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Given a property (graph class) �, a graph G , and an integer k, the �-completion problem 
consists of deciding whether we can turn G into a graph with the property � by adding 
at most k edges to G . The �-completion problem is known to be NP-hard for general 
graphs when � is the property of being a proper interval graph (PIG). In this work, we 
study the PIG-completion problem within different subclasses of chordal graphs. We show 
that the problem remains NP-complete even when restricted to split graphs. We then turn 
our attention to positive results and present polynomial time algorithms to solve the PIG-
completion problem when the input is restricted to caterpillar and threshold graphs. We 
also present an efficient algorithm for the minimum co-bipartite-completion for quasi-
threshold graphs, which provides a lower bound for the PIG-completion problem within 
this graph class.

© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Graph modification problems can be used to address many fundamental problems, not only in graph theory itself, but 
also to model a large number of practical applications in several different fields. Some of those fields include molecular 
biology, computational algebra, and more generally, areas that involve modelling based on graphs where the missing edges 
are due to a lack of data, for example in data clustering problems [8,14]. In many of these applications, an edge modification 
of the graph that models the experimental data corresponds to correcting errors and inconsistencies in the data.

Given a graph G and a graph property �, a graph modification problem consists of studying how to add or delete the 
minimum number of vertices or edges from G in order to obtain a graph that satisfies the property �. In this article, the 
property � will represent a graph class, such that the graph resulting from the modification belongs to this class. We focus 
our attention on one of the four basic graph modification problems: the �-completion problem.

* Corresponding author.
E-mail addresses: n.pardal@conicet.gov.ar, n.pardal@sheffield.ac.uk (N. Pardal).
https://doi.org/10.1016/j.disc.2024.114274
0012-365X/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.disc.2024.114274
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/disc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.disc.2024.114274&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:n.pardal@conicet.gov.ar
mailto:n.pardal@sheffield.ac.uk
https://doi.org/10.1016/j.disc.2024.114274
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


F. Dross, C. Hilaire, I. Koch et al. Discrete Mathematics 348 (2025) 114274
Given a property �, a �-completion of a graph G = (V , E) is a supergraph H = (V , E ∪ F ) such that H belongs to �
and E ∩ F = ∅. The edges in F are referred to as fill edges. A �-completion H = (V , E ∪ F ) of G is minimum if, for any set 
of fill edges F ′ such that H ′ = (V , E ∪ F ′) belongs to �, it holds that |F ′| ≥ |F |. In this case, |F | is called the �-completion 
number of G . The minimum �-completion problem consists in finding the �-completion number of a graph G . The associated 
decision problem–the �-completion problem–consists in deciding, for a given integer k, if G has a �-completion with at 
most k fill edges. Throughout this work, a �-completion will always be a minimum one unless otherwise stated.

The �-completion problem from an arbitrary graph is known to be NP-complete when � is the class of chordal, interval, 
or proper interval graphs [7,8,12,20]. Furthermore, when � is the class of interval graphs, it was shown that the problem 
remains NP-complete on line graphs [7], and also on co-bipartite graphs [21]. According to Peng et al. [19], the problem can 
be solved in O (n)-time for trees, following from the results in [6]. In the case of chordal-completion and proper interval-
completion (PIG-completion from now on), its study from the viewpoint of parameterized complexity was initiated by 
Kaplan et al. in 1999 [11]. In 2015, Bliznets et al. presented the first subexponential parameterized algorithm for PIG-
completion that finds a solution in kO (k2/3) + O (nm(kn + m))-time [1].

A celebrated result by Courcelle et al. states that each graph property that is expressible in M S O L1 (resp. M S O L2) can 
be solved in polynomial time for graphs with bounded cliquewidth (resp. treewidth) [4]. Note that this result is mainly of 
theoretical interest and does not lead to practical algorithms. Since the problem of finding a PIG-completion with at most 
k edges can be expressed in M S O L2 for fixed k, this motivates our search of efficient algorithms for subclasses of chordal 
graphs with bounded treewidth.

Another direction on which current research on this topic is focused is in finding and characterizing minimal completions 
for input graph classes for which the minimum version is hard in the most efficient possible way from a computational point 
of view [5,10,15].

Throughout this work, we consider the target class � to be the subclass of interval graphs given by proper interval 
graphs. The most well known motivation for the PIG-completion problem comes from molecular biology. In [18], Benzer 
first gave strong evidence that the collection of DNA composing a bacterial gene was linear. This linear structure could be 
represented as overlapping intervals on the real line, and therefore as an interval graph. In order to study various properties 
of a certain DNA sequence, the original piece of DNA is fragmented into smaller pieces which are then cloned many times. 
When all the clones have the same size, the resulting graph should not only be interval, but proper interval. Deciding 
whether two clones should overlap or not is the critical part. However, there might be some false positive or false negatives 
due to erroneous interpretation of some data. Thus, correcting the model to get rid of inconsistencies is equivalent to 
removing or adding as few edges as possible to the graph so that it becomes interval.

This work is organized as follows. We start by proving in Section 3 that the PIG-completion problem remains hard 
even if the input graph G is split. Since split graphs are in particular chordal, this result implies that the problem remains 
hard when G is a chordal graph, which leads us to study proper subclasses of chordal graphs where the PIG-completion 
problem might be tractable. More precisely, in Section 4 we first give an efficient algorithm for the PIG-completion problem 
on threshold graphs. We finish the section by showing an efficient dynamic programming algorithm for the co-bipartite-
completion problem on quasi-threshold graphs following a brief discussion on the difficulties of generalizing the previous 
result to this superclass of threshold graphs. In Section 5, we show an efficient algorithm for a very sparse class of graphs, a 
subclass of both interval graphs and trees called caterpillars. We conclude the paper with some final remarks and possible 
future directions in Section 6.

2. Definitions

We give in this section the basic definitions and fix the notation that will be used throughout this work. All graphs in 
this paper are undirected and simple. Let G be a graph, and let V (G) and E(G) denote its vertex and edge sets, respectively. 
We denote by n the number of vertices and by m, the number of edges. Whenever it is clear from the context, we simply 
write V and E and denote G = (V , E). For basic definitions not included here, we refer the reader to [3].

Given a graph G and S ⊆ V , the subgraph of G induced by S , denoted by G[S], is the graph with vertex set S and such 
that two vertices of S are adjacent if and only if they are adjacent in G . When G ′ and G[S] are isomorphic for some S ⊆ V , 
with a slight abuse of terminology we simply say that G ′ is an induced subgraph of G . For any family F of graphs, we say 
that G is F -free if G does not contain any graph F ∈ F as an induced subgraph. If a graph G is F -free, then the graphs in 
F are called the forbidden induced subgraphs of G .

A clique in a graph G is a complete induced subgraph of G . Also, we will often use this term for the vertex set that 
induces the clique.

A graph is chordal if it does not contain an induced cycle of size 4 or more.
A graph G is an interval graph if it admits an intersection model consisting of intervals on the real line, that is, a family 

I of intervals on the real line and a mapping from the set of vertices of G to the intervals of I such that two vertices are 
adjacent in G if and only if the corresponding intervals intersect. Notice that the class of interval graphs is a subclass of the 
class of chordal graphs.

A proper interval graph is an interval graph that admits a proper interval model, that is, an intersection model in which no 
interval is properly contained in any other.
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Fig. 1. Some of the forbidden induced subgraphs for proper interval graphs.

A unit interval graph is an interval graph that has an interval representation in which each interval has unit length. Every 
proper interval graph is a unit interval graph, and vice versa [17].

We can always assume that all the endpoints of the intervals in a (unit) interval model are pairwise distinct (so in 
particular that no interval is reduced to a single point, no two intervals are identical, and no two intervals intersect in 
exactly one point) [9].

Three nonadjacent vertices of a graph form an AT (asteroidal triple) if every two of them are connected by a path 
avoiding the neighbourhood of the third. Interval graphs are precisely those chordal graphs that are also AT -free [13] and 
proper interval graphs are precisely those chordal graphs that are also {claw, tent, net}-free [16,17] (see Fig. 1).

A graph G = (C ∪ I, E) is a split graph if its vertex set can be partitioned into a set C of pairwise adjacent vertices and 
set I of pairwise nonadjacent vertices.

A threshold graph is a split graph in which any two nonadjacent vertices satisfy that the neighbourhood of one is 
contained in the neighbourhood of the other. Equivalently, G is a threshold graph if it can be constructed from the empty 
graph by repeatedly adding either an isolated vertex (nonadjacent to every other vertex) or a dominating vertex (adjacent to 
every other vertex). Let the ordering of V (G) according to this construction procedure be the threshold ordering. Threshold 
graphs are characterised precisely as the {2K2, C4, P4}-free graphs.

Quasi-threshold graphs, also called trivially perfect graphs, are the {P4, C4}-free graphs. A connected quasi-threshold graph 
G = (V , EG) admits a rooted tree T = (V , ET ) on the same vertex set V , rooted on a vertex r, such that uv ∈ EG if and only 
if there is a path in T starting in r containing both u and v .

A graph G is a caterpillar if G is a tree in which the removal of all the pendant vertices (i.e., the leaves) results in a path 
(i.e. the spine or central path).

A graph is perfect if, for every induced subgraph, the size of a largest independent set equals the smallest number of 
cliques needed to cover the subgraph.

