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Data structures for music encoding: tables, trees, and graphs
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ABSTRACT

One of the challenges in planning a digital edition is the selection of the encoding system and rep-
resentation format that the edition will use to encode musical information. This decision affects the
form of the edition not only through the descriptive capabilities of the encoding format, but also
through the format’s adherence to certain data structures such as tables, trees, and graphs. Far from
being straightforward containers, each of these structures possess unique qualities that constrain
the encoding process into considering the music within the parameters of that data model. Data
that does not fit must be cajoled into the chosen model, with varying degrees of success. Recent
work has developed arguments for the use of certain formats in specific cases based on features and
interoperability, but a thorough review of the suitability and sustainability of the underlying data
structures has yet to be conducted.

This paper explores the problem of music representation in data structures from the perspective
of musical domain. By encoding the same passages of music in multiple hypothetical formats it
demonstrates the musical aspects and, particularly, the relationships that the data structures com-
monly used in music encoding variously excel at, privilege, or struggle with representing. | argue
that encoding projects should consider the constraints that the data structures of a format impose
on their encoding; whether there are instances that would be unsatisfactorily modelled, the data
biases this creates, and therefore whether it would be advisable to extend the representation format
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to accommodate another data structure.

1. Introduction

It is impossible to process music by computer without a
machine-readable encoding of that music in some form.
As an encoding comprises the data set from which com-
puter analyses or digital editions begin, it is vital that the
encoding of that music accurately represents the features
that will be processed. However, it has long been argued
that the way in which something is encoded frames and
alters its meaning (McLuhan, 1964). What do we mean
when we say that we are encoding music? For any encod-
ing project, musical or otherwise, a data model must
be constructed that is not only capable of representing
the features and objects of study, but also the relation-
ships and hierarchies that link those objects together. For
example, an encoding of an English text must be able to
represent, at the most basic level, the order of its charac-
ters. Similarly, an image encoding must be capable of rep-
resenting the two-dimensional layout of the constituent
pixels. Crucially, the problems of data modelling concern
not just the representation of the data itself, but also the
way in which it is organised - i.e. the data structure.

Encoding music is unlike these basic models, how-
ever, as what constitutes ‘music’ in individual cases can
be difficult to define both in ontological and epistemo-
logical terms (Cross & Tolbert, 2021; Kania, 2023). When
we speak of music we are often calling to mind not just
its auditory and ephemeral manifestation, but also visual
or graphical notation, structural forms, gesture or per-
formance information, and countless other objects and
simulacra that together create the musical experience.
How these individually relate to the broader concept of
‘music’ is a difficult question. Some argue that it is the
score that ‘defines a work’ (Goodman, 1968, p. 178),
others that the work exists solely through its manifold
manifestations (Kania, 2008), and still others that such
questions are fundamentally ‘worthless’ (Ridley, 2003,
p. 203). Nonetheless, we want to be able to encode music
to its fullest, including all of these issues and more, but the
ways in which music is transmitted to us are frequently at
odds with one another: for example, what may be appar-
ent in performance might not be notated in score or vice
versa.
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Music representation rarely reflects this fuzzy musi-
cal reality, as it is commonly held that music encod-
ings require the concepts of music theory to be fully
defined and rationalised by logical rules (Pazel, 2022,
p. 10). This is despite the options for how to repre-
sent key aspects such as time and alignment often being
contentious (Dannenberg, 1989, p. 74), and there not
being any hard and fast rules even for Common West-
ern Music Notation (CWMN), by far the most studied
notational system (Byrd, 1984). Against thorny philo-
sophical concerns and music that often contains more
exceptions to the rules than conforming examples, music
encodings are forced to make difficult representational
decisions to satisfy the need for hierarchy and structure
governed by their data models and thus to be able to move
forward with their goals. As an example of such philo-
sophical problems, before encoding any music, a music
representation must say first that there is ontologically
something worth representing in common between the
artefacts of musical practice such as notation and perfor-
mance (Matheson & Caplan, 2011), second that we can
say epistemologically what we know about the music -
such as by stating facts about its operation or by circum-
scribing its finite set of possibilities (Pace, 2009) - and
finally that it is possible to represent key parts of these
objects in a computer. In very few cases are answers to
these questions as simple as we would like to believe.

In implicitly forming solutions to these issues, a music
encoding system creates its own music theory through
the design and implementation of its schema, and it is
deceptively easy to get lost in questions of what exactly
that theory is trying to represent rather than how best
to represent it. Controlling for these issues in the realm
of music theory is difficult; for example Cook (2002,
p. 78) readily admits that for music theories ‘you can eas-
ily find yourself asking, without any clear sense of what
the answer might be: is this theory about acoustic events
or perceptions, about notational traces or ideal content?’
Despite this, the selection of music encoding tools (and
their accompanying theories of music) often appears to
be driven more by personal preference than by a rigorous
assessment of their underlying qualities, and this trend
within independent and divergent research conducted at
various centres has in the past led to ‘countless barely
compatible initiatives’ (Pugin, 2015, p. 2). This paper
investigates the theories of music that common encod-
ing data models espouse, with a view to highlighting the
relevant issues within each.

