFLSs can capture the process
behaviours represented by the data and act synergeti-
cally when simulating and extracting the possible
behaviours of the process in the space examined.
Second, based on the predicted outputs obtained from
the T1FLSs developed, the fusion algorithm is im-
plemented to integrate the predicted outputs of the
T1FLSs. The behaviours of the T1FLSs that have
different structures are evaluated in the space investi-
gated by clustering the performance of these models
into several clusters described linguistically (e.g.,
Unsatisfactory, Satisfactory and Excellent). For each
predicted output, the membership degrees are then
estimated with respect to these clusters. Then, the
mass functions are assigned. Such a step is followed
by combining the hypothesis which are the clusters
indicating the performance of the T1FLSs. In this
structure, a hypothesis of one T1FLS should be com-
bined with another hypothesis that has an equal or
better predictive performance value. In other words, a
high level of conflict needs to be assumed between a
hypothesis and a one with low predictive perfor-
mance. This can improve the predictive performance.
The membership degrees with respect to the com-
bined hypotheses are then calculated and defuzzified
to determine the final predicted outputs.
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Figure 2 The schematic structure of the fuzzy fusion model.

The mathematics behind the proposed fuzzy fusion
model can be presented by including the mathematics
behind the T1FLS and the DST based on fuzzy logic.
Although the mathematics behind them have been
publicised [53-56], in this research, the key develop-
ments are briefly summarized.

3.1. Type-1 Fuzzy Logic System

Nowadays, fuzzy systems have been used to simu-
late and represent complicated processes using data
provided and/or expert knowledge, this being due to
their ability to (i) represent the relationships among
inputs and outputs; (ii) handle process uncertainties
by using fuzzy sets; and (iii) expand the linguistic
representation of a process by extracting fuzzy
If/Then rules that can be employed to control such a
process. Therefore, they have been utilized in many
applications such as supply chain and pharmaceutics
[47]. Among the various fuzzy systems in the related
literature, the T1FLS is utilized in this research paper
because of its simplicity.
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Figure 3 The T1FLS structure.

Figure 3 depicts the representation of the TIFLS,
which contains four steps: fuzzification, inference,
extracting rules and defuzzification. First, the process
inputs, which are commonly in the crisp/singleton
form (x1, x2 ... x»), are fuzzified to identify the fuzzy

inputs (i.e., A;. that stands for the i fuzzy set of the

j parameter). They are expressed in the form of
membership functions. Various membership func-
tions (e.g., triangular and trapezoidal) have hitherto
been utilized. Due to its continuity, the Gaussian
membership function is exploited in this work. It can
be represented as follows:

. 1 x, —m ’ (1)
i _ J
A )

where y;'and 5 stand for the mean and the standard
deviation of the i fuzzy set, respectively. Once the
crisp inputs are fuzzified, the output sets ( B') are
written as functions of the fuzzy input sets via the
inference process which utilizes the extracted or pro-
vided IF/Then rules. Such rules are linguistically
presented as follows:

Rule: IF x, is 4 ... andx,is 4/, THEN yis B'.

Application-wise, a single output is needed, there-
fore, the output fuzzy set is defuzzified via the many
techniques already available. In this research article,
the centroid defuzzifier was utilized.

3.2. Dempster-Shafer Theory

Information fusion is considered to be one of the
main cognitive processes employed by human to in-
tegrate information from different sources. Such a
process aims to realise efficient inferences that lead
to making the best decision [56]. The need for such a
process stems from the fact that (i) information ob-
tained from a single source may be limited; and (ii)
information accuracy may not be as required [57]. It
has been utilized in different areas such as medical,



marine and manufacturing to enhance the reliability
and accuracy of information provided [57].

Various information fusion algorithms have been
proposed in the literature. Such algorithms include
Bayesian, fuzzy logic and the DST [57]. Among the
various algorithms presented, the DST is considered
to be an efficient one, this being due to its ability to
take into consideration imprecision and resolve pos-
sible conflicts among various sources of information
[53]. However, the DST can only consider uncertain-
ties due to probabilities and lack of specification
[53]. However, in order to develop a reliable and
effective fusion paradigm, three types of uncertain-
ties due to probabilities, lack of specification and
fuzziness need to be carefully considered [53]. How-
ever, the DST can only deal with the first two types
of uncertainties. Therefore, in this research article, a
paradigm that integrates the DST and fuzzy logic is
presented, where the third type of uncertainties can
be dealt with using fuzzy logic.