A family S of nonempty sets has the Helly property if every subfamily of S of pairwise intersecting sets has a nonempty 
intersection. This property is also known as the 2-Helly property. For example, any family of pairwise-intersecting intervals 
in the real line has the 2-Helly property.

3. PIG-completion within split graphs

We now devote our attention to the complexity of the PIG-completion problem when the input graph belongs to the 
class of split graphs. We start by citing some useful results and stating a few lemmas that characterise PIG-completions 
when the split partition fulfils certain properties. These results will be useful in Section 3.1, where we give a reduction to 
the PIG-completion problem.

Recall the following result:

Theorem 3.1 (Peng et al. [19]). The threshold-completion problem is NP-complete on split graphs.

Let us consider a connected split graph G = (C ∪ I, E), such that C is maximum in the sense that there is no vertex in I
adjacent to every vertex of C , and let H = (C ∪ I, E ∪ F ) be a PIG-completion of G .

Lemma 3.2. There exist both a partition {C ′, I ′} of the vertex set of H, where I ′ ⊆ I and C ′ is a clique with C ′ ⊇ C , and a partition 
{Il, Ir} of I ′ such that Il and Ir are both cliques in H.

Proof. Let {Iu}u∈V (H) be a unit interval model for the graph H , which we know it exists since H is proper interval. It follows 
from the 2-Helly property of intervals and the fact that C is a clique in H that there exists a real point p in 

⋂
u∈C Iu . For 

each vertex v ∈ I , if either the right endpoint of Iv is to the left of p − 1, or the left endpoint of Iv is to the right of p + 1, 
then Iv does not intersect any interval in {Iu : u ∈ C}. We may conclude that v is pairwise nonadjacent to every vertex of C
in H and thus v is an isolated vertex in G , which leads to a contradiction given that G is connected. Let us now consider 
Il = {u ∈ I : p − 1 ∈ Iu} and Ir = {u ∈ I : p + 1 ∈ Iu}, which are both cliques in H and let I ′ = Il ∪ Ir . Notice that {Il, Ir} is 
indeed a partition of I ′ since no unit interval can contain the points p − 1 and p + 1 at the same time. Moreover, if we 
define C ′ = C ∪ I \ (Il ∪ Ir), then it is clear from our previous remark that, for every vertex u ∈ I \ (Il ∪ Ir), the unit interval 
Iu is fully contained in the interval [p − 1, p + 1] and thus it contains the point p. Furthermore, p is also contained in the 
interval corresponding to every vertex in C , and therefore C ′ is a clique in H as well. �
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Lemma 3.3. Let {C ′, I ′} be a partition of the vertex set of H and {Il, Ir} be a partition of I ′ into cliques as given by the previous lemma. 
Then, Hl = (C ′ ∪ Il, El) and Hr = (C ′ ∪ Ir, Er) are threshold graphs, where E∗ = E(H[C ′ ∪ I∗]) \ F I ′ for ∗ ∈ {l, r} and F I ′ = {uv ∈ F :
u, v ∈ I ′}.

Proof. If Hl is not threshold, then there are vertices v, w ∈ Il (nonadjacent in Hl) and x, y ∈ C ′ such that vx, wy ∈ El and 
v y, wx �∈ El . Notice that v and w are adjacent in H since they both lie in Il , which is a clique in H . Therefore, we find an 
induced C4 in H , which results in a contradiction since H is a proper interval graph. �

Finally, we will need the following property of proper interval graphs. Let G be an interval graph, and let IG be an 
interval model of G . We say that a clique C of G is a first clique of G in IG if there is a real point p such that p intersects 
every interval corresponding to the vertices of C , and every other interval of IG lies strictly on the same side of p. Notice 
that such a clique always exists, since it can be found by restricting to the rightmost interval of the model.

Lemma 3.4. Let G = (V , E) and G ′ = (V ′, E ′) be two vertex-disjoint proper interval graphs, with respective proper interval models 
IG and IG ′ , and let C (resp. C ′) be a first clique of G in IG (resp. G ′ in IG ′ ). Then, the graph G ′′ = (V ∪ V ′, E ∪ E ′ ∪ F ) is also a proper 
interval graph, where F consists of all the possible edges between C and C ′ .

Proof. Let IG be a proper interval model of G . Recall that we can assume that the endpoints of intervals in any (unit) 
interval model are distinct. Up to inverting right and left in IG , we can assume that C is on the right side of the model. 
Thus, G admits a proper interval model IG = {Iu}u∈V = {[au, bu]}u∈V , with au < bu , and there is a real point p intersecting 
every interval of C such that all the other intervals lie strictly to the left of p.

Let k ≥ 1 be the size of C , let n be the size of V with n ≥ k, and let V = {u1, . . . , un} be an ordering of the vertices 
such that C = {u1, . . . , uk} and buk+1 < · · · < bun < p ≤ bu1 < · · · < buk . For each i ∈ {1, . . . , n}, let cui = p + 1 + i

k if i ≤ k, and 
cui = bui for the remaining vertices. Observe that p < p + 1 < cu1 < · · · < cuk = p + 2. Moreover, for each i ∈ {1, . . . , n}, it 
follows that aui < p, and also cui < p for every i > k.

Consider now the interval model given by {[au, cu]}u∈V . Note that, since we have not modified the ordering of the 
endpoints of the intervals, this is also a proper interval representation of G where every interval that does not represent a 
vertex of C lies strictly on the left of p, and all the remaining intervals are to the left of p + 2.

Consider now the proper interval model of G ′ given by IG ′ = {I′v }v∈V ′ = {[av , bv ]}v∈V ′ , and let p′ be a real point inter-
secting C ′ such that every other interval lies strictly to the right of p′. Upon shifting all those intervals, we can assume that 
p′ = p + 2.

Let k′ ≥ 1 be the size of C ′ , let n′ be the size of V ′ with n′ ≥ k′ , and let V ′ = {v1, . . . , vn′ } be an ordering of the vertices 
such that C ′ = {v1, . . . , vk′ } and avk′ < · · · < av1 ≤ p′ < avk′+1

< · · · < avn′ . For each i ∈ {1, . . . , n′}, let cvi = p + 1 − i
k′ if i ≤ k′ , 

and let cv = av for every other vertex. Observe that p = cvk′ < · · · < cv1 < p + 1 < p + 2. Furthermore, for each i ∈ {1, . . . , n′}
it follows that bvi > p + 2, and also cvi > p + 2 for every i > k′ .

Consider the interval model given by {[cv , bv ]}v∈V ′ . Once more, since we have not modified the ordering of the endpoints 
of the intervals, this yields a proper interval representation of G ′ such that all the intervals that do not represent a vertex 
of C ′ lie strictly to the right of p + 2, and all the intervals of C ′ lie to the right of p.

Finally, consider the set of intervals {[au, cu]}u∈V ∪ {[cv , bv ]}v∈V ′ and let us see that no interval is contained in an-
other. Suppose that there are two intervals [a, b] and [a′, b′], representing u and u′ respectively, such that a < a′ < b′ < b. 
By construction, one of them lies in V and the other in V ′ . Suppose that u ∈ V and u′ ∈ V ′ . Hence, b ≤ p + 2 and 
p + 2 < b′ , which contradicts the fact that b′ < b. We reach an analogous contradiction if u′ ∈ V and u ∈ V ′ . Therefore, 
I = {[au, cu]}u∈V ∪ {[cv , bv ]}v∈V ′ is a proper interval model of some graph. Let G ′′ = (V ′′, E ′′) be the proper interval graph 
corresponding to I. By construction, it follows that V ∪ V ′ = V ′′ and E ∪ E ′ ⊆ E ′′ . For every u ∈ C and v ∈ C ′ , their corre-
sponding intervals intersect in p + 1, hence G ′′ contains all the edges between C and C ′ . Let F be that set of edges. Let 
u ∈ V \ C , let v ∈ V ′ , and let [a, b], [a′, b′] be their respective intervals. By construction, a < b < p ≤ a′ < b′ and thus u and 
v must be nonadjacent. Similarly, if u ∈ V and v ∈ V ′ \ C , then a < b ≤ p + 2 < a′ < b′ . Therefore, the only edges between V
and V ′ are precisely those in F . �

3.1. NP-completeness

We are now ready to prove that obtaining a PIG-completion is still NP-complete when the input graph is split. In order 
to do this, we strongly rely on the previous lemmas and Theorem 3.1.

Theorem 3.5. The PIG-completion problem is NP-complete on split graphs.

Proof. Given a completion of a split graph, it can be checked in polynomial time if this is in fact a PIG-completion, hence 
the problem is in NP.

We give a reduction from threshold-completion on split graphs (see Fig. 2 for a schema of the gadget used for the 
reduction). Let (G, ℓ) be an instance of threshold-completion on split graphs, where G = (C ∪ I, E) is a (connected, for 
simplicity) split graph on n vertices.
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Fig. 2. A schema of the gadget used for the reduction of Theorem 3.5.

Consider the graph G ′ defined as follows. Let G1 = (C1 ∪ I1, E1) and G2 = (C2 ∪ I2, E2) be two copies of G . For each 
i ∈ {1, 2}, we consider G ′

i = (C ′
i ∪ Ii, E ′

i), the graph constructed from Gi by connecting 2n2 new vertices to all the vertices of 
Gi , where C ′

i is the set formed by the union of Ci and the newly added vertices. Notice that G ′
i is a split graph. We denote 

by V i the vertex set of Gi and by V ′
i , the vertex set of G ′

i , for each i ∈ {1, 2}. Finally, connect all the vertices of C ′
1 and C ′

2
into a clique C ′ . Let G ′ = (V ′, E ′) be the resulting split graph on 2(2n2 + n) vertices, where V ′ = C ′ ∪ I1 ∪ I2.