2. Musical domain

In order to be able to represent multiple and often
conflicting aspects of music, music encoding systems
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commonly rely on the concept of musical domain. An
encoding can be said to consist of a number of repre-
sentations for musical features such as pitch information
or rhythm, and certain elements within individual repre-
sentations can then be tagged as belonging to a musical
domain or set of domains. For example, a certain pitch
inflection may be present only in performance, or the
encoding may include analytical information not orig-
inally present in the score. Such division of music into
constituent domains has been described as ‘the most
basic representation of music theory’, and has been a goal
of theories of music since antiquity (Blasius, 2002, p. 27).
These distinctions are key, not only for defining and lim-
iting the scope of the music encoding system, but also
for avoiding any confusion or conflation between musi-
cal domains, such as between the graphical appearance of
notation and an interpretation of its underlying semantic
content.

Confusingly, there is a significant terminological over-
lap between the concept of domain as used in music
encoding, and as used in data modelling more generally.
The process of data modelling typically divides into three
distinct stages or levels: a conceptual model is a high-level
and somewhat abstract specification of the main enti-
ties and relationships within a model, a logical model
is a more precise yet technology-independent descrip-
tion of the required data structures, and a physical model
the way in which that model will be created using a
specific database or markup language (Jannidis & Flan-
ders, 2019, pp. 82-83). Some of the musical domains
cited in this paper are named similarly, and the levels
of data modelling should not be confused with the par-
ticular divisions of musical domain. At the same time,
the term ‘domain’ has a specific definition in a phys-
ical data model, referring to the accepted inputs for a
particular attribute or set of attributes. This, too, should
not be confused for the looser idea of musical domain
which relates more to the conceptual than the physical
model. Throughout this paper, any mention of domain is
used with regards to musical domain unless specifically
noted as either a data modelling domain or a physical
data domain.

To create a complete taxonomy of music, the list
of domains into which music can be divided must be
exhaustive: all music that an encoding system is wish-
ing to represent must fit into at least one of its defined
domains. However, there is little agreement as to the
number and extent of musical domains, and each assess-
ment begins to formulate its own rudimentary theory
of music. Although the division of music into inde-
pendent domains can be seen at least as far back as
the sixth-century philosopher Boethius’ De institutione
musica (Pesce, 2011), in modern study Babbitt (1965)
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Table 1. Distribution of domains in selected literature.

(@) (b) (e} (d (e) (f) (@) (h)
Babbitt (1965) v v v
Maxwell (1981) N v v
Huron (1992) v v v v v v v
Leman (1993) v v v
Sloan (1993) v v v v
Selfridge-Field (1997) v v v v v
Haus and Longari (2005) v v v v v v
Steyn (2013) Ve v v v v
Roland et al. (2014) v v v v v
Barate et al. (2016) v v v v v v
was the first to make explicit the delineation of musi- and Longari (2005) and Barate et al. (2016) term it
cal process into a number of domains, arguing that the ‘notational’. Steyn (2013) terms it ‘written format’.
conversion between notation and sound is a difficult one ~ (e) Analytical: The structural or theoretical analyses
at best.! Since then, there have been numerous hypothe- of music from another domain. Haus and Lon-
ses for the number and scope of the domains that music gari (2005) and Barate et al. (2016) term it ‘struc-
should fall into within encoding systems. The following tural’, Steyn (2013) terms it ‘theory’.
list is not exhaustive either, but serves to demonstrate the (f) Bibliographical: All forms of structured or unstruc-
great variety between available domains in encoding sys- tured metadata. Haus and Longari (2005) and Barate
tems. There are slight differences between terminologies et al. (2016) call it ‘general’, Steyn (2013) terms it
and definitions given by authors documented below but, ‘language’.
for the purposes here, I believe these not to be significant.  (g) Meta-scores: Huron (1992) adds a meta domain to
In each case I have taken the earliest available citation, graphical notation, consisting of notational repre-
and Table 1 shows how the domains are distributed across sentations that set out the processes by which a score
literature: may be created. He gives as examples Xenakis-like
tendency masks, tables of conditional probabilities
(a) Audial: Sound waves, the ephemera of music or associated with information-theoretic analyses, self-
audio recordings. Babbitt (1965) calls this ‘audi- similar or recursive processes, transformational-
tory’, Maxwell (1981) ‘physical, Huron (1992) generative grammars, etc.’ (Huron, 1992, p. 15).
simply ‘sound’, Leman (1993) ‘acoustic, and  (h) Digital: Huron (1992, p.12) adds also the intermedi-

Selfridge-Field (1997) ‘phonological’. Haus and Lon-
gari (2005) and Barate et al. (2016) term it ‘audio’.
Performative: The ways in which performers cre-
ate music. Babbitt (1965) calls this ‘acoustic’, Huron
(1992), Haus and Longari (2005), and Barate
et al. (2016) ‘performance’. Leman (1993) calls it
‘subsymbolic’. Sloan (1993), Selfridge-Field (1997),
and Roland et al. (2014) term it ‘gestural’.

Logical: A semantic interpretation of music, typi-
cally an abstraction away from its graphical domain.
Huron (1992) calls it ‘common musical nota-
tion’, Leman (1993), Sloan (1993), and Roland
etal. (2014) term it ‘symbolic’, Selfridge-Field (1997)
‘the semantic context of musical perception and
understanding’, Haus and Longari (2005) ‘music
logic’, and Barate et al. (2016) ‘logic’. Steyn (2013)
terms it ‘concept’.