3.3. Dempster-Shafer Theory Based on Fuzzy Logic

In general, the DST, or the so-called the evidence
theory, is a commonly used framework in the cogni-
tive process for reasoning with uncertainties. Such a
theory can only handle uncertainties due to probabili-
ties and lack of specifications. In addition, determin-
ing the mass function of the hypothesis to be com-
bined is considered to be a challenge in performing
the DST [53, 56]. It can be estimated using various
approaches including distance or probabilities. In
order to circumvent such a challenge and consider
uncertainties due to fuzziness, the DST is integrated
with fuzzy logic in this research to successfully iden-
tify the mass function.

The hypotheses are identified based on the per-
formance of the predictive models in the space inves-
tigated. The performance of the developed models is
measured using the error residuals. In this research
paper, unsupervised clustering is utilized to identify
such hypotheses by classifying the predictive per-
formance values into three classes: Unsatisfactory,
Satisfactory and Excellent. The input parameters and
the error values for each data point from all the mod-
els developed are then classified. The membership
degree for each point is calculated with respect to the
three clusters as follows:

ex 1( x/—m* 2 )
P 2

e

Hi

e

o

where x! represents the residual error of the /™ data

point and the rest of the parameters used are as iden-
tified in Section 3.1. The superscript (e) is employed
to distinguish the error residuals related parameters
of the DST from those used to develop the T1FLSs
presented in Section 3.1 Such membership degrees
are then utilized to estimate the mass function as fol-
lows [56]:
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where m, and £ stand for the mass function of the

p" hypothesis (i.e., clusters) and the maximum mem-
bership function, respectively. Various hypotheses
(i.e., Hi, Ha ... Hymax) can then be integrated using

Eq(4).
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where m,, represents the mass function of the fu-

sion model. A measure of conflict is denoted K,
which is also utilized to determine the normalization
factor (i.e., 1-K). It is worth emphasising that a hy-
pothesis of a model needs to be integrated with the
hypotheses of other models that have the same or
better predictive performance. This can lead to im-
proving the predictive performance. To illustrate, a
Satisfactory cluster of a TIFLS can only be com-
bined with Satisfactory and Excellent clusters of the
other TIFLSs, a considerable conflict value is as-
sumed between such a cluster and the Unsatisfactory
ones of the other TIFLSs. Once the mass functions
are calculated for the three clusters, the membership
functions are then estimated and used to estimate a
defuzzified predicted output using the height defuzzi-
fier presented in [58].



4. Implementation and Results
4.1. Fusion Model: Implementation and Results

In this research work and as depicted in Figure 2,
10 T1FLSs that have different structures, as previ-
ously stated, were developed for each output (i.e., a
mechanical characteristic). Each TIFLS was estab-
lished by partitioning the data into training (28) and
testing (8) sets. The training and testing sets are gen-
erally utilized to extract the relationships and evalu-
ate the T1FLS’s generalization capabilities, respec-
tively [47]. The training and testing sets of the 10
T1FLSs have the same numbers of data points. How-
ever, such points have different distributions in the
space examined. Therefore, the various TIFLSs de-
veloped can simulate the input/output relationships.
To develop a representative system for the FDM pro-
cess, the FDM parameters needs to be carefully con-
sidered. For instance, material type and infill pattern
were considered as singleton variables (i.e., crisp or

discrete), whereas the remaining FDM parameters
were considered as continuous variables. Various
numbers of rules were examined for each TIFLS.
The optimal one that was chosen was the one that
provided the optimal predictive performance deter-
mined by the root mean square error (RMSE) (i.e.,
the minimum RMSE value). For a specific number of
rules, the system’s parameters were initially assigned
via the hierarchical approach presented in [59]. These
parameters were then optimized during the training
process by utilizing the steepest descent procedure
that was embedded in the back-propagation paradigm
[58].

