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1. Introduction

Graph modification problems can be used to address many fundamental problems, not only in graph theory itself, but
also to model a large number of practical applications in several different fields. Some of those fields include molecular
biology, computational algebra, and more generally, areas that involve modelling based on graphs where the missing edges
are due to a lack of data, for example in data clustering problems [8,14]. In many of these applications, an edge modification
of the graph that models the experimental data corresponds to correcting errors and inconsistencies in the data.

Given a graph G and a graph property I1, a graph modification problem consists of studying how to add or delete the
minimum number of vertices or edges from G in order to obtain a graph that satisfies the property IT. In this article, the
property IT will represent a graph class, such that the graph resulting from the modification belongs to this class. We focus
our attention on one of the four basic graph modification problems: the IT-completion problem.
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Given a property IT, a IT-completion of a graph G = (V,E) is a supergraph H = (V, E U F) such that H belongs to II
and ENF = (. The edges in F are referred to as fill edges. A T1-completion H = (V, E U F) of G is minimum if, for any set
of fill edges F’ such that H' = (V, E U F’) belongs to II, it holds that |F’| > |F|. In this case, |F| is called the IT-completion
number of G. The minimum IT-completion problem consists in finding the IT-completion number of a graph G. The associated
decision problem-the IT-completion problem-consists in deciding, for a given integer k, if G has a IT-completion with at
most k fill edges. Throughout this work, a IT-completion will always be a minimum one unless otherwise stated.

The TT-completion problem from an arbitrary graph is known to be NP-complete when IT is the class of chordal, interval,
or proper interval graphs [7,8,12,20]. Furthermore, when IT is the class of interval graphs, it was shown that the problem
remains NP-complete on line graphs [7], and also on co-bipartite graphs [21]. According to Peng et al. [19], the problem can
be solved in O(n)-time for trees, following from the results in [6]. In the case of chordal-completion and proper interval-
completion (PIG-completion from now on), its study from the viewpoint of parameterized complexity was initiated by
Kaplan et al. in 1999 [11]. In 2015, Bliznets et al. presented the first subexponential parameterized algorithm for PIG-
completion that finds a solution in KO W) + O (nm(kn + m))-time [1].

A celebrated result by Courcelle et al. states that each graph property that is expressible in MSOL; (resp. MSOL;) can
be solved in polynomial time for graphs with bounded cliquewidth (resp. treewidth) [4]. Note that this result is mainly of
theoretical interest and does not lead to practical algorithms. Since the problem of finding a PIG-completion with at most
k edges can be expressed in MSOL, for fixed k, this motivates our search of efficient algorithms for subclasses of chordal
graphs with bounded treewidth.

Another direction on which current research on this topic is focused is in finding and characterizing minimal completions
for input graph classes for which the minimum version is hard in the most efficient possible way from a computational point
of view [5,10,15].

Throughout this work, we consider the target class IT to be the subclass of interval graphs given by proper interval
graphs. The most well known motivation for the PIG-completion problem comes from molecular biology. In [18], Benzer
first gave strong evidence that the collection of DNA composing a bacterial gene was linear. This linear structure could be
represented as overlapping intervals on the real line, and therefore as an interval graph. In order to study various properties
of a certain DNA sequence, the original piece of DNA is fragmented into smaller pieces which are then cloned many times.
When all the clones have the same size, the resulting graph should not only be interval, but proper interval. Deciding
whether two clones should overlap or not is the critical part. However, there might be some false positive or false negatives
due to erroneous interpretation of some data. Thus, correcting the model to get rid of inconsistencies is equivalent to
removing or adding as few edges as possible to the graph so that it becomes interval.

This work is organized as follows. We start by proving in Section 3 that the PIG-completion problem remains hard
even if the input graph G is split. Since split graphs are in particular chordal, this result implies that the problem remains
hard when G is a chordal graph, which leads us to study proper subclasses of chordal graphs where the PIG-completion
problem might be tractable. More precisely, in Section 4 we first give an efficient algorithm for the PIG-completion problem
on threshold graphs. We finish the section by showing an efficient dynamic programming algorithm for the co-bipartite-
completion problem on quasi-threshold graphs following a brief discussion on the difficulties of generalizing the previous
result to this superclass of threshold graphs. In Section 5, we show an efficient algorithm for a very sparse class of graphs, a
subclass of both interval graphs and trees called caterpillars. We conclude the paper with some final remarks and possible
future directions in Section 6.

2. Definitions

We give in this section the basic definitions and fix the notation that will be used throughout this work. All graphs in
this paper are undirected and simple. Let G be a graph, and let V(G) and E(G) denote its vertex and edge sets, respectively.
We denote by n the number of vertices and by m, the number of edges. Whenever it is clear from the context, we simply
write V and E and denote G = (V, E). For basic definitions not included here, we refer the reader to [3].

Given a graph G and S C V, the subgraph of G induced by S, denoted by G[S], is the graph with vertex set S and such
that two vertices of S are adjacent if and only if they are adjacent in G. When G’ and G[S] are isomorphic for some S C V,
with a slight abuse of terminology we simply say that G’ is an induced subgraph of G. For any family F of graphs, we say
that G is F-free if G does not contain any graph F € F as an induced subgraph. If a graph G is F-free, then the graphs in
F are called the forbidden induced subgraphs of G.

A clique in a graph G is a complete induced subgraph of G. Also, we will often use this term for the vertex set that
induces the clique.

A graph is chordal if it does not contain an induced cycle of size 4 or more.

A graph G is an interval graph if it admits an intersection model consisting of intervals on the real line, that is, a family
I of intervals on the real line and a mapping from the set of vertices of G to the intervals of I such that two vertices are
adjacent in G if and only if the corresponding intervals intersect. Notice that the class of interval graphs is a subclass of the
class of chordal graphs.

A proper interval graph is an interval graph that admits a proper interval model, that is, an intersection model in which no
interval is properly contained in any other.
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claw tent net

Fig. 1. Some of the forbidden induced subgraphs for proper interval graphs.

A unit interval graph is an interval graph that has an interval representation in which each interval has unit length. Every
proper interval graph is a unit interval graph, and vice versa [17].

We can always assume that all the endpoints of the intervals in a (unit) interval model are pairwise distinct (so in
particular that no interval is reduced to a single point, no two intervals are identical, and no two intervals intersect in
exactly one point) [9].

Three nonadjacent vertices of a graph form an AT (asteroidal triple) if every two of them are connected by a path
avoiding the neighbourhood of the third. Interval graphs are precisely those chordal graphs that are also AT-free [13] and
proper interval graphs are precisely those chordal graphs that are also {claw, tent, net}-free [16,17] (see Fig. 1).

A graph G = (CUI, E) is a split graph if its vertex set can be partitioned into a set C of pairwise adjacent vertices and
set I of pairwise nonadjacent vertices.

A threshold graph is a split graph in which any two nonadjacent vertices satisfy that the neighbourhood of one is
contained in the neighbourhood of the other. Equivalently, G is a threshold graph if it can be constructed from the empty
graph by repeatedly adding either an isolated vertex (nonadjacent to every other vertex) or a dominating vertex (adjacent to
every other vertex). Let the ordering of V (G) according to this construction procedure be the threshold ordering. Threshold
graphs are characterised precisely as the {2K>, C4, P4}-free graphs.

Quasi-threshold graphs, also called trivially perfect graphs, are the {P4, C4}-free graphs. A connected quasi-threshold graph
G = (V, E¢) admits a rooted tree T = (V, ET) on the same vertex set V, rooted on a vertex r, such that uv € E¢ if and only
if there is a path in T starting in r containing both u and v.

A graph G is a caterpillar if G is a tree in which the removal of all the pendant vertices (i.e., the leaves) results in a path
(i.e. the spine or central path).

A graph is perfect if, for every induced subgraph, the size of a largest independent set equals the smallest number of
cliques needed to cover the subgraph.