Graphical: The notation of music on the written
page. Babbitt (1965) calls it ‘graphemic’, Huron
(1992) ‘visual notation’, Sloan (1993) ‘visual’. Haus

(b)

()

(d)

1 Babbitt cited Michael Kassler as the origin of this idea but did not say where.
The terminology appears in Kassler (1965), but not in the same form.

ate representation of ‘sound synthesis information,
being one step removed from the audial domain and
including all models of physical sound, such as ‘algo-
rithms and note-lists’. Steyn (2013, p. 9) includes a
similar meta-domain, that of ‘markup expressions’,
whereby the encoding is a distinct domain within
itself.

It can be concluded from this brief literature review
that the taxonomy of musical domain is far from decided.
Such differences emerge naturally from the varying size
of the scope of what exactly constitutes ‘music’ in each
case. However, these decisions are critical to the success
of the representation: if there exists a music object within
the scope of a use case of the encoding that is not ade-
quately covered by one of its domains, then that object
must be omitted, or its attributes theorised to be part
of another domain through a transcription or conver-
sion process. For example, Babbitt’s (1965) three domains
may appear perfectly capable within a limited encod-
ing scope, but they become inadequate if the scope is
widened to include, say, bibliographic information. Given
the broad trend towards increasing the overall number of



domains so as to accommodate a wider view of music,
it must therefore be questioned whether the current lists
of musical domain are comprehensive. Either there are
other as yet unknown domains of music that will in future
have to be added to expand the scope of representa-
tion schemata, or our current set of musical domains
must be further fragmented into a greater number of
ever-shrinking regions.

Furthermore, the ways in which these domains are
related must also be considered, as the manner in which
they interact with one another can create structures
within the encoding. One simple way of organising the
domains listed above would be as an unordered set; a
group of related items but without explicit mappings
between them. This would be simple to implement but
may not be very useful: musicologists are much more
often interested in the relationships between musical
domains rather than the domains themselves, such as the
ways in which the graphical domain of music notation is
expressed in performance, or the creation of an analysis
from the logical domain.

More commonly, domains are organised in ways that
make clear the theorised relationships between them
according to the encoding’s intrinsic music theory. When
there are few domains in consideration, they can each be
related to one other, as illustrated by Wiggins (2009b)
(see Figure 1). However, when more domains are con-
sidered this becomes untenable, as there would be an
unreasonable number of connections between all possi-
ble pairs of domains. Structure is therefore often created
to systematise the domains.

A simple structure is to organise the domains linearly
as a stack, as is demonstrated in Haus and Longari (2005)
(Figure 2), where each successive domain is an abstrac-
tion of the last: notation is an abstraction away from
performance, and musical structure an abstraction of the
logical domain. For many cases this structure is sound,
but can be quickly found to be far too rigid for many
cases. For example, it does not allow us to describe the
structure of a performance without first passing through
the intermediary layers of notation and music logic. Any-
one who has recognised a sonata form from its perfor-
mance alone knows that these stages are often unneces-
sary.

This same argument against rigidity can be made in
more complex cases, such as the hierarchical domain
arrangement described in Lindsay and Kriechbaum (1999)
(Figure 3) and the hub-and-spoke model of Huron (1992)
(Figure 4), where there may be more diverse connec-
tions possible, but remaining possibilities not accounted
for. For example, it is not possible in Huron’s model for
a meta-score to be performed without first being tran-
scribed to CWMN. This is contrary to the intention of
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auditory
domain

layback
graphemic Py >

domain

acoustic
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recording

Figure 1. Wiggins’' (2009b) representation of the relationships
between Babbitt’s (1965) three domains.

General

Structural

Music Logic

MX

Notational

Performance

Audio

Figure 2. From Haus and Longari (2005).

many graphic scores that exist precisely due to the limi-
tations of CWMN (Chew & Rastall, 2014). These models,
in linking pairs of domains together, also do not account
for the distinct possibility of complex interrelationships
arising, where three or more domains may need to be
linked together at once.

By dividing music into a discrete set of categories
with limited relationships between each, these limiting
sets of domains and domain relationships create basic,
but at times conflicting, theories of music. Even in the
most advanced cases where there are numerous theorised
domains, the list is likely not exhaustive, nor are the possi-
bilities for the relationships between domains, except in
the special case where it is possible to link all domains
to all others. It is also possible to have multiple instances
of the same type of domain, such as two editions of the
same work. Encoding schemata should therefore aim for
flexibility in the domains that are supported, as well as
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Annotative
Architectural
Medium Physical Perceptual Transcriptive

Figure 3. From Lindsay and Kriechbaum (1999).
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Figure 4. From Huron (1992).

the ways in which they can be related. This possibility
is alluded to in a figure provided by Barate et al. (2019)
who, although limited to the six domains previously out-
lined in Barate et al. (2016), demonstrate the possibil-
ity of multiple, fluid domain relationships. They illus-
trate not only the hierarchical and hub-and-spoke models
already described, but also a more free-form graph model
(Figure 5, middle example).

