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This paper represents the final part of a sequence on the foundations of Population-Based
Structural Health Monitoring (PBSHM). The previous papers presented detailed analyses of
how PBSHM can extend the functionality of ‘classical’ single-structure SHM by leveraging
information and data available across a population of structures. Two main concepts were
critical in establishing the basic methodology. In the first place, it was assumed that the uplift
from considering a population would only be truly present if a structure of interest could be
shown to be ‘similar’ in some sense to at least one other structure in the population. This
requirement of similarity demanded the development of a principled means of measuring the
degree of said similarity; this was accomplished by the proposal and design of Irreducible Element
(IE) and Attributed Graph (AG) models of structures, which naturally resided in a metric space.
The second key concept in PBSHM was the idea of moving inferences between structures,
and the natural methodology for this was established as transfer learning. This final paper is
concerned with showing how the main ideas of PBSHM can be embedded in software; in fact,
this proved to be non-trivial and not a simple matter of programming. In order to embed the
concepts of PBSHM within a computational framework, a number of new concepts needed to
be developed - the network, framework and database — and these ideas are introduced within
the paper. Furthermore, the development of the computational architecture revealed a number
of limitations inherent in the previously-proposed base PBSHM ideas, notably in the conception
of the IE model. This paper therefore provides a radical reformulation of the IE-model concept,
presenting it in a new form appropriate to embedding in software. The development of new
theoretical constructs proved to be so entwined with the software development issues that they
are not easily separable, so new concepts and software implementation are both presented here.
To avoid interrupting the narrative flow of the conceptual material, the details of many of the
software ‘objects’ are presented in a substantial appendix.

1. Introduction

This paper is the fifth in a series addressing the foundations of Population-based Structural Health Monitoring (PBSHM).
Traditionally, Structural Health Monitoring (SHM) [1], has involved implementing a damage-detection strategy for a single structure
for which the health-state is to be determined. PBSHM expands on this process [2-5] by monitoring multiple structures — (the
population) — with the goal of gaining additional insights into the health of a given structure when using population data, compared
to those available from the single structure’s data. As discussed in the earlier papers in this series, to achieve the goals of PBSHM, two
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basic problems need to be addressed: finding the similarity of structures (or components of the structure), and transferring knowledge
learnt across the population.

The second part in this series [3], explored the problem of finding the geometrical similarities between theoretical structure
datasets. When comparing the composition of components across multiple structures, a shared description was required to facilitate
equal identification of similarity. Irreducible Element (IE) models were the vehicle introduced by Gosliga et al. to facilitate this
shared description of structures within PBSHM.

The fourth part in this series [5], explored the use of a fibre-bundle to facilitate a shared space in which knowledge could be
transferred across structures. From the work in both the second and fourth part of this series, it has become clear that PBSHM by its
very nature, has an underlying obstacle of data transparency and compatibility because of the vast expanse of structures targetted.
For PBSHM to reach beyond a theoretical concept, a shared domain for PBSHM data is required. This shared domain must not only
provide a common standard for compatibilities’ sake, but also facilitate the domain in which PBSHM computations reside.

The purpose of this paper within the series, is to provide the underlying technical implementations for the aforementioned
shared data domain in PBSHM. The motivation behind why PBSHM requires its own shared data domain is simple. Inherently, every
structure has its own set of labels, descriptions, attributes, formats, and reasons for why there are current data on the structure. To
adopt a new structure into the PBSHM network, entails modifying any relevant PBSHM algorithms to understand the data of the
structure compared to the rest of the population. If instead, a shared standard can be proposed for PBSHM, data only need to be
translated into this standard and the focus of PBSHM can instead rest on the development of new PBSHM-derived algorithms.

This paper introduces a PBSHM shared-data domain via the following themes; network (the shared domain in which the
relationships between structure reside), framework (the shared domain in which PBSHM specific algorithms and computations
reside), and database (the shared domain in which all PBSHM data reside for use within the framework and network as appropriate).
Furthermore, in PBSHM, establishing the similarity between two structures is critical to enabling positive transfer of learnt
knowledge from one structure to another. As such, a large proportion of this paper is dedicated to expanding the current definitions
of an Irreducible Element (IE) model to facilitate IE models becoming the standardised methods by which structures are described
within PBSHM.

The previously referenced work in part two of this series [3] presented the minimal essence of an IE model, before moving
onto the comparisons of models via the Attributed Graph (AG). The introduced IE model lacked both the firm definitions and
formal specification required for a standardised language to emerge. The IE model concept was also void of the required domain
knowledge to understand certain structural scenarios within the model. A fresh look at the IE model abstraction was necessitated;
therefore, this paper provides the missing definitions, formal specification, and expansion of IE model theory to materialise the
desired standardised method for describing structure within PBSHM. It is important to note that whilst the language of an IE model
has been modified since the part two [3] paper, the introduced conversion between IE model and AG is still valid and is utilised
within this paper.

Part of the reason this paper has arrived much later than its sisters is because the development has involved a complex interplay
between fundamental research on PBSHM concepts and their implementation in software. This interplay means that the paper weaves
together the definition and extension of PBSHM concepts with the details of their embodiment within code. In the interest of clarity
in the narrative structure, the technical tables required for the interested reader to produce their own IE-model of a structure are
extracted from the main body of this paper and included within Appendix.

Section 2 outlines the current state of a shared domain with PBSHM. Section 3 sets out the definitions of the network, framework,
and database. Section 4 explains the necessary changes to Irreducible Element (IE) models to enable them to become a standardised
language for describing a structure within PBSHM. Section 5 describes the technical implementations constructed for the database
and framework. Section 6 shows the framework computing similarity scores for structures and outlines the future work required.

Throughout this paper a common notation is used to denote different data; named object will reference a generalised object name,
[type of named object] will reference a type of named object and ‘value’ will reference an absolute value of a property within said
object.

2. Background

Structural Health Monitoring (SHM) [1,6], is the process of monitoring a system or structure with the objective of using the
acquired data to assess the overall condition — the health — of the system in question. In short, SHM aims to detect damage within
a structure. There are two widely-explored approaches within the SHM community: model-based and data-based. A model-based
approach aims to take the existing knowledge of the dynamic behaviour of a physical structure and encapsulate this knowledge in
the form of a model — commonly a Finite Element (FE) model. The desire is that the model will respond to an input in the same
manner as the physical structure. A data-based approach instead operates from the premise that there is no pre-existing dynamic
knowledge of a structure and instead builds a statistical model from sensor data based upon known ‘healthy’ states of the structure.
Raw sensor data will seldom provide a direct indication of damage present within a structure, instead raw data are processed into
damage sensitive features — features which are likely to change in value (e.g. natural frequencies), if damage becomes present in
the structure.

Both of the aforementioned approaches suffer from a problem of data availability. With a model-based approach, is there enough
existing knowledge regarding the dynamic behaviour to accurately produce a model of the structure? In a data-based approach, is
the structure able to be monitored to provide a ‘healthy’ state, and are data available representing any damage states? This is where
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Fig. 1. Data transmission from structure owners’ current SHM systems into a PBSHM database.

Population-based Structural Health Monitoring (PBSHM) [7] aims to provide a potential solution for the data-scarcity problem in
SHM.

The premise of PBSHM], is that by utilising data and knowledge from a group of similar structures, additional knowledge on the
health of an individual structure is established, compared to a traditional SHM approach. However, this methodology comes with its
own set of problems which require addressing. In the interest of brevity, this paper will not revisit the previous problems addressed
in the first four parts [2-5] of the ‘foundations’ series. Instead, this paper will focus on addressing the data-domain problem faced
within PBSHM (see Section 3).

In a traditional (SHM) scenario, one would typically be considering the health state of a single structure by utilising data collected
from the structure in question. From a data point of view, this would typically mean that any researcher or engineer trying to
establish the health of a structure, would only have a single dataset to process. Whilst this theoretical dataset, may include multiple
formats, they are typically limited in their variations within the dataset [8].

In contrast, PBSHM must, by its own definition, deal with data from multiple structures and consequently, a never-ending
variation in formats, languages, and methodologies. These potential variations within PBSHM, cause problems when attempting
to build PBSHM-specific algorithms. If a potentially-infinite number of formats were to be supported within PBSHM, this would
necessitate a never-ending cycle of updating PBSHM algorithms to understand these new data formats. This process would be both
impractical and commercially unviable for any real-world adoption of PBSHM technology.

There are existing standards which address these data requirements for a particular type of structure. Jeong et al. [9] discuss
existing standards used within bridge lifecycle management, such as the Bridge Information Modelling (BrIM) standard. These
standards provide a data structure, enabling easy comparisons; however, they lack the functionality to extend the specification
to include different structure types and associated data types/units. This issue often means that bespoke methodologies must be
developed for every type of structure within an SHM application; not only does it make analysing and processing of PBSHM data
costly, it puts unnecessary barriers in place for adoption of PBSHM technologies.

Therefore, PBSHM requires a new standardised methodology towards data storage that addresses the unique challenge of
accommodating multiple structure types and varying data requirements. This shared standard must facilitate a uniform way of
describing and storing data on structures, support the flexibility of different data types and enable easy identification of structures
within a population or type. It is important to acknowledge that structure owners may have existing systems in place to monitor
and capture SHM data; in order for industrial adoption and adaptation, the standard must work in conjunction with existing systems
and not enforce replacement of existing systems.

There are two main methodologies for storing of data; flat files (such as Comma-Separated Values (CSV) and plain text) and
databases. Whilst a flat file structure facilitates the viewing of data as a trivial task, querying and building relationships between
these data can become difficult when comparing data across multiple files. In comparison, when using a database, querying and
comparing data becomes easy, whilst importing data can become a more difficult task, especially when importing large amounts of
historic data. As a key principal of PBSHM is to facilitate increased knowledge retrieval, having a data store that allows data to be
retrieved easily and efficiently is key.

Because of the requirement of working in conjunction with existing systems, the PBSHM database should allow structure owners
to capture SHM data as their current business practices define. Afterwards, data should be submitted into a centralised PBSHM
database. The PBSHM database needs to not only have a standardised format for data storage, but also one for data transmission.
The PBSHM database must allow operation in the following scenarios: an open global database that structure owners can submit data
into, or a private internal database allowing an owner to compare data across their assets (e.g. Wind and Wave farms). Whichever
route a structure owner may decide, the format of how to store and communicate data must be the same. (see Fig. 1)

2.1. Database

Databases, at their core, are simply a technique for storing data in a structured manner. Codd [10] introduced this idea in
1970 and it has since become the foundation of modern Relational Database Management Systems (RDBMS). However, since the
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Fig. 2. A relational example showing a “structure-1” structure containing four sensors within an RDBMS.

introduction of this principle, the constraint of data being structured/relational has caused a new breed of databases to be born. Not
only Structured Query Languages (NoSQLs) are a family of database methodologies that aim to solve the structured data problem by
enabling schema-free data storage. Structured Query Language (SQL) is used to manage data inside an RDBMS, and as such, NoSQL
databases are designed without these inherent constraints. There are vertical and horizontal scalability concerns as a result of the
nature of an RDBMS. Vertical and horizontal scaling are the principles of how to facilitate the required growth of a system; the vertical
mode views scaling from a single item/node, the horizontal mode views scaling from multiple items/nodes. Nance et al. [11] and
Zafar et al. [12] review these concerns in conjunction with detailing differences between RDBMS and NoSQL. Gandini et al. [13]
outline some performance-planning considerations when using a NoSQL database.

It should be noted that some security concerns highlighted by Nance et al. [11], regarding encryption at rest,' authentication in
a sharded® environment and client communication encryption have been addressed [14-17] since the publication of these papers.

Selecting the correct database technology is crucial to the adoption of the PBSHM schema and database. Subsequently, each
database type is required to be evaluated against the PBSHM requirements set forth in this paper.

2.1.1. RDBMS

RDBMS, in its most simplified version, stores data in the format of tables and columns (see Fig. 2). Relationships within are
created via primary keys and foreign keys. Primary keys are the method for identifying a unique data entry inside a table. Foreign keys
are the method for creating a link/reference to a column in another table, usually a primary key; thus creating a relationship between
the tables. Utilising the combination of primary keys and foreign keys facilitates the retrieval of relational data. To encourage
separation of data into multiple tables for the purpose of data deduplication, RDBMS have a normalisation concept.

Database normalisation provides a methodology for when to partition data off into a separate table by comparing the data
inside the structure to the normal forms; consequently, it structures data in an approach that grants extensions to the structure,
without the necessity of invalidating existing data. Codd [10] introduced what is now known as first normal form (1NF) and later
introduced second and third normal form (2NF and 3NF) [18,19]. Each level of normal form adds additional requirements to reduce
data duplication and improve data integrity; the greater the number of columns that contain identical data regarding an entity, the
greater the number of columns a system is required to update when data change.

The benefit of an RDBMS is proven system stability; however, they lack the flexibility to enable yet-unknown data to be added
into the database without a schema change (see Section 3.3 for the definition of a database schema). It is possible to design around
this issue in a data schema, nevertheless it is not recommended, because of the required complexity of said schema. In the use case
of PBSHM, multiple SQL statements are required to retrieve the state of a single structure.

2.1.2. NoSQL
NoSQL databases are generally agreed to be divided into four sub-categories;

+ Key-Value databases;

» Wide-Column databases;
« Document databases;

» Graph databases.

Key-Value databases are, at their core, a dictionary data structure; they are a large collection of key—value pairs, requiring each
key to be unique. Wide-Column databases are similar to RDBMS; they use tables, columns, and rows. However, each row inside
the database may have differentiating columns compared to sibling rows; similar to a ‘dictionary of dictionaries’ data structure.
Graph databases use nodes and edges to store data; they function via the same rules as graph theory. Document databases use
the notion of an entry being a document; they follow a similar structure to Object Oriented Programming (OOP). Documents have
multiple properties/attributes; however, they can also have nested documents within themselves. Zafar et al. [12] discuss the merits
and drawbacks of each type of NoSQL database in additional detail.

