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progenitor cells of the nervous system.
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SUMMARY
The Drosophila adult midgut progenitor cells (AMPs) give rise to all cells in the adult midgut epithelium,
including the intestinal stem cells (ISCs). While they share many characteristics with the ISCs, it remains un-
clear how they are generated in the early embryo. Here, we show that they arise from a population of endo-
derm cells, which exhibit multiple similarities withDrosophila neuroblasts. These cells, whichwe have termed
endoblasts, are patterned by homothorax (Hth) and undergo asymmetric divisions using the same molecular
machinery as neuroblasts. We also show that the conservation of this molecular machinery extends to the
generation of the enteroendocrine lineages. Parallels have previously been drawn between the pupal ISCs
and larval neuroblasts. Our results suggest that these commonalities exist from the earliest stages of spec-
ification of progenitor cells of the intestinal and nervous systems andmay represent an ancestral pathway for
multipotent progenitor cell specification.
INTRODUCTION

Stem cells are defined by their capacity to self-renew and to

generate daughters that differentiate into one or more cell

types.1 Since the identification of intestinal stem cells (ISCs) in

the adult Drosophila midgut and the demonstration that they

share similarity with their vertebrate counterparts,2–4 ISCs have

emerged as a valuable model for studying many aspects of

stem cell biology, including stemness, niche maintenance,

aging, and pathogenesis.5,6 The ISCs are derived from a sub-

population of progenitor cells, the adult midgut progenitor cells

(AMPs), during pupal stages.7–9 The AMPs share many similar-

ities with the ISCs, undergoing periods of self-amplification

and being capable of differentiating into distinct intestinal cell

types, namely the absorptive enterocytes (ECs) and secretory

enteroendocrine cells (EEs).10 While the origin and regulation of

the ISCs in the pupal and adult midgut are well understood, pre-

cisely where and how the AMPs arise is less clear, raising the

question of how such multipotent progenitor cells are formed

in the embryo.

In Drosophila, the embryonic midgut originates from two

groups of endodermal cells at either pole of the blastoderm.

During gastrulation, these cells undergo an epithelial-to-mesen-

chymal transition (EMT), converting to unpolarized masses of
Developmental Cell 60, 429–446, Febr
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mesenchymal cells which migrate through the embryo.11–14 Pre-

vious studies suggested that the AMPs and two other intestinal

cell types, the EEs and interstitial cell precursors (ICPs), delam-

inate from the endodermal-epithelium before migration and that

this is driven by proneural and neurogenic gene activity.15 While

initially the proneural and neurogenic genes are expressed

throughout the endodermal-epithelium, Notch activity restricts

proneural gene expression to a single cell through the process

of lateral inhibition, leading to the regularly spaced segregation

of cells throughout the tissue.15 Showing parallels with the spec-

ification of epidermal precursors vs. neuroblasts in the neuroec-

toderm,16 Notch activity in the majority of cells drives them to

adopt an epithelial fate and form the larval ECs, the so-called

principle midgut epithelial cells (PMECs),11 whereas cells that

express proneural genes will delaminate from their neighbors

and become either an AMP, ICP, or EE15,17 (Figure 1A). Each

of these cells take on different roles, with the AMPs acting as

progenitor cells for the entire adult midgut, and the EEs and

ICPs differentiating to perform distinct intestinal functions. It is

currently unknown precisely when and how these three different

subsets of intestinal cell types are determined downstream of

proneural and neurogenic gene activity.

Here, we generated a single-cell transcriptomic atlas of poste-

rior intestinal tract development that allowed us to follow the
uary 3, 2025 ª 2024 The Author(s). Published by Elsevier Inc. 429
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Figure 1. Four distinct cell types are specified in the embryonic midgut

(A) Schematic of the current understanding of midgut cell specification.

(B) Schematic of Drosophila embryos over 3.5–10 h of embryogenesis. Boxes show approximate depiction of regions dissected from living embryos.

(C) UMAP representation of batch-corrected scRNA-seq data colored for cell type based on marker gene expression.