3. Related work

Two main strands of research have led to a critical
understanding of musical representation. The first is the

fundamental concept of applying the techniques of lin-
guistics to musical analysis, namely generative grammars,
and the problems that arise from this approach. Lerdahl
and Jackendoff (1983) decomposed musical structure
into a finite grammar whereby CWMN could be divided
into phrases, bars, beats, and other structures. Two dis-
tinct problems immediately stem from this: firstly, that
any music other than the simplest monophonic melodies
contains an ‘inherent parallelism’ (Roads, 1987, p. 417),
which Lerdahl and Jackendoff began to remedy by creat-
ing multiple parallel grammars to analyse both melody
and bass simultaneously (Lerdahl & Jackendoff, 1983,
p. 275). This is despite Lidov (1975) having already
demonstrated by this time that there is always more than
one way to parse musical phrases. It was also around this
time that Dannenberg (1986, p. 153) began describing the
accompanying need for music representations that could
support ‘multiple hierarchical structures’.

The second strand comes from the desire to repre-
sent music in the computer for purposes such as type-
setting and analysis. Early representation systems such
as DARMS mixed domains freely (Erickson, 1976), but
the work of Byrd (1984) placed a key focus on the need
for representation systems to separate the concerns of
layout (a graphical domain) from the meaning of the
symbolic notation itself (a logical domain), and broaden
their horizons when modelling even CWMN. Byrd cited
numerous examples in famous works from the classical
canon that cause issues of encoding when using overly
simplistic models of CWMN, such as two clefs simulta-
neously active on one staff, slurs that cross staves or even
instruments, and collisions of pitches and stems. Many
of these examples are still difficult, if not impossible, to
encode satisfactorily using modern typesetting systems.

On the broader level, many issues related to hierar-
chy and domain were highlighted by Wiggins et al. (1993)
who put forward a projection of the encoding landscape
in the early 1990s along the twin axes of ‘expressive com-
pleteness’ (‘the range of raw musical data that can be
represented’) and ‘structural generality’ (‘the range of
high-level structures that can be represented and manip-
ulated’) (Wiggins et al., 1993, p. 31). However, this work
is now outdated for two reasons: firstly, very few of the
systems surveyed in that paper are recognisable today,
and secondly the issue of ‘expressive completeness’ is no
longer pressing for music encoding systems. The rea-
son for this is that older music encoding formats such
as those surveyed in Wiggins et al. (1993) were con-
strained by being able to express only a limited sub-
set of CWMN, or being domain-specific modelling lan-
guages for the encoding issues apparent within partic-
ular repertories such as plainchant (Stinson & Stoes-
sel, 2014). Fortunately, today all serious encoding formats
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Figure 5. Adapted for clarity from Baraté et al. (2019).

for musicological research have extensibility built in as
standard, and so new elements and attributes can be
added to these formats with relative ease.? Therefore, if
in our encoding we believe that there is something that
causes the representation to be lacking in expressivity,
it can quickly be added. However, the issue of struc-
tural generality has still not been adequately addressed
and requires further work, and this is what this paper
examines directly.

Wiggins (2009a, p. 19) took a more abstract and reflec-
tive view, presenting ‘a sort of shopping list of desirable
properties of generic music representation systems’, once
again reiterating the important principles for hierarchy
and domain. Wiggins’ list of wishes is clearly well con-
sidered but is solely ‘specification’ (Wiggins, 2009a, p. 9).
Although such specifications are indispensable for the
creation of new encoding schemata or for the improve-
ment of current ones, they do not help to answer the
question of what decisions should be made today for
those engaged in creating digital encodings of music. The
aim of this paper is to inform those engaged in musi-
cological study within the digital turn on this crucial
and somewhat neglected strand of digital music encod-
ing. Although many considerations for the human and
cultural aspects that play a key part in music encod-
ing decisions can be neatly encapsulated in the FAIR
and CARE principles (Neumann et al., 2024), we cannot
ignore the further role of technological determinism in
how that data is encoded in data structures. This paper
stands at the mid level between Wiggins et al. (1993)
and Wiggins (2009a), in part to update the 1990s sur-
vey of encoding data structures but also to take a more
pragmatic stance on encoding. Far from being simply
a technical decision, the data structure used for encod-
ing can fundamentally alter the representation’s features,
priorities, and ultimately its uses.

2 For example in Humdrum see Huron (2002, p. 11), in IEEE 1599 see Baggi
& Haus (2013, p. 2), and in the Music Encoding Initiative see Crawford & Lewis
(2016, p. 277).
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4, Methodology

This paper will show that, rather than one data structure
being ‘better’ than the others, the selection of any one
structure for a representation format creates a trade-off
between structural generality and another key axis that
has not yet been seriously considered — structural read-
ability — and that this has knock-on effects for the issues
of domain and representation. Structural readability is
defined here as the combination of two separate issues
that contain similar requirements: firstly there is the per-
ceived ability for a human to understand the structure
and content of a representation when encoded in a text
format, and secondly there is the complexity for a com-
puter to parse and store features from the representation
in memory. This is especially important when it comes to
large musical data sets that may require streaming from
disk rather than instant access in RAM. A data structure
encoded in a representation that can be parsed over a
common axis is much simpler to process than a structure
that contains links to disparate parts of the encoding that
may or may not yet have been parsed.