Within the context of a PBSHM database, Document databases permit the functionality of both enabling unknown data to be
added into the database without prior knowledge and enabling nesting of data within one document (see Fig. 3). There is no feature
to store relationships between documents; however, in the case of PBSHM databases this is not a problem, given that any relationship
between structures would need to be discovered via algorithms inside the PBSHM framework first. Document databases provide a
unique opportunity for all relevant information regarding the state of a structure to be returned with one document, thus facilitating
a straightforward and simple schema for engineers to understand.

1 Encrypted Storage Engines are available as of MongoDB 3.2 Enterprise [14,15].
2 Sharding is a method of splitting data across multiple database instances.
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¢ "id":1,
"name":"structure-1",
"sensors": [
"sensor-1","sensor-2","sensor-3", "sensor-4"
1
}

Fig. 3. An embedded example showing a “structure-1” structure containing four sensors within a NoSQL Document database.

3. Network, framework, and database

One of the main aims of PBSHM is to facilitate transfer of information between similar structures in order to improve diagnostic
power on individuals with little or no damage-state data. This aim breaks down into two fundamental objectives; finding which
structures (or components of structures) are similar [3], and transferring learnt knowledge between similar structures [4]. Effective
implementation of the aim requires a shared domain for data residency on which the comparisons of structures and transfers of
knowledge can be made. Of course, the aforementioned comparisons require a representation of structures amenable to comparisons
and a means of storing these representations; this will be the PBSHM database.

In addition to the database itself, further infrastructure is needed in order to support the comparison and transfer methods;
this will need to account for the specific complexities inherent in data-based SHM like the accommodation of environmental states
and operational variations which, if not dealt with, can confuse diagnostic algorithms. A full PBSHM system needs to account for
the environment of the structures of interest and operational choices like sensor distributions. Beyond the structural models, one
needs a representation of the reality in which the structures are embedded. The extension from the structural models to the reality
model (see Section 6.1) will ultimately be accomplished by extending the database to a complex network (the network), which is
itself embedded in a learning and inference framework (the framework). This paper will give outlines of the network and framework
architectures; however, detailed development and description will be postponed until later publications following ongoing research.
The detailed technical specification of the database and the required representation of structures within, will be the main subject of
this paper.

Earlier papers in this series outlined the basic concepts regarding structural representation; Gosliga et al. [3] provided the basic
definitions of Irreducible Element (IE) models and their associated graphs, Gardner et al. [4] described how transfer between specific
structural feature spaces could be achieved, and Tsialiamanis et al. [5] gave a geometrical overview of PBSHM which could form
the basis of methodology development.

None of these publications addressed the gritty technical issue of how a shared-data domain could be designed to hold structure
representations, which would be forward compatible with the many developments that establishing the network and framework
would require. The main aim of this paper is to present the database (the shared-data domain) in some detail, while describing
enough of the network and framework requirements to instil confidence that the database will be forward compatible. Development
of the database has required a re-evaluation of the principles of the IE-models themselves and has driven new research, which is
reported here.

3.1. The network

The network of structures — as the name suggests — is the shared domain space in which the relationships between different
structures within the PBSHM Database (see Section 3.3) reside. Each relationship within the network will have been established
via an algorithm implemented in the PBSHM Framework (see Section 3.2). The primary vector for establishing these relationships
between structures is envisioned to be via varying similarity metrics. Each structure within the network will have relationships of
differing weightings to every other structure within the network. One structure may have multiple relationships with a given other
structure, dependent upon differing criteria for each available similarity metric.

When a new structure is inserted into the PBSHM Database, the PBSHM Framework will compute similarities between the inserted
structure and existing structures. This new structure — and its associated relationships — are then introduced into the network.
Populations are then extracted from the network, dependent upon the given strength of relationships present within the network
and any observed criteria for transferring knowledge. The known state of a structure is defined by the available data present within
the PBSHM database at the given time.

Fig. 4 depicts a visual representation of a potential network. If one imagines that each large red node represents an individual
structure within the network, each green node with an edge to a structure node, represents a piece of data present within the PBSHM
database which establishes the current known state of the given structure. The dotted edges between each of the structure nodes,
represent a relationship established by the similarity metrics available within the PBSHM Framework. Within the fullness of time,
the PBSHM database is expected to support the full range of data required to capture the state of a structure; however, in the interest
of brevity, this paper will focus on the implementations required to support IE models [3] and channel data.
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Fig. 4. A visual representation of the network of structures stored within the PBSHM Framework and PBSHM database. The large red nodes represent the
presence of a structure within the network, the green nodes represent the data stored within the PBSHM database which depict the current known state of the
given structure. The dotted edges between the structure nodes represent the relationships present between structures, because of similarities metrics generated
by the PBSHM Framework.

3.2. The framework

The power of the PBSHM methodology becomes most apparent when the PBSHM ecosystem has a rich spectrum of structures,
data, and algorithms present. Additional structures mean increased possibilities of structural similarity and potential opportunity for
learnt knowledge to be transferred. However, for this to be achieved, PBSHM is not only going to have to evidence increased knowl-
edge on the health of a structure compared to traditional SHM, but it is going to have to facilitate easy buy-in from key structure
stakeholders. There is no point creating world-class SHM algorithms if only a handful of people can interact with the algorithms and
understand the outputted information. As such, the framework must not only provide a shared domain in which PBSHM computa-
tions must reside, but facilitate a simplistic way in which engineers can interact with both the algorithms and the underlying data.

To support the ever expanding nature of PBSHM, the framework cannot be fixed in nature and must support the organic design
principles outlined within the PBSHM database (see Section 3.3). In practise, this requirement necessitates an implementation
approach which allows compartmentalisation of algorithmic functions into separate units of logic; a module. The PBSHM framework
will be composed of a central ‘core’ which deals with the basics of any software platform; authentication, permissions, security,
database access, etc. This ‘core’ will then be expanded into the PBSHM framework by the introduction of modules. Using the
implementation pattern outlined above, enables the PBSHM framework to be flexible in its desired functionality and use.

Whilst the ideal scenario for the PBSHM framework may be to have a singular centralised system which encapsulates all the
available PBSHM data, the authors realise that this may not be practical within the real world and limitations of commercial
agreements with structure owners. As such, the flexible nature of the PBSHM framework lends itself to tailoring the installed setup of
the framework, dependent upon the structure owners’ requirements and available data within the associated database. Fig. 5 depicts
the overall hierarchy of how the modules, core system and database interact together, to fulfil the desired functionality of PBSHM.

During the fullness of time, it is expected that the PBSHM framework (and underlying database), will be expanded via modules
to support the full spectrum of data and algorithms required to support the lifespan of a structure; channel data, features, Irreducible
Element models, Finite Element models, metadata, inspection reports, etc. However, as the implementation of these modules will
be decentralised from the authors of this paper, a set of guidelines and requirements are included within, to ensure all modules
generated interact seamlessly together and comply with the spirit in which the PBSHM framework is produced.

+ Any actions taken upon a population, must function when the population size is N or 1. Modules must be written in a manner
which enables any action or method applied to a population of structures, to also be applied to an individual structure from
within that population, if desired. For example, any normalisation of channel data within the PBSHM framework, must function
to normalise the data for only one structure or a whole population of structures.

Raw data, such as data captured during an SHM campaign should be treated as Write Once Read Many (WORM) data. Modules
must adhere to the practise of being able to only read raw data from the database and saving any computed data relevant to
the module in a different section of the database. The PBSHM framework will enforce a special section of the database where
raw data can only be written to by specialised data ingestion modules; however, once the data have been written into the
database, changes to this data will not be permitted, regardless of the type of module attempting the change.

Any discovered features, must have the ability to be saved within the database as either: user-defined features (only available
to the user who generated the feature), or global-defined features (accessible by any user within the associated framework).
Each feature must be accompanied by a set of metadata describing the details regarding the feature and the relevant framework
steps (inputs, algorithms, and variables) taken to generate the feature.
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» A module must only use currently-available data from within the framework’s associated database. The purpose of a module is
to interact with the data contained within the PBSHM database. As mentioned previously, this may be as simple as importing
external data of a known format into the database. Alternatively, this also may be as simple as calculating the normalised
set of a population’s raw channel data and saving it back within the database. A module should not require connecting to a
third-party data source to perform its operations on the PBSHM database.

For a framework to be classed as a PBSHM Framework, there must be at least one module which fulfils the two outlined
objectives of PBSHM (see Section 3). This requirement means that within a PBSHM Framework, there must be one module
which can produce a metric to determine which structures are similar, and another module which can transfer learnt knowledge
from one structure to another, given that the metrics in the first module conclude that the structures in question, are from the
same ‘similar’ population.

Modules should aspire to keep interactions with end users as simple as is relevant for the desired audience of the module. Where
possible, algorithmic outputs should be visualised with a detailed explanation of the included visual and any suggestions on
what the results of the visualisation may derive.

Modules may be implemented in whichever language is most relevant for the desired purpose of the module; however, the
modules must be able to be run on a Linux distribution and a wrapper must be provided between the chosen language of the
‘core’ and the implemented module language. For instance, if the developers of a module have chosen the language STAN as
the most relevant for their desired purpose and the ‘core’ has been implemented in Python, the module developers are required
to implement a Python wrapper from their module to tie up the interactions between the Python ‘core’ and the STAN module.

Example PBSHM Module 2
Damage detection

Example PBSHM Module 1
Outlier analysis
Missing data analysis
Normalisation

Example PBSHM Module 3
IE Similarity metrics
Information metrics

Y
PBSHM Core
Authentication

Module Support

PBSHM Database
Sensor data, Feature data
IE Models, FE Models
Similarity metrics, Information metrics
Inspection Reports

5. The hierarchical structure of the PBSHM Framework; PBSHM Modules interacting with the PBSHM Core and subsequently the PBSHM Core then interacting

with the PBSHM Database to fulfil the requests from the PBSHM Modules.

3.3. The database

Underpinning the ecosystem described within this paper, is the PBSHM database. The database fulfils two key roles within the

PBSHM ecosystem; providing a shared domain for data residency, and providing the shared standardised format in which PBSHM
data is stored (a schema). A schema is to a database what an architect’s drawing is to a structure; it is a technical document that
says where data should go, what is allowed where, and outlines any relationships and hierarchical structure of the data.

Irrespective of the platform chosen to implement the PBSHM database, there are several considerations that must be taken into

account in the design of the database — and underlying schema - to ensure that the database fulfil its desired purpose within the
PBSHM ecosystem.

« PBSHM will, by its very nature, require vast quantities of varying types of data. Whilst it is not expected that the database
will have the knowledge regarding all the types of data required to be stored within, the database must be expandable at a
later date to include these yet-unknown data types.
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» For a database to be a valid PBSHM database, it must support both of the main themes of PBSHM. As such, the database
must have a storage mechanism and shared standard for: describing structures with the outlook of being able to determine
the similarity of said structures within the network, and knowledge regarding the state of a structure in which this acquired
knowledge could then be transferred across the population.

Provide and restrict access to certain subsets of data. To satisfy the requirements of external structure owners and the
requirements of the framework, the database must provide the facility to restrict access to certain subsets of data. The reasoning
behind this is twofold; to protect other entities from gaining access to potentially-sensitive corporate information, and to
facilitate the premise of user-defined and globally-defined features within the framework.

Protect existing data from being overwritten and modified. The framework requirements state that raw data from a monitoring
campaign, should be treated as WORM data. The database should adhere to these principals and provide the facility to protect
data from being overwritten. One of the founding principals of PBSHM, is that additional knowledge can be gained from
utilising multiple sources of data; however, this learnt knowledge must never replace the original source data from which the
knowledge was learnt.

Data must remain valid, once introduced into the database, throughout the lifetime of the data within the system; via the
process of expanding the schema to include additional known data types, existing data must remain valid.

Vast amounts of SHM datasets in question, may be historical and as such, may not have the complete data available that the
schema requires. The schema should only enforce the data required for each section of the database, for the data to have valid
meaning within its corresponding section.

Engineers from different fields may be generating and consuming PBSHM data, thus the schema must be straightforward to
understand and master. The schema must not become another barrier for the adoption of PBSHM technologies.

In short, the shared-data domain must be organic in its governing nature. The design of the shared-data domain must include
within its principles that there is only a partial understanding of the final data requirements of the domain. This methodology allows
for current knowledge to be embedded within the schema at the outset; however, leaving space within the schema for yet-unknown
data to be included at a later date. It is imperative for the success of the PBSHM ecosystem, that the database can expand over time
with the ever-changing requirements of PBSHM.

4. IE model

The notion of an Irreducible Element (IE) model was introduced by Gosliga et al. [3] in Part II of this ‘Foundations of Population-
based Structural Health Monitoring’ series. An IE model is the vehicle used within PBSHM to describe significant structural
components of the system and the interactions between said components. This model comprises the abstract representation required
to evaluate the similarity of heterogeneous structures within the network. An IE model is only concerned about components classified
as belonging to the structure, as such, the model notes where interactions with external systems are present; however, it does not
include any information to the extent of the effects such external systems have upon the current model.

IE models by their very definition are designed to be abstract, it would be both impractical and illogical for an IE model to
contain such rich 3D information as to replicate the data available within a Finite Element (FE) or Computer-Aided Design (CAD)
model. Such detailed information as the complex geometrical mesh of a component is redundant when attempting to compare the
overall similarity of geometry across all structures within the network. An IE model should only contain such pertinent structural
information as to facilitate capturing the very essence and purpose of a structure.

An IE model describes the structure in question; however, an IE model cannot be directly inserted into the network of structures
as the network exists in a graph space. Subsequently, an IE model representation is transformed into an Attributed Graph (AG), via
each component within the model becoming a node within the graph and interactions between components becoming edges. Any
properties belonging to either components or associated interactions are embedded within the graph as attributes on the respective
node/edge.

