
Towards bridging ontological and closed-world
modelling with synchronised EMF views of RDF

models
Owen James Reynolds

ASE research group,
University of York

York, UK
owen.reynolds@york.ac.uk

0000-0002-5639-0533

Antonio Garcı́a-Domı́nguez
ASE research group,
University of York

York, UK
a.garcia-dominguez@york.ac.uk

0000-0002-4744-9150

Dimitris Kolovos
ASE research group,
University of York

York, UK
dimitris.kolovos@york.ac.uk

0000-0002-1724-6563

Gianmaria Bullegas
Leonardo UK,

Edinburgh, Scotland
Gianmaria.Bullegas@leonardo.com

Campbell Mccausland
Leonardo UK,

Edinburgh, Scotland
campbell.mccausland@leonardo.com

Abstract—Closed-world modelling is a common approach for
modelling high-integrity systems where robust verification and
validation is required. However, closed-world modelling can be
rigid, and at times this rigidity can hinder system develop-
ment. Ontological modelling has several advantages over closed-
world modelling, most notably its flexibility, which enables
unanticipated information to be freely attached to a model.
Some organisations have made significant investments in closed-
world modelling techniques for designing high-integrity systems,
including developing domain-specific model editors on top of
mature frameworks, such as Xtext and Sirius. Similarly, some
model management programs that focus on controlled models
will still be needed. However, they may benefit from having
the option to access some additional information outside that
controlled subset.

Prior works have explored ways to bridge the worlds of
Resource Description Framework (RDF) and Eclipse Modeling
Framework (EMF) modelling. These approaches are often based
on model transformations and fail to take advantage of Semantic
Web technologies such as reasoners. They can also result in a loss
of data when reducing the ontological model to fit a closed-world
modelling language.

In this paper, we propose an approach to bridge EMF
closed-world and RDF open-world ontological modelling, by
exposing editable closed-world views of an ontological model
for EMF-based modelling tools. The exposed closed-world view
supports reading and writing to the model: this is achieved
through synchronisation of the EMF and RDF representations
of the model. We demonstrate the approach with an open-source
implementation built using EMF and Apache Jena. A series of
case studies illustrate how we handle some of the differences
between ontological models and closed-world models.

Index Terms—Model-Driven Engineering, closed-world mod-
elling, open-world modelling, ontological modelling.

I. INTRODUCTION

Developing high-integrity systems demands robust verifica-
tion and validation techniques to meet various regulatory and

safety requirements for the system’s domain. The tools and
practices provided by Model-Driven Engineering (MDE) can
help develop a high-integrity system when combined with a
methodology [1]. In MDE, models are treated as first-class
citizens in the development process that creates a system or
a product. The models in the development process can be
managed with automated processes. Some automated model
management tasks can be embedded into a DevOps pipeline,
enabling a more agile approach to the MDE development
process [2], [3]. Thus, MDE-based projects can benefit from
the use of automation and version control, like other software
development practices.

While MDE has provided solutions to many problems, a
survey by Alfraihi and Lano [3] identified some issues. In
their findings, Alfraihi and Lano, comment on MDE tools
and notations having a strong ‘lock-in’ to specific ways of
working. This rigidity becomes a challenge to the desire to
work incrementally or in an agile way. It also restricts the
MDE development processes to using MDE tools, which can
have issues with poor efficiency on large-scale models.

An open-world approach to modelling is considered to be
more agile than closed-world MDE modelling, and as such
could provide solutions for some of MDE’s challenges, such
as scalability. There is a long history of different approaches
to trying to combine these two techniques for different pur-
poses [4], [5]. OpenCAESAR [6] is a recent attempt to
combine Model-Based System Engineering (MBSE) with the
open-world modelling techniques seen in the Semantic Web
(SW) [7] communities.

Developing a system with MDE requires a significant
investment in time, effort and resources. It is also hard to
establish teams of developers that are skilled in MDE, as
noted by Alfraihi and Lano’s survey [3] on MDE practices.

Thus, an organisation that has invested in a set of MDE tools
and training for developers may not want to migrate to a
newer MDE tool like OpenCAESAR, which may offer some
advantages from open-world models.

In this paper, we explore an approach to combining MDE
closed-world models based on the Eclipse Modeling Frame-
work (EMF) [8] with SW open-world models based on
the W3C Resource Descriptor Framework (RDF) [9], [10].
Specifically, the development of an EMF resource, which is
an implementation of a Java interface that supports models
expressed using different persistence formats, for example,
file formats like XML or JSON. An EMF resource hides
the implementation details of the model persistence from
the modelling tools; thus, different EMF resources can be
used transparently from a tooling perspective. This new EMF
resource can be used with the Eclipse EMF IDE [8], Eclipse
Epsilon [11], or other EMF-compatible tools. This resource
is envisaged as a means to enable existing EMF models and
tools to have access to SW technologies. This interoperability
could then enable new ways of working that build upon current
MDE practices. The EMF-RDF resource presented in the paper
is open-source and under development at its Epsilon Labs
GitHub repository1.

The paper is structured as follows: some background is
provided in Section II. In Section III, there is a discussion
of the problems and objectives this research is exploring. The
design and development of the software artefacts are presented
in Section IV, followed by a review of related works in
Section V and the paper offers conclusions in Section VI.

II. BACKGROUND

Before proceeding, it is necessary to define some of the key
concepts being discussed and provide some background on the
technologies presented in this paper.

A. Definition of open- and closed-world for this paper

In this paper, we will use the terms open-world and closed-
world to describe modelling or models. The use of these terms
comes from Open-World Assumption (OWA) and Closed-
World Assumptions (CWA). Statements about knowledge
made under OWA conditions never assume things are false
if there is no proof of it being true [12]; a state of ‘unknown’
can exist. Under CWA conditions, statements are either true
or false; the ‘unknown’ state is not permitted, and anything
not known is assumed to be false.