We show that G can be augmented to a threshold graph with at most ℓ fill edges if and only if G ′ can be augmented to 
a proper interval graph with at most 2k additional edges, where k = ℓ + (|I|

2

)
.

First, suppose there is a minimum PIG-completion H = (V ′, E ′ ∪ F ) of G ′ with |F | ≤ 2k edges. Notice that we may assume 
that |F | = 2k, since we can add additional edges if necessary and still keeping the property of being a PIG. One way to show 
this (assuming that all the endpoints in the interval model are distinct), is by shifting the leftmost interval to the right until 
it intersects a new interval. We will show that G can be augmented to a threshold graph with ℓ edges.

Observe that completing each Gi into a clique requires less than n2 edges. Thus, a PIG-completion of G ′ would need less 
than 2n2 fill edges, which implies that |F | < 2n2.

Let IH = {Iu}u∈V (H) be a proper interval model for the graph H . By Lemmas 3.2 and 3.3, there is a partition C ′′, Il, Ir of 
V ′ where C ′ ⊆ C ′′ , I ′ := Il ∪ Ir ⊆ I1 ∪ I2, and such that H[Il] and H[Ir] are both cliques with fill edges in F I ′ (as defined in 
Lemma 3.3).

If there is a vertex v ∈ C ′′ \ C ′ , w.l.o.g. v ∈ I1, then we need at least 2n2 fill edges to connect v to C ′
2 in H , which 

contradicts |F | < 2n2, thus C ′′ = C ′ .
Since C ′ induces a clique in H , it follows from the 2-Helly property of intervals that there is a real point p ∈ ⋂

u∈C ′ Iu . No 
other interval of the model IH intersects the point p, otherwise this requires at least 2n2 fill edges, and thus each interval 
corresponding to the vertices in I1 ∪ I2 lies either strictly to the left or to the right of p.

Claim 3.6. There is no v1 ∈ I1 and v2 ∈ I2 whose corresponding intervals lie either both to the right of p or both to the left of p.

Proof. Let I1 and I2 be the intervals corresponding to v1 and v2, respectively. Suppose that I1 and I2 both lie to the left of 
p. Since {v1} ∪ C ′

1 \ C1 induces a clique in H , there is a real point p1 intersecting all the intervals corresponding to this set, 
and the same holds for {v2} ∪ C ′

2 \ C2 and p2. Suppose w.l.o.g. that p1 ≤ p2 < p. Then, all the intervals of C ′
1 \ C1 intersect 

p2, thus v2 is adjacent to all the vertices of C ′
1 \ C1 introducing thus 2n2 fill edges, which results in a contradiction. �

Therefore, we assume without loss of generality that, in the interval representation of H , the endpoints of the intervals 
corresponding to vertices of I1 lie strictly to the left of p and the ones corresponding to vertices of I2 lie strictly to the 
right of p. Since {Il, Ir} is a partition of I1 ∪ I2 where each set induces a clique in H , then I1 = Il and I2 = Ir . Let us show 
that all the fill edges lie inside each Gi .

Claim 3.7. For each i ∈ {1, 2}, let Fi be the set of fill edges inside H[V i]. Then F = F1 ∪ F2 .

Proof. Recall that for each i ∈ {1, 2}, all the possible edges between V i and V ′
i \ V i are already in E ′ , thus Fi is also the set 

of fill edges in H[V ′
i ].

Since we already proved that there is no fill edge between I1 and I2, it suffices to see that there is no fill edge between 
I1 and C ′

2 (resp. I2 and C ′
1). Toward a contradiction, suppose there is at least one of said fill edges. Let us construct a PIG 

H ′ on the same vertex set with edge set E ′ ∪ F1 ∪ F2.
The model given by {Iu}u∈V ′

1
is a proper interval model of H[V ′

1]. It follows from the above reasoning that C ′
1 can be 

seen as a first clique in this model, since the point p lies exactly in the intervals that correspond to vertices of C ′ . Similarly, 
{Iu}u∈V ′ is a proper interval model of H[V ′ ] and C ′ is a first clique in this model.
2 2 2
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Fig. 3. Example of H ′′
i and its proper interval model with n = 9.

It follows from Lemma 3.4 that there is a PIG H ′ = (V ′
1 ∪ V ′

2, E
′
1 ∪ F1 ∪ E ′

2 ∪ F2 ∪ F ′), where F ′ is the set of edges 
connecting all the vertices of C ′

1 and C ′
2. Notice that E ′

1 ∪ E ′
2 ∪ F ′ = E ′ , hence H ′ is a PIG-completion of G ′ with edge set 

E ′ ∪ F1 ∪ F2. Thus, H ′ is a smaller PIG-completion than H , which contradicts the fact that H has minimum number of 
edges. �

Assume without loss of generality that |F1| ≤ |F2|. We will build a proper interval completion of G ′ with 2|F1| fill edges, 
which will then prove that |F1| = |F2| since H is a minimum PIG-completion of G ′ . To do this, consider any proper interval 
model of H , and keep only those images of vertices belonging to I1 ∪ C ′

1. Now cut the intervals right after point p, keeping 
arbitrarily small parts to the right of p so that the intervals remain non-nested. By doing this we obtain a proper interval 
model of H[I1 ∪ C ′

1] where C ′
1 is a first clique. Therefore, by considering twice the same graph in Lemma 3.4, we get a 

proper interval graph that is exactly two copies of H[I1 ∪ C ′
1] and has all the edges between the two copies of C ′

1. Note that 
since G1 and G2 are copies of the same graph, this proper interval graph is a PIG-completion of G ′ , with 2|F1| fill edges, 
which proves that |F1| = |F2| = k.

Let F ′
1 = {uv ∈ F : u, v ∈ I1}, and let H1 = (V 1, E ∪ F1 \ F ′

1). Note that since H[I1] is a clique and G ′[I1] is an independent 
set, |F ′

1| =
(|I|

2

)
. In other words, all the possible edges between vertices of I1 are fill edges. Therefore, H1 has ℓ = k − (|I|

2

)
fill edges (as a completion of G1). By Lemma 3.3, H1 must be a threshold-completion of G1. Since G1 is isomorphic to G , G
has a threshold-completion with ℓ edges.

For the only if direction, suppose there is a minimum threshold-completion H of G with ℓ fill edges. We will construct 
a PIG-completion of G ′ with k′ fill edges such that k′ = 2 

(
ℓ + (|I|

2

))
.

Let Fi be the set of fill edges added to the vertices corresponding to each Gi to obtain a threshold graph Hi for each 
i ∈ {1, 2}, and let H ′

i = (C ′
i ∪ Ii, E ′

i ∪ Fi). Notice that H ′
i is also a threshold-completion of G ′

i for each i ∈ {1, 2}. Observe that 
we can consider the same partition of the vertices into a clique and an independent set for both Gi and Hi . Indeed, if a 
vertex v ∈ Ii is in the clique of Hi , we can remove all the edges connecting v with vertices in the independent set. This 
way we could place v in the independent set of Hi instead. The same holds for the vertex partition of G ′

i and H ′
i . Consider 

F ′
i to be the fill edges obtained by completing Ii into a clique for each i ∈ {1, 2}, and let H ′′

i = (V ′
i , E

′
i ∪ Fi ∪ F ′

i ) for each 
i ∈ {1, 2}. This gives a total of ℓ + (|I|

2

)
fill edges.

Since each H ′
i is a threshold graph, the neighbourhoods of the independent vertices are nested and hence we can 

consider an ordering of said vertices in terms of increasing containment of their neighbourhoods. Recall that it is possible 
to represent any clique with a proper interval model by overlapping the corresponding intervals such that each interval 
starts and ends in a different point. A proper interval model for H ′′

i is given as follows, for each i ∈ {1, 2}. Since Ii is a clique 
in H ′′

i , we can place the corresponding intervals such that they overlap. The same holds for the intervals corresponding 
to all the vertices in C ′

i , and we can place the endpoints of the intervals corresponding to these vertices by following 
the ordering of the neighbourhoods of the vertices in Ii to do this. This way, we can place the endpoints of the intervals 
corresponding to the vertices in Ii according to the increasing ordering given by the neighbourhoods with regards to C ′

i , 
and thus obtaining a proper interval model for each H ′′

i , as in Fig. 3. Observe that C ′
i is a first clique in the described proper 

interval model of H ′′
i for each i ∈ {1, 2}. Finally, we obtain a PIG-completion of G ′ with the desired number of fill edges by 

applying Lemma 3.4. �

4. An algorithm for PIG-completion on threshold graphs

In this section we present a simple polynomial-time algorithm for computing an optimal PIG-completion for a threshold 
graph G . To do this, we will show first that PIG-completion for threshold graphs is equivalent to co-bipartite-completion. 
This will enable us to give a procedure, based on the definition of threshold graphs, that iteratively places the vertices in 
one of the two cliques in an optimal way.
6
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Let G be a threshold graph, and let n = |V (G)|. We will show how to compute a PIG-completion for G . Recall that, since 
G is a threshold graph, there is an ordering v1, v2, . . . , vn of the vertices of G such that for each i ∈ {2, 3, . . . , n}, vi is either 
a dominating or an isolated vertex in the subgraph G[{v1, v2, . . . , vi}]. In the former case, we say that vi is a dominating
vertex, and in the latter case, we say that vi is an isolated vertex. If vn is an isolated vertex in G , then a PIG-completion 
of G can be obtained by simply computing a PIG-completion of G[{v1, v2, . . . , vn−1}] and then adding vn to the resulting 
graph. We assume vn is a dominating vertex. Throughout this section, we will use indistinctly and interchangeably the 
terms minimum and optimal when referring to the best possible completion.