A family S of nonempty sets has the Helly property if every subfamily of S of pairwise intersecting sets has a nonempty
intersection. This property is also known as the 2-Helly property. For example, any family of pairwise-intersecting intervals
in the real line has the 2-Helly property.

3. PIG-completion within split graphs

We now devote our attention to the complexity of the PIG-completion problem when the input graph belongs to the
class of split graphs. We start by citing some useful results and stating a few lemmas that characterise PIG-completions
when the split partition fulfils certain properties. These results will be useful in Section 3.1, where we give a reduction to
the PIG-completion problem.

Recall the following result:

Theorem 3.1 (Peng et al. [19]). The threshold-completion problem is NP-complete on split graphs.

Let us consider a connected split graph G = (C U I, E), such that C is maximum in the sense that there is no vertex in I
adjacent to every vertex of C, and let H=(CU I, E UF) be a PIG-completion of G.

Lemma 3.2. There exist both a partition {C’, I'} of the vertex set of H, where I’ C I and C’ is a clique with C' 2 C, and a partition
{I;, I} of I such that I and I, are both cliques in H.

Proof. Let {I,}ycv(H) be a unit interval model for the graph H, which we know it exists since H is proper interval. It follows
from the 2-Helly property of intervals and the fact that C is a clique in H that there exists a real point p in ("), Iy. For
each vertex v € I, if either the right endpoint of I, is to the left of p — 1, or the left endpoint of I, is to the right of p + 1,
then I, does not intersect any interval in {I, : u € C}. We may conclude that v is pairwise nonadjacent to every vertex of C
in H and thus v is an isolated vertex in G, which leads to a contradiction given that G is connected. Let us now consider
I={uel:p—1ely}and I, ={uel:p+1el,}, which are both cliques in H and let I’ = I; U I,.. Notice that {I}, I;} is
indeed a partition of I’ since no unit interval can contain the points p — 1 and p + 1 at the same time. Moreover, if we
define ¢’ =CUI\ (I; U I;), then it is clear from our previous remark that, for every vertex u € I \ (I; U I;), the unit interval
I, is fully contained in the interval [p — 1, p + 1] and thus it contains the point p. Furthermore, p is also contained in the
interval corresponding to every vertex in C, and therefore C’ is a clique in H as well. W
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Lemma 3.3. Let {C’, I’} be a partition of the vertex set of H and {1}, I} be a partition of I’ into cliques as given by the previous lemma.
Then, Hy = (C’' U I}, E)) and Hy = (C' U I, E;) are threshold graphs, where E,, = E(H[C' U 1,]) \ Fy for x € {I,r} and Fy = {uv € F :
u,vell.

Proof. If H; is not threshold, then there are vertices v, w € I; (nonadjacent in H;) and x, y € C’ such that vx, wy € E; and
vy, wx € E;. Notice that v and w are adjacent in H since they both lie in I;, which is a clique in H. Therefore, we find an
induced C4 in H, which results in a contradiction since H is a proper interval graph. W

Finally, we will need the following property of proper interval graphs. Let G be an interval graph, and let Iz be an
interval model of G. We say that a clique C of G is a first clique of G in I¢ if there is a real point p such that p intersects
every interval corresponding to the vertices of C, and every other interval of I¢ lies strictly on the same side of p. Notice
that such a clique always exists, since it can be found by restricting to the rightmost interval of the model.

Lemma 3.4.Let G = (V,E) and G’ = (V', E) be two vertex-disjoint proper interval graphs, with respective proper interval models
I¢ and I/, and let C (resp. C') be a first clique of G in I¢ (resp. G’ in g/ ). Then, the graph G” = (V U V', EU E’ U F) is also a proper
interval graph, where F consists of all the possible edges between C and C’.

Proof. Let I be a proper interval model of G. Recall that we can assume that the endpoints of intervals in any (unit)
interval model are distinct. Up to inverting right and left in I, we can assume that C is on the right side of the model.
Thus, G admits a proper interval model Ig = {I,}yev = {[au, bu1}uev, With a, < by, and there is a real point p intersecting
every interval of C such that all the other intervals lie strictly to the left of p.

Let k > 1 be the size of C, let n be the size of V with n >k, and let V = {uy,...,u,} be an ordering of the vertices
such that C = {uy,...,ux} and by, <--- <by, <p <by, <--- <by,. Foreachie({l,...,n}, let ¢y =p+1+ﬁ if i <k, and
Cy; = by, for the remaining vertices. Observe that p < p +1 < ¢y, <--- < ¢y, = p + 2. Moreover, for each i € {1,...,n}, it

follows that ay; < p, and also c,; < p for every i > k.

Consider now the interval model given by {[ay, cy]}ucy. Note that, since we have not modified the ordering of the
endpoints of the intervals, this is also a proper interval representation of G where every interval that does not represent a
vertex of C lies strictly on the left of p, and all the remaining intervals are to the left of p + 2.

Consider now the proper interval model of G given by I¢ = {I},},ev’ = {[av, bv1}yev’, and let p’ be a real point inter-
secting C’ such that every other interval lies strictly to the right of p’. Upon shifting all those intervals, we can assume that
p=p+2.

Let k' > 1 be the size of (', let n’ be the size of V' with n’ >k, and let V' ={vy,..., vy} be an ordering of the vertices
such that ¢’ ={vy,..., v} and ay, <--- <ay, <p’ <@y,,, <+ <dy,.For each ie{l,....,n'}, letcy, =p+1— ifi<k,
and let ¢, = ay for every other vertex. Observe that p =cy, <--- <cy, <p+1 < p+2. Furthermore, for each i € {1,..., n’}

it follows that by, > p + 2, and also c,; > p + 2 for every i > k'.

Consider the interval model given by {[cy, by]},cy’. Once more, since we have not modified the ordering of the endpoints
of the intervals, this yields a proper interval representation of G’ such that all the intervals that do not represent a vertex
of C’ lie strictly to the right of p + 2, and all the intervals of C’ lie to the right of p.

Finally, consider the set of intervals {[ay, cyl}ucy U {[cv, bv]}vey’ and let us see that no interval is contained in an-
other. Suppose that there are two intervals [a, b] and [a’, b'], representing u and u’ respectively, such that a <a’ <b’ <b.
By construction, one of them lies in V and the other in V’. Suppose that u € V and v’ € V'. Hence, b < p + 2 and
p + 2 < b/, which contradicts the fact that b’ < b. We reach an analogous contradiction if u’ € V and u € V’. Therefore,
I={[ay, cylluev U {[cv,by1}vey is a proper interval model of some graph. Let G = (V”, E”) be the proper interval graph
corresponding to I. By construction, it follows that V UV’ =V” and EUE’ C E”. For every u € C and v € C’, their corre-
sponding intervals intersect in p + 1, hence G” contains all the edges between C and C’. Let F be that set of edges. Let
ueV\C, let veV’, and let [a,b], [@, b] be their respective intervals. By construction, a <b <p <a’ <b’ and thus u and
v must be nonadjacent. Similarly, if u € V and v € V/\ C, then a <b < p+2 < a’ < b'. Therefore, the only edges between V
and V' are precisely those in F. W

3.1. NP-completeness

We are now ready to prove that obtaining a PIG-completion is still NP-complete when the input graph is split. In order
to do this, we strongly rely on the previous lemmas and Theorem 3.1.

Theorem 3.5. The PIG-completion problem is NP-complete on split graphs.

Proof. Given a completion of a split graph, it can be checked in polynomial time if this is in fact a PIG-completion, hence
the problem is in NP.

We give a reduction from threshold-completion on split graphs (see Fig. 2 for a schema of the gadget used for the
reduction). Let (G, ¢) be an instance of threshold-completion on split graphs, where G = (C U I, E) is a (connected, for
simplicity) split graph on n vertices.
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Fig. 2. A schema of the gadget used for the reduction of Theorem 3.5.