These approaches to assumptions can be applied to mod-
elling; a modeller can create or handle a model under OWA
or CWA conditions [6]. For example, under OWA conditions,
it would be possible to create model elements without defining
their types; an unknown type is permitted. This enables a
very flexible approach to developing a model. However, OWA
conditions are not appropriate for all modelling tasks. For
example, a model verification process requires more rigid
CWA conditions; CWA conditions require all model elements
to have a type, unlike the model under OWA conditions.

1https://github.com/epsilonlabs/emf-rdf

B. Eclipse Modelling Framework - closed-world modelling

The Eclipse Modeling Framework (EMF) [8] is an open-
source modelling ecosystem that many other modelling tools
are built on or support. In EMF, models conform to closed-
world metamodels (modelling languages) that define the con-
cepts a model can comprise, including their permitted relations
and properties. Using the EMF IDE, a modelling language can
be created for domain experts, and a new EMF IDE application
can be automatically generated (using code generation) for the
domain experts to install and use to create models.

Eclipse Epsilon [11] is a model management tool that
natively supports EMF models with its family of scripting
languages for automating common model-based software en-
gineering tasks. However, Epsilon also provides a model
connectivity layer (EMC) that enables many different model
formats to be accessed through different drivers. The drivers
shield developers from the details of the technology used
to implement a model; their programs query/modify models
through a uniform presentation independent of the model
format.

C. Semantic Web - open-world modelling

W3C has a vision of a technology stack to support the
creation of a web of data, similar to the web of documents
on the internet [7]. This vision includes the idea that people
would create and store data on the web using vocabularies.
Vocabularies would help with writing rules for handling data,
by providing some guidance or structures to help interpret
stored data. Ontologies can be created using technologies such
as OWL [13], which are examples of standard vocabularies
used in the Semantic Web.

Apache Jena, from the Apache Software Foundation [14],
is an open-source Java framework for building web and linked
data applications. The Jena framework provides some APIs for
working with RDF data, ontologies (OWL) and inference for
reasoning about data. Jena can work with triple stores such as
TDB2 and Fuseki3 for persisting semantic open-world models.

III. RESEARCH PROBLEMS AND OBJECTIVES

EMF models require a modelling language to be defined
before creating a model. Changing a modelling language
after creating a model can be difficult; models based on the
language being changed can become invalid and require a
transformation process to correct them. It would be desirable
to have the ability to add new concepts to a model without
this expense. Modellers could benefit from a low-cost method
to handle new information that does not require extending a
modelling language.

Transformations in MDE are typically one-to-one mappings
(Fig. 1), requiring a new transformation program to be written
to exchange models between formats or tools. Integrating the
different MDE tools at scale using model transformations
becomes difficult and costly to maintain because of the number

2https://jena.apache.org/documentation/tdb/
3https://jena.apache.org/documentation/fuseki2/

Fig. 1: MDE Model transformations for integrating tools

of transformation programs that can be involved. It would
be desirable to explore an open-world RDF approach to
performing these transformations. For example, whether a
reasoner and schema could be used to create a transformation,
or whether an RDF presentation of a model could be used to
synthesise many different model notations (formats) through
a generic transformation process that is defined per MDE tool
(one-to-many arrangement).

The knowledge required to answer some questions about a
system may be difficult to collect: for example, the knowledge
might be spread over more than one model. These questions
require queries to be written to extract the data from multiple
models. A further complication is added when the models
are managed with different MDE tools, each with their own
query language and/or modelling languages. It would be more
convenient if the models could be combined in a single space,
as a combined view of the models. A combined view of the
models could be more easily queried for knowledge; it may
also be possible to infer new knowledge from connections that
can be established between model elements.

Within the context of an MDE modelling tool, there can
be limitations imposed on the kind of knowledge that can
be stored with a model. This knowledge is not part of the
model itself, but could be related to the development of
the model or a relationship with another artefact within the
project. For example, some configuration values in a model
could be derived from values given to the modeller in a
specification document, and a record of this relationship could
be useful for traceability for regulatory compliance. There may
be advantages to being able to store additional knowledge
about a model that enhances how it is managed.

Organisations may have a significant investment in MDE
tools through customisations or automations. Therefore, an
approach to open-world modelling that can integrate with
an organisation’s existing MDE investments could help to
bridge the gap between open- and closed-worlds and aid in
the adoption of more ontological modelling approaches. The
vision of how this transition could be achieved is explained
below.

Fig. 2: Exchanging closed-world models via an open-world
model

Our long-term objective is to enable the creation of a virtual
open-world model, composed of several closed-world models
that can be accessed with either ontological or MDE tools. It
seems feasible that several closed-world models could exist in
the same open-world model, assuming the open-world model
has a federated namespace that all the closed-world models
conform to (Fig. 2). Bringing closed-world models into an
open-world modelling space, and maintaining interoperability
with the original closed-world modelling tools while avoiding
unintentional data losses from transformations could help
address the problems discussed above, through a fusion of
open- and closed-world modelling technologies.

Fig. 3: Model composed of elements conforming to a mod-
elling language and generic RDF triples

A closed-world subset of an open-world model could be
modified by changing the RDF statements that directly relate
to it. Additionally, it would also be possible to add other RDF
statements to a model, and these would not have to conform to
the modelling language of the closed-world subset. However,
under closed-world conditions, the additional RDF statements
that do not relate to a closed-world model’s modelling lan-
guage should be hidden to maintain compatibility with the
original MDE tooling.

Figure 3 shows an RDF model containing circles, triangles
and diamonds. The circles and triangles represent information

that conforms to a closed-modelling language. An MDE tool
that is confined to the closed-modelling language should be
able to access the information in these RDF nodes as native
MDE model resources. However, the MDE tool could also
have access to a second generic RDF modelling language,
which enables access to the information in the diamond RDF-
only nodes. Accessing information in these nodes would not
be as convenient as the closed-modelling language; the MDE
tool would need to more directly query the RDF without being
able to make closed-world assumptions.