For the ultimate tensile strength, 11 rules, as the
best number of rules, were used to develop the
T1FLS. Figure 4 shows an example of one of these
rules. The linguistic representation of such a rule is
presented in Figure 4.
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Figure 5 shows the predictive performance for one
of the T1FLSs developed using 11 rules, as the best
number of rules for this system. The RMSE values
for training and testing sets are 9.65 MPa and 8.97
MPa, respectively, whereas the R? values for the cor-
responding sets are 0.81 and 0.78, respectively. Such
performance measures represent the average values
of all points, in other words, they do not show how
the model behaves in the space examined. To eluci-
date, it is apparent from Figure 5 that 14 data points
in the training set out of 28 and 4 data points in the
testing set out of 8 lay outside the 90% confidence
interval. Furthermore, the data points in both sets are
scattered around the best-fit line. Such behaviours
were not detected by looking at both the RMSE and
R? values. Such behaviours can be attributed to (i) the
highly nonlinear relationships between the FDM pa-
rameters and the ultimate tensile strength; (ii) the
limited number of data points that are used to devel-
op a TIFLS, as a data-driven model; and (iii) the
number of input parameters (i.e., nine) examined
which can result in the phenomenon of the “curse of
dimensionality” when the data points are limited.
Therefore, and based on the results of the 10 TIFLSs
developed that have similar behaviours to the system
presented in Figure 5 but different in the space exam-
ined, it was obvious that a single TIFLS cannot be
used to simulate the FDM process and anticipate the
mechanical characteristics using such limited data
points. Therefore, there is a need for the new fusion
model presented in Section 3.

Once the 10 T1FLSs were developed, their per-
formance behaviours in the space were classified into
the three abovementioned classes using the k-means
clustering algorithm. Therefore, the FDM parameters
and the residuals of these 10 T1FLSs were employed
to identify the behaviours of the models (i.e., areas
where the performance of a model is Unsatisfactory,
Satisfactory and Excellent). The parameters of the
identified clusters were estimated. Figure 6 depicts
the membership functions for these three clusters
with their parameters for the 10 TIFLSs developed.

Figure 7 shows how one of the developed T1FLSs
behaved in an area for the strength. It indicates that
the performance of such a TIFLS is Excellent when
the material is PEEK, infill pattern is grid, layer
thickness is high, infill density is high, print speed is
high, number of shells is medium, cooling rate is
small, layer orientation is 45° and raster width is me-
dium.
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Figure 5 The performance of a TIFLS for the ultimate tensile
strength with a 90% confidence level: (a) Training and (b) Testing
sets.
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Figure 6 The three clusters of the predictive performance of the
TIFLSs.

Based on the identified clusters for the 10 T1FLSs,
the defined membership was utilized to determine the
mass functions, as described in Section 3. Such mass
functions were then integrated as mathematically
shown in Equation (4) in order to find the ones for
the fusion model that integrated the 10 TIFLSs. Then,
the membership function values of such a model
were estimated by numerically solving Equation (3).



Finally, the outputs were then determined by the
height defuzzification. Figure 8 depicts the perfor-
mance of the proposed fusion model for the strength,
where the RMSE (training, testing) and R? (training,
testing) are [3.57, 6.99] MPa and [0.96, 0.96], respec-
tively. The testing RMSE value is twice the training
one. However, such a high value is due to that 6 data
points that have values of 60MPa or greater, whereas
the majority of the data points in the training set have
values that are less than 60MPa. Therefore, such a
high value is not due to overfitting. This can be prov-
en by looking at the R? values. It is apparent that the
performance of such a newly model outperformed the
single system with an average overall improvement
of 20% in R? for the ultimate tensile strength. It is
also noticeable that all the points are within the con-
fidence band. Furthermore, they are scattered neatly
around the best-fit line.

In a similar manner, a TIFLS and the fusion mod-
el based on 10 T1FLSs were utilized to predict the
elongation values and micro-hardness. The predictive
performance for these models is listed in Table 3.
Such a table shows that the predictive performance
values of T1FLSs developed for both elongation and
micro-hardness were not acceptable. Therefore, the
fusion model was used to improve the predictive per-
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formance. The performance values of the fusion
models developed for the two mechanical character-
istics are better than those of the TIFLSs with aver-
age overall improvements of 27% and 30% in R2
respectively.