Consider the graph G’ defined as follows. Let G = (Cq U I1, E1) and G, = (C2 U I3, E3) be two copies of G. For each
i €{1,2}, we consider G} = (C; U}, E}), the graph constructed from G; by connecting 2n?% new vertices to all the vertices of
Gi, where C; is the set formed by the union of C; and the newly added vertices. Notice that G} is a split graph. We denote
by V; the vertex set of G; and by V7, the vertex set of G}, for each i € {1, 2}. Finally, connect all the vertices of C; and C}
into a clique C’. Let G’ = (V’, E’) be the resulting split graph on 2(2n? + n) vertices, where V' =C'UI{ U .

We show that G can be augmented to a threshold graph with at most £ fill edges if and only if G’ can be augmented to
a proper interval graph with at most 2k additional edges, where k = ¢ + ('é‘).

First, suppose there is a minimum PIG-completion H = (V’, E'UF) of G’ with |F| < 2k edges. Notice that we may assume
that |F| = 2k, since we can add additional edges if necessary and still keeping the property of being a PIG. One way to show
this (assuming that all the endpoints in the interval model are distinct), is by shifting the leftmost interval to the right until
it intersects a new interval. We will show that G can be augmented to a threshold graph with ¢ edges.

Observe that completing each G; into a clique requires less than n® edges. Thus, a PIG-completion of G’ would need less
than 2n? fill edges, which implies that |F| < 2n?.

Let Iy = {Iu}uev(n) be a proper interval model for the graph H. By Lemmas 3.2 and 3.3, there is a partition C”, I;, I, of
V' where C' € C”, I’ :==1;UI. €11 U, and such that H[I;] and H[I] are both cliques with fill edges in F (as defined in
Lemma 3.3).

If there is a vertex v € C”\ C/, w.l.o.g. v € I1, then we need at least 2n? fill edges to connect v to C) in H, which
contradicts |F| < 2n?, thus " =C'.

Since C’ induces a clique in H, it follows from the 2-Helly property of intervals that there is a real point p € (),c¢ Iu. No
other interval of the model Iy intersects the point p, otherwise this requires at least 2n? fill edges, and thus each interval
corresponding to the vertices in I1 U I lies either strictly to the left or to the right of p.

Claim 3.6. There is no vy € I1 and v, € I, whose corresponding intervals lie either both to the right of p or both to the left of p.

Proof. Let I; and I, be the intervals corresponding to v{ and v», respectively. Suppose that I; and I, both lie to the left of
p. Since {v1} U C} \ Cy induces a clique in H, there is a real point p; intersecting all the intervals corresponding to this set,
and the same holds for {v,} U C/\ C2 and p,. Suppose w.lo.g. that p; < pp < p. Then, all the intervals of C; \ C; intersect
p2, thus v; is adjacent to all the vertices of C} \ C; introducing thus 2n? fill edges, which results in a contradiction. M

Therefore, we assume without loss of generality that, in the interval representation of H, the endpoints of the intervals
corresponding to vertices of I lie strictly to the left of p and the ones corresponding to vertices of I, lie strictly to the
right of p. Since {I;, I;} is a partition of I; U I, where each set induces a clique in H, then I; =I; and I, = I;. Let us show
that all the fill edges lie inside each G;.

Claim 3.7. For each i € {1, 2}, let F; be the set of fill edges inside H[V;]. Then F = F{ U F».

Proof. Recall that for each i € {1, 2}, all the possible edges between V; and V;\ V; are already in E’, thus F; is also the set
of fill edges in H[V/].

Since we already proved that there is no fill edge between I and I, it suffices to see that there is no fill edge between
Iy and C} (resp. I and C}). Toward a contradiction, suppose there is at least one of said fill edges. Let us construct a PIG
H’ on the same vertex set with edge set E' U F{ U F.

The model given by {lu}uev; is a proper interval model of H[V{]. It follows from the above reasoning that C; can be
seen as a first clique in this model, since the point p lies exactly in the intervals that correspond to vertices of C’. Similarly,
{lu}uévé is a proper interval model of H[V/] and C}, is a first clique in this model.

5
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Fig. 3. Example of H{" and its proper interval model with n=09.

It follows from Lemma 3.4 that there is a PIG H' = (V] U V), E| U F{ UE, UF, UF’), where F' is the set of edges
connecting all the vertices of C; and C’,. Notice that E} U E, U F' =E’, hence H’ is a PIG-completion of G’ with edge set
E’ U F{ U Fy. Thus, H' is a smaller PIG-completion than H, which contradicts the fact that H has minimum number of
edges. W

Assume without loss of generality that |F1| < |F3|. We will build a proper interval completion of G’ with 2|F;| fill edges,
which will then prove that |F| = |F3| since H is a minimum PIG-completion of G'. To do this, consider any proper interval
model of H, and keep only those images of vertices belonging to I1 U C}. Now cut the intervals right after point p, keeping
arbitrarily small parts to the right of p so that the intervals remain non-nested. By doing this we obtain a proper interval
model of H[I; UC}] where Cj is a first clique. Therefore, by considering twice the same graph in Lemma 3.4, we get a
proper interval graph that is exactly two copies of H[I; UC}] and has all the edges between the two copies of Cj. Note that
since Gy and G, are copies of the same graph, this proper interval graph is a PIG-completion of G’, with 2|Fy| fill edges,
which proves that |F{| = |F2| =k.

Let Ff ={uveF:u,vel}, and let H; = (Vy, EUF;\ F}). Note that since H[I;] is a clique and G’[I1] is an independent
set, |Fq| = ('é'). In other words, all the possible edges between vertices of I; are fill edges. Therefore, H; has £ =k — ('é‘)
fill edges (as a completion of G1). By Lemma 3.3, H; must be a threshold-completion of G;. Since G1 is isomorphic to G, G
has a threshold-completion with ¢ edges.

For the only if direction, suppose there is a minimum threshold-completion H of G with ¢ fill edges. We will construct

a PIG-completion of G’ with k’ fill edges such that k' =2 (Z + (g'))

Let F; be the set of fill edges added to the vertices corresponding to each G; to obtain a threshold graph H; for each
ie{1,2}, and let H; = (C; UI;, E; U F;). Notice that Hj is also a threshold-completion of G; for each i € {1, 2}. Observe that
we can consider the same partition of the vertices into a clique and an independent set for both G; and H;. Indeed, if a
vertex v € I; is in the clique of H;, we can remove all the edges connecting v with vertices in the independent set. This
way we could place v in the independent set of H; instead. The same holds for the vertex partition of G; and H}. Consider
F/ to be the fill edges obtained by completing I; into a clique for each i € {1,2}, and let H/ = (V{, E; U F; U F)) for each
i €{1,2}. This gives a total of £ + ('é‘) fill edges.

Since each H] is a threshold graph, the neighbourhoods of the independent vertices are nested and hence we can
consider an ordering of said vertices in terms of increasing containment of their neighbourhoods. Recall that it is possible
to represent any clique with a proper interval model by overlapping the corresponding intervals such that each interval
starts and ends in a different point. A proper interval model for H;’ is given as follows, for each i € {1, 2}. Since I; is a clique
in HY, we can place the corresponding intervals such that they overlap. The same holds for the intervals corresponding
to all the vertices in C/, and we can place the endpoints of the intervals corresponding to these vertices by following
the ordering of the neighbourhoods of the vertices in I; to do this. This way, we can place the endpoints of the intervals
corresponding to the vertices in I; according to the increasing ordering given by the neighbourhoods with regards to C,
and thus obtaining a proper interval model for each H, as in Fig. 3. Observe that C; is a first clique in the described proper
interval model of HY for each i € {1, 2}. Finally, we obtain a PIG-completion of G’ with the desired number of fill edges by
applying Lemma 3.4. W

4. An algorithm for PIG-completion on threshold graphs

In this section we present a simple polynomial-time algorithm for computing an optimal PIG-completion for a threshold
graph G. To do this, we will show first that PIG-completion for threshold graphs is equivalent to co-bipartite-completion.
This will enable us to give a procedure, based on the definition of threshold graphs, that iteratively places the vertices in
one of the two cliques in an optimal way.
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Let G be a threshold graph, and let n = |V (G)|. We will show how to compute a PIG-completion for G. Recall that, since
G is a threshold graph, there is an ordering v1, va, ..., v, of the vertices of G such that for each i € {2,3,...,n}, v; is either
a dominating or an isolated vertex in the subgraph G[{v1, v2,..., vi}]. In the former case, we say that v; is a dominating
vertex, and in the latter case, we say that v; is an isolated vertex. If v, is an isolated vertex in G, then a PIG-completion
of G can be obtained by simply computing a PIG-completion of G[{vq, v3,...,Vvy—1}] and then adding v, to the resulting
graph. We assume v, is a dominating vertex. Throughout this section, we will use indistinctly and interchangeably the
terms minimum and optimal when referring to the best possible completion.