Gosliga et al. [20] explored the aforementioned theory with the comparison of eight bridges of different structure types. They
generated an IE model for each bridge, converted these into their associated AG representation and then used a Jaccard similarity
score to compare the geometrical similarities within their population. Whilst this initial work demonstrated conceptually the use
of IE models within the realm of PBSHM, further expansion of the IE-model language and concepts are required to support the use
case of a network of structures within the PBSHM database.

The objective of the proposed changes within this paper are to expand the core concepts of an IE model and subsequently, the
language used to describe the structure being modelled. The aim is that by making these modifications, additional engineering
knowledge and design choices regarding the structure become possible to embed within the model itself. Understanding why the
modeller made certain choices when assembling the model is crucial to achieving the goal of being able to determine which structures
are similar within the network.

Fig. 6 outlines one such problem when design choices of the modeller are not available within the model itself. If one imagines a
simple beam and slab bridge (see Fig. 6(a)) in the centre of a valley. In a simplified version, there is a single column in the centre of
the bridge and then a single beam on either side, creating a path from one side of a valley to another. There are only three physical
components to be included within the IE model; however, the modeller may decide to split each beam into two elements as they
desire to know if the damage within the beam is towards the centre of the bridge or towards the valley side of the bridge. Damage
localisation is a valid concern within the foundations of SHM and as such, needs to be honoured in any PBSHM theory.
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(a) A photo of an example beam and slab bridge in Northern Ireland.

(c) An Attributed Graph representation of Fig. 6(a)
using two elements per span because of sensor
localisation or damage localisation requirements.

(b) An Attributed Graph representation of Fig. 6(a)
when using only one element per span.

Fig. 6. Two possible attributed graph representations of the same simplified beam and slab bridge. Ground is represented via a G, an element via E, boundary
conditions via BC and joints via a J.

The problem with honouring these foundational principles of SHM, is that in the scenario described above, two distinct IE models
and subsequently AG’s are generated for a single unique structure (see Fig. 6(b) and 6(c)). The problem is compounded when one
considers such effects as how different communities see interest in the structure; one modeller may refer to a component as a
‘support’ and the other a ‘column’, one community may consider an IE model only to be of interest when at rest on the ground,
another community may only consider a structure interesting when the structure is in flight. Any of the aforementioned different
view points would undoubtedly change the topology of the associated IE model.

The aspiration of the PBSHM Framework and the language of IE models, is that regardless of these design choices or view
points, if an IE model is generated from the same structure, the PBSHM Framework should be able to identify these IE models as
being equivalent. Whilst this goal is theoretically achievable, within the context of the current language of IE models, there is no
available method for embedding this knowledge within the model, and as such, an expanded language and concept of IE models is
proposed. To achieve this extended concept and language of IE models, the theory put forth by Gosliga et al. (see Fig. 7) is expanded
upon, restructured and unified into the PBSHM Schema enabling a standardised representation of structures within PBSHM and the
network of structures.

The remainder of this section — in conjunction with the associated Appendix B — provide the details of the expanded IE-model
language and concept, including details on nested objects and terminology within the model. A brief overview of the hierarchical
restructuring taken place between the original concept of IE-model language and the version included within this paper, can be
viewed in Figs. 7 and 9. Furthermore, an example of how to use the IE-model language included within this paper, is provided by
Brennan et al. [21] using a real-world Hawk T.MKk1 aeroplane.

4.1. Root objects

In an effort to simplify the language of an IE model in conjunction with enabling future expansion for yet unknown features
of the language, the syntax of an IE model has been restructured. Any component included in an IE model is an element, and any
interactions between these elements is a relationship. Subsequently, direct mapping from an IE to an AG is supported, for use within
the network of structures; each element becomes a node and each relationship becomes an edge. Any properties associated with a root
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material class

—— material

PNt S geometry
shape
model ——  boundary condition ———— boundary
element set

/coordinate
joint é closs
S — type
isplacement dof

rotational dof
Fig. 7. The original hierarchical data models used for describing an Irreducible Element model as described by Gosliga et al. [3,20].

root object
A element or relationship at the root of the IE model. An element or relationship must im-
plement the root object properties as well as their associated properties dependent
upon the declared type value. See Sections 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 for details.

name description type
The unique name of the root Additional non-structured information The type of root object
object within the model. to describe the root object. within the model.

Fig. 8. The properties for a root object in an Irreducible Element model.

object — an element or a relationship — become embedded attributes on the associated node/edge. To denote different classifications
of object within a root object, further subdivision is facilitated via an object type.

The subdivision of root objects via a type, enables a hierarchical approach to data categorisation within the model. Known
scenarios of an object are associated with a type, whilst as-yet unknown scenarios are provided a vehicle for registering future
scenario in the model without invalidating any existing scenario’s logic. See Fig. 8 for details on the properties available for all
root objects. In the interest of clarity, further documentation within this paper will use the annotation of [type] object, where [type]
refers to the sub category/type of the named object: object.

Whilst the restructuring of root objects is critical for providing space within the language for the previously-stated enhancements,
historical IE models must remain valid within the revised language via a minor translation. Historical components element and ground
become [regular] element and [ground] element respectively with historical interactions joint and boundary condition becoming [joint]
relationship and [boundary] relationship respectively.

4.2. Free and grounded models

The first significant step in removing ambiguity from a IE model is understanding the context in which the IE model was
generated; should the IE model be considered as [grounded] to a surrounding influence or should the IE model be considered as
[free] from all surrounding influences. A [free] IE model, is a model that is free from any external references within the model and
must be considered as if the model was floating in a vacuum. A [grounded] IE model, is a model that references any external systems
which interact with the model, whilst not containing any pertinent information to the extent which these external influences have
upon the model, they merely denote that an unknown external system interacts with the modelled system at a specified intersection.

10
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/ element ———  [regular]
[free]
\ [perfect]

. . / .
/ relationship [connection]
\ . .
[joint]

model

[regular]
N
element — [ground]

[grounded] [perfect]

/
T [connection]
——_— [joint]

relationship

[boundary]

Fig. 9. The hierarchical data models used in the standardised version of Irreducible Element models. The above diagram depicts which element and relationship
types are available for a given free or grounded model.

External systems are represented within a [grounded] model via [ground] elements (see Section 4.3) and [boundary] relationships
(see Section 4.8), these types of root object are not permitted within a [free] model. A [grounded] model must be a valid [free] model
when all [ground] elements and [boundary] relationships are removed from the model. A [free] model must be a valid [grounded]
model when all [ground] elements and [boundary] relationships are included for a models given surrounding influences. Fig. 9 depicts
the permitted element and relationship types for the given [grounded] and [free] models.

4.3. Ground element

A [ground] element represents a system which is external to the current structure being modelled. Practically, this could be as
simple as a reference to the ground which a structure is placed upon, or it could reference another structure which potentially has
its own IE model, both scenarios are valid within the same [grounded] model.

If one imagines two skyscrapers with a skybridge between them, there are three IE models generated and two distinct
perspectives. From the skyscraper’s perspective, there will be a [ground] element for the foundations on which the building is built.
From the skybridge perspective, there will be a [ground] element for each skyscraper connecting onto the bridge, but no [ground]
elements are required for an interaction with the earth as the skybridge’s interactions with the earth are via the skyscrapers.

In the currently-proposed solution within this paper, a [ground] element (see Table 22 for a list of relevant properties) does
not have any additional object properties over the base root object (See Fig. 8); however, in the future, additional [ground] element
attributes could be declared to include a reference to the external system being denoted, if the system in question, has an associated
IE model.

4.4. Regular element

A [regular] element represents a structurally-significant component within the structure being modelled. Depending upon the
purpose of the model, this could range from a large I-beam supporting the deck of a bridge, all the way down to a washer used
on a bolt. It is important to note that one single component within a structure cannot be both a [regular] element and a [ground]
element within the same model; however, it may be a [regular] element within one model and a [ground] element within another
model.

If one imagines again the example used within the [ground] element (see Section 4.3) description, of a skybridge between two
skyscrapers. In the two skyscraper IE models, there will be [regular] elements representing the structurally-significant components;
however, some of these same components may be declared as [ground] elements within the IE model of the skybridge, as they
provide the support on which the skybridge rests.

As a [regular] element represents a physical component within the structure, there are additional details over the base root object
that need to be captured in order to embed the physical and structural significance of this element within the model. To achieve
the aforementioned embedding of data within the model, there are four significant types of details to be captured via child objects:
coordinates, context, geometry, and material (see Sections 4.4.1-4.4.4 respectively). Fig. 10 depicts the hierarchical layout of a
[regular] element and the corresponding child objects.

Within the network, there will inevitably be structures of different forms, compositions, and purpose. Adding additional areas
of knowledge into a [regular] element enables a granular approach for determining the homogeneity of structures. Differing user
scenarios may necessitate contrasting requirements for determining homogeneous structures within the network. User A may
determine that only a shared abstract form is required, whilst user B may require that not only is there a shared abstract form,
but the structures must share a common composition.

11
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[regular]
An element within the model that has structural significance. See Table 4 for details.

contextual
Purpose of the [regular]
element within the model. See
Section 4.4.2 and Table 7 for details.

coordinates

Position of the [regular] element within
the model’s coordinate space. See

Section 4.4.1 and Table 5 for details.

geometry material
Details of the shape and volume that Details of the material and associated
the [regular] element ocupies within properties that the [regular]
the model’s coordinate space. See element is constructed from. See
Section 4.4.3 and Table 8 for details. Section 4.4.4 and Table 15 for details.

Fig. 10. The hierarchical layout of child objects within a [regular] element. In the interest of comprehensibility, the base root object properties have been omitted
in this figure; however, they are included in Table 4.

Depending upon the child object of a [regular] element in question, will determine whether the aforementioned child object is
required or not. The child objects are designed to support the rich set of data required to embed engineering knowledge and design
decisions within themselves; however, it is understood that for many structures, this knowledge and decisions may not be available,
as such, if a child object is required for a valid [regular] element the minimum data required for a child object to be valid is the type
property.

4.4.1. Coordinates

The coordinates object within a [regular] element captures data on the element position in the 3D space of the IE model. Although
provision of position data is optimal, it is recognised that this might not always be possible; as such, a coordinates object for a
[regular] element is not mandatory. Fig. 11 displays the hierarchical properties within a coordinates object and Table 5 gives a full
list of all the relevant properties.

In terms of element position, the current proposal only implements global coordinates. However, consistent with organic data
design, room is left for later specification of local (element-wise) coordinate systems, without invalidating the current conventions.
Whilst it is possible to provide both the translational and rotational information within the global coordinate space, only the
translational information for the coordinates object is currently mandatory.

For clarity, the global coordinate space used within IE models has the origin O (x =0, y = 0 and z = 0) in the bottom-left corner
of the model. The x-axis is in the horizontal direction from left (x = 0) to right (x = n), the z-axis is in the vertical direction from
bottom (z = 0) to top (z = n) and the y-axis is in depth direction from near (y = 0) to far (y = n) (see Fig. 15(c)).

4.4.2. Context

An important departure here from the original IE-model specification, is a separation of an element’s function from the spatial
region it occupies; the former is specified by the contextual object and the latter by the geometry object (see Section 4.4.3). The
contextual object embeds the purpose of the component into the IE model, and is required for a valid [regular] element. Fig. 12
displays the hierarchical properties within a contextual object and Table 7 gives a list of relevant properties.

As contextual object captures function it must be described in terms appropriate to the modellers. This function is declared via a
flat type property, selected from a list of supported types. As more diverse groups of structures are considered, the allowed types
can be expanded.

4.4.3. Geometry

Together with the coordinates object (see Section 4.4.1), the geometry object, captures the form of a structure. As the form is
critical in specifying heterogeneous populations, the geometry property is mandatory for a [regular] element. Fig. 13 shows the
hierarchical properties within a geometry object and Table 8 gives a list of relevant properties.

12



D.S. Brennan et al. Mechanical Systems and Signal Processing 223 (2025) 111602

coordinates

global
Position of the [regular] element within the model’s
global coordinate space. See Table 5 for details.

translational rotational
X, Y and Z translational coordinates Alpha, Beta and Gamma rotational
within the global coordinate coordinates within the global coordinate
space. See Table 6 for details. space. See Table 6 for details.
X, Y, 2 alpha, beta, gamma
unit value unit value

Fig. 11. The hierarchical layout of child objects within the coordinates section of a [regular] element.

contextual

type
Purpose of the [regular] element within
the model. See Table 7 for details.

Fig. 12. The hierarchical layout of child objects within the contextual section of a [regular] element.

Whilst the coordinates object is not required for a valid [regular] element, if any dimensions are provided within the geometry
object, it is highly recommended that a coordinates object is generated — albeit with nominal values — otherwise any inferred shape
has no point of reference.

The primary embedding of knowledge within the geometry object is via the type; in this case a layered hierarchical forest approach
is used to embed the initial knowledge. Each tree in the forest is a rooted tree, directed from the root node to the leaves. The selected
type for the geometry object must be a complete path from a root node to its corresponding leaf node.

The reason for this hierarchical approach is clear, considering how the geometrical type may be used in determining homogeneity
of structures. If one imagines two structures being compared for similarity; one [regular] element may be declared as a regular beam
(beam — rectangular) in one structure and as a I-beam (beam — i-beam) in another model. For comparison purposes, one might
say that geometry properties ‘match’ if the root node within the type tree is the same, e.g. if type layer 0 is beam. Comparisons can
be made at higher resolutions later without losing backward compatibility.

For simple shapes with common names (see Table 9), required dimensions depend on types (assuming dimensions are given).
For example, for a rectangular beam (beam — rectangular), dimensions are not mandatory; however, if given, a minimum set of
length, width, and height property must be declared. For more complex shapes (see Table 14), this approach will fail if a simple
name does not capture proper understanding of shape.

For complex shapes, knowledge can be embedded via additional geometry properties; such detail being captured in supplementary
type branches under the solid and shell root geometrical types. One example of such an extension is via the translateAndScale

13
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geometry
type
The shape that describes the volume
which the [regular] element occupies in dimensions
the models space. See Table 8 for details. Dimensions of the whole shape that are

associated with the declared type. Child object
properties are either a named property or a
wildcard property, see Table 8 for details.

faces
Dimensions and properties for each face
in the complex shape being described.
See Table 8 and Fig. 14 for details.