Since each interval contains at least one of the endpoints of the interval corresponding to the universal vertex, it follows 
that any PIG that contains a universal vertex is a co-bipartite graph. Hence, any PIG-completion of any graph that contains 
a universal vertex is also a co-bipartite-completion of it.

Lemma 4.1. A graph H is a minimum PIG-completion of G if and only if it is a minimum co-bipartite-completion of G.

Proof. Since G contains a universal vertex, any PIG-completion of G is also a co-bipartite-completion of G . Conversely, 
let H be a minimum co-bipartite-completion of G . Consider a bipartition of V (H) into two sets A and B such that the 
subgraphs H[A] and H[B] are both cliques. H does not contain independent sets of size 3 or more, which in particular 
implies that H contains no claws or asteroidal triples as induced subgraphs. Towards a contradiction, suppose H contains 
an induced cycle C . Since H is co-bipartite, C has either 3 or 4 vertices. Suppose that C is a 4-cycle, and let v1, v2, v3, v4
be its vertices, assuming without loss of generality that {v1, v2} ⊂ A and that {v3, v4} ⊂ B . Since v1 v3, v2 v4 �∈ E(H) and H
is a supergraph of G , in particular v1 v3, v2 v4 �∈ E(G). Moreover, {v2 v3, v4 v1} ⊂ E(G) since H is a minimum co-bipartite-
completion. It follows that the subgraph G[{v1, v2, v3, v4}] is isomorphic to a 2K2, P4 or C4, thus contradicting the fact 
that G is threshold. Hence, C must be a cycle of length 3, and therefore there are no induced claws, asteroidal triples, or 
induced cycles of length more than 3 in H , which implies that H is a PIG-completion of G . �

Let us denote by I , the set of isolated vertices in V (G). Given any bipartition {A, B} of V (G), we call the (A, B)-co-
bipartite-completion of G the completion obtained by adding every possible edge between the vertices in A and every 
possible edge between the vertices in B . For any set S ⊆ V (G) and i ∈ {1, 2, . . . , n}, define S<i = S ∩ {v1, v2, . . . , vi−1}
and S>i = S ∩ {vi+1, vi+2, . . . , vn}. The sets S≤i and S≥i are similarly defined. Observe that, for any optimal co-bipartite 
completion of G , the edges between the resulting cliques are in E(G).

Lemma 4.2. Let H be the (A, A′)-co-bipartite-completion of G. Let A( j) =
{

A i f v j ∈ A

A′ otherwise.
Then,

|E(H)| = |E(G)| +
∑
v j∈I

|A( j)
< j| = |E(G)| +

∑
vi∈V (G)

|A(i)
>i ∩ I|

Proof. We obtain the (A, A′)-co-bipartite completion H of G by adding, for each isolated vertex v j ∈ A( j) ∈ {A, A′}, all edges 
from v j to the vertices of smaller index that are also in A( j) , which are exactly the vertices of A( j)

< j . In other words, all the 

edges between a vertex vi and the isolated vertices of A(i)
>i are added. �

Lemma 4.3. Let 
{

B, B ′} be a bipartition of V (G) such that the 
(

B, B ′)-co-bipartite-completion of G is optimal. Let vt be a dominating 
vertex for some t ∈ {1, 2, . . . , n}. Suppose that |B<t | ≥ ∣∣B ′

<t

∣∣. Then there exists a bipartition 
{

A, A′} of V (G) such that A<t = B<t , 
A′

<t = B ′
<t , vt ∈ A, and the 

(
A, A′)-co-bipartite-completion of G is optimal.

Proof. Denote by H ′ the 
(

B, B ′)-co-bipartite-completion of G . If vt ∈ B , then we can simply let A = B and A′ = B ′ . Suppose 
instead that vt ∈ B ′ . Consider the sets D = B<t ∪ B ′≥t and D ′ = B ′

<t ∪ B≥t , and let H be the 
(

D, D ′)-co-bipartite-completion 
of G . It follows from Lemma 4.2 that |E(H)| = ∣∣E

(
H ′)∣∣ + (∣∣B≥t ∩ I

∣∣ − ∣∣B ′≥t ∩ I
∣∣) (∣∣B ′

<t

∣∣ − |B<t |
)
.

Suppose that 
∣∣B ′

<t

∣∣ < |B<t |, otherwise 
∣∣B ′

<t

∣∣ = |B<t | and thus H is an optimal co-bipartite-completion of G and there-
fore {A, A′}, with A = D and A′ = D ′ , is a bipartition of V (G) that fulfils the desired properties. Since H ′ is an opti-
mal co-bipartite-completion of G by hypothesis, it follows from Lemma 4.2 that 

∣∣B≥t ∩ I
∣∣ ≤ ∣∣B ′≥t ∩ I

∣∣. Moreover, vt is a 
dominating vertex, thus |B>t ∩ I| ≤ ∣∣B ′

>t ∩ I
∣∣. Consider H ′′ to be the 

(
B ∪ {vt}, B ′ \ {vt}

)
-co-bipartite-completion of G . By 

using Lemma 4.2 again, we have that |E(H ′′)| = ∣∣E
(

H ′)∣∣ − ∣∣B ′
>t ∩ I

∣∣ + |B>t ∩ I|. The latter combined with the fact that 
|B>t ∩ I| ≤ ∣∣B ′

>t ∩ I
∣∣ implies that |E(H ′′)| ≤ ∣∣E

(
H ′)∣∣, hence H ′′ is also an optimal co-bipartite-completion of G . So in this 

case we can define A = B ∪ {vt} and A′ = B ′\ {vt} that fulfil the desired properties. �

Lemma 4.4. There exists a bipartition 
{

A, A′} of G such that |A| ≥ ∣∣A′∣∣, every dominating vertex is in A and the 
(

A, A′)-co-bipartite-
completion of G is optimal.
7
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Proof. Let 
{

B, B ′} be a bipartition of V (G) such that the 
(

B, B ′)-co-bipartite-completion of G is optimal. Let X0 = B and 
Y 0 = B ′ . We will build Xi and Y i for each i ∈ {0, 1, . . . , n} maintaining the following invariants in each step: for each i, ∣∣∣Xi

≤i

∣∣∣ ≥
∣∣∣Y i

≤i

∣∣∣, and the 
(

Xi, Y i
)
-co-bipartite-completion of G is optimal. We inductively define step i as follows. If vi is a 

dominating vertex and vi ∈ Y i−1, since 
∣∣∣Xi−1

<i

∣∣∣ =
∣∣∣Xi−1

≤i−1

∣∣∣ ≥
∣∣∣Y i−1

≤i−1

∣∣∣ =
∣∣∣Y i−1

<i

∣∣∣ and the 
(

Xi−1, Y i−1
)
-co-bipartite-completion of 

G was optimal, it follows from Lemma 4.3 that there exists a bipartition 
{

A, A′} of V (G) such that A<i = Xi−1
<i , A′

<i = Y i−1
<i

where Xi = A and Y i = A′ , vi ∈ A, and the 
(

A, A′)-co-bipartite-completion of G is optimal. It is easy to see that we have ∣∣∣Xi
≤i

∣∣∣ >

∣∣∣Y i
≤i

∣∣∣.
Now suppose that vi is an isolated vertex, vi ∈ Y i−1, and 

∣∣∣Xi−1
≤i−1

∣∣∣ =
∣∣∣Y i−1

≤i−1

∣∣∣: in this case, let Xi = Xi−1
≤i−1 ∪ Y i−1

≥i and 

Y i = Y i−1
≤i−1 ∪ Xi−1

≥i . Observe that the edges induced respectively by Xi−1
≥i , Xi−1

≤i−1, Y
i−1
≥i , Y i−1

≤i−1 are preserved in the 
(

Xi, Y i
)
-

co-bipartite-completion. Thus, the remaining fill edges in both completions are the ones between those sets, and there are 
|Xi−1

≥i ∩ I| · |Xi−1
≤i−1| +|Y i−1

≥i ∩ I| · |Y i−1
≤i−1|, of them in the 

(
Xi−1, Y i−1

)
-co-bipartite-completion, and |Y i−1

≥i ∩ I| · |Xi−1
≤i−1| +|Xi−1

≥i ∩
I| · |Y i−1

≤i−1| of them in the 
(

Xi, Y i
)
-co-bipartite-completion. Since |Xi−1

≤i−1| = |Y i−1
≤i−1|, the 

(
Xi, Y i

)
-co-bipartite-completion of 

G has exactly the same number of edges as the 
(

Xi−1, Y i−1
)
-co-bipartite-completion of G , which means that it is also 

optimal. Moreover it is clear that we have 
∣∣∣Xi

≤i

∣∣∣ >

∣∣∣Y i
≤i

∣∣∣.
For every other case, we simply consider Xi = Xi−1 and Y i = Y i−1. Clearly, the desired invariants hold in this case as 

well.
Finally, notice that Xn contains all the dominating vertices, 

∣∣Xn
∣∣ ≥ ∣∣Y n

∣∣, and that the 
(

Xn, Y n
)
-co-bipartite-completion of 

G is optimal. �

Lemma 4.5. There exists a bipartition 
{

B, B ′} of G such that |B| ≥ ∣∣B ′∣∣, every dominating vertex is in B, the 
(

B, B ′)-co-bipartite-
completion of G is optimal, and if t = min{i ∈ {1,2, . . . ,n} : vi ∈ B ′}, then |I>t | < |B<t | = t − 1 and I ∩ B>t = ∅.