I will consider three key data structures through this
lens: tables, trees (i.e. single hierarchies), and graphs
(sometimes termed ‘networks’). These three common
formats reflect the three typical structures for data mod-
elling more generally (Jannidis & Flanders, 2019, p. 55),
and this takes an important step towards considering
music data modelling within the emerging field of critical
code studies (Marino, 2020). Many of these structures are
apparent in commonly used music encoding formats: for
example Humdrum can be viewed as a tabular representa-
tion (Huron, 1994, p. 10), and the Music Encoding Initia-
tive (MEI) and IEEE 1599 as hierarchical trees (Crawford
& Lewis, 2016, p. 275; Baggi & Haus, 2013, p. 102). How-
ever, to avoid overburdening the non-technical reader
with syntactical details, this study will remain detached
at the level of domain and data structure rather than the
differences between particular encoding schemata and
styles.
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Similarly, focus is pulled away from the digital tools
that are used for encoding and shifted instead to the
underlying data structures employed in the encodings
processed by those tools. This is because, in modern
digital musicological study, digital editing tools are typ-
ically created in order to process already-existing rep-
resentation formats more efficiently, rather than repre-
sentations created to accommodate tools, and music is
still commonly encoded and edited by hand for accu-
racy. For example, in MEI the mei-friend graphical tool
aims mostly to ‘alleviate the difficulty of learning and
working with MET" (Goebl & Weigl, 2024, p. 2), and the
typesetting library Verovio closely models MED’s struc-
ture in its SVG output (Pugin et al,, 2014). The issues of
data structure discussed here are therefore fundamental
to the concerns addressed by such digital editing tools
as, rather than defining new structures, digital editing
tools serve mostly as methods of enhancing productivity
in managing, organising, and manipulating existing data
structures.

These three structures are defined here through the
classification between two types of link that each element
within the structure affords. A first-class link I will define
as an implicit link that is fundamentally part of the data
structure’s operation: the elements are directly connected
to each other through either adjacency or by a precise
syntactical structure that could be described by a context-
free grammar. For example, two elements appearing next
to each other in a file are described as adjacent, and a set
of elements enclosed by an S-expression or XML tag are
grammatical. Conversely, a second-class link is explicit in
saying what it links to and how the two items are related:
a URI or link to a unique ID within a larger system would
be an example of this.

Through the axes of structural generality and struc-
tural readability, and by a focus on first- and second-class
links, each of these three data structures will be cri-
tiqued on their ability to support multiple domains or
modes of representation, i.e. how easy is it within these
data structures to add new representations or domains
to the encoding? As demonstrated above, the separation
of domains is often considered key to creating accu-
rate music representations, and the intersections between
domains are most often the foci of musicological study.
It follows therefore that we must ask not just how the
domains themselves can be represented but also how flex-
ibly those domains can be processed together in order to
study their relationships.

5. Tables

Using this study’s vocabulary of links, a tabular data
structure is one that has three first-class links from a

specific event: the previous event in the stream (such
as the previous note in time), the next event, and the
set of events in other representations that are concur-
rent with that event (the order of simultaneous events
is assumed not to matter). This structure is tabular as it
can be visualised as a table where the columns constitute
parallel representations of musical data such as individ-
ual voices, and the rows a series of time instants. Indeed,
music has been modelled this way using spreadsheet soft-
ware (Moll, 1995). Such a simple layout is arguably the
greatest strength of tabular systems: the two-dimensional
arrangement reflects at once the quasi-xy coordinate sys-
tem of a CWMN score (Buxton et al., 1985), and the
data can therefore be easily displayed and edited on a
computer screen purely through the presentation of its
first-class links.

Table 2 encodes the first phrase of the Bach chorale in
Figure 6 as a hypothetical tabular format. Each column
of soprano, alto, tenor, and bass contain data points of
musical events occurring at each vertical sonority, and
each row is a discrete time slice. Starting at one event,
it is very easy to traverse the data structure to find all
other events happening at that instant (the row), and all
of that representation’s other events (the column). More
generally, it could be argued that each voice should in
fact consist of two columns: one for pitch and one for
duration, or perhaps even further splitting each pitch into
octave, note name, and chromatic inflection. However,
this would distribute the data for each voice across mul-
tiple columns, and split the sense of the musical ‘event’
into simultaneous pitch and duration events.

The final chord of the phrase has a fermata attached
to it, so we must add another Boolean column indicating
whether that instant has a fermata or not. The reason why
we cannot add this information only to the last row and
must add a new column in this instance is because in a
tabular format we should keep our datatypes uniform: to
add an optional ‘fermata’ flag to each pitch would be to
begin to construct a rudimentary grammar within each
column (i.e. a hierarchy). Such a grammar would then
also make it more difficult to query the system to find all
fermatas. The first issue that emerges with a tabular struc-
ture, then, is that as the number of features we want to
capture increases, new columns must be added (e.g. bar-
ring, phrasing, clefs, etc.). The data structure must always
maintain a one-to-one relationship between instants and
representations.