Y
bounding
Dimensions of the smallest box which would encapsulate
the volume of the [regular] element. See Table 8 for details.

length, width, height

RPZAN

source value

Fig. 13. The hierarchical layout of child objects within the geometry section of a [regular] element (see Fig. 14 for details on the faces child object).

branch type. This option applies when two opposite faces of an element have the same shape and the element is captured by the
swept volume when one face is translated and scaled into the other. Figs. 15(a) and 15(b) give an example of two cuboid shapes; the
first has constant cross-section and its geometry is captured by the simple specification (solid — translate — cuboid); the second
has varying cross-section and is represented via (solid — translateAndScale — cuboid).

Complex/abstract shapes can be captured by the bounding and faces properties of the geometry object. In the future, this option
will bound the shape of interest by some specified complex hull, with the faces property describing the geometrical/shape properties
of the faces (the left and right of the imaginary space in Fig. 15(b) example). In the current implementation, only cuboidal bounding
boxes are supported. Fig. 15(c) depicts the interactions between the component being modelled as a [regular] element and the
bounding and faces properties of the geometry object.

4.4.4. Material

Another key component in determining similarity of structures and therefore critical in IE models is their relative material
properties. The material object embeds the material data into a [regular] element. Because of the importance of material composition
in comparing structures, the material object is mandatory. Fig. 16 displays the hierarchical properties within a material object and
Table 15 gives list of relevant properties.

The primary method of embedding material data is via the type property (see Fig. 27). Again, the type used within the material
object is a hierarchical forest (like the geometry object); however, the selected type does not have to complete a path from a root
node to a leaf node, the path may terminate at any corresponding valid child node given the selected root node. Additional material
properties of a [regular] element can be embedded within a material object via the properties property. In the current implementation,
materials are assumed homogeneous and isotropic; in the future, general tensor specifications will be allowed. Furthermore, it will
be possible to allow material properties to vary as a function of the ambient conditions of the structure, e.g. temperature.

14
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faces

left, right
The left/right face of the
shape. See Table 11 for details.

translational dimensions

Translational properties of Fhe Measured dimensions associated with the

face. See Table 12 for details. face for the complex shape. Child object
properties are either a named property or a

wildcard property, see Table 12 for details.

Y, 2

unit value

Fig. 14. The hierarchical layout of child objects within the faces section of geometry within a [regular] element.

For flexibility, three categories of named material properties are supported; material properties free from any associated units
(see Table 17), which are deemed valid for a single value or specified range, material properties dependent upon an associated unit
to correctly quantify the value (see Table 18) (again for single values or allowed ranges), and lastly, material properties which can
only be considered valid with predetermined test conditions (see Table 21), and as such only accept a range of value. Where ranges
are specified, the relevant variables are termed conditional.

To avoid confusion, a named property is one which is known by the PBSHM Schema and is defined within by a set of accepted
associated properties. A wildcard property is a property which is yet unknown by the PBSHM Schema and as such, does not constrain
what the associated accepted properties are. For instance, a material property with the type set to ‘yieldStrength’ has an accepted
list of valid unit values as defined in Table 18.

4.5. Perfect relationship

A [perfect] relationship represents the interaction between two — and only two — [regular] elements where the two elements
in question could be considered to be the same singular element; segmentation only occurring to embed additional geometrical
knowledge or enhanced localisation, within the model. The two elements within the relationship must have matching type values for
the contextual, geometry and material objects of a [regular] element. Additionally, any defined properties within the elements must
not cause any logical conflicts between themselves.

If one imagines the fuselage of an aeroplane as a component within an IE model. If one were to only use a single [regular] element
to describe the component, vast amounts of rich geometrical knowledge would not be embedded within the model. In contrast, if
multiple [regular] elements were instead used, the rich geometrical knowledge is successfully embedded within the model; however,
the cost of implementation would be an introduced ambiguity regarding the number of elements into which a component should
be segmented. The proposed solution for this problem, is the [perfect] relationship; by embedding segmentation knowledge into the
model, a reduction of elements can occur before any similarity determinations.

In the pursuit of embedding the form of a structure within an IE model, the relationships proposed within this paper — akin
to [regular] elements — support the inclusion of positional data via a coordinates object; depending on the number of elements
included within a relationship, it determines if singular or multiple coordinate objects are facilitated. In the interest of clarity, the
coordinates provided within the relationship must reference the centroid of the two faces which contact, as such the coordinates
provided therefore must be based within the same global coordinate space used for [regular] element locations.
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N

(a) A square box represented as a standard commonly- (b) A tapered square box represented as the complex
known named representation; ; solid — translate — geometry representation; solid — translateAndScale
cuboid — cuboid.

(c) The interaction between a component’s complex geometrical shape and the associated bounding
box and faces.

Fig. 15. The difference between a standard commonly-known named representation of a components geometry and a complex representation of a component
geometry and the associated bounding box.

material
{1
properties
type symmetry The measurable properties of the
The classification of the material The symmetry of the physical material being described. Child
that composes the element. properties of the material. object properties are either a
See Table 15 for details. See Table 15 for details. named property or a wildcard

property, see Table 16 for details.

Fig. 16. The hierarchical layout of child objects within the material section of a [regular] element. A note on the [{}] symbol; this is used on the arrows to
denote when the property it is pointing towards accepts an array of objects, instead of a singular value or object.
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[perfect]
A relationship within the model where the two [regular] elements within the relationship could be
considered as the same element; the elements have only been divided up to encapsulate complex
geometrical properties or to localise damage detection/sensor placement. See Table 23 for details.

{}]
coordinates elements
Position of the [perfect] relationship within the The list of [regular] elements which are part of
models coordinate space. See Table 23 for details. this relationship. See Table Table 23 for details.
global name

translational

\
X, Y, 2

/ N\

unit value

Fig. 17. The hierarchical layout of child objects within a [perfect] relationship. In the interest of comprehensibility, the base root object properties have been
omitted in this figure; however, they are included in Table 23.

Within the context of a [perfect] relationship, only two [regular] elements are accepted, subsequently, only a singular coordinate
object is applicable for this scenario. Fig. 17 displays the hierarchical properties within a [perfect] relationship and Table 23 gives
a full list of all the properties including which properties are required.

4.6. Connection relationship

A [connection] relationship represents the interaction between two or more [regular] elements where the elements in question
are held together by an unknown component excluded from the model, nominally because of the component having no immediate
structural significance. A [connection] relationship may only be used within a model, if — and only if — the relationship can be
substituted for numerous [joint] relationships (see Section 4.7), without loss of knowledge within the model. The previously-omitted
component is modelled by; inclusion of a new [regular] element, subsequently a [joint] relationship is created for every element
previously included within the [connection] relationship, and the newly instantiated [regular] element.

The relationship must be considered static without any notable movement present within the relationship. If any notable movement
is present within the relationship, a [connection] relationship is no longer valid and the interaction thus must be modelled as a [joint]
relationship. The elements included in the relationship may have different properties within the [regular] element, without invalidating
the relationship.

If one imagines a section of a bridge where three beams connect together; there is a singular beam running horizontally, with
two other beams at 45 degree angles from the horizontal beam (see Fig. 19). All the beams connect together in the centre of the
horizontal beam. There is also a face plate covering the connection of all of these beams. One could make an argument for stating
that the face plate is not structurally significant within the structure; as such, the face plate could be ignored from the model and
the interaction between the three beams modelled as a [connection] relationship, which positions them rigidly in the correct spatial
relation to each other. Conversely, an argument could also be stated for the inclusion of the face plate, thus requiring the interaction
to be modelled using multiple [joint] relationships.
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[connection]
A relationship within the model where two or more [regular] elements are held in situ by a compo-
nent with no structural significance which, by its very nature, has been omitted from the model.
A [connection] relationship may be replaced by one or more [joint] relationships, if the omitted
component is subsequently included within the model as a [regular] element. See Table 27 for details.

{3

elements
The list of [regular] elements which are part
of this relationship. See Table 27 for details.

name nature coordinates

Y

name nature global
Y

name translational

Y

X, ¥, 2

unit value

Fig. 18. The hierarchical layout of child objects within a [connection] relationship. In the interest of comprehensibility, the base root object properties have been
omitted in this figure; however, they are included in Table 27.

\./

Fig. 19. An example of where a [connection] relationship could be used within an IE model. In this example, there are three beams all connecting together —
the rectangles in purple and green — in the centre, with a face plate — the dotted red rectangle — covering the connection. This interaction can be modelled as a
[connection] relationship between all three of the beams, by omitting the face plate from the IE model. This modelling methodology, is only possible using the
premise that the face place has no structural significance within the model; however, if the face plate is stated to have structural significance, the interaction
must therefore be modelled as individual [joint] relationships, between each beam and the face plate.
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Coordinates are supported within a [connection] relationship; however, because of the nature of a [connection] relationship,
allowing the ability for each [regular] elements within the relationship becoming its own [joint] relationship, coordinate data therefore
must be stored against each element within the relationship instead of against the overarching relationship. Fig. 18 displays the
hierarchical properties within a [connection] relationship and Table 27 gives a full list of all the properties including which properties
are required.

4.7. Joint relationship

A [joint] relationship represents the interaction between two — and only two — [regular] elements where the physics of the
interaction between the two elements is desired to be modelled. If the associated scenarios for a [perfect] or [connection] relationship
are not applicable for the given [regular] elements then a [joint] relationship should be the selected relationship.

Both a [perfect] and [connection] relationship may be modelled as a [joint] relationship — with a given [static] nature — and remain
a valid [joint] relationship; however, it is strongly encouraged that an interaction between two [regular] elements which adhere to
either the scenarios outlined in a [perfect] or [connection] relationship are declared as a [perfect] or [connection] relationship for
the additional implicit context the definitions give to the relationship.

To correctly encapsulate the physics of the interaction within a [joint] relationship, additional subdivision is facilitated via the
nature of the [joint]. A [joint] relationship is stated to have a [static] nature, if both elements within the relationship have no movement
between the two elements. A [joint] relationship is stated to have a [dynamic] nature when, within the relationship, there is knowledge
regarding kinematic or dynamic degrees of freedom (DOF) between the two elements which thus, could be embedded within the
relationship.

Whilst implicit knowledge regarding the available movements within the relationship is gained via knowing if the nature is [static]
or [dynamic], explicit knowledge can be embedded within the relationship via declaring translational and rotational properties
within the degreesOfFreedom. The degreesOfFreedom property is only available within a [joint] relationship when the nature of the
[joint] is set to be [dynamic].

If one again imagines the bridge example given as part of the [connection] relationship (see Section 4.6). The face plate element
has been introduced within the model and as such, the [connection] relationship is being remodelled as [joint] relationships. One may
determine that both theoretically and practically, there should be no movement between the face plate and the beam and as such,
this could be modelled as a [static] nature [joint] relationship — ignoring the fact that a [connection] relationship being remodelled
as [joint] relationships must in fact be of a [static] nature to be a valid [connection] relationship — using ‘static’ — ‘welded’, ‘static’
— ‘bolted’, ‘static’ — ‘adhesive’ or ‘static’ — ‘other’.

Coordinates are further supported within a [joint] relationship; however, given that there are only two [regular] elements included
in the relationship, a singular coordinate object only is facilitated. Fig. 20 displays the hierarchical properties within a [joint]
relationship and Table 29 gives a full list of all the properties including which properties are required.

4.8. Boundary relationship

A [boundary] relationship represents the interaction between two — and only two — elements, where the first element within the
relationship must be a [regular] element and the second element within the relationship must be a [ground] element. A [boundary]
relationship denotes the boundary between the structure being modelled and any system which can be considered as external to the
modelled structure (see Section 4.3).

By the same premise as a [ground] element, a [boundary] relationship only contains the pertinent information to denote an external
system’s presence within the model, as such, the only information captured within a [boundary] relationship is the position of the
relationship within the model’s global coordinate system and the name of the two elements within the relationship.

If one imagines a stationary aeroplane resting on the tarmac of an airport runway; one could state that a [grounded] IE model
of the aeroplane would best represent the current state of the structure. [Regular] elements would be included for the standard
sections in the structure; fuselage, wings, landing gear, etc. At least one [ground] element will need to be included within the
model, to represent the airport runway which is supporting the plane. The interaction between the wheels of the aeroplane —
[regular] elements — and the airport runway — [ground] elements — would be modelled by multiple [boundary] relationships — one
for every aeroplane wheel being supported by the airport runway — within the aeroplanes’ [grounded] IE model.

Fig. 21 displays the hierarchical properties within a [boundary] relationship and Table 23 gives a full list of all the properties
including which properties are required.

4.9. Standardised representation

The beginning of this section (see Section 4) started off by discussing the problems faced when using the original IE-model
language to describe structures; namely the issue that from one single structure, one may end up having multiple IE models of
varying levels of granularity to describe a single structure. These variations within a model, directly impact the generated similarity
metrics within the network; as any variation within a model will cause a disparity in the similarity for a given structure. The optimum
solution is that for any given single structure, no matter what variations are present within two associated IE models, if the IE models
have been generated from the same structure, they should match as identical within the network.
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[joint]
A relationship within the model in which the physics of the interaction between two [regular]
elements has structural importance. A relationship that is not a valid [perfect], [connection] or
[boundary] relationship, is required to be a valid [joint] relationship. See Table 29 for details.

[{>
nature
The nature of the physics
elements within the relationship.
. degreesOfFreedom
The list of elements which See Table 29 for details. greesOfFi

The movement allowed within the

are part of this relationship. relationship. See Table 29 for details.

See Table 29 for details.

/ \ name nature

name coordinates global
name / \
global translational rotational
translational x, Y, 2 alpha, beta, gamma
Y M\
X, Y, 2 minimum maximum unit
unit value

Fig. 20. The hierarchical layout of child objects within a [joint] relationship. In the interest of comprehensibility, the base root object properties have been
omitted in this figure; however, they are included in Table 29.