Proof. Consider a bipartition 
{

B, B ′} of V (G) such that |B| ≥ ∣∣B ′∣∣, every dominating vertex is in B , and the 
(

B, B ′)-
co-bipartite-completion of G is optimal. The existence of such a partition is a consequence of Lemma 4.4. Moreover, 
consider one such that |I>t |−|B<t | is minimum, where t = min

{
i ∈ {1,2, . . . ,n} : vi ∈ B ′}. Let H ′ be the 

(
B, B ′)-co-bipartite-

completion of G . It follows from the choice of the bipartition 
{

B, B ′} that H ′ is an optimal co-bipartite-completion of G .
Towards a contradiction, suppose that I ∩ B>t �= ∅. This implies in particular that there is a vertex vt′ ∈ I ∩ B>t , where 

t′ = min {i ∈ {t + 1, t + 2, . . . ,n} : vt′ ∈ I ∩ B}. We will now define another partition that will yield a co-bipartite-completion 
that uses less edges, thus reaching a contradiction. Let A = (B ∪ {vt})\ {vt′ } and A′ = (

B ′\ {vt}
) ∪ {vt′ }. Clearly, this is a 

partition of V (G). If H be the 
(

A, A′)-co-bipartite-completion of G , then it follows that

|E(H)| = ∣∣E
(

H ′)∣∣ + |B<t | + |I ∩ B>t | − 1 + ∣∣B ′
<t′

∣∣ − 1 + ∣∣I ∩ B ′
>t′

∣∣ − |I ∩ B>t′ | − |B<t′ | −
∣∣I ∩ B ′

>t

∣∣ .
Furthermore, notice that every vertex in B ′ is isolated, thus we know that 

∣∣B ′
<t′

∣∣ + ∣∣I ∩ B ′
>t′

∣∣ = ∣∣I ∩ B ′
>t

∣∣ + 1. It follows 
that,

|E(H)| = ∣∣E
(

H ′)∣∣ + |B<t | + |I ∩ B>t | − 1 − |I ∩ B>t′ | − |B<t′ | .
Since vt′ is in I ∩ B>t , then |I ∩ B>t′ | = |I ∩ B>t | − 1. This means that |E(H)| = ∣∣E

(
H ′)∣∣ + |B<t | − |B<t′ |, which implies 

that |B<t | = |B<t′ | since H ′ is an optimal co-bipartite-completion of G . Thus, for each i ∈ {t + 1, . . . , t′ − 1}, vi ∈ B ′ and by 
construction, vi ∈ A′ . But then t + 1 = min

{
i ∈ {1,2, . . . ,n} : vi ∈ A′} and |I>t+1|− |A<t+1| = |I>t+1|− |B<t |, which is strictly 

smaller than |I>t | − |B<t |, and thus contradicts the minimality of H ′ . Hence, necessarily I ∩ B>t = ∅.
Finally, suppose to the contrary that |I>t | − |B<t | ≥ 0. Let A = B ∪ {vt} and A′ = B\ {vt}, and denote by H the (

A, A′)-co-bipartite completion of G . It is easy to see that H is an optimal co-bipartite-completion of G: we know 
that |E(H)| = ∣∣E

(
H ′)∣∣ − ∣∣I ∩ B ′

>t

∣∣ + |B<t | + |I ∩ B>t |, and since |B<t | ≤ |I>t | = |I ∩ B>t | + ∣∣I ∩ B ′
>t

∣∣ and |I ∩ B>t | = 0, 
it follows that |E(H)| ≤ ∣∣E

(
H ′)∣∣. Therefore, we found a bipartition 

{
A, A′} of V (G) such that |A| ≥ ∣∣A′∣∣, every dom-

inating vertex is in A, the 
(

A, A′)-co-bipartite-completion H of G is optimal, and |I>t′ | − |A<t′ | < |I>t | − |B<t |, where 
t′ = min

{
i ∈ {1,2, . . . ,n} : vi ∈ A′} > t . This results in a contradiction since we assumed |I>t | − |B<t | to be minimum. This 

finishes the proof. �

Theorem 4.6. Given a threshold graph G on n vertices together with a threshold ordering of its vertices in which each vertex is either 
marked as “dominating” or “isolated”, there is an O(n)-time algorithm that computes a bipartition {X, Y } of V (G) such that the 
(X, Y )-co-bipartite-completion of G is optimal.

Proof. Let v1, v2, . . . , vn be the given threshold ordering of the vertices of the graph G . We denote by I the vertices 
marked as isolated in this ordering. We construct a bipartition {X, Y } of V (G) as follows. Let X1 = {v1} and Y 1 = ∅. For 
each i ∈ {2, 3, . . . , n}, we define Xi, Y i inductively as follows:
8



F. Dross, C. Hilaire, I. Koch et al. Discrete Mathematics 348 (2025) 114274
1. If vi is a dominating vertex (that is, vi is not in I), or if |I>i | ≥
∣∣Xi−1

∣∣, we add vi to Xi . More precisely, Xi = Xi−1 ∪ {vi}, 
and Y i = Y i−1.

2. Else, we place vi in Y i . That is, Xi = Xi−1, and Y i = Y i−1 ∪ {vi}.

Once we have gone through all the vertices, we define X = Xn and Y = Y n .
Clearly the sets X and Y can be computed in time O(n), thus it suffices to show that the (X, Y )-co-bipartite-completion 

of G is optimal.
Let 

{
B, B ′} be a bipartition of G such that |B| ≥ ∣∣B ′∣∣, every dominating vertex is in B , the 

(
B, B ′)-co-bipartite-completion 

of G is optimal, |I>t | < |B<t | = t − 1, and I ∩ B>t = ∅, where t = min
{

i ∈ {1,2, . . . ,n} : vi ∈ B ′}. The existence of such 
partition follows from Lemma 4.5.

Now, it suffices to show that X = B and Y = B ′ . Let vi in X be any vertex, where i ∈ {1, 2, . . . , n}.
If vi is a dominating vertex, then vi is in B by definition of B . If instead vi is an isolated vertex, then |I>i | ≥ ∣∣Xi−1

∣∣
which follows by construction of X . In this case, we know that 

∣∣I> j
∣∣ ≥ |I>i | and 

∣∣X j−1
∣∣ ≤ ∣∣Xi−1

∣∣, for every j ∈ {1, 2, . . . , i}. 
It follows that 

∣∣I> j
∣∣ ≥ ∣∣X j−1

∣∣ for every j ≤ i, thus by construction of X , v j is also in X for every j ∈ {1, 2, . . . , i}. Hence, ∣∣Xi−1
∣∣ = i − 1. Towards a contradiction, suppose that vi ∈ B ′ . It follows from the definition of t that t ≤ i. This implies that 

|I>t | ≥ |I>i | ≥ ∣∣Xi−1
∣∣ = i − 1 ≥ t − 1, which contradicts the assumption that stipulated that |I>t | < |B<t | = t − 1 for the 

chosen bipartition 
{

B, B ′}. Hence, vi lies in B , thus X ⊆ B .
Suppose now to the contrary that Y ∩ B �= ∅, and let i = max

{
j ∈ {1,2, . . . ,n} : v j ∈ Y ∩ B

}
. Observe that, if vk ∈ Y , then 

for every j ≥ k such that v j ∈ I , we have v j ∈ Y since v j is an isolated vertex and |I> j | ≤ |I>k| < |Xk−1| ≤ |X j−1|. In 
other words, I>k ⊆ Y . It follows from the previous remark that I>i ∩ B = ∅. Moreover, since vi is in Y , in particular vi is 
an isolated vertex such that |I>i | <

∣∣Xi−1
∣∣. The latter implies that |I>i | < |B<i |, since X ⊆ B . Furthermore, vi is in B and 

I ∩ B>t = ∅, hence i < t . Since I>i ∩ B = ∅, then 
∣∣I>i ∩ B ′∣∣ = |I>i |. Consider H to be the 

(
B, B ′)-co-bipartite-completion of 

G , and let H ′ be the 
(

B\ {vi} , B ′ ∪ {vi}
)
-co-bipartite-completion of G . It follows from the previous remarks that

|E(H ′)| = |E(H)| + |I>i ∩ B ′| − |I>i ∩ B| − |B<i| = |E(H)| + |I>i| − |B<i| < |E(H)|,
which contradicts the fact that H ′ is an optimal co-bipartite-completion of G . The contradiction came from assuming that 
Y ∩ B �= ∅, therefore we have that X = B and Y = B ′ . �

To conclude this section, we mention the connection to the max-cut problem in the case of threshold graphs. Given a 
partition {A, B} of the vertices of a graph G , consider these two sets:

1. Let C be the set of pairs of nonadjacent vertices, where one element is in A and the other in B .
2. Let F be the set of pairs of nonadjacent vertices where either both are in A or both in B (notice that F is a set of fill 

edges corresponding to a co-bipartite completion of G)

Notice that E(G), C , and F gives a partition of the set of all pairs of distinct vertices from V (G), hence |E(G)| + |C | +
|F | = (n

2

)
. Two of these four values depend only on the input graph, not on the partition. Hence, choosing a partition 

minimizing |F | is the same as maximizing |C |. Now take the complement graph and consider the same partition. Clearly, C
is a cut between A and B . This implies that finding a minimum co-bipartite completion of a graph is equivalent to finding a 
maximum cut of its complement. By Lemma 4.1, this implies that for a threshold graph, finding a minimum PIG-completion 
is equivalent to finding a maximum cut of its complement.