A second issue is exemplified by the records that read
‘null’. A Bach chorale was chosen as it is perhaps the
archetypal case for dividing music vertically into coinci-
dent sonorities and is therefore perhaps the fairest exam-
ple to tabular representations. However, in all but the
simplest cases, there are complex points of movement



Table 2. Bach chorale encoded as a table.
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Row number Slice length Soprano Alto Tenor Bass Has fermata?
1 D A4 J F4J D4J D4 False
2 ) null null null c4d False
3 D D5J F4J D4J Bb3J False
4 ) null G4 E4d null False
5 J 54 A4 J F4J A3J False
6 d Bb4 J D4J G4J G3J False
7 D null E4d null null False
8 J A4 J F4J c4d F3J False
9 J G4 J F4J D4J Bb2J False
10 J null E4J c4J (P! False
11 J AdJ F4J C4J F3J True

4} |
1 |
e

-
6 ) |
~Je 1 foe |
) b | |

e ==
==

Figure 6. First phrase of O Haupt voll Blut und Wunden, BWV
244/54.

such as passing notes and suspensions. Once again, merg-
ing cells would create a form of grammar, so that all that
can be said about the soprano at row 10 is that there is no
event beginning there. To understand what note is cur-
rently sounding in the soprano at that point, we must go
back a row to see that there is a minim.

Far from being free of grammar, there are actually
two grammars at work here: the first is that to under-
stand ‘true’ vertical sonority and not just the events that
begin at that instant, there must always be some traver-
sal of the data structure; the second is that the number
of ‘null’ spaces inserted must exactly match the duration
of the initial note and length of each slice. For example,
replacing the soprano minim in row 9 with a semibreve
would be a grammatical error. As can be seen by the
added column ‘Slice length’, each row does not map to
a fixed duration. The rate at which we must parse the
rows of the table depends on the busyness of the tex-
ture: lots of passing notes and syncopations will cause
many unique vertical sonorities to be created, and there-
fore many rows. Such structures are therefore weak at
representing complex counterpoint and polyrhythms.

6. Trees

A tree data structure is defined here as one where
every musical event can be decomposed into a hierarchy
according to a formal musical grammar specifying

musical structure. For example, a score may be divided
into instruments and voices, then into bars, beats, and
notes. Such hierarchical arrangements are today perhaps
the most commonly used structures for music encod-
ing. In these grammars, it is often understood that unless
otherwise specified by a grammatical construct indicat-
ing simultaneity, adjacent elements in the encoding will
follow each other in time. From a single event, there
are first-class type links to sub-events (children), and
a second-class link to the parent event (as this link
requires the entire structure to be parsed first). The Bach
chorale example can be more easily encoded this way
using a hypothetical tree encoding. This particular exam-
ple makes no grammatical assumptions regarding which
events are sequential and which are simultaneous, but
treats both cases as explicit syntaxes.® It is important to
note, however, that many encoding schemata do not take
this into account.

(Score
(Attributes
(Key F Maijor)
(Time C)
)
(GrandStaff
(Staff
(SimultaneousMusic
(Voice "Soprano"
(SequentialMusic
(Bar
(SequentialMusic
(Note (Pitch A 4)
Crotchet))

(Duration

)
)
(Bar
(SequentialMusic
(Note (Pitch D 5)
Crotchet))
(Note (Pitch C 5)
Crotchet))
(Note (Pitch B 4 Flat)
Crotchet))
(Note (Pitch A 4)
Crotchet))

(Duration
(Duration
(Duration

(Duration

3 In this way, and also in terms of syntax, the following hypothetical exam-
ple shares many similarities with the internal Lisp representation of the
typesetting software package LilyPond (LilyPond, 2022).
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)

(Bar
(SequentialMusic
(Note (Pitch G 4) (Duration
Minim))
(Note
(Pitch A 4) (Duration
Crotchet)

(Additions Fermata)

)
)
)
)
(Voice "Alto"

)
)
)
(Staff
(SimultaneousMusic
(Voice "Tenor"

)

(Voice "Bass"

There are many immediate advantages to such a struc-
ture. The relationships between elements are not so con-
strained as in the tabular structure. A first-class link can
mean adjacency or concurrency according to the gram-
matical construct the items are enclosed within. The
structure is also much denser: there is no need for empty
records as each element can have any number of chil-
dren. Features need not be present on every element, but
only where they are necessary: for example the fermata
element is only instantiated for the note that has the orig-
inal symbol, all the other notes are understood by the
grammar not to have a fermata attached unless otherwise
instructed.

The first difficulty comes with continuous features
that do not respect the hierarchy that has already been
encoded. For example, ties are most useful across bar
lines, but it is not immediately obvious how to target
one note at the end of one bar and another note later, as
the tie is a construct attached to a note but must escape
the enclosure of the bar in the hierarchy to reach its end
point. The same is true for all lines in CWMN such as
phrase marks, gradual dynamic changes such as hairpins,
and beaming. For an even more extreme example, we can
consider one of the examples from Byrd (1984, p. 45):
the cross-instrument slurs from the opening of Alban
Berg’s Violin concerto (Figure 7). The true meaning of
these slurs aside, in our hypothetical tree encoding the
two end points of these slurs would be nested far inside

1.

gi‘)Klarinette

BaBklarinette

Figure 7. Extract from Berg, Violin concerto, b. 1 (Berg, 1936).

other elements, and so it is impossible to make a first-
class link between the two. The intrinsic grammar of the
hierarchy has prioritised time and instrumentation over
other concerns such as phrasing.

These complications require the single hierarchy
formed of purely first-class links to be broken, and
second-class links added. Each element could contain an
attribute indicating a second-class link of type ‘slur’ to
another note. However, this would transform the single
hierarchy into a graph structure, as it would be possible
to now reach these two notes from two different direc-
tions: both from the typical descent of the syntax tree
in the first-class links, and also by following the second-
class link of the slur. This is a non-trivial alteration, as
the loosening of the syntax causes the data structure to
become much more difficult to parse and read. Rather
than being able to be parsed simply in file order, a second-
class link may require the parsing of another portion of
the file before that element can be fully parsed, and cycles
can be created, requiring each element’s state to be held
in memory.