The expansion of the IE-model language included within this paper, is only solving Part One in a two-part problem to realising
the aforementioned similarity within the network. If one can embed into the IE model, the required domain knowledge on both the
structural composition and modelling decisions (Part One of the problem), one can potentially reduce the variations present within
a model (Part Two of the problem) so that after variations have been removed, two IE models from the same structure will match as
identical. By expanding the language, syntax, and knowledge embedded within an IE model, this paper has provided a standardised
method for describing the knowledge on a structure’s composition and the choices made when modelling the structure.

The structures modelled will still have variations present within the model depending upon who generates the model and the
level of granularity used within the model; however, because of the expanded IE-model language included within this paper, these
models now contain the knowledge to understand why variations are present and which variations can be removed in the Canonical
Form representation (Part Two of the solution). For the interested reader, the Canonical Form representation of an IE model and the
effect it has upon the network comparison space, is introduced by Brennan et al. in [22].

5. Implementation

Throughout the previous sections of this paper, the foundations, and principals of a PBSHM ecosystem have been outlined;
however, the desire of this paper is to not only provide the theoretical technical components of such an ecosystem, but to provide

20



D.S. Brennan et al. Mechanical Systems and Signal Processing 223 (2025) 111602

[boundary]
A relationship within the model which denotes the end of the current structure and captures
the interaction with an external system. As such, the relationship is between two elements; one
being a [regular] element and the other being a [ground] element. See Table 23 for details.

{}1
coordinates elements
Position of the [boundary] relationship The list of elements which are part of
within the model’s coordinate this relationship. See Table 23 for details.
space. See Table 23 for details.
global name

Y
translational

|
X, Y, 2

4

value

Fig. 21. The hierarchical layout of child objects within a [boundary] relationship. In the interest of comprehensibility, the base root object properties have been
omitted in this figure; however, they are included in Table 23.

an initial implementation of this technology to demonstrate the potential of PBSHM. As such, the rest of this paper focuses on
providing an initial database Schema for the shared-data domain required within PBSHM and the skeleton of an initial framework
for the computational shared domain.

As outlined within the requirements set forth in Section 3, any implementation of the ecosystem must support both of the
technical themes of PBSHM, therefore, the database and framework implementation outlined within this paper will focus on
supporting the newly-proposed standardised IE model — to fulfil the requirement of structure descriptions and subsequently
similarity comparisons — and raw channel data — to fulfil the acquisition of health knowledge of a structure.

5.1. Database choice

Both RDBMS and NoSQL Document databases provide the technical requirements to implement a PBSHM database. However,
with an RDBMS there are additional required processes as a result of converting tabular data into object representations.
Consequently, NoSQL document databases have been chosen here for implementation of the PBSHM database.

There are multiple NoSQL document databases available, each providing a unique set of features driven by community goals.
When selecting a document database, the following additional requirements were introduced: access controls, to enable different
structure permissions, simple document structure and document level concurrency. For the purposes of the PBSHM database,
MongoDB has been chosen. MongoDB was initially developed in 2007 [23], and has since become a widely-adopted and supported
document database. MongoDB can be deployed on premises, on cloud providers or via MongoDB Atlas.

Documents inside MongoDB are stored in Binary Javascript Object Notation (BSON) format - a derivative of the Javascript Object
Notation (JSON) format. JSON [24,25] is a text-based data format that has gained popularity precisely because of its transparent
document structure, lightweight footprint and self-contained nature.
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MongoDB uses the following levels for data storage:

MongoDB Instance

l

Database

l

Collection $———> JSON Schema

l

Document

An instance of MongoDB can contain multiple databases; inside each database can be multiple collections and inside a collection
can be multiple documents. Whilst a principle of NoSQL document databases is a schema-less design, MongoDB supports document
validation via associating each collection with a JSON Schema. This facilitates a “pbshm” database inside the MongoDB instance,
a global “structures” collection inside the database using the PBSHM JSON Schema for document validation, and structure data
documents inside the collection.

Because of MongoDB’s access controls [14,26], all users will be given read permissions to the “structures” collection; if any
PBSHM framework modules require storage of computed values, these will be stored in module-specific collections. The MongoDB
database here will use the WiredTiger [14,27,28] storage engine, which supports document-level concurrency, thus facilitating a
structure’s data to be updated on the system without locking read access to the rest of the structures.

Minimal latency upon retrieval of common queried data is implemented via indexes [14,29]. Indexes are quintessentially pointers
from a specific data value to documents which are stored in memory. For example, an index could be created on a population name,
so that when the system is queried for documents inside a population, the system already knows which corresponding documents
to be returned without enumerating each document inside a collection.

Distribution of data, either for redundancy or scalability is a key component for any database. MongoDB supports this via
replication [14,30] and sharding [14,31]; however, for the purpose of this paper, they are not implemented within the PBSHM
database because of the system only containing historical data that can fit within a single database node.

5.1.1. Structure

At the root of the document is knowledge regarding the ‘who’ and ‘when’ of the shared data domain; the structure. The basic
properties required to capture this are: version, name, population, and timestamp. Additional properties can be included within the
structure entity to encapsulate data from within the PBSHM framework. In the examples used within this paper, additional properties
have been declared for models and raw channel data; model — irreducibleElement, and channels respectively. Fig. 22 depicts the
hierarchical objects for the structure object and Table 1 gives a full list of relevant properties.

Within MongoDB there is a default date property type which stores date information up to millisecond accuracy; however, because
current sensor technology can capture data at a 1 MHz sampling rate, this would cause a loss of accuracy on sensor data. Dates
within the PBSHM database are implemented via UTC nanoseconds since UNIX epoch and stored in a long (Int64) data type which
enables sampling up to 1 GHz.?

5.1.2. Channel

Embedded beneath the structure document is an array of channel objects containing details on associated structure sensors; name,
type, unit, and value. A channel object should exist within the structure document for each channel that was present and providing
data on the associated structure at the given structure timestamp. If a channel did not provide data at the given timestamp, it should
not exist within this structure document. Fig. 23 depicts the hierarchical objects for the channel object. A description of each property
within the channel entity is included in Table 39.

To enable accurate comparisons across channel objects, type, and unit are enumerated types. For each given value of type there
are associated accepted values for both unit and value. For instance, if a channel has a value ‘tilt’ for type, accepted values for
unit are ‘degrees’, ‘radians’ or ‘other’ and accepted types for value are int, double or object. The unit property is not applicable on
certain types where having a unit to provide context for the values value is not required. For example a channel with type ‘text’
does not require any additional context for the value of value. A full list of accepted type, unit, and value combinations is included
in Table 40.

5.1.3. Value

When the unit for a Channel is applicable, the value on the Channel can be of data type int, double or object. A Value object
facilitates storage of value data which is not singular; min, max, mean, std. The Value object must have at least two properties set
on the object, otherwise a singular value value should be used instead. A description of each property within the Value entity is
included in Table 41.

3 When using Javascript to interact with the PBSHM Schema, there will be a loss of accuracy in the timestamps because of Javascript only supports 53 bytes
in an Int64. This constraint will also affect any interactions within the MongoDB Compass GUI tool, as at the time of publishing this paper it is implemented
in Javascript.
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structure
A structure is the representation of a physical system for which knowledge has either already been obtained
or which has the potential for knowledge to be discovered within the framework. A structure within the
network, is the collection of all associated data within the database for the given name. See Table 1 for details.

version population
The version of the PBSHM The initial group of
Schema to which this structure’s i 31 structures to which this

document is compliant. structure belongs to.

name
The unique name of the
structure within the database.

channels
Raw channel data acquired via either
a short or long-term monitoring
campaign on the structure. See
Section 5.1.2 and Table 39 for details.

models
The collection of models which
create a digital representation of
the structure. See Table 2 for details.

irreducibleElement
The Irreducible Element (IE) model
which describes the structurally-
significant component of the structure.
See Section 4.2 and Table 3 for details.

Fig. 22. The hierarchical layout of properties and child objects within the structure root document.

5.2. JSON examples

To Illustrate the usage of the PBSHM Schema, the following JSON examples have been included to demonstrate the relationship
between the Schema outlined within this paper and the JSON code required to represent data into the database. Fig. 24 includes the
JSON required to represent a [grounded] model within the database. The example is of a simple rectangular beam, represented by
a singular [regular] element. The model contains the minimum required information for the model to be valid and pass the Schema
validation.

Fig. 25 includes the JSON required to represent a structure with three channels of data for the given timestamp. The first channel
‘test-channel-1’ is a SCADA channel with the source being an acceleration sensor. The second channel, ‘test-channel-2’ is a singular
value channel with the source being a temperature sensor. The last channel, ‘test-channel-3’, is a text-based channel of non-numerical
data. A single timestamp document may contain channels of varying channel types and values. Whilst an example is not given within
this paper in the interest of brevity, a single JSON document could contain both IE model data and channel data.

5.3. Framework

In the interest of conciseness, the complete implementation of the framework is omitted from this paper; however, an overview
of details regarding the implementation have been included to show the research decisions made and the main technology details.
Given the requirements of the framework outlined in Section 3.2, a Python-based micro web framework called Flask has been chosen
as the base technical implementation upon which the framework is built. A PBSHM flask core has been implemented to provide a
skeleton structure in which modules can be created to expand the functionality of the ‘core’ to produce a flexible framework.
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channel
A channel represents a source of raw data or information on a structure. Raw data may be converted
from the acquired unit to the units supported within the PBSHM Schema, but no other processing or
modification of data is allowed, whilst maintianing the raw data classification. See Table 39 for details.

type
name The type of the channel
The unique name of the which generated the raw
channel within the structure. data. See Table 40 for the

list of available values.

unit
The unit on which the values
for the channel are based. See
Table 40 for the list of available
values where a unit is applicable.

value
The singular or object value
of the channel. See Table 40
for the list of available values.

min, max, mean, std

Fig. 23. The properties for a channel in the PBSHM Schema.

Keeping in mind the requirements outlined within this paper of what is required for a PBSHM framework, two modules have
initially been authored to fulfil the aforementioned requirements. Fig. 29 in the Appendix shows a module within the PBSHM
framework which is an implementation of the Jaccard Index originally used within Gosliga et al. [20] paper to determine the
similarity between a set of real-world bridges. The IE models of the associated bridges, have been updated to the latest version of
the IE model definitions included within this paper. Fig. 30 in the Appendix shows the ‘pathfinder’ module within the framework
which enables exploration of existing datasets within the database and includes basic statistical analysis of these datasets.

5.4. Download

The PBSHM Schema and PBSHM Framework introduced in this paper can be downloaded from https://github.com/dynamics-
research-group/pbshm-schema/releases/tag/v1.1.0 and https://github.com/dynamics-research-group/pbshm-flask-core/releases/
tag/v1.0.4 respectively. For manual installation within MongoDB, the required file from the PBSHM Schema repository is structure-
data-compiled-mongodb.min.json. To configure the PBSHM Framework, please follow the instructions in the README file on the
PBSHM Framework repository. During the configuration of the PBSHM Framework, the latest version of the PBSHM Schema will
be downloaded and installed within the selected collection.

6. Conclusion

In conclusion, this paper has highlighted some significant data problems that could potentially plague PBSHM, if not dealt with
whilst PBSHM is in its foundation stages. The paper has proposed the potential solution for this, a shared domain in which PBSHM
data and algorithms can reside, to not only aid in the adoption of PBSHM, but enable the focus of PBSHM henceforth to be on
algorithmic discovery and generation, instead of data headaches.

This paper has introduced the idea of three unique shared domains; the network, the framework, and the database. The network
houses the similarity computations between structures, and creates a network of relationships between the structures within PBSHM
to evaluate if learnt knowledge can be transferred across the relationships. The framework is where PBSHM algorithms reside;
any computations on the similarity of structures or determining potential transfer of knowledge from structures, happen here.
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{
"version": "1.1.0",
"name": "test-structure",
"population": "ie-population",
"timestamp": 1588007841000000000,
"models": {
"irreducibleElement": {
"type": "grounded",
"elements": [
{
"name": "ground-element",
"type": "ground"
1,
{
"name": "regular-element",
"type": "regular",
"contextual": {
|ltype|| . “beaIn.“
1,
"geometry": {
"type" . {
"name": "beam",
lltypell : {
"name": "rectangular"
}
}
1,
"material": {
"type": {
"name": "metal"
}
}
}
1,
"relationships": [
{
"name": "relationship",
"type": "boundary",
"elements": [
"name": "ground-element" },
{ "name": "regular-element" }
]
}
]
}
}
}

Fig. 24. An JSON example for including IE model data within the PBSHM database. The example is a [grounded] model of a simple rectangular beam interacting
with ground.

The database unifies both the network and framework by providing the shared data format against which all PBSHM data must
be compliant.

The paper also takes the initial concept of Irreducible Element (IE) models introduced by Gosliga et al. [3] and proposes a new
and expanded version — and subsequent language — of IE models, where attributes have a clear definition as to their purpose within
the model and what information they should contain. The improved language further enables embedding of additional engineering
knowledge within the model and encapsulates certain design choices made by the modeller.

The importance of the changes outlined within this paper to the language and knowledge embedding within an IE model become
apparent when one examines the output from the framework’s similarity metrics for the eight real-world bridges used by Gosliga
et al. [20]. Fig. 26(a) shows the output from the framework when only embedding the geometrical type properties from the IE
model into the Attributed Graph. As one can see, the similarity metrics still correctly identify ‘Beam & Slab 1’ and ‘Beam & Slab 2’
as being similar, the same is for ‘Suspension 1’ and ‘Suspension 2’, and for ‘Truss 1’ and ‘Truss 2’. These results are all in line with
the result published by Gosliga et al. however, one may notice that the ‘Cable-stayed’ bridge and the ‘Arch’ bridge no longer have
any meaningful similarity between themselves, in contrast to the results published by Gosliga et al. Fig. 26(b) shows the output for
from the framework for the same eight bridges, but instead embedding the contextual type within the Attributed Graph. As one can
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{ "version": "1.1.0",
"name": "test-structure",
"population": "test-population",
"timestamp": 1588007839000000000,
"channels": [
{
"name": "test-channel-1",
"type": "acceleration",
llunitll : llg!! ,
"value": {
"min": 10,
"max": 11,
"mean": 10.5,
"std": 10
}
})
{
"name": "test-channel-2",
"type": "temperature",
llunitll B llc|| ,
"value": 28.9
},
{
"name": "test-channel-3",
"type" : lltextﬂ ,
"value": "this is some text based context"
}
]
}

Fig. 25. An JSON example for including channel data within the PBSHM database. The example includes three channels, the first channel demonstrates SCADA
data within the database, the second channel a singular value and the third channel with only a text-based value.