Since each interval contains at least one of the endpoints of the interval corresponding to the universal vertex, it follows
that any PIG that contains a universal vertex is a co-bipartite graph. Hence, any PIG-completion of any graph that contains
a universal vertex is also a co-bipartite-completion of it.

Lemma 4.1. A graph H is a minimum PIG-completion of G if and only if it is a minimum co-bipartite-completion of G.

Proof. Since G contains a universal vertex, any PIG-completion of G is also a co-bipartite-completion of G. Conversely,
let H be a minimum co-bipartite-completion of G. Consider a bipartition of V(H) into two sets A and B such that the
subgraphs H[A] and H[B] are both cliques. H does not contain independent sets of size 3 or more, which in particular
implies that H contains no claws or asteroidal triples as induced subgraphs. Towards a contradiction, suppose H contains
an induced cycle C. Since H is co-bipartite, C has either 3 or 4 vertices. Suppose that C is a 4-cycle, and let v, vy, v3, vq
be its vertices, assuming without loss of generality that {v{, v2} C A and that {v3, v4} C B. Since v1v3,vyv4 € E(H) and H
is a supergraph of G, in particular vivs, vovy4 & E(G). Moreover, {v,v3, v4vq} C E(G) since H is a minimum co-bipartite-
completion. It follows that the subgraph G[{vq, v2, v3, v4}] is isomorphic to a 2K, P4 or C4, thus contradicting the fact
that G is threshold. Hence, C must be a cycle of length 3, and therefore there are no induced claws, asteroidal triples, or
induced cycles of length more than 3 in H, which implies that H is a PIG-completion of G. W

Let us denote by I, the set of isolated vertices in V(G). Given any bipartition {A, B} of V(G), we call the (A, B)-co-
bipartite-completion of G the completion obtained by adding every possible edge between the vertices in A and every
possible edge between the vertices in B. For any set S C V(G) and i € {1,2,...,n}, define S.; =SN{vy,va,...,Vi_1}
and S.; =S N{Vit1, Viy2, ..., vn}. The sets S<; and Ss; are similarly defined. Observe that, for any optimal co-bipartite
completion of G, the edges between the resulting cliques are in E(G).

: A ifvieA
Lemma 4.2. Let H be the (A, A")-co-bipartite-completion of G. Let AU = ifvje ,
A’ otherwise.

Then,

E(H)| =EG)+ Y 1AV =1E@I+ Y 1A% N1
vjel vieV(G)

Proof. We obtain the (A, A")-co-bipartite completion H of G by adding, for each isolated vertex v; € AW e (A, A}, all edges
from v; to the vertices of smaller index that are also in AW which are exactly the vertices of Ag; In other words, all the

edges between a vertex v; and the isolated vertices of A(;)l are added. W

Lemma 4.3. Let { B, B'} be a bipartition of V (G) such that the (B, B')-co-bipartite-completion of G is optimal. Let v, be a dominating
vertex for some t € {1, 2, ...,n}. Suppose that |B ¢| > }B;[|. Then there exists a bipartition {A, A/} of V(G) such that A = B¢,
A, =B, v: € A, and the (A, A’)-co-bipartite-completion of G is optimal.

Proof. Denote by H' the (B, B’)-co-bipartite-completion of G. If v; € B, then we can simply let A= B and A’ = B'. Suppose
instead that v, € B’. Consider the sets D =B UB’, and D’ =B’_; U B>, and let H be the (D, D/)-co-bipartite—completion
of G. It follows from Lemma 4.2 that |E(H)| = |E (H')| + (|Bs¢ N 1] — |BLe N 1|) (|BLc| = 1B<l).

Suppose that |B’;| < |B|, otherwise |B’;| = |B| and thus H is an optimal co-bipartite-completion of G and there-
fore {A, A’}, with A=D and A’ = D’, is a bipartition of V(G) that fulfils the desired properties. Since H’ is an opti-
mal co-bipartite-completion of G by hypothesis, it follows from Lemma 4.2 that |B; NI| < |BL,NI|. Moreover, v, is a
dominating vertex, thus |Bo;NI| < |B’>t ﬂI’. Consider H” to be the (B U{v¢}, B\ {vt})—co—bipartite—completion of G. By
using Lemma 4.2 again, we have that |E(H")| = |E (H')| — |BL;NI| 4+ [B=¢ NI|. The latter combined with the fact that
|B-¢ N 1| < |B_,N1| implies that |[E(H")| < |E (H’)|, hence H” is also an optimal co-bipartite-completion of G. So in this
case we can define A=BU {v;} and A’ = B\ {v,} that fulfil the desired properties. W

Lemma 4.4. There exists a bipartition {A, A’} of G such that |A| > |A/|, every dominating vertex is in A and the (A, A’)-co-bipartite—
completion of G is optimal.
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Proof. Let {B, B/} be a bipartition of V(G) such that the (B, B) co-bipartite-completion of G is optimal. Let X° = B and
Y9 = B’. We will build X' and Y! for each i € {0, 1,...,n} maintaining the following invariants in each step: for each i,
Ik

)Y ‘ and the (Xi, Yi)—co—bipartite—completion of G is optimal. We inductively define step i as follows. If v; is a

<i—1

dominating vertex and v; € Y~1, since ‘X ‘ = ‘Xq ;

’ >

Yll’_

Y:.l‘ and the (X'~1, Y'=1)-co-bipartite-completion of
G was optimal, it follows from Lemma 4.3 that there exists a bipartition {A, A/} of V(G) such that A_; = X'<ll, A/ = Y':i]

where X' = A and Yi = A/, v; € A, and the (A, A’)—co—bipartite—completion of G is optimal. It is easy to see that we have
)Xiq‘) > YL,

<i—1

Now suppose that v; is an isolated vertex, v; € Yi~!, and ‘Xl ! ’— <io1

yisl ): in this case, let X' = Xifl U Y"_,.1 and
yi=yi:! Xi’1 Observe that the edges induced respectively by X', x'=1_ yi=1 yi~1 , are preserved in the (X', Y')-

<z] >i P O<i—1 " >i 0 <i—

co- blpartlte completlon Thus, the remammg fill edges in both completions are the ones between those sets, and there are
|xl— N IXSE I+ 1Y 1YL | of them in the (X1, Yi=T)-co- blpartlte completion, and |Y’_ NI xgt 1|+|x’ 1N
I-1Y <,._1| of them in the (X', Y! ) co-bipartite-completion. Since |X1;" 1| =Y ll1|, the (X', Y )—co-blpartlte completion of

G has exactly the same number of edges as the (X’ 1yi- 1)—co bipartite-completion of G, which means that it is also
> ’YL,‘

For every other case, we simply consider X! = Xi=! and Yi = Y'~1. Clearly, the desired invariants hold in this case as
well.

Finally, notice that X"
G is optimal. H

optimal. Moreover it is clear that we have ‘X Li

| > |Y"|, and that the (X", Y")-co-bipartite-completion of

Lemma 4.5. There exists a bipartition {B, B'} of G such that |B| > |B’|, every dominating vertex is in B, the (B, B)-co-bipartite-
completion of G is optimal, and ift =min{i € {1,2,...,n}:v; € B’}, then |I.¢| < |B<t|=t—1and INB.; =0.