Typically, in a transformation approach, the circles and
triangles are extracted from the RDF model into an MDE
model. The diamond nodes that are not part of the closed-
modelling language would not be copied into the MDE model.
As such, transforming the MDE model back into RDF to
save changes would lose the diamonds if the original RDF
were overwritten. MDE tools should not lose the additional
(diamond) RDF statements when saving the MDE model back
to this RDF model. The open-world model containing the
closed-world model should be preserved in its entirety, even
when accessed by a closed-world MDE tool.

Having the ability to make additional statements about a
closed-world model when it is part of the open-world model
presents some interesting opportunities. These additional state-
ments could capture a wide array of knowledge about a model
like: provenance data for changes made to the closed-world
model, keeping versioning information, or linking parts of a
model with sources of documentation outside an MDE tool.
This is where the flexibility of the open-world model leads to
potentially innovative ways of working that traditionally would
have been difficult or costly using only MDE tools.

A closed-world model represented in RDF can be combined
with other RDF models, like a schema, that contains additional
knowledge or explanations about a model. Information might
be added to a model before communicating/sending it to
someone else. For example, this additional information might
be instructions on the conditions under which to use a model
or the model’s limitations, possibly mappings between or
explanations of domain-specific terminology. Thus, RDF with
a collection of suitable ontologies could become the lingua
franca for communicating models between teams that use
different MDE- or ontology-based tools.

The open-world model of closed-world models would be
virtual; it does not need to be persisted as a single large
database or file. Graph unions make it possible to divide
a large open-world model into sub-graphs, which can be
combined to create ad-hoc models for a specific purpose on
demand. A natural fragmentation of the virtual open-world
model occurs with each instance of a closed-world model.
Each model created using an MDE tool could be considered
as an individual subgraph. The unified namespace of the virtual
open-world model would separate the models (or join them on
common parts that should overlap), enabling any combination
of closed-world models to be loaded into the same space as a
graph union.

With all the closed-world models existing in a single open-

world model, it would be possible to query or view any
combination of the models. Graph reasoners might then enable
new knowledge to be added to the open-world model; for
example, a reasoner could identify a common element in
two different domain-specific models, where each model uses
different domain-specific names for the same part. Or a query
could be written to explore the dependencies between various
models to estimate the effect of a change in a design.

However, exploring the potential for using RDF as a lingua
franca for EMF models requires a tool that enables MDE
models to be persisted in RDF, without causing a loss of
information. As such, our initial objective is to implement an
EMF resource (compatible with several existing MDE tools)
that directly uses RDF to persist the model, instead of XMI
or a model repository. This EMF-RDF resource should enable
different models and modelling languages to be used like a
normal EMF resource, but it should also enable direct access
to the RDF model to access information outside of the MDE
tools’ typical closed-world model.

IV. DESIGN AND DEVELOPMENT

In designing a method to persist MDE models in RDF,
it was clear from reviewing past attempts that MDE model-
to-model transformations should be avoided. Instead, a more
direct approach that simultaneously maintains both closed-
world and open-world representations could be used, removing
the need for a model-to-model transformation. Ideally, this
method for persisting EMF models with RDF would also
maintain compatibility with existing MDE tools; for example,
an RDF representation of an EMF model should not require
that a tool or program be changed to handle a new notation
introduced by the method to store the model in RDF. The
MDE model in its RDF form can be freely extended/changed
by editing RDF statements. Additional RDF statements outside
of the model’s modelling language can be accessed by an MDE
tool through a generic RDF modelling language. This generic
RDF modelling language exposes the RDF statements using
EMF EObjects that an MDE tool can interpret.

The architecture of the Eclipse Modeling Framework (EMF)
is amenable to being extended for working with different types
of structured models that can be persisted in many different
ways. For this reason, EMF has been selected as the MDE
technology for this research, which is the foundation of many
existing modelling tools. The open-source Apache Jena library
has been selected to handle open-world RDF models. Jena can
read and write RDF from files using several notations, or a
triple store like TDB or Fuseki.

Our approach creates an EMF resource which synchronises
changes between EMF and RDF representations of an in-
memory EMF model: we call this an EMF-RDF resource.
Only the RDF representation is persisted on disk. When an
RDF representation is loaded, a deserialiser recreates the in-
memory model containing EMF and RDF representations.
RDF statements relating to the EMF model’s modelling lan-
guage become EMF EObject instances in the EMF repre-
sentation. Thus, the EMF-RDF resource is expected to be

Fig. 4: EMF-RDF resource architecture

fully compatible with existing EMF-based tools, as it should
behave like a native EMF resource. Additionally, the resource
includes an API to access the original RDF resource backing
an EObject directly.

The facilities within Jena enable the EMF-RDF resource
to load several RDF data models and schema models into a
single RDF model, before deserialising them as an EMF model
(Fig. 4). This approach allows an EMF model to be created
from (and therefore split across) several RDF sources. The
deserialisation process requires the RDF representation of an
EMF model to be valid, but it does not require it to be a
complete model. The deserialiser can partially load models
when only some RDF sources are available, which enables an
incomplete or broken EMF model in an EMF-RDF resource to
be loaded and worked on. An EMF model may be incomplete
because it is still being created, so it is missing elements. If the
deserialiser cannot access some RDF resources, it will fail to
create model elements. An EMF model would be considered
broken if missing elements are marked as mandatory in the
modelling language (e.g. with non-zero minimum cardinalities
in the EMF meta-model).