-10 -10
Beam &Slab 1~ 1.000 Beam & Slab 1~ 1.000
Truss 1 - 0.005 0.002 Truss 1
o8 08
Cable-stayed Cable-stayed
06 06
Arch 0005 0,008 Arch 0.008
suspension 1 -0 0002 0015 Suspension 1 0005 0013  0.005 0006  0.005
04 0.4
Beam & Slab 2 0.008 Beam & Slab 2 125 0.006 0021
Truss 2 0.022 0.002 L

Truss 2

Suspension 2

3
8
S

Suspension 2 0.008  0.008

Arch

Truss 1

Cable-stayed

Suspension 1

Beam & Slab 1

Beam & Slab 2

Truss 2

Suspension 2 -

Truss 1
Arch

Beam & Slab 1

Cable-stayed

Suspension 1

Truss 2
Suspension 2 -

Beam & Slab 2

(a) The framework’s similarity matrix from the eight real-world bridges, (b) The framework’s similarity matrix from the eight real-world bridges,
when embedding the geometrical type data into the Attributed Graph. when embedding the contextual type data into the Attributed Graph.

Fig. 26. The similarity matrix generated from the PBSHM framework using the Maximum Common Subgraph and the Jaccard Index. The Irreducible Element
models used are the same eight real-world bridges used by Gosliga et al. [20].
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see, the vague similarity between the ‘Cable-stayed’ and ‘Arch’ bridges has returned to the same value as published by Gosliga et al.
This loss and regain of similarity between the ‘Cable-stayed’ and ‘Arch’ bridges, highlights the importance of the work within this
paper to isolate embedded knowledge to their corresponding unique domains.

6.1. Future research

Whilst the work outlined within this paper has proposed an improved standardisation for Irreducible Element (IE) models, there
is still further work to be concluded on the topic of embedding knowledge on a structure within PBSHM. An IE model is currently
the only vehicle within PBSHM for embedding the knowledge regarding the composition of a structure; however, there are vast
amounts of additional data, such as Environment and Operational Variables (EOV’s), which are important indicators of the overall
state of a structure, whilst not aligning to the purpose of an IE model. It is not envisioned that the purpose of an IE model will
change to encapsulate this data; instead, a new model will be birthed: the Reality model.

The Reality model will be a hierarchical model which is dependent upon an IE model to describe the structure in question, with
additional models/data added on top of the IE model to gain additional context regarding the structure’s interactions within the
world in which the structure lives. Part of the additional information that is required to be present in the hierarchical Reality model,
is information regarding the network of sensors placed upon the structure. Being able to locate a sensor or sensors within a [regular]
element is key to gaining a detailed understanding of general Structural Health Monitoring (SHM) problems within PBSHM.

There is also further research within the IE model itself which needs to be conducted. There is currently no method within
an IE model for the modeller to inform the framework and subsequently the network regarding the granularity of the model. Have
they focussed in great detail on modelling the interaction between a specific component, whilst giving a very abstract and general
representation for the rest of the model? This information is desired to be present within the model, so to inform any similarity
algorithms during matching. There may also be the need for different types of IE models with differing levels of details on elements
and relationships because of the purpose they may have during the lifecycle of the PBSHM ecosystem.

Currently, within an IE model, there is only a reference to an external structure/object being present; [ground] element. It is
envisioned that this methodology will need to be expanded in future versions of the IE model language, enabling referencing of other
IE models within the network as to gain additional context within the referencing IE model. This principle may also be expanded to
encompass the referencing of subsections of IE models. If one imagines an aeroplane, within the network there may be a detailed IE
model (an IE model with a high level of granularity) of a particular subsection of the aeroplane; say the landing gear. The landing
gear may be used across multiple makes and models of aeroplane, so instead of requiring the modeller to encapsulate all the intricate
elements and relationships which form the landing gear section, they should be able to declare a new element which simply references
the relevant external - to itself — IE model.

The referencing of external IE model methodology, may also be expanded to encapsulate named generic subsections or
subcomponents within a model. If one again imagines an aeroplane, the purpose of the IE model generation could be to determine
similarities within cockpit designs across a range of aircraft. In this scenario, it would be preferential for the modeller, to be able to
reference a generic ‘wing’ to include within the IE model, as the specifics regarding the wing design is not required for the purpose
in which the IE model is being generated and used within the network.
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Appendix
This appendix necessarily has something of a ‘user manual’ feel to it, and might be considered to be outwith the remit of a
research paper proper; however, it is included here because the detailed structure of some of the objects referred to in the main

text shed valuable light on their discussions there.
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Appendix A. Root schema

See Tables 1 and 2.

Table 1

The available properties for the declaration of a structure within the PBSHM Schema.
Property Description Type
version The version of the PBSHM Schema that the document is compliant towards. Accepted values: ‘1.1.0° string
name A unique name of the structure within the population. string
population The name of the initial type of structures to which the structure belongs. string
timestamp Timestamp of when the associated data were recorded, stored in UTC nanoseconds since UNIX epoch. long
models Associated models for the given structure. See Table 2 for the available child properties. object
channels Associated raw channel data acquired from either a short or long-term monitoring campaign. See

Table 39 for the available child properties and see Table 40 for a list of accepted values.

Required Properties: version, name, population and timestamp.

Table 2

The available properties for the declaration of a model within the PBSHM schema.
Property Description Type
irreducibleElement The Irreducible Element (IE) model that describes the structure at the given time point. See Table 3 for object

the available child properties.
Required Properties: None.
Appendix B. IE model schema
See Table 3.

Table 3

The available properties for the declaration of an Irreducible Element model within the PBSHM schema.
Property Description Type
type The selected type of the model, either ‘free’ for a [free] model or ‘grounded’ for a [grounded] model. string
elements An array of element objects. See Fig. 9 for the available elements dependent upon the selected model type. array
relationships An array of relationship objects. See Fig. 9 for the available relationships dependent upon the selected model type. array

Required Properties: type and either el ts or relationship

B.1. Regular element

See Table 4.

Table 4

The available properties for the declaration of a [regular] element within the PBSHM schema.

Property Description Type
name The unique name for the element within the model. Must have a length between 1 and 64 characters. string
description Additional none structured information to describe the element. string
type Selected type of element. Accepted values: ‘regular’. string
coordinates Position of the [regular] element within the models coordinate space. See Table 5 for the available child object

properties.

contextual Purpose of the [regular] element has within the model. See Table 7 for the available child properties. object

geometry Details of the shape and volume that the [regular] element occupies within the models coordinate space. See object
Table 8 for the available child properties.
material Details of the material and associated properties that the [regular] element is constructed from. See Table 15 object

for the available child properties.

Required Properties: name, type, contextual, geometry and material.

B.1.1. Coordinates
See Tables 5 and 6.
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Table 5
The available properties for the coordinate object within a [regular] element in the PBSHM schema.
Property Description Type
global Translational and Rotational coordinates within the global coordinate space. See Table 6 for the available child properties. object
Required Properties: global.
Table 6
The available properties for the global coordinate object within a [regular] element in the PBSHM schema.
Property Description Type
translational X, Y and Z translational values within the global coordinate space. See ‘Translational coordinates Object’ in object
Table 35 for the available child properties.
rotational Alpha, Beta and Gamma rotational values within the global coordinate space. See ‘Rotational Coordinates object
Object’ in Table 35 for the available child properties.
Required Properties: translational.
B.1.2. Contextual
See Table 7.
Table 7
The available properties for the contextual object within a [regular] element in the PBSHM schema.
Property Description Type
type The type that describes the purpose of the element within the model. Accepted values: ‘wall’, ‘slab’, ‘beam’, string
‘cable’, ‘block’, ‘plate’, ‘column’, ‘deck’, ‘aerofoil’, ‘wing’, ‘fuselage’, ‘tower’, ‘wheel’ or ‘other’.
Required Properties: type.
B.1.3. Geometry
See Tables 8-14.
Table 8
The available properties for the geometry object within a [regular] element in the PBSHM schema.
Property Description Type
type The shape that describes the volume which the element occupies. See Table 34 for the available nested child object
properties. See Table 9 for the list of accepted standard types and Table 14 for the list of accepted complex
types.
bounding Dimensions of the smallest box which encapsulates all the associated dimensions of the element. See Table 10 object
for a list of child properties.
faces The dimensions and properties of each face of the complex shape being described. See Table 11 for a list of object
child properties. Only available when the shape is a complex geometry (See Table 14).
dimensions Each measurable dimension associated with the shape being described which belong to the whole shape. There object

is one child property for each given dimension. Child properties are either a named property (See Tables 9 and
14), or they are wildcard properties which can have any valid JSON string as their name. The value for the
property is an object for which the child properties can be found in Table 38. For a wildcard property, the
accepted values are ‘Wildcard’ under ‘Value Object Type’. For named properties, the accepted value type are
declared in Table 9 for standard geometrical types and in Table 14 for complex geometrical types.

Required Properties: type. For any complex types declared in Table 14: bounding if faces or dimensions declared, faces if bounding or dimensions declared.
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Table 9
The available standard geometrical types and their associated required dimensions properties and accepted object types for a [regular] element in the PBSHM

schema.

Type tree Dimension property Dimension Object
beam — rectangular length, width, height Linear
beam — circular length, radius Linear
beam — i-beam length, d, h, s, b, t Linear
beam — other length Linear
plate — rectangular thickness, width, length Linear
plate — circular thickness, radius Linear
plate — other thickness Linear

cuboid length, width, height Linear
solid — translate — sphere radius Linear
solid — translate cylinder radius, length Linear

solid — translate —
N
N

solid — translate — other
—
—
—

shell — translate cuboid thickness, length, width, height Linear
shell — translate — sphere thickness, radius Linear
shell — translate cylinder thickness, radius, length Linear
shell — translate — other thickness Linear

Required Properties: Any named dimension property in the Table above. See Table 38 for the available child properties and, within the table, ‘Linear’ under

‘Dimension Object Type’ for the accepted values.
Additional Information: Additional dimensions can be declared as a Wildcard. See Table 38 for the available child properties and, within the table, ‘Wildcard’

under ‘Dimension Object Type’ for the accepted values..

¥;21:Vigable properties for the cuboid bounding box object within a [regular] element in the PBSHM schema.
Property Description Type
type The type of shape used to encapsulate the element. Accepted Values: ‘cuboid’. string
length The measured length of the cuboid bounding box. See Table 38 for the available child properties and, within object

the table, ‘Linear’ under ‘Dimension Object Type’ for the accepted values.

width The measured width of the cuboid bounding box. See Table 38 for the available child properties and, within object
the table, ‘Linear’ under ‘Dimension Object Type’ for the accepted values.

height The measured height of the cuboid bounding box. See Table 38 for the available child properties and, object
within the table, ‘Linear’ under ‘Dimension Object Type’ for the accepted values.

Required Properties: type, length, width and height.

iﬁ:l;iillable properties for the complex geometrical faces object within a [regular] element in the PBSHM schema.
Property Description Type
left The left face of the shape within the bounding box; the face at which the value for X on the horizontal axis would be object
0. See Table 12 for a full list of child properties.
right The right face of the shape within the bounding box; the face at which the value for X on the horizontal axis would object

be N, where N equals the dimensional property which is on the X axis. See Table 12 for a full list of child properties.

Required Properties: left and right.

Table 12

The available properties for the complex geometrical face side object within a [regular] element in the PBSHM schema.
Property Description Type
dimensions Each measurable dimension associated with the face being described. There is one child property for each given object

dimension. Child properties are either a named property (See Table 14), or they are wildcard properties which can
have any valid JSON string as their name. The value for the property is an object for which the child properties can
be found in Table 38. For a wildcard property, the accepted values are ‘Wildcard’ under ‘Value Object Type’. For
named properties, the accepted value type are declared in Table 14.

translational Y and Z translational values within the bounding box coordinate space to convey the translational movements of the object
face. See Table 13 for a full list of child properties.

Required Properties: dimensions and translational.
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Table 13
The available properties for the complex geometrical face translation object within a [regular] element in the PBSHM schema.
Property Description Type
y The Y translational value within the bounding box coordinate space. See Table 36 for the available child properties object
and, within the table, ‘Linear’ under ‘Value Object Type’ for the accepted values.
z The Z translational value within the bounding box coordinate space. See Table 36 for the available child properties

and, within the table, ‘Linear’ under ‘Value Object Type’ for the accepted values.

Required Properties: y and 2.
Additional Information: The values for the translational movements must be relative to the bounding box dimensions.

Table 14
The available complex geometrical types and their associated required dimension properties, face dimension properties and accepted object types for a [regular]

element in the PBSHM schema.

Type tree Dimension property Dimension Object
solid — translateAndScale — cuboid length Linear Dimension

solid — translateAndScale — cylinder length Linear Dimension

solid — translateAndScale — other length Linear Dimension

shell — translateAndScale — cuboid length Linear Dimension

shell — translateAndScale — cylinder length Linear Dimension

shell — translateAndScale — other length Linear Dimension

Type tree Face Dim. property Face Dim. Object
solid — translateAndScale — cuboid width, height Linear Dimension

solid — translateAndScale — cylinder radius Linear Dimension

solid — translateAndScale — other

shell — translateAndScale — cuboid thickness, width, height Linear Dimension

shell — translateAndScale — cylinder thickness, radius Linear Dimension

shell — translateAndScale — other thickness Linear Dimension

Required Properties: Any named property in either the dimension properties or the face dimension properties in the Table above. See Table 38 for the available
child properties and, within the table, ‘Linear’ under ‘Dimension Object Type’ for the accepted values.