Proof. Consider a bipartition {B,B’} of V(G) such that |B| > |B’|, every dominating vertex is in B, and the (B,B’)-
co-bipartite-completion of G is optimal. The existence of such a partition is a consequence of Lemma 4.4. Moreover,
consider one such that |I.¢|—|B | is minimum, where t =min {i € {1,2,...,n}:v; € B'}. Let H' be the (B, B')-co-bipartite-
completion of G. It follows from the choice of the bipartition {B, B/} that H' is an optimal co-bipartite-completion of G.

Towards a contradiction, suppose that I N B~; # . This implies in particular that there is a vertex vy € I N B¢, where
t'=min{ie{t+1,t+2,...,n}:vpy €N B}. We will now define another partition that will yield a co-bipartite-completion
that uses less edges, thus reaching a contradiction. Let A = (BU {v¢})\{vy} and A’ = (B/\{vt}) U {vg}. Clearly, this is a
partition of V(G). If H be the (A, A’)—co—bipartite—completion of G, then it follows that

|E(H)| = |E (H')| + |B<| + 1IN B¢ =1+ B, | —

Furthermore, notice that every vertex in B’ is isolated, thus we know that \B
that,

—14|INB’

— 1IN By~ [B<y| = [INBLy[.
+|INB’

>t/

| = [INB.,|+ 1. It follows

<t/ >t/

|E(H)| = |E (H')| + B<t| + 1IN B¢l =1 —[INB.y| = Byl

Since vy is in I N B.¢, then |[INB.y| =|I N B~¢| — 1. This means that |[E(H)| = ]E (H’)‘ + |B~¢| — |B<¢|, which implies
that |B_;| = |B.y| since H' is an optimal co-bipartite-completion of G. Thus, for each i € {t +1,...,t' — 1}, vi € B’ and by
construction, v; € A" But then t+1=min{i € {1,2,...,n}: v; € A’} and |I-r41] — |A<t41] = [Is¢41] — | B<¢|, which is strictly
smaller than |I-¢| — |B |, and thus contradicts the minimality of H’. Hence, necessarily I N B-; = @.

Finally, suppose to the contrary that |I-;| — |[B<| > 0. Let A =B U {v¢} and A’ = B\{v¢}, and denote by H the
(A,A/)-co-bipartite completion of G. It is easy to see that H is an optimal co-bipartite-completion of G: we know
that |E(H)| = |E (H')| — [INBL,| + [B<| + 1IN B¢, and since [B| < [I-¢| = [INB~¢| + |[INB.,| and [INB.| =0,
it follows that |E(H)| < |E (H’)|. Therefore, we found a bipartition {A, A’} of V(G) such that |A| > |A’|, every dom-
inating vertex is in A, the (A,A/)-co—bipartite-completion H of G is optimal, and |I.¢| — |A-¢| < |Is¢| — |B<t|, where
t'= min{i e{l1,2,...,n}:v; e A/} > t. This results in a contradiction since we assumed |I.¢| — |B.¢| to be minimum. This
finishes the proof. H

Theorem 4.6. Given a threshold graph G on n vertices together with a threshold ordering of its vertices in which each vertex is either
marked as “dominating” or “isolated”, there is an O(n)-time algorithm that computes a bipartition {X, Y} of V(G) such that the
(X, Y)-co-bipartite-completion of G is optimal.

Proof. Let vq,v,,...,v, be the given threshold ordering of the vertices of the graph G. We denote by I the vertices
marked as isolated in this ordering. We construct a bipartition {X, Y} of V(G) as follows. Let X'={vq} and Y' = 0. For
eachi€{2,3,...,n}, we define X', Y! inductively as follows:
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1. If v; is a dominating vertex (that is, v; is not in I), or if |I-;] > |X'~1|, we add v; to X'. More precisely, X' = X'~1 U {v;},
and Yi=Yi-1, ‘ o o

2. Else, we place v; in Y!. That is, X = X~1, and Y/ = Y= U {v;}.

Once we have gone through all the vertices, we define X = X" and Y =Y".

Clearly the sets X and Y can be computed in time O(n), thus it suffices to show that the (X, Y)-co-bipartite-completion
of G is optimal.

Let {B, B’} be a bipartition of G such that |B| > |B’|, every dominating vertex is in B, the (B, B’)-co-bipartite-completion

of G is optimal, |I.¢| < |B~|=t—1, and I N B~ = @, where t = min{i ef{l,2,...,n}:vje B/}. The existence of such
partition follows from Lemma 4.5.

Now, it suffices to show that X = B and Y = B’. Let v; in X be any vertex, where i € {1,2,...,n}.

If v; is a dominating vertex, then v; is in B by definition of B. If instead v; is an isolated vertex, then |I.;| > |X'~!|
which follows by construction of X. In this case, we know that |I.j| > |I-;| and |X/~!| <|X'~1|, for every je{1,2,....i}.
It follows that |I-;| > [X/~!| for every j <i, thus by construction of X, v; is also in X for every j e {1,2,...,i}. Hence,

}X"”‘ =i — 1. Towards a contradiction, suppose that v; € B'. It follows from the definition of ¢t that t <i. This implies that
II-¢| = |Ii] = |X""1| =i — 1>t — 1, which contradicts the assumption that stipulated that |I.¢| < |B.|=t—1 for the
chosen bipartition {B, B'}. Hence, v; lies in B, thus X C B.

Suppose now to the contrary that Y N B # ¢, and let i = max{j ef{1,2,...,n}:vjeYn B}. Observe that, if v € Y, then
for every j >k such that vj € I, we have vj € Y since v is an isolated vertex and |I-j| < |I.| < |X¥71| < |X/71]. In
other words, ., C Y. It follows from the previous remark that I.; N B = (). Moreover, since v; is in Y, in particular v; is
an isolated vertex such that |I-;| < ]Xifl‘. The latter implies that |I.;| < |B.;|, since X C B. Furthermore, v; is in B and
INB.;=¢, hence i <t. Since I.; N B =, then |I.; N B'| =|I;|. Consider H to be the (B, B’)-co-bipartite-completion of
G, and let H' be the (B\{v,-} ,B'U {vl-})-co—bipartite—completion of G. It follows from the previous remarks that

|E(H)| = |[E(H)| + I-i N B"| = |I.; N B| — |B<i| = |[E(H)| + |I-i| — |B<i| < [E(H)],

which contradicts the fact that H' is an optimal co-bipartite-completion of G. The contradiction came from assuming that
Y N B # @, therefore we have that X=Band Y=8. &

To conclude this section, we mention the connection to the max-cut problem in the case of threshold graphs. Given a
partition {A, B} of the vertices of a graph G, consider these two sets:

1. Let C be the set of pairs of nonadjacent vertices, where one element is in A and the other in B.
2. Let F be the set of pairs of nonadjacent vertices where either both are in A or both in B (notice that F is a set of fill
edges corresponding to a co-bipartite completion of G)

Notice that E(G), C, and F gives a partition of the set of all pairs of distinct vertices from V (G), hence |E(G)| + |C| +
|F| = (g) Two of these four values depend only on the input graph, not on the partition. Hence, choosing a partition
minimizing |F| is the same as maximizing |C|. Now take the complement graph and consider the same partition. Clearly, C
is a cut between A and B. This implies that finding a minimum co-bipartite completion of a graph is equivalent to finding a
maximum cut of its complement. By Lemma 4.1, this implies that for a threshold graph, finding a minimum PIG-completion
is equivalent to finding a maximum cut of its complement.

We remark that an ©(n?)-time algorithm for calculating max-cut for cographs (and thus for threshold graphs) has been
presented in [2]. This result, together with the fact that threshold graphs are closed under complementation, gives an
alternative algorithm for PIG-completion for this class. Furthermore, even though our algorithm strongly relies on having a
threshold ordering, in the worst case scenario where we do not have such an ordering, this can be computed in O(n + m)-
time, thus yielding a O(n + m)-time algorithm for PIG-completion on threshold graphs using our proposed approach.