The EMF-RDF resource can be configured to use Jena’s
reasoner to apply one or more OWL schemas to the RDF data
models, before deserialisation is performed. A schema could
be used to infer statements from an RDF model, to enrich some
information before producing the EMF model representation.
While this is not a critical feature in the initial development of
the EMF-RDF resource, it is a facility that could be useful in
the long-term objective of creating a virtual open-world model.

A simple case study example from the EMF-RDF resource
Git repository is used to demonstrate the design and develop-
ment of the EMF-RDF resource. The case study RDF data
model is presented in Listing 1 in Turtle format, and the
EMF Ecore metamodel (modelling language) in Listing 2. The
EMF-RDF resource can be used with the Eclipse EMF IDE: it
is possible to edit and view the models, or create visualisations
with tools like Picto [15].

A. Loading EMF models from an EMF-RDF resource

The EMF-RDF resource deserialisation process creates an
EMF model instance from a set of RDF statements. This pro-

1 @base <http://my.org/>.
2 @prefix rdf: <http://www.w3 ⌋

.org/1999/02/22-rdf-syntax-ns#>.↪→
3 @prefix rdfs:

<http://www.w3.org/2000/01/rdf-schema#>.↪→
4 @prefix orgc: <http://york.ac ⌋

.uk/emf-rdf/examples/orgchart#>.↪→
5
6 <#organisation>
7 a orgc:Organisation;
8 orgc:name "My Organisation";
9 orgc:teams (<teams#dev> <teams#marketing>).

10
11 <teams#dev>
12 a orgc:Team;
13 orgc:name "Development Team";
14 orgc:employees <employees#1234>;
15
16 <employees#1234>
17 a orgc:Employee;
18 orgc:name "John Doe".

Listing 1: Organisational chart’s shortened turtle file

1 @namespace(uri="http://york.ac ⌋
.uk/emf-rdf/examples/orgchart")↪→

2 package orgchart;
3
4 class Organisation {
5 attr String name;
6 val Team[*] teams;
7 }
8
9 class Team {

10 attr String name;
11 val Employee[*] employees;
12 }
13
14 class Employee {
15 attr String name;
16 }

Listing 2: The organisation chart’s EMF Ecore metamodel
(modelling language)

cess produces bidirectional mappings between RDF resources
and EMF EObjects. The EMF-RDF resource is loaded against
an EMF Ecore metamodel, like a normal EMF resource. Only
the RDF statements relating to the modelling language will
create EObjects (Fig. 5). The deserialiser matches names-
paces/names in the modelling language to RDF namespaces
and rdf:type statements; users do not need to provide mapping
information. The other RDF statements are accessible through
Jena APIs, by reusing the above mappings to obtain the RDF
resource backing a given EObject.

In Fig. 5, the EMF-RDF resource is being viewed from the
perspective of a modelling tool looking at an EObject (square
box, thisObject). The black arrows connect the EObject to
the RDF nodes (rounded boxes) from which the deserialiser

thisObject : Employee
name = John Doe

./employees#1234

“John Doe”

./orgchart#name

Fig. 5: EMF EObject view of an employee’s RDF resource

1 @prefix academic: <http://york.ac ⌋
.uk/emf-rdf/examples/academic#> .↪→

2 <employees#1234>
3 a orgc:Employee;
4 orgc:name "John Doe";
5 academic:orcid "0000-0000-2222-1111".

Listing 3: Turtle statement added for John Doe’s ORCID

thisObject : Employee
name = John Doe

./employees#1234

“John Doe”

./orgchart#name
“0000-0000-2222-1111”

./academic#orcid

Fig. 6: The red arrow indicates RDF information outside of
the modelling language that is accessible via the RDF escape

derived the EObject.
The EMF model of John Doe only shows the features

described in the modelling language. However, the RDF model
for John Doe can include additional information outside of the
modelling language. John Doe’s ORCID4 identifier has been
added on line 5 of Listing 3. The ORCID can be seen in
Fig. 6: a red dashed arrow indicates that a related RDF node
exists outside of the modelling language in Listing 2. This
additional information was accessed by using the EMF-RDF
API for mapping between EMF EObjects and their backing
RDF resources.

B. Editing EMF models in EMF-RDF resources

Having deserialised the RDF to extract an EMF model,
an EMF-compatible tool can be used to edit the EMF rep-
resentation of the model. As changes are made to the EMF
representation, EMF’s notification system triggers a process
to produce the same changes to the RDF representation. This
low-level change-by-change synchronisation keeps the RDF
and EMF representations aligned; only the RDF statements
relating to the changed EMF model features are updated.

Loading a model from an EMF-RDF resource into Eclipse
IDE, we could edit John Doe’s name and save the model
without losing the additional RDF statement containing his
ORCID (line 5 of Listing 3). Editing the EMF representation
of his name would produce an EMF notification that removes
the old RDF statement (line 4 of Listing 3) and replaces it
with a new one containing the new name.

Approaching the problem using this synchronisation method
eliminates the need for complex model transformations to
avoid data loss. A transformation may need to account for
multiple changes and the order changes occurred, in addition
to merging RDF statements outside of the modelling language.
This synchronisation approach might be considered as a type
of transformation; however, it is performed at an atomic level
as change notifications arrive in sequence.

4https://orcid.org

1 @prefix academic: <http://york.ac ⌋
.uk/emf-rdf/examples/academic#> .↪→

2 <employees#1234>
3 a orgc:Employee ;
4 orgc:name "John Doe";
5 a academic:Academic;
6 academic:name "John Doe";
7 academic:orcid "0000-0000-2222-1111".

Listing 4: Academic statements added to John Doe

1 @namespace(uri="http://york.ac ⌋
.uk/emf-rdf/examples/academic")↪→

2 package academic;
3
4 class Academic {
5 attr String name;
6 attr String orcid;
7 }

Listing 5: EMF metamodel for new Academic class

Apache Jena has a similar notification infrastructure to
EMF, which could be used to detect changes to an RDF
model. Processing Jena’s notification of changes to the RDF
statements could be used to update the EMF representation of
a model without deserialising all the RDF statements. In future
work, we envisage using Jena’s notifications to update the
EMF representations in an EMF-RDF resource, enabling bi-
directional synchronisation with the virtual open-world model.