We remark that an O(n2)-time algorithm for calculating max-cut for cographs (and thus for threshold graphs) has been 
presented in [2]. This result, together with the fact that threshold graphs are closed under complementation, gives an 
alternative algorithm for PIG-completion for this class. Furthermore, even though our algorithm strongly relies on having a 
threshold ordering, in the worst case scenario where we do not have such an ordering, this can be computed in O(n + m)-
time, thus yielding a O(n + m)-time algorithm for PIG-completion on threshold graphs using our proposed approach.

4.1. Completion from quasi-threshold graphs

A natural candidate for generalizing the previous result is the class of quasi-threshold graphs. Recall that these are 
precisely the {P4, C4}-free graphs. However, for this particular class we encounter the problem that a crucial result from 
the previous section does not hold: a minimum co-bipartite-completion is not the same as a minimum PIG-completion. We 
present a counterexample for this in Fig. 4, in which we can see that a minimum co-bipartite-completion of the graph has 
an induced C4.

We will not give a full proof of the fact that the graph on the right of Fig. 4 is a minimal completion of the graph on 
the left. This was checked by a computer program. Let us call H2, H3, H4 the cliques of size 4, 6 and 8 represented by 
circles in the figure, and H1 be the clique composed of only the one vertex in the top left corner. The intuition is that since 
the values |H1| + |H4| and |H2| + |H3| are much closer than any other bipartition of the Hi ’s would allow, and since the 
number of edges that we could possibly spare outside of the subgraph induced by ∪i∈{1,2,3,4} Hi is comparatively small, the 
9
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Fig. 4. A quasi-threshold graph G and a minimum co-bipartite-completion of G that is not PIG. Numbered circles correspond to cliques of size equal to the 
number inside it.

completion on the right of Fig. 4 is the best possible. It most notably beats the partition that has H1 and H2 on one side 
and H3 and H4 on the other, as well as the one that has H1, H2 and H3 on one side and H4 on the other.

Nevertheless, we can still find an algorithm that solves the minimum co-bipartite-completion problem when the input is 
a quasi-threshold graph. Notice that, even though this does not necessarily yields a minimum PIG-completion for a quasi-
threshold graph, indeed provides a lower bound for it. Recall that every connected quasi-threshold graph has a dominating 
vertex, and hence any PIG-completion is also a co-bipartite-completion. The fact that a minimum co-bipartite-completion 
gives a lower bound for the minimum PIG-completion follows from this.

Let G = (V , E) be a connected quasi-threshold graph and T = (V , E T ) be the tree rooted in r that stems from its 
definition.

For v ∈ V , let nv = |V (T v)| be the number of vertices in T v , the maximal subtree rooted at v , and let cv be the number 
of children of v .

For v ∈ V , let v1, . . . , vcv be the children of v in T . For 0 ≤ i ≤ cv , let Xi,v := ⋃
w∈{v1,...,vi} V (T w) and denote by xi,v =

|Xi,v | = ∑
1≤k≤i nvk . For 0 ≤ j ≤ xi,v , let us define C(v, i, j) as the minimum number of edges in a co-bipartite-completion 

in the subgraph induced by Xi,v , such that one clique has cardinality j and the other has cardinality xi,v − j. Notice that 
v �∈ Xi,v .

Finally, we define D(v, j) as the minimum number of edges in a co-bipartite-completion of the subgraph induced by 
V (T v ) such that one of the cliques has cardinality j.

Proposition 4.7. D(v, 0) = C(v, cv , nv − 1) and for 1 ≤ j ≤ nv , it holds that D(v, j) = C(v, cv , j − 1).

Proof. Note that V (T v) = Xcv ,v ∪ {v}, and that v is adjacent to every vertex in Xcv ,v , hence we can always add it to any 
clique of the co-bipartite-completion of Xcv ,v without increasing the cost of the completion. �

It follows from those definitions that the value we are looking for is given by

min
0≤ j≤|V (G)|

D(r, j). (1)

We now show how to compute C(v, i, j), for every v and all possible values of 0 ≤ i ≤ cv and 0 ≤ j ≤ xi,v . We assume 
that the children of v , if any, are v1, . . . , vcv .

C(v, i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if v is a leaf or i = 0.

min
max( j−nvi ,0)≤k≤min

(
j,xi−1,v

)
(

C(v, i − 1,k)+

+D(vi, j − k) + k( j − k) + (xi−1,v − k)(nvi − j + k)
)
, otherwise.

(2)

Proposition 4.8. Equation (2) computes C(v, i, j) correctly.

Proof. For the first case, the graph is either trivial or empty. For the second case, let C1 and C2 be the cliques of a co-
bipartite-completion of Xi,v such that |C1| = j, and let k = |Xi−1,v ∩C1|. Notice that k ≤ xi−1,v . It follows that |V (T vi ) ∩C1| =
j − k, and thus that nvi ≥ j − k. Notice that we need C(v, i − 1, k) edges to turn each of Xi−1,v ∩ C1 and Xi−1,v ∩ C2 into 
cliques. Similarly, we need D(vi, j − k) edges to turn V (T vi ) ∩ C1 and V (T vi ) ∩ C2 into cliques. Finally, we need k( j − k)

edges to connect Xi−1,v ∩ C1 and V (T vi ) ∩ C1, and (xi−1,v − k)(nvi − j + k) edges to connect Xi−1,v ∩ C2 and V (T vi ) ∩ C2. 
Since we try all possible valid values of k, we eventually find the smallest possible completion. �

We arrive thus at the main result of this section, which we state below:
10
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Theorem 4.9. Let G be a quasi-threshold graph. There exists an O(n4)-time dynamic programming algorithm that computes the 
minimum co-bipartite-completion number for G.

Proof. The algorithm is given by expressions (1) and (2), and its correctness is immediate by Propositions 4.7 and 4.8. For 
the complexity, notice that the algorithm proceeds in a bottom-up manner, from the leaves of T up to the root, and from 
left to right for vertices located at the same level of the tree. For every vertex v ∈ V , every 0 ≤ i ≤ cv and every 0 ≤ j ≤ xi,v , 
we compute the recurrence relation (2). This means that the values of C(v, i − 1, k) and D(vi, j −k) were already calculated 
for every max( j − nvi , 0) ≤ k ≤ min

(
j, xi−1,v

)
by the time we compute C(v, i, j), so they are obtainable in O(1) time. 

Hence, given v , i, and j, computing C(v, i, j) is O(n). Since this is required for every i and j as defined above, we perform 
O(n3) operations for every vertex of T . The complete algorithm is thus O(n4). �

5. An algorithm for PIG-completion on caterpillars

In the previous sections, we studied PIG-completion within subclasses of interval graphs that contain very dense graphs, 
such as complete graphs. Another possible approach is to restrict the input to more sparse graph classes. Namely, caterpillars 
are those interval graphs that are also trees, and thus the sparsest subclass of interval, when we consider connected graphs. 
We show that caterpillars admit minimum PIG-completions having a very particular structure, and we provide a quadratic-
time algorithm to compute one of them. Recall that, as defined in Section 2, a caterpillar is a tree such that the deletion of 
its leaves results in a path, called its central path, or spine. From now on, for a caterpillar G on n vertices, we denote by P
its central path, and the children of a vertex of P are the leaves to which said vertex is adjacent to.

Let us consider a PIG-completion H of G , and a unit interval model IH of H . First, we transform IH into the model of a 
PIG-completion H ′ of G with at most as many edges as H , such that the vertices of the central path are represented by unit 
intervals of the form [i, i + 1] for some integer i. Once we have that, we will describe an O (n2)-time algorithm to obtain an 
optimal completion.

Theorem 5.1. Let G be a caterpillar, and let k be the number of vertices of the central path P of G, and let v0, v1, . . . , vk−1 be the 
vertices of P written in consecutive order. Then, there exists a minimum PIG-completion of G with a unit interval model such that, for 
each i ∈ {0, 1, . . . , k − 1}:

• vi is represented by an interval of the form [i, i + 1], and
• each child of vi is represented by either [i × (1 + 1

k ) − 1, i × (1 + 1
k )] or [(i + 1) × (1 + 1

k ) − 1, (i + 1) × (1 + 1
k )].

Proof. Let V be the vertex set of G . Let H be a PIG-completion of G and IH = {Iu}u∈V be a unit interval model of H . Let 
us now transform H into a PIG-completion H ′ of G that requires at most as many edges as H (but H ′ is not necessarily a 
subgraph of H). To do this, we first obtain an auxiliary interval model I′ = {I′u}u∈V of H ′ that is not a unit interval model, in 
which some of the intervals are reduced to a single point, while the others remain as unit intervals. Once we obtain such 
an auxiliary model, we will transform it into a unit interval model that represents H ′ as well.