4.1. Completion from quasi-threshold graphs

A natural candidate for generalizing the previous result is the class of quasi-threshold graphs. Recall that these are
precisely the {P4, C4}-free graphs. However, for this particular class we encounter the problem that a crucial result from
the previous section does not hold: a minimum co-bipartite-completion is not the same as a minimum PIG-completion. We
present a counterexample for this in Fig. 4, in which we can see that a minimum co-bipartite-completion of the graph has
an induced Cg4.

We will not give a full proof of the fact that the graph on the right of Fig. 4 is a minimal completion of the graph on
the left. This was checked by a computer program. Let us call Hy, H3, H4 the cliques of size 4, 6 and 8 represented by
circles in the figure, and H; be the clique composed of only the one vertex in the top left corner. The intuition is that since
the values |H1| + |H4| and |H3| 4+ |H3| are much closer than any other bipartition of the H;'s would allow, and since the
number of edges that we could possibly spare outside of the subgraph induced by Uje(1,2,3,4)H; is comparatively small, the

9
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Fig. 4. A quasi-threshold graph G and a minimum co-bipartite-completion of G that is not PIG. Numbered circles correspond to cliques of size equal to the
number inside it.

completion on the right of Fig. 4 is the best possible. It most notably beats the partition that has H; and H, on one side
and H3z and Hy4 on the other, as well as the one that has Hy, Hy and H3 on one side and H4 on the other.

Nevertheless, we can still find an algorithm that solves the minimum co-bipartite-completion problem when the input is
a quasi-threshold graph. Notice that, even though this does not necessarily yields a minimum PIG-completion for a quasi-
threshold graph, indeed provides a lower bound for it. Recall that every connected quasi-threshold graph has a dominating
vertex, and hence any PIG-completion is also a co-bipartite-completion. The fact that a minimum co-bipartite-completion
gives a lower bound for the minimum PIG-completion follows from this.

Let G = (V,E) be a connected quasi-threshold graph and T = (V,Er) be the tree rooted in r that stems from its
definition.

For v € V, let n, = |V (T,)| be the number of vertices in T,, the maximal subtree rooted at v, and let ¢, be the number
of children of v.

For v eV, let vq,..., V¢, be the children of v in T. For 0 <i <c,, let X; , := UWE{‘,1 YYYY vi) V(Tw) and denote by x; , =
|Xiv| =) 1<k<iNv,- For 0 < j <Xx;y, let us define C(v,i, j) as the minimum number of edges in a co-bipartite-completion
in the subgraph induced by X;y, such that one clique has cardinality j and the other has cardinality x; , — j. Notice that
veXiy.

Finally, we define D(v, j) as the minimum number of edges in a co-bipartite-completion of the subgraph induced by
V(Ty) such that one of the cliques has cardinality j.

Proposition 4.7. D(v,0) = C(v, cy,ny, — 1) and for 1 < j <n,, it holds that D(v, j) =C(v,cy, j — 1).

Proof. Note that V(Ty) = X¢,,v U {v}, and that v is adjacent to every vertex in X, v, hence we can always add it to any
clique of the co-bipartite-completion of X, , without increasing the cost of the completion. W

It follows from those definitions that the value we are looking for is given by
min  D(r, j). (1)
0<j=<IV(G)|
We now show how to compute C(v, i, j), for every v and all possible values of 0 <i <c¢, and 0 < j <x;,. We assume
that the children of v, if any, are vq,..., v,

0, ifvisaleafori=0.

. min (Cv,i—l,k+
C(V, 1, ]) = max(j—nvi,0)§k§min(j,x,-_1.v) ( )

+D(vi, j—k) +k(—k) + xi—1,y — k) (ny, —j+l<)), otherwise.
Proposition 4.8. Equation (2) computes C(v, i, j) correctly.

Proof. For the first case, the graph is either trivial or empty. For the second case, let C; and C, be the cliques of a co-
bipartite-completion of X; , such that |Cq1| = j, and let k = [X;_1,, NCq|. Notice that k < x;_1 . It follows that |V (T,,)NCq| =
j—k, and thus that n,, > j — k. Notice that we need C(v,i— 1,k) edges to turn each of X;_1, NCy and X;_1,y N C2 into
cliques. Similarly, we need D(v;, j —k) edges to turn V(Ty;) N Cy and V(Ty;) N Cy into cliques. Finally, we need k(j — k)
edges to connect X;_1, NCy and V(Ty;) NCyq, and (x;_1,y — k)(ny; — j +k) edges to connect X;_1, NCz and V(Ty;,) N Ca.
Since we try all possible valid values of k, we eventually find the smallest possible completion. W

We arrive thus at the main result of this section, which we state below:

10
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Theorem 4.9. Let G be a quasi-threshold graph. There exists an O(n*)-time dynamic programming algorithm that computes the
minimum co-bipartite-completion number for G.

Proof. The algorithm is given by expressions (1) and (2), and its correctness is immediate by Propositions 4.7 and 4.8. For
the complexity, notice that the algorithm proceeds in a bottom-up manner, from the leaves of T up to the root, and from
left to right for vertices located at the same level of the tree. For every vertex v € V, every 0 <i <c, and every 0 < j <Xx;,
we compute the recurrence relation (2). This means that the values of C(v,i—1,k) and D(v;, j — k) were already calculated
for every max(j —ny,,0) < k < min (j,x,-_m,) by the time we compute C(v,i, j), so they are obtainable in O(1) time.
Hence, given v, i, and j, computing C(v, i, j) is O(n). Since this is required for every i and j as defined above, we perform
O(n3) operations for every vertex of T. The complete algorithm is thus O(n%). W

5. An algorithm for PIG-completion on caterpillars

In the previous sections, we studied PIG-completion within subclasses of interval graphs that contain very dense graphs,
such as complete graphs. Another possible approach is to restrict the input to more sparse graph classes. Namely, caterpillars
are those interval graphs that are also trees, and thus the sparsest subclass of interval, when we consider connected graphs.
We show that caterpillars admit minimum PIG-completions having a very particular structure, and we provide a quadratic-
time algorithm to compute one of them. Recall that, as defined in Section 2, a caterpillar is a tree such that the deletion of
its leaves results in a path, called its central path, or spine. From now on, for a caterpillar G on n vertices, we denote by P
its central path, and the children of a vertex of P are the leaves to which said vertex is adjacent to.

Let us consider a PIG-completion H of G, and a unit interval model Iy of H. First, we transform Iy into the model of a
PIG-completion H’ of G with at most as many edges as H, such that the vertices of the central path are represented by unit
intervals of the form [i, i+ 1] for some integer i. Once we have that, we will describe an O (n?)-time algorithm to obtain an
optimal completion.

Theorem 5.1. Let G be a caterpillar, and let k be the number of vertices of the central path P of G, and let vg, v1, ..., vVk_1 be the
vertices of P written in consecutive order. Then, there exists a minimum PIG-completion of G with a unit interval model such that, for
eachie{0,1,...,k—1}:

e V; is represented by an interval of the form [i, i + 1], and
e each child of v; is represented by either [i x (1 + ,]—c) —1,ix 1+ %)] or[i+1) x (1+ %) -1,0+1)x A+ %)],

Proof. Let V be the vertex set of G. Let H be a PIG-completion of G and Iy = {I,}scv be a unit interval model of H. Let
us now transform H into a PIG-completion H' of G that requires at most as many edges as H (but H’ is not necessarily a
subgraph of H). To do this, we first obtain an auxiliary interval model I' = {I/;},cv of H’ that is not a unit interval model, in
which some of the intervals are reduced to a single point, while the others remain as unit intervals. Once we obtain such
an auxiliary model, we will transform it into a unit interval model that represents H’' as well.

Consider the vertices of P, in the consecutive order vy, ..., Vx_1 in which they appear in the path. For i € {0, ...,k — 1},
let V; be the set of children of v;.

We construct the model I' of H' iteratively using a sequence H®, H® ... H® of supergraphs of G, where H® = H
and H® = H’, and for each j, 1) = {I¥},cv is an interval model of HU). .