For comparison purposes, IT2FLS and the radial
based integrated network presented in [42] and [43],
respectively, were employed to predict the three me-
chanical characteristics. The results obtained are also
summarized in Table 3. It is noticeable that the fu-
sion model outperformed these models with a con-
siderable improvement. This can be attributed to (i)
its structure that consists of several T1FLSs that can
play an integral role in extracting and representing
the relationships between the FDM parameters and
the mechanical characteristics; (ii) its ability to ana-
lyse the behaviours of these systems in the different
areas of the space examined; and (iii) its ability to
integrate the predicted outputs in these areas in a way
that can improve the predictive performance. In addi-
tion, the fusion model can provide a linguistic under-
standing of the relationships between the FDM pa-
rameters and the mechanical characteristics that can
be utilized to control and understand the process.

=)
o

o

05

Membership function

)

Membership function

% 40 e s
Infill density

0.15
Layer thickness

02 100

05

05

Membership function

Membership function

0
0 20 40 60 80
Layer orientation

05
Cooling rate

Figure 7 The performance of a TIFLS in the space area of the ultimate tensile strength.
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Table 3 The performance values.

Model Strength (MPa) Elongation (%) Microhardness
R? Train 0.81 0.74 0.71
TIFLS Tes.t 0.78 0.75 0.7
RMSE Train 9.65 5.8 2.76
Test 8.97 5.8 2.85
R? Train 0.88 0.8 0.76
Test 0.87 0.81 0.75
IT2FLS RMSE Train 6.57 4.48 2.27
Test 6.79 4.51 2.28
R Train 0.94 0.93 0.90
Integrated Test 0.91 0.91 091
network Train 2.3 1.30
RMSE Test 7.6 1.40
R2 Train 0.96 0.94 0.92
Fusion Test 0.96 0.95 0.93
model Train 3.57 3.72 1.41
RMSE Test 6.99 3.71 1.38
1001
4.2. Model Verification: Medical Applications <0
The capabilities of the fusion paradigm in anticipat- 2 60
ing the three mechanical characteristics of the 3D- =
printed parts were demonstrated by predicting these g 40
attributes for a dental implant (i.e., MidFace Rim) 20
presented in Figure 9. Such a part was produced by
the same printer mentioned in the second section 0

using PEEK. The printing parameters in terms of
infill pattern and its density, thickness, printing
speed, number of shells, cooling rate, printing orien-
tation and raster width were cubic, 100%, 0.12mm,
20mmy/s, 3, 0%, 0° and 0.4mm, respectively. It is
worth noting that measuring the strength and elonga-
tion for such a part, which is not printed according to
the specifications of the standard test parts, is not as
simple as it may seem and may not provide accurate
measurements. Therefore, the new fusion model can
be employed in this case and perhaps similar ones to
anticipate these attributes. Therefore, the mechanical
characteristics were predicted using the fusion mod-
els developed in Section 4.1. The anticipated values
of the MidFace rim were 102.4MPa, 19.5 and 29.3
for the strength, elongation and micro-hardness re-
spectively. The average of measured values of the
micro-hardness for the MidFace Rim is 30.5 which is
close to the anticipated one (i.e., 29.3).
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Figure 8 The predictive performance of the proposed fused model
for the strength with a 90% confidence band: (a) Training and (b)
Testing sets.
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Figure 9 MidFace Rim.

5. Conclusion

A novel fusion model based on incorporating a type-
1 fuzzy logic system (T1FLS) and the Dempster-
Shafer theory (DST) was presented in this research
article to simulate the 3D fused deposition process.
Such a model was developed in two stages. First, sev-
eral TIFLSs having different structures were devel-
oped. Second, the fuzzy based DST was employed to
integrate the predicted outputs of the T1FLSs after
analysing their behaviours in the space examined. In
addition to integrating and analysing the behaviours of
the T1FLSs, such a model can resolve possible con-
flicts among these systems and, as a result, can lead to
a better predictive performance. In summary, the fu-
sion model presents a promising advancement not only
in 3D printing and its techniques but also in other
equally complex processes with highly dimensional
spaces and a limited number of sparsely distributed
data points. In the future, the fusion model can be in-
corporated with multi-objective optimization para-
digms in order to identify the best 3D printing parame-
ters that need to be employed to produce 3D printed
specimens with predefined attributes. This incorpora-
tion can lead to minimizing waste and recycling ratio
and reducing time-to-market.
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