Consider the vertices of P , in the consecutive order v0, . . . , vk−1 in which they appear in the path. For i ∈ {0, . . . , k − 1}, 
let V i be the set of children of vi .

We construct the model I′ of H ′ iteratively using a sequence H (0), H (1), . . . , H (k) of supergraphs of G , where H (0) = H
and H (k) = H ′ , and for each j, I( j) = {I( j)

u }u∈V is an interval model of H ( j) .
For every j ∈ {0, . . . , k −1} and every i ∈ {0, . . . , k −1}, let us denote by V ( j)

i,r the set of children of vi whose corresponding 
intervals contain the right endpoint of vi in I( j) , including those that are represented by the same interval as vi , and by 
V ( j)

i,ℓ the set of all the remaining children of vi whose intervals contain the left endpoint of vi in I( j) .
For each j, denote by S j the set of vertices containing vi and their children for every i < j − 1, as well as every vertex 

in V ( j)
j−1,ℓ

(if v j−1 exists). Analogously, denote by T j the set of vertices containing every vi for i > j and all their children. 

Notice that neither v j , v j−1 (if it exists), nor the children of v j , nor the vertices in V ( j)
j−1,r are in S j or in T j .

We define the set of unimportant edges in H ( j) as those that fulfil one of the following conditions: (1) The edges having 
one endpoint in S j and one in T j , (2) The edge v j−1x (if v j−1 exists), for all x ∈ T j such that v j x /∈ E(H ( j)). Those edges that 
are not unimportant are referred to as important edges. We denote the set of important edges by F j . In what follows, we 
will not count the unimportant edges in a model of the sequence. Nonetheless, we will show that the number of important 
edges never increases from H ( j) to H ( j+1) , and that there are no unimportant edges in the end, that is, in H (k) .

Given an integer j ∈ {0, . . . , k − 1}, we say that the graph H ( j) with interval model I( j) satisfies invariant A j if:

• H ( j) is a supergraph of G with the same vertex set.
• For every integer i ∈ {0, . . . , j}, the vertex vi in P is represented by the interval [i, i + 1].
• For every integer i ∈ {0, . . . , j − 1}, the vertices in V ( j)

i,ℓ are represented by the point i, and the vertices in V ( j)
i,r are 

represented by the point i + 1.
11
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• All the leaves of vertices of P from v j onwards are represented by unit intervals, such that if two intervals intersect, 
then they intersect in more than one point.

• If j > 0, then |F j | ≤ |F j−1|.

Note that we can assume that I(0) , the model of H = H (0) , satisfies A0. Recall that we can always assume that two over-
lapping intervals intersect in more than one point. We can also suppose that v0 is represented by [0, 1], up to translation 
of the model.

Let j be an integer number smaller than k − 1. Suppose that H ( j) is an interval graph with model I( j) that satisfies A j .

Let us first define the following vertex sets. Let p be the endpoint of I( j)
v j+1 that lies between j and j + 1, (if I( j)

v j+1 =
[ j, j + 1] then p = j). Let C be the set of all the vertices in T j whose corresponding interval intersects p in I( j) . In turn, C
is partitioned into two sets: C1, the vertices of C whose corresponding interval intersects j in I( j) , and C2, the remaining 
vertices (note that their intervals intersect j + 1 in I( j)). Let V L = V ( j)

j,ℓ ∪ V ( j)
j−1,r ∪ {v j−1} and V R be an arbitrary subset of 

V ( j)
j,r of size min(|V ( j)

j,r |, |C1|).

We construct H ( j+1) with model I( j+1) , starting with I( j) and performing the following changes:

(1) If p is the right endpoint of I( j)
v j+1 , then replace each interval corresponding to a vertex in T j by the interval obtained 

after symmetry on point j + 1
2 . By symmetry on point x, we mean replacing an interval of the form [x + a, x + b] by 

the interval [x − b, x − a]. Now the right endpoint of the interval corresponding to v j+1 lies to the right of the right 
endpoint of the interval corresponding to v j .

Observe that after this step the intervals of the vertices of C all intersect the left endpoint of the interval of v j+1. 
Moreover, this would also be true if instead of being the right endpoint, p was the left endpoint of I( j)

v j+1 .
(2) Translate the intervals corresponding to vertices of T j to the right, all by the same amount, so that the interval for v j+1

corresponds to [ j + 1, j + 2].
(3) Let us set V ( j+1)

j,ℓ = V ( j)
j,ℓ ∪ V R and V ( j+1)

j,r = V ( j)
j,r \ V R , and replace the representation of every vertex in V ( j+1)

j,ℓ by point 

j and every vertex in V ( j+1)

j,r by j + 1.

In what follows, we show that the resulting model I( j+1) satisfies A j+1. It is easy to see that with this construction, the 
vertex set of H ( j+1) is V , and that for each i, the adjacencies between vi and its children, as well as vi+1 and vi−1 if they 
exist, are preserved.

Note that, S j+1 = S j ∪ V L ∪ V R and T j = T j+1 ∪ {v j+1} ∪ V j+1. Observe also that the intervals of the vertices in S j ∪
V ( j)

j−1,r ∪ {v j−1, v j} are identical in I( j+1) and I( j) , and the subgraphs of H ( j) and H ( j+1) induced by this set plus V ( j)
j,ℓ (in 

other words induced by S j+1 ∪ {v j} \ V R ) are identical. Similarly the model induced by the intervals of the vertices in T j is 
identical in I( j+1) and I( j) , up to a potential symmetry and translation. In particular, for each i �= j, either V ( j)

i,ℓ = V ( j+1)

i,ℓ and 
V ( j)

i,r = V ( j+1)

i,r , or V ( j)
i,r = V ( j+1)

i,ℓ and V ( j)
i,ℓ = V ( j+1)

i,r .

By construction, I( j+1)
v j+1 = [ j + 1, j + 2] and the vertices in V ( j+1)

j,ℓ and V ( j+1)

j,r are represented respectively by the points j
and j + 1.

Thus, from the previous observations and the fact that H ( j) satisfies A j , we deduce that H ( j+1) satisfies the four first 
items of A j+1. Let us now show that H ( j+1) has at most as many important edges as H ( j) .

Recall that important edges are defined as the counterpart of unimportant edges in each H (i) . To provide a more precise 
definition, observe that an edge in H (i) (here i ∈ { j, j + 1}) is important if one of the following assertions holds: (1) both 
its extremities are in Si , or (2) both its extremities are in Ti , or (3) both extremities are in {vi−1, vi} ∪ V (i)

i−1,r ∪ V i , or (4) 
one extremity is in Si and the other is in {vi−1, vi} ∪ V (i)

i−1,r ∪ V i , or (5) one extremity is some vertex x in Ti and, either the 
other lies in {vi} ∪ V (i)

i−1,r ∪ V i , or the other extremity is precisely vi−1 and x, vi are adjacent.

From the previous observation, all the important edges induced by S j+1 ∪ {v j} \ V R (resp. by T j) are the same in H ( j)

and H ( j+1) . Similarly, V R and V ( j+1)

j,r ⊆ V ( j)
j,r each induce a clique in both H ( j) and H ( j+1) , so the important edges they 

induce are also shared by the two graphs. Finally, all the edges between v j and its children are common important edges. 
Let us call F the set of common important edges we just described (note that there are other common important edges, for 
example v j v j+1, that are not in F ).

Claim 5.2. There are at most |F | + |V L | · |V R | + |C | + |C | · |V ( j+1)

j,r | edges in F j+1 .

Proof. In the subgraph of H ( j+1) induced by S j+1, the only edges in F j+1 \ F are edges with one endpoint in V L and the 
other in V R . Note that all such edges exist in H ( j+1) but some of them can also exist in H ( j) . Thus, F j+1 contains |V L | · |V R |
of such edges.
12
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Now consider the edges of H ( j+1) between S j+1 and T j . Since the edges between S j+1 and T j+1 are not important, 
we only need to consider the subset {v j+1} ∪ V j+1 of T j . By A j , the intervals of the children of v j+1 intersect I( j)

v j+1 =
[ j + 1, j + 2] in more than one point, so in particular in some point strictly larger than j + 1, and they have length one, so 
they do not intersect the point j. Note that the intervals of all the vertices of S j+1, are contained in [0, j]. Therefore, there 
is no important edge between S j+1 and T j .

Finally, the only vertices that are neither in T j nor in S j+1 are the vertices of V ( j+1)

j,r ∪ {v j}. Every important edge 
between v j and S j+1 is already counted in F , so for the important edges incident to v j , we only need to focus on the 
one incident to the closed neighbourhood of v j+1 in T j+1. The intervals of these vertices intersect I( j+1)

v j
= [ j, j + 1] and 

I( j+1)
v j+1 = [ j + 1, j + 2], hence in particular they all contain j + 1. The latter implies that they belong to C , thus there are 

|C | such important edges incident to v j . The intervals of the vertices in V ( j+1)

j,r are reduced to the single point j + 1, so 
they cannot be adjacent to any vertex in S j+1, and in T j+1, they are adjacent to only vertices in C . So there are at most 
|C | · |V ( j+1)

j,r | such edges in F j+1 and they are not counted in F .