For every je€{0,...,k—1} and every i € {0, ..., k—1}, let us denote by Viffr) the set of children of v; whose corresponding
intervals contain the right endpoint of v; in 19, including those that are represented by the same interval as v;, and by
Vi(,ji) the set of all the remaining children of v; whose intervals contain the left endpoint of v; in IV,

For each j, denote by S; the set of vertices containing v; and their children for every i < j — 1, as well as every vertex
in v

j—1,¢ .
Notice that neither vj, v;_1 (if it exists), nor the children of v, nor the vertices in Vﬂ)]’r are in Sj or in T;.

(if vj_q exists). Analogously, denote by T; the set of vertices containing every v; for i > j and all their children.

We define the set of unimportant edges in H) as those that fulfil one of the following conditions: (1) The edges having
one endpoint in S; and one in T}, (2) The edge v;_1x (if vj_q exists), for all x € T; such that vx ¢ E(HYW). Those edges that
are not unimportant are referred to as important edges. We denote the set of important edges by F;. In what follows, we
will not count the unimportant edges in a model of the sequence. Nonetheless, we will show that the number of important
edges never increases from H) to HU*D and that there are no unimportant edges in the end, that is, in H®,

Given an integer j € {0,...,k — 1}, we say that the graph H with interval model I/ satisfies invariant A; if:

e HU is a supergraph of G with the same vertex set.
e For every integer i € {0, ..., j}, the vertex v; in P is represented by the interval [i,i+ 1].

e For every integer i € {0, ..., j — 1}, the vertices in Vi(j[) are represented by the point i, and the vertices in V,.(j;) are
represented by the point i + 1.

11
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o All the leaves of vertices of P from v; onwards are represented by unit intervals, such that if two intervals intersect,
then they intersect in more than one point.
o If j>0, then |Fj| < |Fj_1].

Note that we can assume that I9, the model of H = H©®, satisfies Ag. Recall that we can always assume that two over-
lapping intervals intersect in more than one point. We can also suppose that vq is represented by [0, 1], up to translation
of the model.

Let j be an integer number smaller than k — 1. Suppose that H) is an interval graph with model IV that satisfies Aj.
lf,]j)+1 that lies between j and j + 1, (if Is,f)ﬂ =
[j,j+ 1] then p = j). Let C be the set of all the vertices in T; whose corresponding interval intersects p in 19. In turn, C
is partitioned into two sets: C;, the vertices of C whose corresponding interval intersects j in 1¥), and C,, the remaining

vertices (note that their intervals intersect j +1 in I9). Let V| = V;]) V](’)] . U{vj_1} and Vg be an arbitrary subset of
V(]) of size m1n(|V(])| |C1]).
We construct H (1) with model 1U*D starting with 1) and performing the following changes:

Let us first define the following vertex sets. Let p be the endpoint of

(1) If p is the right endpoint of lf,’j)+1 then replace each interval corresponding to a vertex in T; by the interval obtained

after symmetry on point j + % By symmetry on point X, we mean replacing an interval of the form [x + a, x + b] by
the interval [x — b, x —a]. Now the right endpoint of the interval corresponding to v;i1 lies to the right of the right
endpoint of the interval corresponding to v ;.

Observe that after this step the intervals of the vertices of C all intersect the left endpoint of the interval of vj4.

Moreover, this would also be true if instead of being the right endpoint, p was the left endpoint of If,?ﬂ.
2) Translate the intervals corresponding to vertices of T; to the right, all by the same amount, so that the interval for v 4
j j+

corresponds to [j+ 1, j + 2].

(3) Let us set V(”l) V(“ U Vg and V(Hl) V(’) \ Vg, and replace the representation of every vertex in V(]H) by point

j and every vertex in V“H) by j+1.

In what follows, we show that the resulting model 1411 satisfies A j+1. It is easy to see that with this construction, the
vertex set of HUtD is V. and that for each i, the adjacencies between v; and its children, as well as vit1 and v;_q if they
exist, are preserved.

Note that, Sj41 =S; UV, UVg and Tj=Tj;1 U{vjy1} U V4. Observe also that the intervals of the vertices in S; U

V,(])l ,U{vj_1,v;} are identical in 1V*D and 1V, and the subgraphs of HY) and HU*D induced by this set plus V(j) (in

other words induced by Sj1 U {v;}\ V) are identical. Similarly the model induced by the intervals of the vertices m T, is

identical in 16D and IV, up to a potential symmetry and translation. In particular, for each i # j, either V,(]e) = Vi(fl) and
V(]) V(]+1) or V(]) V(]+1) and V(]) V(J+]).

I(J+1)

Vi and

By construction,
and j+1.

Thus, from the previous observations and the fact that H") satisfies A;j, we deduce that HU*D satisfies the four first
items of Aj1. Let us now show that HU*D has at most as many important edges as H\/).

Recall that important edges are defined as the counterpart of unimportant edges in each H®. To provide a more precise
definition, observe that an edge in H® (here i € {j, j + 1}) is important if one of the following assertions holds: (1) both

its extremities are in S;, or (2) both its extremities are in T;, or (3) both extremities are in {v;_1, v} U Vl(l)1 LUV, or(4)

=[j+1, j+2] and the vertices in V](JZ D V](’;L D are represented respectively by the points j

one extremity is in Sl and the other is in {vj_q, vi} U vi
other lies in {v;} U Vl ir

From the previous observation, all the important edges induced by Sj;q U{v;}\ Vg (resp. by T;) are the same in H®
and HU*D_ Similarly, Vz and V(H]) c V](” each induce a clique in both H¥) and HU*D, so the important edges they
induce are also shared by the two graphs Finally, all the edges between v; and its children are common important edges.

Let us call F the set of common important edges we just described (note that there are other common important edges, for
example v;v .1, that are not in F).

i ] UV, or (5) one extremity is some vertex x in T; and, either the

U Vi, or the other extremity is precisely v;_1 and x, v; are adjacent.

Claim 5.2. There are at most |F| + |V|-|Vr| + |C| 4+ |C] - y Ut edgesin Fi,1.
j.r i+

Proof. In the subgraph of HU*D induced by Sj1, the only edges in Fj;1 \ F are edges with one endpoint in V; and the
other in Vg. Note that all such edges exist in HU™" but some of them can also exist in H). Thus, Fj;1 contains |V[|-|Vg|
of such edges.

12
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Now consider the edges of HU*D between Sj1 and T;. Since the edges between Sj;; and Tj.q are not important,
we only need to consider the subset {v;;1} U V;.q of T;. By Aj, the intervals of the children of vj; intersect IE,JJ.)H =
[j + 1, j+ 2] in more than one point, so in particular in some point strictly larger than j + 1, and they have length one, so
they do not intersect the point j. Note that the intervals of all the vertices of S;,1, are contained in [0, j]. Therefore, there

is no important edge between Sj,1 and T;.
Finally, the only vertices that are neither in T; nor in Sj;q are the vertices of Vj]:r by {vj}. Every important edge
between v and Sj; is already counted in F, so for the important edges incident to v, we only need to focus on the

one incident to the closed neighbourhood of v, in Tjq. The intervals of these vertices intersect If/;.“) =1[j,j+ 1] and
lf,’jﬂ) =[j+1,j+ 2], hence in particular they all contain j + 1. The latter implies that they belong to C, thus there are

|C| such important edges incident to v;. The intervals of the vertices in V}jfl) are reduced to the single point j + 1, so
they cannot be adjacent to any vertex in Sjiq, and in Tj;q, they are adjacent to only vertices in C. So there are at most
IC| - |V§ff1)| such edges in Fj;q and they are not counted in F. '

Therefore, considering all the previous statements we have |Fj1| <|F|+|V|-|Vg|+I|C|+|C]|- |V](.]r+1)|. This finishes the
proof of the claim. W

Claim 5.3. There are at least |F| 4+ |V |- |C1| + |C| + (IVR| + |C2)) - |V;{;f1)| + [VR|-|C2| edges in Fj.