C. Handling multi-type RDF resources

There may be more than one rdf:type statement for an
RDF node representing an element. In EMF every element
(EObject) is an instance of a single type (EClass). When a
model contains an element with multiple types, the EMF-RDF
resource produces an EObject instance for each type of the
RDF node that is present in the EMF metamodel. It is worth
noting that when the EClasses have subtype relationships (e.g.
Employee and Developer), our approach chooses the most
specific type for deserialisation (e.g. Developer).

Listing 4 shows a Turtle file where John Doe has been
extended with more information, becoming an Academic (line
5) in addition to an Employee (line 3).

Listing 5 shows a new metamodel with a single Academic
EClass, which is registered with the EMF-RDF resource for

eob1 : Employee
name = John Doe

eob2 : Academic
name = John Doe

orcid : 0000-0000-2222-1111

./employees#1234

“0000-0000-2222-1111”

“John Doe”

./academic#orcid

./orgchart#name ./academic#name

Fig. 7: RDF nodes with multiple types are represented with
multiple EObjects in the EMF model

deserialisation. The URI on line 1 maps to the prefix in line
1 of the Turtle file in Listing 4, indicating to the deserialiser
that these things are the same. RDF predicates map to EMF
feature names (names of EAttributes/EReferences).

A view of the EMF-RDF resource from the perspective
of the ‘./employees#1234’ node is presented in Fig 7. John
Doe’s single RDF node has produced two EObjects, one
representing him as an Employee and another as an Academic.
In this example, we repeat his name in two statements with
different predicates (lines 4 and 6, in Listing 4) so his name is
present in both EObject instances. While RDF is incredibly
flexible, RDF statements can be very precise; without the
‘academic:name’ statements, his name would not appear in
the Academic EObject.

In a real RDF model, we might use an ontology to re-
late the Academic and Employee names (e.g. using OWL’s
equivalentProperty). However, for this example, we
used more than one statement to explore the situation where
editing a model requires changing more than one statement
relating to the same information. When editing John Doe’s
name via the EMF model, the mapping of multiple RDF
classes to multiple instances of EObjects creates an interesting
problem. The RDF statements are precise, so editing his name
in this example could change different statements depending
on the modeller’s intent. For example, the modeller may
want to change John Doe’s Academic name and have his
Employee name remain unchanged, or may want to change
both statements to maintain consistency.

Editing the RDF directly requires the modeller to decide
which statements to change. However, if the editor uses an
EMF tool to edit the EObjects, then the EMF-RDF resource
needs to be told which statements the editor intends to change.
A literal interpretation of editing the Academic EObject could
be taken, which would only update the Academic name
RDF statement. Alternatively, it may be that the Employee
EObject is the only place a name should be editable, in
which case edits to the Employee instance should update
all statements about John Doe’s name. We intend to look
at various alternatives to specify this behaviour, such as
honouring OWL’s equivalentProperty if specified, or
providing configuration options for the EMF-RDF resource.

D. Separating and combining model information

As mentioned earlier and shown in Fig. 4, the EMF-RDF
resource can load multiple RDF data models, combining them
with a graph union and applying reasoning. This can be useful
when a large body of information sometimes needs to be
separated into more manageable chunks. Breaking information
into chunks might be required because of hardware resource
limitations, or there is a need to abstract and remove details
for a global view of the information.

There is an increasing need for organisations to handle sen-
sitive information more carefully for compliance and security
reasons. One approach to managing information security is to
use the least amount of information required for any given task
or process. To do this, we might divide the information into

1 @base <http://my.org/> .
2 @prefix rdf:

<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
.

↪→
↪→

3 @prefix rdfs:
<http://www.w3.org/2000/01/rdf-schema#> .↪→

4 @prefix orge: <http://york.ac ⌋
.uk/emf-rdf/examples/orgchart-extra#> .↪→

5
6 <employees#1234>
7 a orge:ExtendedEmployee ;
8 orge:salary 40000 .

Listing 6: Separate RDF data models can be used to hold
restricted information

1 @namespace(uri="http://york.ac ⌋
.uk/emf-rdf/examples/orgchart-extra")↪→

2 package orgchart_extra;
3
4 import "http://york.ac ⌋

.uk/emf-rdf/examples/orgchart";↪→
5
6 class ExtendedEmployee extends orgchart.Employee

{↪→
7 attr int salary;
8 }

Listing 7: An extended EMF metamodel is needed to show
the restricted information in an EMF model

separate files based on the level of sensitivity and secure them
appropriately. Then the smaller files containing the required
information would be recombined for a task/process when
needed under the appropriate security conditions.

RDF statements can be divided across multiple locations,
and each location can be secured as needed. This makes it
possible to separate individual statements containing sensitive
information from less sensitive information at a very fine-
grained level. Using a graph union operation under appropriate
security conditions, sensitive information can be combined
with non-sensitive information easily; this is possible with the
EMF-RDF resource.