Therefore, considering all the previous statements we have |F j+1| ≤ |F | +|V L | · |V R | +|C | +|C | · |V ( j+1)

j,r |. This finishes the 
proof of the claim. �

Claim 5.3. There are at least |F | + |V L | · |C1| + |C | + (|V R | + |C2|) · |V ( j+1)

j,r | + |V R | · |C2| edges in F j .

Proof. First, observe that in I( j) , all the intervals corresponding to vertices in V L (that are not vertices in S j by definition) 
intersect j, and the vertices of C1 are vertices of T j whose intervals intersect j. Moreover, the edges between v j−1 and C1

are also important, since I( j)(v j) contains the point j. Thus, for every x in C1, we know that v j x ∈ E(H ( j)), hence every 
possible edge between C1 and V L exists and is an important edge in H ( j) . This implies that there are at least |V L | ·|C1|
such edges in F j .

The vertices in C2, in V R , and in V ( j+1)

j,r are all vertices whose intervals intersect j + 1 in I( j) . Hence, these three sets 

are complete to each other in H ( j) . Notice that, whereas all the internal edges in each of the cliques C2, V R , and V ( j+1)

j,r are 

counted in F , the edges between these sets are not. This represents a total of (|V R | + |C2|) · |V ( j+1)

j,r | + |V R | · |C2| edges in 
F j .

Finally, v j is adjacent to all the vertices in C , which give |C | edges in F j .
All the sets of edges described here are pairwise disjoints, so in total, there are at least |F | + |V L | · |C1| + |C | + (|V R | +

|C2|) · |V ( j+1)

j,r | + |V R | · |C2| edges in F j . This ends the proof of this claim. �

Now, when we compare the number of important edges in H ( j) and H ( j+1) , by the previous claims and the fact that 
|C | = |C1| + |C2| we obtain that:

|F j| − |F j+1| ≥ |V L | · (|C1| − |V R |) + |V ( j+1)

j,r | · (|V R | − |C1|) + |V R | · |C2|. (3)

Recall that |V R | = min(|V ( j)
j,r |, |C1|). We have two possibilities to analyze:

• If |V ( j)
j,r | ≥ |C1|, then |V R | = |C1|. By replacing this in the inequality (3), we obtain |F j | − |F j+1| ≥ |V R | · |C2| ≥ 0.

• If |C1| > |V ( j)
j,r |, then |V ( j+1)

j,r | = 0 and |C1| > |V R |. Thus the inequality (3) becomes |F j | − |F j+1| ≥ |V L | · (|C1| − |V R |) +
|V R | · |C2| ≥ |V R | · |C2| ≥ 0.

Therefore, in both cases, |F j | ≥ |F j+1|, which concludes the proof that I( j+1) satisfies A j+1.
We can thus build the sequence H (0), H (1), . . . , H (k−1) such that for each j, I( j) , the interval model of H ( j) satisfies A j .

Construct I(k) , the model of H (k) = H ′ , from of I(k−1) by replacing the interval corresponding to every vertex in V (k−1)

k−1,ℓ

by the point k − 1, and the interval corresponding to every vertex in V (k−1)

k−1,r by the point k. All the other intervals remain 
the same.

Notice that since I(k−1) satisfies Ak−1, H (k−1) is a supergraph of G and I(k)
vk−1

= I(k−1)
vk−1

= [k − 1, k]. Thus, the children of 
vk−1 are also connected to vk−1 in H ′ . Moreover, observe that H ′ has at most as many edges as H (k−1) . Notice that H (k−1)

has no unimportant edges and, by Ak−1, at most as many important edges as H (0) = H . Hence, H ′ is a supergraph of G
with at most as many edges as H and its model I(k) fulfils the following:

• For every i ∈ {0, . . . , k − 1}, the vertex vi is represented by the interval [i, i + 1].
• For every i ∈ {0, . . . , k − 1}, the vertices in V (k)

i,ℓ are represented by the point i, and the vertices in V (k)
i,r are represented 

by the point i + 1.
13
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Fig. 5. A caterpillar graph (black edges) and an inclusion-wise minimal PIG-completion (red edges) for which the characterization given in Theorem 5.1
does not hold.

To conclude, let us show that H ′ is a PIG-completion of G by exhibiting a unit interval model I′ of H ′ , that we construct 
as follows: For each interval in I(k) , if it is a unit interval (i.e., a vertex of the central path), then we add the same interval 
to I′ . Otherwise, the interval contains a single point i, thus we add the interval [i × (1 + 1

k ) − 1, i × (1 + 1
k )] to I′ . Note that 

such an interval will intersect exactly the same vertices of the central path and will not intersect intervals built from other 
single-point intervals unless they already coincided. Therefore H ′ is a unit interval graph, and thus a PIG-completion of G , 
with at most as many edges as H . �

An interesting question that arises is whether this suffices to characterize all inclusion-wise minimal completions or not. 
In Fig. 5 we can see depicted a caterpillar graph G , represented by the black edges, and a supergraph H obtained by adding 
the red edges that is indeed an inclusion-wise minimal PIG-completion of G . The central path of G is not an induced path 
in H , therefore this cannot be a PIG-completion of the form specified in Theorem 5.1.

Now that we know that there exists a minimum PIG-completion as the one stated in Theorem 5.1, we design an algo-
rithm that will always output such a solution.

Theorem 5.4. There exists an algorithm that outputs a minimum PIG-completion of a caterpillar in O(n2)-time.

Proof. As before, let G be a caterpillar and let v0, . . . , vk−1 be the vertices of the central path, considered in the order 
in which they appear on the central path. Let V i be the children of vi . In order to build a minimum completion as the 
one presented in the statement of Theorem 5.1, we just need to determine how many elements of V i are represented 
by [i × (1 + 1

k ) − 1, i × (1 + 1
k )] and by [(i + 1) × (1 + 1

k ) − 1, (i + 1) × (1 + 1
k )], which we will denote by V ℓ

i and V r
i

respectively. We will determine the size of V ℓ
i (and of V r

i ) via dynamic programming. More precisely, for every i ∈ {0, . . . , k −
1}, and for every j ∈ {0, . . . , |V i|}, we compute the optimal number Ni, j of edges added to complete the caterpillar induced 
by {vi, vi+1, . . . , vk−1} and their children, except for j children of vi , into a proper interval graph, assuming that all its 
remaining children are in V r

i . We use the following formula to compute it:

• For j ∈ {0, . . . , |Vk−1|}, Nk−1, j = (|Vk−1|− j
2

)
;

• For i ∈ {0, . . . , k − 2} and j ∈ {0, . . . , |V i |}, Ni, j = min
j′∈{0,...,|V i+1|}

((|V i |− j+ j′
2

) + j′ + Ni+1, j′
)

.

Now, the best PIG-completion of the entire caterpillar graph uses exactly

min
j∈{0,...,|V 0|}

((
j

2

)
+ N0, j

)

fill edges. One can get such a completion from the choices of j obtained to get the minimal values.
Since 

∑
i∈{0,...,k−1}(|V i| + 1) = n, we know that there are only n different values of Ni, j to be computed. Each one is 

computed using a minimum over at most n different expressions. Therefore the complexity of this algorithm is in O(n2). �

6. Conclusions and future work

In this work, we study the �-completion problem when � is the class of proper interval graphs. Given that the problem 
is NP-complete in general graphs, we focus our analysis on the case in which the input graph lies in some particular 
subclasses of chordal graphs. We prove that the problem remains hard in split graphs, whereof we conclude the same for 
chordal graphs. We present efficient algorithms for PIG-completion for both threshold graphs and caterpillar graphs, and an 
efficient algorithm for co-bipartite-completion for quasi-threshold graphs.

A future line of work is to continue studying the PIG-completion problem in other subclasses of chordal graphs that 
have bounded cliquewidth to obtain practical polynomial-time algorithms. This may lead to finding common properties that 
could be useful when it comes to designing efficient algorithms and heuristics to solve the problem within other chordal 
subclasses.
14
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On the other hand, given that all the graph classes for which we give a polynomial-time algorithm are also subclasses of 
interval graphs, and that interval and proper interval graphs are very closely related, it raises as a natural question whether 
the PIG-completion problem can be solved in polynomial time when the input graph already belongs to this particular class.

In addition, since we studied the PIG-completion problem within caterpillars motivated by the fact that these graphs are 
precisely those interval graphs that are also trees, this gives way to an analogous question regarding the complexity of the 
PIG-completion problem when the input is a tree. Given that our current algorithm heavily relies on an interval model of 
the graph, we do not expect that our approach could be generalized to trees. This implies that the problem on trees should 
involve different techniques.

An interesting question arises also in the relation with the max-cut problem: for which other classes besides threshold 
graphs does it hold that PIG-completion is equivalent to co-bipartite-completion? For these possible classes, an algorithm 
for max-cut in the complement would also solve the PIG-completion problem, by the same argument given in Section 4.

Another possible continuation for this work may be to study the PIG-deletion problem, i.e., the removal of a set of edges 
F from an input graph G = (V , E), so that the resulting subgraph H = (V , E \ F ) is a proper interval graph. It is known that 
this problem is hard for general graphs [8], but it would be interesting to investigate whether efficient algorithms could also 
be devised for this problem restricted to the aforementioned subclasses of chordal graphs.
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