Nonetheless, the first-class hierarchy retains the dom-
inant logical domain links within this data structure,
privileging the typical division of music into voice and
time, and sidelining elements that do not respect this tax-
onomy, such as slurs. This choice of dividing first by voice
then by time is arbitrary: the encoding could equally have
decided to split by time first, then by voice.* By design,
single hierarchies privilege one division of music above
all others, and in this case the aspects of time and part
have been placed as more important than other features.
However, there is no inherent reason why this should
always be the case. For example, we could equally design
an equivalent encoding that privileged the representation
of pitch classes in first-class links, and used second-class
links for time and part attributes. Indeed, such a flipping

4 MusicXML does precisely this, having two equivalent representations: one
that is split first by voice ( < score-partwise > ), and another split first
by time ( < score-timewise > )(Good, 2021).



of the hierarchy could well be useful for some forms of
analysis.

Both tables and trees create rigid domain represen-
tations notwithstanding, where one principal view, typ-
ically of the logical domain, is placed at the centre of
the encoding much like the hierarchical or hub-and-
spoke models shown in Figures 4 and 5, and attributes
from other domains must be tagged using second-class
links. This makes it easy for a system to query aspects
of the central privileged domain, but more difficult to
extract data from the other parts of the structure, enhanc-
ing readability for the central domain at the expense of
structural flexibility.

7. Graphs

To escape the inherent constraints and biases of table and
tree structures, a more equitable representation can be
created by using a graph data structure. In this structure,
there are no natural first-class links, and the structure
consists solely of a uniform surface of second-class links
between elements, creating an ontology. As a result, any
element can link to any number of other elements, and
each of these links are treated equally: there is no dis-
tinction made between common relationships such as
sequence, and other more esoteric links such as com-
plex set membership rules. Whereas the tree structure
privileged one set of domain relationships above others
- typically within the logical domain - the representa-
tion of domains in graph relationships are all considered
as a single set. This is not to say that graph structures are
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incapable of creating hierarchies: the tree structure could
be represented as a hierarchical graph, and the tabular
structure as a lattice graph. However, unlike the previous
structures considered, the flexibility of a graph structure
does not force the data into a particular model.

Figure 8 demonstrates how two notes from our Bach
chorale example could be encoded as part of a wider
graph structure. The advantages of such a structure are
clear in the variety of topologies that can be created: this
model cannot be represented either as a table or hier-
archical structure. For example, the ‘Crotchet’ node has
two parents: both of the ‘Note’ nodes. This representa-
tion would be impossible in a hierarchical model as each
element must have one parent only. We could imagine
other notes that are not crotchets that would have other
duration links. In a tabular or hierarchical structure, if we
wanted to find all crotchets - and our hierarchy did not
privilege this relationship through first-class links — we
would have to scan through the entire structure, picking
out all crotchet instances. However, in this hypotheti-
cal graph ontology, there is only one Platonic ideal of a
crotchet duration, and all notes that have that duration
must link to it. Therefore, finding all crotchets is simply
a process of fetching the nodes that link to the ‘Crotchet’
node. Byrd’s example of the cross-instrument slur could
be encoded just as easily as a slur to another note in the
same instrument, or one note following another.

The trade-oft with such a structure is in its readabil-
ity. The table and tree data structures took advantage
of the easily read and comprehended features of rows
and columns of text files. The table data structure could

HasOctave

A Octave (4) F

HasOctave

HasPitchName

HasPitchName

Note

HasDuration

Crotchet

Note

HasDuration

HasEventType

Simultaneous

HasEventType

Event

HasEvent

HasPosition HasPosition

Event

HasEvent

Soprano

Position (1)

Alto

HasType

HasType

Voice

Figure 8. Hypothetical network of two notes in a graph representation.
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be characterised as a graphical layout, where whitespace
such as carriage returns and indentation have seman-
tic meaning. Similarly, although many hierarchical text
formats do not rely on whitespace, they commonly use
indentation to make their structure clear (Goldfarb, 1990,
p. 200). In contrast to the tangled skein of connections
in a graph structure, tabular and tree structures are emi-
nently human readable and simple to parse line-by-line
in a computer, but this comes at the expense of struc-
tural inflexibility and the imposition of hierarchy. In the
encoding of a graph structure, the opposite is true: the
structure can be much more fluid, but cannot take advan-
tage of the layout of text files (and it is particularly telling
that Figure 8 managed to encode only two notes of two
voices in the same space that Table 2 encoded the entire
phrase in all four parts). In the file itself, the data model
of Figure 8 must be encoded by an out-of-order textual
representation along the lines of:

Soprano HasType Voice

Alto HasType Voice

Soprano HasEvent EventA
Alto HasEvent EventB
EventA HasPosition 1
EventB HasPosition 1
EventA Simultaneous EventB
EventB Simultaneous EventA
EventA HasEventType NoteA
EventB HasEventType NoteB
NoteA HasDuration Crotchet
NoteB HasDuration Crotchet
NoteA HasOctave 4

NoteB HasOctave 4

NoteA HasPitchName A

NoteB HasPitchName F

As the graph becomes more complex, following the
layout of the graph becomes more difficult, as each link
could jump to any other place in the structure. This is
not a structure that is easily encoded or parsed, as the
lack of first-class links necessitates all relationships to be
made explicitly, and the entire graph must be parsed first
in order to understand it correctly. This can very easily
become overwhelming for a user who is trying to under-
stand or edit the content of the encoding, but it is also
more difficult for a computer to parse and then visualise
in a user interface.