In this example, John Doe’s salary information is stored in

1 dataModels:
2 - myorg.ttl
3 - myorg-extra.ttl

Listing 8: EMF-RDF resource configuration file listing the
RDF data models to be unionised to create an EMF model

thisObject : ExtendedEmployee
name = John Doe

salary = 40000

./employees#1234

“John Doe” “40000”ˆˆxsd:integer

./orgchart#name ./orgchart-extra#salary

Fig. 8: Using the extended EMF modelling language and
additional RDF data model, the restricted information can be
accessed through the EMF model representation

a separate Turtle file, away from the rest of the organisational
chart (Listing 6). Only certain individuals in the organisation
can access the file containing the employee’s RDF node and
salary information. In addition to access to the Turtle file,
an extended EMF modelling language is needed that extends
the Employee class with a salary attribute (Listing 7). The
EMF-RDF resource is configured with two RDF data model
sources as shown in Listing 8 before being accessed with an
EMF-compatible tool. In Figure 8, the view of the EObject
instance for John Doe with the extra salary information is
shown, whereas Figure 5 is all that would be visible without
the extra EMF modelling language and Turtle file. Note how
the object is only exposed as an instance of the most concrete
type between its two types (ExtendedEmployee).

The approach demonstrated does not address all security
concerns, which are beyond the scope of the research. How-
ever, this technique might complement other security measures
or be used in other ways, such as removing layers of detail
from a model. These use cases create a further need for
configurable behaviour in the EMF-RDF resource to direct
where certain RDF statements are written when the model’s
EMF representation is edited.

E. Saving EMF models in EMF-RDF resources

Currently, the EMF-RDF resource assumes that OWL
schemas are read-only, and Jena treats inferred RDF statements
as read-only. Thus, only RDF data model statements can be
changed, and each data model is saved back to its original
location. The EMF-RDF resource relies on Jena to handle I/O
operations to sources and to identify the format of the RDF
data model; the same format is used when saving RDF data
models.

An EMF-RDF resource with more than one RDF data
model has several in-memory RDF data models that could
be saved when an EMF modelling tool requests that the EMF
model be saved. Depending on the edits made to the EMF
model, changes to RDF statements could occur in any of
the in-memory RDF models. Saving an RDF model to a file
overwrites the original file, which may not be desirable; some
RDF data models might have been loaded as a reference with
no intention of them being edited. The default behaviour of
the EMF-RDF resource is to save all the loaded RDF data
models. We are considering adding a configuration option to
mark some RDF data models as read-only, excluding them
from a save operation.

How the EMF-RDF resource updates RDF statements in re-
sponse to an EMF model being edited affects which RDF data
model sources need to be written to on an EMF model save
event. For example, the default behaviour of the EMF-RDF
resource is to write all new RDF statements to the first data
model when several are configured. However, when a change
to an EMF model affects statements in several in-memory
RDF data models, our approach currently updates the RDF
statements in all of the RDF models. This approach has been
taken because a native EMF model’s state is typically a single
instance in memory. For simplicity, the initial implementation

of the EMF-RDF resource maintains consistency between the
EMF model and the RDF statements by not allowing EMF
model edits to create conflicting RDF statements in memory.

In the future, choosing the RDF data model where to cre-
ate/update a given statement will likely need to be configurable
option, as there are several possibilities depending on the use
case. For example, we may want all statements relating to a
given part of a model into a designated RDF data model. Or
have statements containing sensitive information written into a
protected RDF data model, and less sensitive statements going
to a public RDF data model.

There are still many features and configurable options to
add to the EMF-RDF resource. Work is ongoing to achieve
equivalence between the EMF-RDF resource and a native
EMF resource, building an automated test suite that simu-
lates the various changes that can take place in a closed-
world model. The EMF-RDF resource needs to enable the
creation of a model from nothing to be a minimally complete
implementation. At the moment, the synchronisation supports
changing single- and multi-value EAttributes: support for
EReferences and the creation/deletion of model objects is yet
to be added, but should have some parallels with the EAttribute
implementation.

V. RELATED WORKS

There are some related works that should be acknowledged,
as they present similar ideas and address problems related to
the research presented in this paper. In this section, the work
relating to the need for addressing flexibility and managing
MDE at scale is presented first, then works that enabled some
interoperability between open- and closed-world modelling are
examined.

A. Addressing the flexibility of MDE modelling at scale

Flexible MDE is a term in the literature that relates to
the rigidity of MDE that comes from models conforming to
modelling languages. This is the model conformance rela-
tionship challenge: since a model must conform to the meta-
model [16] of a modelling language, a modelling language
is needed before a model can be created. A need to relax
this conformance relationship between a model and modelling
language was identified, and flexible modelling frameworks
that gave modellers the freedom to create models before
a modelling language existed were proposed. A modeller
can develop a model approximating what they require, then
work backwards from the model to produce the modelling
language, and establish the stricter conformance relationships
that make a model more rigid. Hili et al. demonstrated their
approach with Fleximeta, a web-based flexible modelling
framework [17].

Guerra et al. proposed a modelling language for flexible
modelling [18], extending their prior work on KITE (an
Eclipse plugin based on EMF and Xtext). However, the effect
on the process for developing a model is similar to Hili
et al., in that a model can be created before a modelling
language. Whereas the need for flexibility in these works

relates more toward the initial stages of developing a model,
the conformance problems also present a problem at the later
stages of development. The overlooked or unanticipated need
for information to be present in a model can be costly in terms
of reworking a model to include it later.

Megamodels are model whose elements are models them-
selves: the idea was discussed by Bézivin et al. in 2004 [19].
Megamodelling is considered to be modelling at a large global
view over several smaller modelling activities, e.g. a large
modelling project with several sub-projects that produce mod-
els. A megamodel, like other MDE models, would conform
to a modelling language. The megamodel would capture the
various model management processes on and between the
smaller models, as a high-level management overview that
could also enable the coordination of model management
tasks as an executable model. A novel use of megamodels
to understand MDE projects by Di Rocco et al. [20] provides
some examples of megamodels. Using publicly available MDE
projects, they reverse engineer a megamodel representation for
each project as an architectural overview.

Megamodels are closely related to what we consider a
virtual open-world model, which encompasses several closed-
world models in a space that enables the reuse and integration
of them. However, the flexibility of RDF enables the virtual
open-world model to contain more than just the closed-world
models. It would be possible to include considerably more
information relating to the models, such as the provenance of
changes and versioning or alternatives.