Proof. First, observe that in 1%, all the intervals corresponding to vertices in V; (that are not vertices in S j by definition)
intersect j, and the vertices of Cq are vertices of T; whose intervals intersect j. Moreover, the edges between v;_; and Cq
are also important, since I(j)(Vj) contains the point j. Thus, for every x in Cq, we know that vjx € E(HY), hence every
possible edge between C; and V| exists and is an important edge in HY). This implies that there are at least [V[| -|Cq|
such edges in Fj.

The vertices in Cy, in Vg, and in are all vertices whose intervals intersect j + 1 in I). Hence, these three sets

J+1)
v .
are complete to each other in H. Notice that, whereas all the internal edges in each of the cliques C;, Vg, and V](.Jr“) are

counted in F, the edges between these sets are not. This represents a total of (|Vg|+ |C2]) - |VJ(A.jr+1)| + |VR]| - |C2| edges in
Fj.

Finally, v; is adjacent to all the vertices in C, which give |C| edges in F;j.

All the sets of edges described here are pairwise disjoints, so in total, there are at least |F| + V|- |C1|+|C| + (|Vg] +
|Cal) - |V](.’r+1)| + V|- |C2| edges in F;. This ends the proof of this claim. M

Now, when we compare the number of important edges in HY) and HU*D, by the previous claims and the fact that
IC] =1|Cq| + |C2| we obtain that:

IFjl = IFjal = VLl (IC1 = [VRD + VIV VRl = [C1]) + Vil - [Cal. (3)

Recall that |Vg| = min(|Vj(<_jr)|, |C1]). We have two possibilities to analyze:

o If |VJ(._jr)| > |Cq], then |Vg| = |C4]|. By replacing this in the inequality (3), we obtain |Fj| — [Fj;1]| > |Vg|-|C2]| > 0.

o If |C1| > V), then [V{/"V| =0 and |Cy| > |Vg]. Thus the inequality (3) becomes |Fj| — |Fj 1] > |Vi| - (IC1] — [Vg]) +
[VRI-|C2| = [VRr|-|C2| = 0.

Therefore, in both cases, |Fj| > |F;11|, which concludes the proof that 101D satisfies Ajyr.
We can thus build the sequence H®, H® ..., H®=1 such that for each j, I, the interval model of HV satisfies A;.

Construct 1%, the model of H® = H’, from of I*~V by replacing the interval corresponding to every vertex in V,Ek:llz

by the point k — 1, and the interval corresponding to every vertex in V,Ek:]lr) by the point k. All the other intervals remain
the same.
Notice that since I*~1 satisfies Ay_;, H®~V is a supergraph of G and If,l;)_] = lf,’f;l]) = [k — 1, k). Thus, the children of

Vi_1 are also connected to vy_; in H’. Moreover, observe that H' has at most as many edges as H*~1_ Notice that H&~1
has no unimportant edges and, by Ax_;, at most as many important edges as H® = H. Hence, H’ is a supergraph of G
with at most as many edges as H and its model I®) fulfils the following:

e For every i € {0, ...,k — 1}, the vertex v; is represented by the interval [i,i+ 1].
e For every i € {0, ...,k — 1}, the vertices in v® are represented by the point i, and the vertices in Vi(kr) are represented

i€
by the point i + 1.

13
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Fig. 5. A caterpillar graph (black edges) and an inclusion-wise minimal PIG-completion (red edges) for which the characterization given in Theorem 5.1
does not hold.

To conclude, let us show that H’ is a PIG-completion of G by exhibiting a unit interval model I’ of H’, that we construct
as follows: For each interval in I®, if it is a unit interval (i.e., a vertex of the central path), then we add the same interval
to I'. Otherwise, the interval contains a single point i, thus we add the interval [i x (1 + %) —1,ix 1+ %)] to I'. Note that
such an interval will intersect exactly the same vertices of the central path and will not intersect intervals built from other
single-point intervals unless they already coincided. Therefore H’ is a unit interval graph, and thus a PIG-completion of G,
with at most as many edges as H. W

An interesting question that arises is whether this suffices to characterize all inclusion-wise minimal completions or not.
In Fig. 5 we can see depicted a caterpillar graph G, represented by the black edges, and a supergraph H obtained by adding
the red edges that is indeed an inclusion-wise minimal PIG-completion of G. The central path of G is not an induced path
in H, therefore this cannot be a PIG-completion of the form specified in Theorem 5.1.

Now that we know that there exists a minimum PIG-completion as the one stated in Theorem 5.1, we design an algo-
rithm that will always output such a solution.

Theorem 5.4. There exists an algorithm that outputs a minimum PIG-completion of a caterpillar in O (n®)-time.

Proof. As before, let G be a caterpillar and let vg,..., v¢,_1 be the vertices of the central path, considered in the order
in which they appear on the central path. Let V; be the children of v;. In order to build a minimum completion as the
one presented in the statement of Theorem 5.1, we just need to determine how many elements of V; are represented
by [i x (14 ) —1,ix (14 ] and by [((+1) x (1+ ) — 1, + 1) x (14 )], which we will denote by V{ and V]
respectively. We will determine the size of Vf (and of V) via dynamic programming. More precisely, for every i € {0, ..., k—
1}, and for every j € {0,...,|V;|}, we compute the optimal number N; ; of edges added to complete the caterpillar induced
by {vi, Vi+1,...,Vk_1} and their children, except for j children of v;, into a proper interval graph, assuming that all its
remaining children are in V. We use the following formula to compute it:

o For je{0,..., Vial} Neerj = (V4517);

e Forie{0,....k—2}and j€{0,....|Vi|}, Njj=  min ((W”_Zm,)+j,+N"+1‘j/)'
J€{0,...,|Vig1l} '

Now, the best PIG-completion of the entire caterpillar graph uses exactly

, J
min + N )
jet0,..1Vol} <<2> o)

fill edges. One can get such a completion from the choices of j obtained to get the minimal values.

computed using a minimum over at most n different expressions. Therefore the complexity of this algorithm is in ©O(n?). R

6. Conclusions and future work

In this work, we study the IT-completion problem when IT is the class of proper interval graphs. Given that the problem
is NP-complete in general graphs, we focus our analysis on the case in which the input graph lies in some particular
subclasses of chordal graphs. We prove that the problem remains hard in split graphs, whereof we conclude the same for
chordal graphs. We present efficient algorithms for PIG-completion for both threshold graphs and caterpillar graphs, and an
efficient algorithm for co-bipartite-completion for quasi-threshold graphs.

A future line of work is to continue studying the PIG-completion problem in other subclasses of chordal graphs that
have bounded cliquewidth to obtain practical polynomial-time algorithms. This may lead to finding common properties that
could be useful when it comes to designing efficient algorithms and heuristics to solve the problem within other chordal
subclasses.

14
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On the other hand, given that all the graph classes for which we give a polynomial-time algorithm are also subclasses of
interval graphs, and that interval and proper interval graphs are very closely related, it raises as a natural question whether
the PIG-completion problem can be solved in polynomial time when the input graph already belongs to this particular class.

In addition, since we studied the PIG-completion problem within caterpillars motivated by the fact that these graphs are
precisely those interval graphs that are also trees, this gives way to an analogous question regarding the complexity of the
PIG-completion problem when the input is a tree. Given that our current algorithm heavily relies on an interval model of
the graph, we do not expect that our approach could be generalized to trees. This implies that the problem on trees should
involve different techniques.

An interesting question arises also in the relation with the max-cut problem: for which other classes besides threshold
graphs does it hold that PIG-completion is equivalent to co-bipartite-completion? For these possible classes, an algorithm
for max-cut in the complement would also solve the PIG-completion problem, by the same argument given in Section 4.

Another possible continuation for this work may be to study the PIG-deletion problem, i.e., the removal of a set of edges
F from an input graph G = (V, E), so that the resulting subgraph H = (V, E \ F) is a proper interval graph. It is known that
this problem is hard for general graphs [8], but it would be interesting to investigate whether efficient algorithms could also
be devised for this problem restricted to the aforementioned subclasses of chordal graphs.
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