Additional Information: Additional dimensions can be declared as a Wildcard. See Table 38 for the available child properties and, within the table, ‘Linear’ under
‘Dimension Object Type’ for the accepted values.

B.1.4. Material

See Tables 15-21 and Fig. 27.

Table 15

The available properties for the material object within a [regular] element in the PBSHM schema.
Property Description Type
type The classification of the material that composes the [regular] element. See Fig. 27 for the list of accepted values. object
symmetry The symmetry of the physical properties of the material. Accepted values: ‘isotropic’. string
properties Each measurable property of the material being described. See Table 16 array

Required Properties: type, symmetry if properties provided.

‘metal’ ‘ceramic’ ‘polymer’

‘ferrousAlloy’ ‘glass’ ‘thermoplastic’

I: ‘steel’ ‘clayProduct’ ‘thermoset’

4ron’ ‘refractory’ ‘elastomer’

‘aluminiumAlloy’ ‘abrasive’ . oy
- , . composite
nickel Alloy ‘cement’ ¢ . . ;
. , . . particle-reinforced
copperAlloy advancedCeramic . . s
e , fibre-reinforced
titaniumAlloy

‘structural’

Fig. 27. The available material type tree for a [regular] element in the PBSHM schema.
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Table 16
The available properties for the material properties object within a [regular] element in the PBSHM schema.
Property Description Type
type The type of property on the material within the [regular] element. See Tables 17 and 21 for accepted values string
which do not support a unit value and see Table 18 for accepted values which support and require a unit
value.
unit The unit associated with the given value, if the type selected supports a unit property. string
value The given value for the material property. This is either a singular value (if supported) or a conditional int, double or object

value based upon test conditions provided. See Table 19 for a list of accepted child properties for a
conditional value. Singular values are supported by types in Tables 17 and 18 and conditional values are
supported by types in Tables 17, 18 and 21.

Required Properties: type, value and unit if the associated type value is a unit based property as defined within Table 18.

Table 17
The available standard unit-free material properties for a [regular] element in the PBSHM schema. The types in this Table, support both singular and conditional
values.

Type

‘PoissonsRatio’

‘elongation’

‘reductionInArea’

‘fatigueStrengthExponent’

‘fatigueDuctilityCoefficient’

‘fatigueDuctilityExponent’

Table 18
The available standard unit-based material properties and their associated accepted units for a [regular] element in the PBSHM schema. The types in this Table,
support both singular and conditional values.

Type Unit

‘density’ ‘kg/m"3’, ‘g/cm"3’, ‘kg/L’, ‘g/mL’, ‘t/m"3’, ‘kg/dm"3’, ‘oz/cu in’, ‘other’

‘linearThermalExpansionCoefficient’ ‘K™-1’, ‘C-1’, ‘F*-1’, ‘other’

‘volumetricThermalExpansionCoefficient’ ‘K*-1’°, ‘)C-1°, ‘F*-1’, ‘other’

‘youngsModulus’ ‘GPa’, ‘MPa’, ‘kPa’, ‘Pa’, ‘Mpsi’, ‘ksi’, ‘psi’, ‘other’

‘shearModulus’ ‘GPa’, ‘MPa’, ‘kPa’, ‘Pa’, ‘Mpsi’, ‘ksi’, ‘psi’, ‘other’

‘compressiveStrength’ ‘GPa’, ‘MPa’, ‘kPa’, ‘Pa’, ‘Mpsi’, ‘ksi’, ‘psi’, ‘other’

‘shearStrength’ ‘GPa’, ‘MPa’, ‘kPa’, ‘Pa’, ‘Mpsi’, ‘ksi’, ‘psi’, ‘other’

‘ultimateTensileStrength’ ‘GPa’, ‘MPa’, ‘kPa’, ‘Pa’, ‘Mpsi’, ‘ksi’, ‘psi’, ‘other’

‘yieldStrength’ ‘GPa’, ‘MPa’, ‘kPa’, ‘Pa’, ‘Mpsi’, ‘ksi’, ‘psi’, ‘other’

‘0.1%ProofStress’ ‘GPa’, ‘MPa’, ‘kPa’, ‘Pa’, ‘Mpsi’, ‘ksi’, ‘psi’, ‘other’

‘fatigueStrengthCoefficient’ ‘GPa’, ‘MPa’, ‘kPa’, ‘Pa’, ‘Mpsi’, ‘ksi’, ‘psi’, ‘other’

‘tensileToughness’ ‘GJ/m"3’, ‘MJ/m"3’, ‘kJ/m"3’, ‘J/m"3’, ‘ibf/in"3’, ‘other’

‘fractureToughness’ ‘TPa/m"(1/2), ‘GPa/m"(1/2)’, ‘MPa/m"(1/2)’, ‘kPa/m"(1/2), ‘Pa/m"(1/2), ‘psi/in"(1/2)’, ‘other’
Table 19
The available properties for the conditional material properties object for a [regular] element in the PBSHM schema.

Property Description Type

environmental The test environmental conditions associated with the given value. See Table 20 for a full list of child properties. object

parameters The test parameters associated with the given value. There is one child property for each given test parameter object

associated with the given material value. Child properties are either a named property as declared as part of a
complex material property type (See Table 21), or they are wildcard properties which can have any valid JSON
string as their name. The value for the property is an object for which the child properties can be found in
Table 36. For a wildcard property, the accepted values are ‘Wildcard’ under ‘Value Object Type’. For named
properties, the accepted value type is declared in Table 21 which the accepted values are under ‘Value Object
Type’ in Table 36.

value The singular value for the property at the given test envir 1 and para s values. int or double

Required Properties: value, either environmental or parameters.
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Table 20
The available properties for the environmental conditional material properties object for a [regular] element in the PBSHM schema.

Property Description

Type

temperature The temperature at which the test was conducted. See Table 36 for the available child properties and, within object
the table, ‘Temperature’ under ‘Value Object Type’ for the accepted values.

humidity The humidity at which the test was conducted. See Table 36 for the available child properties and, within the object

table, ‘Percentage’ under ‘Value Object Type’ for the accepted values.

Required Properties: none.

Additional Information: Additional environmental properties can be declared as a Wildcard. See Table 36 for the available child properties and, within the table,

‘Wildcard’ under ‘Value Object Type’ for the accepted values..

Table 21

The available complex material properties and their associated required environmental properties and accepted values for a [regular] element in the PBSHM

schema. The types in this Table, support only conditional values.

Type Named property Accepted Value Object Type
‘vickersHardness’ load Force
duration Duration
‘brinellHardness’ diameter Brinell hardness diameter
ball Brinell hardness ball
force Force

B.2. Ground element

See Table 22.

Table 22
The available properties for the declaration of a [ground] element within the PBSHM schema.
Property Description Type
name The unique name for the element within the model. Must have a length between 1 and 64 characters. string
description Additional non-structured information to describe the element. string
type The selected type of element. Accepted values: ‘ground’. string
Required Properties: name and type.
B.3. Perfect & Boundary relationship
See Tables 23-26.
Table 23
The available properties for the declaration of a [perfect] and [boundary] relationship within the PBSHM schema.
Property Description Type
name The unique name for the relationship within the model. Must have a length between 1 and 64 characters. string
description Additional non-structured information to describe the relationship. string
type Selected type of relationship. Accepted values: ‘perfect’ or ‘boundary’. string
elements The list of elements which are part of this relationship. Must have exactly two elements in the list. Each member array
of the list is an object. See Table 24 for the available child properties. If the type value is ‘boundary’, one of the
elements must be a [ground] element.
coordinates Position of the relationship within the models coordinate space. See Table 25 for the available child properties. object
Required Properties: name, type and elements.
Table 24
The available properties for named element object within a [perfect] and [boundary] relationship in the PBSHM schema.
Property  Description Type
name The name of the element within the current model which is part of this relationship. Must have a length between 1 and 64 characters. string

Required Properties: name.
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Table 25

The available properties for the coordinate object within a [perfect] and [boundary] relationship in the PBSHM schema.
Property Description Type
global Translational coordinates within the global coordinate space. See Table 26 for the available child properties. object

Required Properties: global.

Table 26

The available properties for the global coordinate object within a [perfect] and [boundary] relationship in the PBSHM schema.
Property Description Type
translational X, Y and Z translational values within the global coordinate space. See ‘Translational coordinates Object’ in object

Table 35 for the available child properties.

Required Properties: translational.

B.4. Connection relationship

See Tables 27 and 28.

Table 27

The available properties for the declaration of a [connection] relationship within the PBSHM schema.
Property Description Type
name The unique name for the relationship within the model. Must have a length between 1 and 64 characters. string
description Additional none structured information to describe the relationship. string
type Selected type of relationship. Accepted values: ‘connection’. string
elements The list of elements which are part of this relationship including the position of where the relationship resides on the array

element. Must have exactly two or more elements in the list. Each member of the list is an object. See Table 28 for
the available child properties.

Required Properties: name, type and elements.

Table 28

The available properties for named element object within a [connection] relationship in the PBSHM schema.
Property Description Type
name The name of the element within the current model which is part of this relationship. Must have a length between 1 string

and 64 characters.

nature The nature of physics that would construct the joint. See Table 30 for a list of child properties and see the values object
under the ‘static’ root of the tree in Fig. 28 for the branch of accepted values.

coordinates Position of the relationships interaction with the element within the models coordinate space. See Table 25 for the object
available child properties.

Required Properties: name and nature.

B.5. Joint relationship

See Tables 29-33 and Fig. 28.

Table 29
The available properties for the declaration of a [joint] relationship within the PBSHM schema.
Property Description Type
name The unique name for the relationship within the model. Must have a length between 1 and 64 characters. string
description Additional non-structured information to describe the relationship. string
type Selected type of relationship. Accepted values: ‘joint’. string
nature The nature of physics that construct the joint. See Table 30 for a list of child properties and see Fig. 28 for a tree of object
accepted values.
degreesOfFreedom The allowed movement within the joint. See Table 31 for a list of child properties. Only available when the root value object
of the nature tree is ‘dynamic’.
elements The list of elements which are part of this relationship. Must have exactly two elements in the list. Each member of the array

list is an object. See Table 33 for the available child properties.

Required Properties: name, type, nature and elements.
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Table 30
The available properties for a nested nature object within a [joint] or [connection] relationship in the PBSHM schema.
Property Description Type
name The nature of the [joint] or [connection] relationship. string
nature The child nature of the current tree level. See Table 30 for the accepted child properties. string
Required Properties: name.
Table 31
The available properties for the degrees of freedom object within a [dynamic] [joint] relationship in the PBSHM schema.
Property Description Type
global Translational and Rotational degrees of freedom of the joint. See Table 32 for the available child properties. object
Required Properties: global.
Table 32
The available properties for the global degrees of freedom object within a [dynamic] [joint] relationship in the PBSHM schema.
Property Description Type
translational X, Y and Z translational degrees of freedom values within the global coordinate space. See ‘Bounded Translational object
coordinates Object’ in Table 35 for the available child properties.
rotational Alpha, Beta and Gamma rotational degrees of freedom values within the global coordinate space. See ‘Bounded object
Rotational Coordinates Object’ in Table 35 for the available child properties.
Required Properties: translational or rotational.
Table 33
The available properties for named element object within a [joint] relationship in the PBSHM schema.
Property Description Type
name The name of the element within the current model which is part of this relationship. Must have a string
length between 1 and 64 characters.
coordinates Position of the relationship’s interaction with the element within the models coordinate space. See object

Table 25 for the available child properties.

Required Properties: name.

‘static’ ‘dynamic’
‘bolted’ ‘hinge’
‘welded’ ‘ballAndSocket’
‘adhesive’ ‘pinned’
‘other’ ‘expansion’
‘ballBearing’
‘other’

Fig. 28. The available nature type tree within a [joint] or [connection] relationship in the PBSHM schema. When declaring the nature within a [connection]

relationship, only the ‘static’ portion of the nature tree is available.

B.6. Shared objects

See Tables 34-38.

Table 34

The available properties for a nested type object for embedding type trees within the PBSHM schema.
Property Description Type
name The name of the type at the current tree level. string
type The child type of current tree level. See Table 34 for the accepted child properties. object

Required Properties: name.
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Table 35

The available properties for a coordinate object and associated accepted values for different types of coordinate object within the PBSHM schema.

Translational coordinates object

Property Description Type

X, ¥, 2 The translational values within the coordinate space. See Table 36 for the available child properties object
and, within the table, ‘Linear’ under ‘Value Object Type’ for the accepted values.

Required properties: x, y and 2

Rotational coordinates object

Property Description Type

alpha, beta, gamma The rotational values within the coordinate space. See Table 36 for the available child properties and, object
within the table, ‘Angular’ under ‘Value Object Type’ for the accepted values.

Required properties: alpha, beta and gamma

Bounded translational coordinates object

Property Description Type

X, ¥, 2 The translational values within the coordinate space. See Table 37 for the available child properties object
and, within the table, ‘Linear’ under ‘Bounded Value Object Type’ for the accepted values.

Required properties: x, y and z

Bounded rotational coordinates object

Property Description Type

alpha, beta, gamma The rotational values within the coordinate space. See Table 37 for the available child properties and, object

within the table, ‘Angular’ under ‘Bounded Value Object Type’ for the accepted values.

Required Properties: alpha, beta and gamma.

Table 36

The available properties for a value object and associated accepted values for the different types of value object within the PBSHM schema.