B. Interoperability between open- and closed-world models

Open- and closed-world modelling approaches have been
available for a long time, and have grown up next to each
other but with different outlooks on modelling. However,
there have been times when researchers have combined them;
early works examined model transformation, and more recent
works directly integrate them. Transformations have limita-
tions, which have resulted in a more integrated approach like
OpenCAESAR. However, integrating the approaches can raise
issues when there is a need to reuse existing models and
modelling tools.

Model transformations are one approach in the literature
for converting models between EMF and RDF representations.
Hillairet et al. demonstrated a bidirectional mapping using a
prototype developed using ATL to create a two-way bridge
between EMF and RDF [4]. However, the transformation ap-
proach struggles with handling models containing information
outside of the modelling language used for the EMF model.
Thus, converting from RDF to EMF results in data loss when
some RDF data can not be converted into an EMF model
equivalent. If the same EMF is transformed back to RDF,
overwriting the original RDF, then the data loss is permanent
in both versions of the model.

MOF2RDF [21] is a specification published by the OMG,
for mapping MOF to RDF/OWL. MOF2RDF provides a
structural mapping with a limited semantic mapping and is
intended to inform the creation of a model transformation

process. The mapping seeks to preserve the original MOF
model semantics, with all elements of the MOF model being
mapped to an RDF/OWL model. The specification is clear on
what it does not intend to provide, such as formal logic or
model-theoretic semantics, facilities for manipulating MOF or
RDF models, versioning or tracking, inference of query usage
of RDF models, or containing the platform-specifics of either
MOF or RDF models. To the best of our knowledge, we do
not know of any implementations or usage of the specification.

EMFtriple was found on GitHub [22] and the Eclipse Mar-
ketplace [23], and it persists EMF models using RDF triples.
We assume EMFtriple was created to overcome the limitations
of the ATL prototypes’ bidirectional transformation problems
with data loss, as the intended use seems similar to that of the
EMF-RDF resource. However, we could not find in EMFtriple
any use of EMF’s notification system that could provide live
synchronisation between the EMF view and the backing RDF
representation. Our EMF-RDF resource is similar to EMFtriple
in that both approaches persist EMF models with RDF, but
EMFtriple uses a single RDF file and does not use a graph
reasoner or unions when loading RDF models. Our EMF-RDF
resource exposes Jena’s graph validator, reasoner and unions
to enable multiple RDF schema/data models to be used when
loading an EMF model from RDF sources. In addition, the
EMF-RDF resource permits direct access to the RDF model,
which EMFtriple does not.

openCAESAR is a Model-Based System Engineering
methodology/framework that balances agility and rigor [6].
They define agility as the ability to move; this movement could
be in response to changes or portability/reusability between
projects. Rigour is defined as ‘formalising’ processes, methods
or languages, relating to properties associated with terms like
’reliability’ or ’safety’; things that can hinder movement by
requiring additional efforts. These are the kind of desirable
properties we want the EMF-RDF resource to enable.

At the heart of openCAESAR is the OML [24] ontology;
their perspective of creating a modelling language is that of
modelling a vocabulary that is used to build models [25]. The
openCAESAR framework is implemented using EMF, but uses
an ontological approach to modelling. However, there can be
difficulties moving to openCAESAR from existing practices,
which is identified as an open challenge in Elassar et al.’s
paper [6]. We are aware that the openCAESAR community
is working on improving interoperability and integration: our
EMF-RDF resource may help to connect openCAESAR with
existing EMF-based MDE tools. The EMF-RDF resource
seeks to maintain compatibility with the original EMF-based
tools, and can accommodate additional RDF statements be-
yond those related to the EMF model.

VI. CONCLUSION AND FUTURE WORKS

The EMF-RDF resource presented in this paper is open-
source and publicly available from GitHub5. We are creating
an open-source implementation that we hope reduces some

5https://github.com/epsilonlabs/emf-rdf

technology barriers between open- and closed-world modelling
approaches. MDE enables the creation of modelling languages
and tools to use them, enabling complexity to be managed
through leveraging different levels of abstraction, which may
assist open-world modellers. However, MDE comes at a
cost of rigidity caused by the conformance relationship chal-
lenge [16], which ontological approaches do not have. The
EMF-RDF resource enables EMF-based models to be persisted
in an RDF form that retains compatibility with their original
tools. It also allows access to the RDF model, which may
contain information outside of the modelling language of the
EMF model.

The EMF-RDF resource is under active development, with
the aim to enable the creation of an EMF model from nothing.
Currently it supports reading models and saving back changes
to model element attributes, but we aim to support every
editing operation in EMF and be fully compatible with existing
EMF tooling. This is a big task, and many possible edge
cases could be challenging. However, we are confident that our
synchronisation-based approach will enable the exchange of
models between EMF and RDF without the data losses of prior
approaches that were based on model-to-model transforma-
tions. When combined with an MDE toolset like Epsilon [11],
which can work with many different types of closed-world
models, the potential cases for the EMF-RDF resource greatly
increase.

When the EMF-RDF resource supports most of the EMF
features, a model copy operation could be used to convert a
native EMF model resource into an EMF-RDF resource. With
an EMF model in an RDF form, it is possible to perform
open-world operations like a bundle closure, which enforces
the difference between model features/classes. When the EMF-
RDF resource is sufficiently complete, our research will pivot
to explore new usage scenarios enabled by EMF models in
RDF form, leveraging open-world techniques such as Jena’s
graph unions and reasoners, which could enable new ways of
working with existing EMF models.

REFERENCES

[1] Dassault Systèmes, “MagicGrid book of knowledge.” [Online].
Available: https://discover.3ds.com/magicgrid-book-of-knowledge

[2] J. G. Süß, S. Swift, and E. Escott, “Using devops toolchains in agile
model-driven engineering,” Software and Systems Modeling, vol. 21,
no. 4, p. 1495–1510, Aug. 2022.