Due to the challenges associated with encoding and
parsing complex graph structures, there are remarkably
few encoding schemata that commit to this form, despite
its potential for multiple representative hierarchies and
domains, as graph representations often require spe-
cialised tooling and user training. Where they are used,
graph representations are most frequently introduced
as ad hoc solutions to other tasks, and music is rarely
encoded as a graph directly. For example, Karystinaios
and Widmer (2022) use a graph structure to perform
cadence detection, but the resulting graphs are simply an

‘intermediate means’ rather than an independent repre-
sentation (Karystinaios & Widmer, 2022, p. 917), and the
scores are converted directly from Humdrum, that is, a
tabular representation. As the genesis of this data is tab-
ular and the conversion direct, there is nothing encoded
in the graph structure that was not already present in the
tabular representation. Nonetheless, text-based encoding
systems gain a significant bootstrapping effect for tab-
ular and tree representations, as these structures rarely
require any specific tooling and can be edited more eas-
ily using text editors. For example, it is far simpler for a
user to begin encoding using a particular schema if cer-
tain domains in the music can be readily understood by
the layout of the text file.

8. Limitations and future work

One of the reasons that the preceding discussion has
focused on the abstract concept of data structures is that
real-world encoding schemata rarely adhere to just one
of these paradigms, but use one of the above models
as a starting point from which to create musical struc-
ture. For example, although a format such as Humdrum
can broadly be aligned with a tabular data structure, it
introduces hierarchy through the grammar of its *xkern
representation (Huron, 1994, pp. 96-106), and a graph
structure in ! ! | RDF fields (Huron, 1994, p. 34). How-
ever, mixing models this way does not help the cause of
structural generality highlighted by Wiggins et al. (1993).
End users — both human readers as well as programmers
writing code to parse these structures — are more likely
to rely on the domain attributes most accessible in first-
class links (typically the logical domain) over others (such
as structural, performative, and analytical domain repre-
sentations). Although an encoding standard may include
extrinsic aspects of other models, the predominant model
of the format will be the primary structure through which
the representation is viewed. This may be precisely as
intended, but all encodings are created with a purpose
that should be critically examined; encodings created for
one project are not automatically suitable for another. Not
only may these other encodings not capture the requi-
site data, but the data structure they are encoded in may
create a forced perspective on the musical data by priv-
ileging one domain above all others. This is not to say
that encodings created within a certain schema and using
a certain data structure should be automatically consid-
ered defunct, but that the requirements of those older
encodings should be critically examined before being
imported wholesale into new projects. Further work is
needed to create frameworks and processes capable of
evaluating the particular perspectives and biases of digi-
tal music encodings at the individual level rather than the



relative advantages and disadvantages of schemata more
generally.

This paper has also only focused on prescriptive
representations: encoding music artefacts as static and
immutable documentation. However, purely prescriptive
representations are rare in music: even CWMN must be
placed within a context of description where perform-
ers understand how to execute common descriptive fea-
tures (Ferand, 1961). Prescriptive notation can also be
analysed in a descriptive way: Antoni and Haus (1982)
modelled the Canon perpetuus from J.S. Bach’s Musi-
cal Offering as a Petri net, and Hudak and Quick (2018,
pp- 67-72) demonstrated the capabilities of their Haskell-
based music description language by encoding Chick
Corea’s Children’s Song No.6 as a series of program-
matic ostinati. Further work should therefore concen-
trate on how to reconcile both the prescriptive and
descriptive strategies, as early music and modern music
in particular both rely heavily on descriptive graphical
notations outside of the realm of CWMN, as well as
complex questions that concern the interaction between
domains.

9. Conclusions

This paper has demonstrated that none of the three typ-
ical data structures in use today are wholly capable of
representing all domains of music adequately but, when
confronted with the richness of possible musical expres-
sion, must limit their concerns to a trade-off between
privileging structural generality or structural readability.
It is unlikely that the scale and scope of domains listed
in literature is exhaustive, as it is philosophically diffi-
cult to limit what constitutes musical experience into a
comprehensive taxonomy. By privileging certain musi-
cal domains above others, the structure of encodings
can become more readable by humans and parseable by
computers, but they lose flexibility in the breadth and
variety of knowledge that they can represent. However,
a purer and more neutral structure such as a graph that
does not privilege any links above any others can eas-
ily become excessively complex, overwhelming for users
that are aiming to understand the structure directly, as
well as more difficult to parse and store.

Therefore, those involved with creating digital edi-
tions of music should carefully examine the data
structures that they are creating through their cho-
sen encoding format or importing from elsewhere, and
weigh up this generality-readability trade-off, consider-
ing exactly what musical data they wish to capture and
what should be left out. Domain analysis should form
a key part of this process in order to ascertain which,
if any, musical domains are being privileged as part of
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the encoding process, and therefore the biases towards
certain domains that may be implicitly encoded.
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