Property Description
unit The unit associated with the given value. See below for the list of accepted
values given the type of value object.
value The value for the measurement. int or double

Required properties: unit and value

Value object type Accepted unit values

Linear ‘mm’, ‘cm’, ‘m’, ‘km’ or ‘other’
Angular ‘degrees’, ‘radians’ or ‘other’
Temperature ‘C, ‘F’, ‘K’ or ‘other’

Force ‘kgf’

Duration ‘s’

Percentage ‘%’

Wildcard Any valid string

Brinell hardness diameter ‘mm’

Brinell hardness ball ‘W’ or ‘S’

Table 37

The available properties for a bounded value object and associated accepted values for the different types of bounded value object within the PBSHM schema.

Property Description
unit The unit associated with the given minimum and maximum values. See below for
the list of accepted values given the type of value object.
minimum The minimum value for the degree of freedom int or double
maximum The maximum value for the degree of freedom int or double

Required properties: unit, minimum and maximum

Bounded value object type Accepted unit values
Linear ‘mm’, ‘cm’, ‘m’, ‘km’ or ‘other’
Angular ‘degrees’, ‘radians’ or ‘other’
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Table 38

The available properties for a dimension object and associated accepted values for the different types of dimension object within the PBSHM schema.
Property  Description Type
axis The axis in which the dimension has been measured. Accepted values: ‘X', ‘y’, ‘z’, ‘xy’, ‘xz’ or ‘yz’ string
source The source of which the measurement has come from. Accepted values: ‘measured’ or ‘nominal’ string
unit The unit associated with the given measurement value. See below for the list of accepted values given the type of value object.  string
value The value for the measurement. int or double

Required properties: axis, source, unit and value

Dimension object type Accepted unit values

Linear ‘mm’, ‘cr’, ‘m’, ‘km’ or ‘other’
Angular ‘degrees’, ‘radians’ or ‘other’
Wildcard Any valid string

Appendix C. Channel schema

See Tables 39-41.

Table 39
List of channel object properties in the PBSHM Schema.
Property Description Type
name Name of the channel, must be unique within the structure. string
type The selected type value for this channel, see Table 40 for the list of available options. string
unit The selected unit value of this channel on which the value is based; see Table 40 for the list of string
available options for the selected type.
value Value of the channel, stored in the selected unit. See Table 40

Required Properties: name, type, value and unit dependent upon the selected type.

Table 40

The available values for Channel properties within the PBSHM schema.
Types Units Values
acceleration m/s"2, g, v, other int, double, object
velocity m/s, v, other int, double, object
displacement mm, cm, m, km, other int, double, object
angularAcceleration degrees/s"2, radians/s"2, other int, double, object
angularVelocity degrees/s, radians/s, other int, double, object
angularDisplacement degrees, radians, other int, double, object
tilt degrees, radians, other int, double, object
strain nd, other int, double, object
tension fN, pN, nN, pN, mN, cN, dN, N, daN, hN, kN, MN, GN, TN, PN, other int, double, object
load fN, pN, nN, pN, mN, cN, dN, N, daN, hN, kN, MN, GN, TN, PN, other int, double, object
structuralPotentialHydrogen pH, other int, double, object
temperature C, F, K, other int, double, object
humidity %, other int, double, object
speed mph, ft/s, km/h, m/s, kn, other int, double, object
direction degrees, radians, other int, double, object
pressure fPa, pPa, nPa, pPa, mPa, cPa, dPa, Pa, daPa, hPa, kPa, MPa, GPa, TPa, PPa, at, atm, bar, psi, other int, double, object
altitude mm, cm, m, km, feet, other int, double, object
pitch degrees, radians, other int, double, object
yaw degrees, radians, other int, double, object
roll degrees, radians, other int, double, object
pitchRate degrees/s, radians/s, other int, double, object
yawRate degrees/s, radians/s, other int, double, object
rollRate degrees/s, radians/s, other int, double, object
current fA, pA, nA, pA, mA, cA, dA, A, daA, hA, kA, MA, GA, TA, PA, other int, double, object
charge fC, pC, nC, puC, mC, cC, dC, C, daC, hC, kC, MC, GC, TC, PC, other int, double, object
power fW, pW, nW, pW, mW, cW, dW, W, daw, hw, kW, MW, GW, TW, PW, other int, double, object
voltage fV, pV, nV, pV, mV, ¢V, dv, V, dav, hv, kv, MV, GV, TV, PV, other int, double, object
resistance fQ, pQ, nQ, pQ, mQ, cQ, dQ, Q, daQ, hQ, kQ, MQ, GQ, TQ, PQ, other int, double, object
capacitance fF, pF, nF, pF, mF, cF, dF, F, daF, hF, kF, MF, GF, TF, PF, other int, double, object
inductance fH, pH, nH, pH, mH, cH, dH, H, daH, hH, kH, MH, GH, TH, PH, other int, double, object
frequency fHz, pHz, nHz, pHz, mHz, cHz, dHz, Hz, daHz, hHz, kHz, MHz, GHz, THz, PHz, other int, double, object
conductance fS, pS, nS, pS, mS, ¢S, dS, S, daS, hS, kS, MS, GS, TS, PS, other int, double, object
magneticFlux fWb, pWb, nWb, pWb, mWb, ¢Wb, dWb, Wb, dawb, hWb, kWb, MWb, GWb, TWb, PWb, other int, double, object
magneticFieldStrength fT, pT, nT, pT, mT, cT, dT, T, daT, hT, kT, MT, GT, TT, PT, other int, double, object
integer n/a int
double n/a double
text n/a string
date n/a long
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Table 41

List of value object properties in the PBSHM Schema.
Property Description Type
min Minimum channel value over the observed time period. int, double
max Maximum channel value over the observed time period. int, double
mean Mean channel value over the observed time period. int, double
std Standard deviation channel value over the observed time period. int, double

Required Properties: At least two of the properties described above.

Appendix D. System outputs

See Figs. 29 and 30.
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Xy Graph comparison results

The structures compared were: Beam & Slab 1, Truss 1, Cable-stayed, Arch, Suspension 1, Beam & Slab 2, Truss 2, Suspension 2 using the GeometryType comparison type.
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Fig. 29. An output from the PBSHM framework on computing the similarity of eight real-world bridge structures using the Jaccard Index. The bridges included
within the comparison are the same set of bridges used by Gosliga et al. [20].
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Fig. 30. An output from the PBSHM framework on browsing the available channel data for a given population.

References

[1]
[2]

[3]

[4]

[5]

[6]
[71

[8]

[91

[10]
[11]
[12]

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]

C.R. Farrar, K. Worden, An introduction to structural health monitoring, Phil. Trans. R. Soc. A 365 (1851) (2007) 303-315.

L.A. Bull, P.A. Gardner, J. Gosliga, T.J. Rogers, N. Dervilis, E.J. Cross, E. Papatheou, A.E. Maguire, C. Campos, K. Worden, Foundations of population-based
SHM, Part I: Homogeneous populations and forms, Mech. Syst. Signal Process. 148 (2021) 107141.

J. Gosliga, P.A. Gardner, L.A. Bull, N. Dervilis, K. Worden, Foundations of population-based SHM, Part II: Heterogeneous populations — Graphs, networks,
and communities, Mech. Syst. Signal Process. 148 (2021) 107144.

P. Gardner, L.A. Bull, J. Gosliga, N. Dervilis, K. Worden, Foundations of population-based SHM, Part III: Heterogeneous populations — Mapping and transfer,
Mech. Syst. Signal Process. 149 (2021) 107142.

G Tsialiamanis, C. Mylonas, E. Chatzi, N Dervilis, D.J. Wagg, K Worden, Foundations of population-based SHM, Part IV: Structures and feature spaces as
geometry, Mech. Syst. Signal Process. 157 (2021) 107692.

C.R. Farrar, K. Worden, Structural Health Monitoring: A Machine Learning Perspective, Wiley, Chichester, West Sussex, U.K. ; Hoboken, N.J, 2013.

K. Worden, L.A. Bull, P. Gardner, J. Gosliga, T.J. Rogers, E.J. Cross, E. Papatheou, W. Lin, N. Dervilis, A brief introduction to recent developments in
population-based structural health monitoring, Front. Built Environ. 6 (2020) 146.

K. Worden, E.J. Cross, N. Dervilis, E. Papatheou, I. Antoniadou, Structural health monitoring: From structures to systems-of-systems, IFAC-PapersOnLine
48 (21) (2015) 1-17.

S. Jeong, J. Byun, D. Kim, H. Sohn, .H. Bae, K.H. Law, A data management infrastructure for bridge monitoring, in: Jerome P. Lynch (Ed.), SPIE Smart
Structures and Materials + Nondestructive Evaluation and Health Monitoring, San Diego, California, United States, 2015, p. 94350P.

E.F. Codd, A relational model of data for large shared data banks, Commun. ACM (1970) 11.

C. Nance, T. Losser, R. Iype, G. Harmon, NOSQL vs RDBMS - Why there is room for both, 2013, p. 7.

R. Zafar, E. Yafi, M.F. Zuhairi, H. Dao, Big data: The NoSQL and RDBMS review, in: 2016 International Conference on Information and Communication
Technology, ICICTM, IEEE, Kuala Lumpur, Malaysia, 2016, pp. 120-126.

A. Gandini, M. Gribaudo, W.J. Knottenbelt, R. Osman, P. Piazzolla, Performance Evaluation of NoSQL Databases. p. 15.

S. Bradshaw, E. Brazil, K. Chodorow, MongoDB: The Definitive Guide, third ed., O’Reilly, 2019.

MongoDB, Inc, Encryption at rest - MongoDB manual, 2020, https://docs.mongodb.com/manual/core/security-encryption-at-rest/.

MongoDB, Inc, Users - MongoDB manual, 2020, https://docs.mongodb.com/manual/core/security-users/\#sharded-cluster-users.

MongoDB, Inc, TLS/SSL (transport encryption) - MongoDB manual, 2020, https://docs.mongodb.com/manual/core/security-transport-encryption/.

E.F. Codd, Further Normalization of the Data Base Relational Model, in: Courant Computer Science Symposia 6, Data Base Systems, Prentice-Hall, 1972.
D. Crawford, Technical Correspondence. p. 2.

J. Gosliga, D. Hester, K. Worden, A. Bunce, On population-based structural health monitoring for bridges, Mech. Syst. Signal Process. 173 (2022) 108919.
D.S. Brennan, J. Gosliga, P.l1 Gardner, R.S. Mills, K. Worden, On the application of population-based structural health monitoring in aerospace engineering,
Front. Robot. Al 9 (2022) 840058.

39


http://refhub.elsevier.com/S0888-3270(24)00500-4/sb1
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb2
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb2
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb2
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb3
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb3
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb3
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb4
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb4
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb4
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb5
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb5
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb5
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb6
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb7
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb7
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb7
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb8
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb8
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb8
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb9
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb9
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb9
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb10
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb11
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb12
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb12
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb12
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb14
https://docs.mongodb.com/manual/core/security-encryption-at-rest/
https://docs.mongodb.com/manual/core/security-users/#sharded-cluster-users
https://docs.mongodb.com/manual/core/security-transport-encryption/
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb18
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb20
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb21
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb21
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb21

D.S. Brennan et al. Mechanical Systems and Signal Processing 223 (2025) 111602

[22]

[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

D.S. Brennan, T.J. Rogers, E.J. Cross, K. Worden, On calculating structural similarity metrics in population- based structural health monitoring, Data
Centric Eng. (2024) submitted for publication.

MongoDB, Inc, About us - MongoDB, 2020, https://www.mongodb.com/company.

T. Bray, RFC 7159 - The JavaScript object notation (JSON) data interchange format, 2020, https://tools.ietf.org/pdf/rfc7159.pdf.

T. Bray, RFC 8259 - The JavaScript object notation (JSON) data interchange format, 2020, https://tools.ietf.org/pdf/rfc8259.pdf.

MongoDB, Inc, Role-based access control - MongoDB manual, 2020, https://docs.mongodb.com/manual/core/authorization/.

MongoDB, Inc, Storage engines - MongoDB manual, 2020, https://docs.mongodb.com/manual/core/storage-engines/.

MongoDB, Inc, WiredTiger storage engine - MongoDB manual, 2020, https://docs.mongodb.com/manual/core/wiredtiger/\#document-level-concurrency.
MongoDB, Inc, Indexes - MongoDB manual, 2020, https://docs.mongodb.com/manual/indexes/index.html.

MongoDB, Inc, Replication - MongoDB manual, 2020, https://docs.mongodb.com/manual/replication/.

MongoDB, Inc, Sharding - MongoDB manual, 2020, https://docs.mongodb.com/manual/sharding/index.html.

40


http://refhub.elsevier.com/S0888-3270(24)00500-4/sb22
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb22
http://refhub.elsevier.com/S0888-3270(24)00500-4/sb22
https://www.mongodb.com/company
https://tools.ietf.org/pdf/rfc7159.pdf
https://tools.ietf.org/pdf/rfc8259.pdf
https://docs.mongodb.com/manual/core/authorization/
https://docs.mongodb.com/manual/core/storage-engines/
https://docs.mongodb.com/manual/core/wiredtiger/#document-level-concurrency
https://docs.mongodb.com/manual/indexes/index.html
https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/sharding/index.html

	Foundations of population-based SHM, Part V: Network, framework and database
	Introduction
	Background
	Database
	RDBMS
	NoSQL


	Network, Framework, and Database
	The network
	The framework
	The database

	IE Model
	Root Objects
	Free and Grounded Models
	Ground Element
	Regular Element
	Coordinates
	Context
	Geometry
	Material

	Perfect Relationship
	Connection Relationship
	Joint Relationship
	Boundary Relationship
	Standardised Representation

	Implementation
	Database Choice
	Structure
	Channel
	Value

	JSON Examples
	Framework
	Download

	Conclusion
	Future Research

	CRediT authorship contribution statement
	Data availability
	Acknowledgements
	Appendix
	Appendix A. Root Schema
	Appendix B. IE Model Schema
	Regular Element
	Coordinates
	Contextual
	Geometry
	Material

	Ground Element
	Perfect & Boundary Relationship
	Connection Relationship
	Joint Relationship
	Shared Objects

	Appendix C. Channel Schema
	Appendix D. System Outputs
	References