[3] H. Alfraihi and K. Lano, “Trends and insights into the use of model-
driven engineering: A survey,” in 2023 ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Systems Com-
panion (MODELS-C), Oct. 2023, p. 286–295, doi:10.1109/MODELS-
C59198.2023.00058.

[4] G. Hillairet, F. Bertrand, and J.-Y. Lafaye, “Bridging EMF applications
and RDF data sources,” in Proceedings of the 4th International
Workshop on Semantic Web Enabled Software Engineering, SWESE,
Oct. 2008. [Online]. Available: https://hal.science/hal-00385823

[5] M. Milanović, D. Gasevic, A. Giurca, G. Wagner, and V. Devedzic, “On
interchanging between OWL/SWRL and UML/OCL,” in Proceedings
of 6th Workshop on OCL for (Meta-) Models in Multiple Application
Domains (OCLApps) at the 9th ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems (MoDELS), Genoa,
Italy, Feb. 2006.

[6] M. Elaasar, N. Rouquette, D. Wagner, B. J. Oakes, A. Hamou-Lhadj,
and M. Hamdaqa, “openCAESAR: Balancing agility and rigor in
model-based systems engineering,” in 2023 ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems Com-
panion (MODELS-C), Oct. 2023, p. 221–230, doi:10.1109/MODELS-
C59198.2023.00051.

[7] W3C, “W3C Semantic Web Standards - homepage,” date last
checked: June 2025. [Online]. Available: https://www.w3.org/2001/sw/
wiki/Main Page

[8] Eclipse Foundation, “Eclipse Modeling Framework,” Jun. 2025, date
last checked: June 2025. [Online]. Available: https://projects.eclipse.
org/projects/modeling.emf.emf/

[9] RDF working group, “W3C RDF homepage,” 2025, date last checked:
June 2025. [Online]. Available: https://www.w3.org/RDF/

[10] W3C, “RDF - W3C Semantic Web Standards,” date last checked: June
2025. [Online]. Available: https://www.w3.org/2001/sw/wiki/RDF

[11] Eclipse Foundation, “Eclipse Epsilon homepage,” 2025, date last
checked: June 2025. [Online]. Available: https://www.eclipse.org/
epsilon/

[12] A. Hussain, W. Wu, and Z. Tang, “An MDE-based methodol-
ogy for closed-world integrity constraint checking in the semantic
web,” Journal of Web Semantics, vol. 74, p. 100717, Oct. 2022,
doi:10.1016/j.websem.2022.100717.

[13] W3C, “OWL - W3C Semantic Web Standards,” date last checked: June
2025. [Online]. Available: https://www.w3.org/2001/sw/wiki/OWL

[14] Apache Software Foundation, “Apache Jena - homepage,” date last
checked: June 2025. [Online]. Available: {https://jena.apache.org/}

[15] Eclipse Foundation, “Eclipse Epsilon Picto homepage,” 2025, date last
checked: June 2025. [Online]. Available: https://eclipse.dev/epsilon/doc/
picto/

[16] N. Hili and J.-S. Sottet, “The conformance relation challenge: Building
flexible modelling frameworks,” in Proceedings of MODELS 2017
Satellite Events, vol. 2019. CEUR-WS, 2017, pp. 418–423. [Online].
Available: https://ceur-ws.org/Vol-2019/flexmde 6.pdf

[17] N. Hili, “A metamodeling framework for promoting flexibility and
creativity over strict model conformance,” in Proceedings of the 2nd
Workshop on Flexible Model Driven Engineering co-located with
MoDELS 2016, vol. 1694. CEUR-WS, Oct. 2016, pp. 2–11. [Online].
Available: https://ceur-ws.org/Vol-1694/FlexMDE2016 paper 6.pdf

[18] E. Guerra and J. De Lara, “On the quest for flexible modelling,” in
Proceedings of the 21th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems. Copenhagen Denmark:
ACM, Oct. 2018, p. 23–33, doi:10.1145/3239372.3239376.

[19] J. Bézivin, F. Jouault, and P. Valduriez, “On the need for megamodels,”
in Proceedings of the OOPSLA/GPCE: Best Practices for Model-
Driven Software Development workshop, 19th Annual ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions,(2004), Vancouver, Canada, Oct. 2004.

[20] J. Di Rocco, D. Di Ruscio, J. Härtel, L. Iovino, R. Lämmel, and
A. Pierantonio, “Understanding MDE projects: megamodels to the res-
cue for architecture recovery,” Software and Systems Modeling, vol. 19,
no. 2, p. 401–423, Mar. 2020, doi:10.1007/s10270-019-00748-7.

[21] Object Management Group, “MOF to RDF Mapping,” September
2021, date last checked: June 2025. [Online]. Available: {https:
//www.omg.org/spec/MOF2RDF/1.0/About-MOF2RDF/}

[22] G. Hillairet, “ghillairet/emftriple,” Jun. 2024, date last checked: June
2025. [Online]. Available: {https://github.com/ghillairet/emftriple}

[23] ——, “Emf triple — eclipse plugins, bundles and products - eclipse
marketplace — eclipse foundation,” date last checked: June 2025.
[Online]. Available: {https://marketplace.eclipse.org/content/emf-triple}

[24] NASA Jet Propulsion Laboratory (JPL), “Ontological modeling
language v2 - homepage,” date last checked: June 2025. [Online].
Available: https://www.opencaesar.io/oml/

[25] D. A. Wagner, M. Chodas, M. Elaasar, J. S. Jenkins, and N. Rouquette,
Ontological Metamodeling and Analysis Using openCAESAR. Springer,
Cham, 2022, p. 1–30, doi:10.1007/978-3-030-27486-3 78-1.