(legend continued on next page)
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emergence of the different cell types in the posterior endoderm.

These data suggested that AMPs, ICPs, and EEs do not delam-

inate directly from the outer layer of the early endoderm but

instead arise from neuroblast-like cells, which we have termed

endoblasts. We found that endoblasts apically delaminate from

the outer epithelial layer of the endoderm, undergo an asym-

metric cell division, and generate the three non-epithelial cell

types found in the embryonic midgut. While one daughter cell

will go on to generate cells of the EE lineage, the fate of the other

daughter depends on its position within the endoderm, and

patterning by homothorax (Hth). AMPs will form from the larger

endoblast daughter in the more proximal regions, whereas the

larger daughter cells from Hth+ endoblasts in the distal tip

generate ICPs. We further show that the daughter cells that

give rise to the EE population subsequently undergo a second

asymmetric cell division to produce further diversity. This

cascade of divisions parallels both the generation of ISCs and

EEs in the pupal midgut and the formation of the embryonic

and larval nervous systems.

RESULTS

Single-cell transcriptomic atlas of the developing
posterior intestinal tract and surrounding tissues
To follow the emergence of different cell types from the endo-

derm germ layer, we dissected the posterior intestinal tract

and surrounding regions from living Drosophila embryos and

carried out single-cell RNA sequencing (scRNA-seq) (Figure 1B).

We staged embryos in 4 time windows, from prior to the gener-

ation of the distinct midgut cell types until the onset of the forma-

tion of themature embryonic intestinal epithelium (Figure 1B; see

STAR Methods and Broadie et al.18). Interrogation of unsuper-

vised cell clusters using markers for tissues in the posterior

region of the embryo confirmed that the majority of cells in our

dataset were from the posterior midgut (Figures 1C, S1A, and

S1B). The dataset also included other cell types in the dissected

regions, including cells of the Malpighian tubules, hindgut/dorsal

ectoderm, neuroblasts, mesoderm, hemocytes, and germ cells

(Figures 1C, S1A, and S1B). Given that cells appeared to be or-

dered temporally along the uniform manifold approximation and

projection (UMAP) embedding (Figure 1D), we applied Monocle,

an algorithm that computationally orders individual cells accord-

ing to progress through a biological process, without prior

knowledge of the genes that define this progress.19 This leads

to the ordering of cells along an inferred pseudotime. Gratify-

ingly, we found a goodmatch between ordering the cells accord-

ing to our collection windows vs. to pseudotime (Figure S1C).

This gave us confidence to use the combined scRNA-seq data-
(D) Same as (C) but annotated for the dissection time window.

(E) UMAP of midgut cells colored by unsupervised cell state clustering (top) or ps

arrow indicate branch points.

(F) UMAPs of marker genes expressed in distinct subtypes of midgut cells color

(G) Immunofluorescence for Pros (green), Esg (cyan), and Sna (magenta) in a stage

outline PMECs.

(H) FISH for Bx in stage-15 embryos, arrows point to ICPs. All midgut cells are p

(I) Schematic diagram showing the localization of the distinct midgut cell types in

(J) Schematic of a revised model for midgut cell specification.

Scale bars, 10 mm (G) and 25 mm (H).

See also Figures S1 and S2 and Table S1.
sets to investigate the earliest stages of cell specification within

the endoderm.

The posterior midgut primordium gives rise to four
transcriptionally distinct cell clusters
We next isolated the posterior midgut population from our

scRNA-seq dataset and performed unsupervised clustering

and pseudotime prediction (see STARMethods). As pseudotime

can act as a measure of how differentiated a cell is,19 these an-

alyses indicate that from a pool of relatively undifferentiated

cells, posterior midgut cells follow different trajectories toward

four transcriptionally distinct endpoints (Figure 1E, endpoints

are labeled a–d). These data are in line with previous genetic

and histological studies,15,17 which have shown that endoderm

cells are specified into four populations of midgut cells by mid-

embryogenesis.

The majority of posterior midgut cells follow the path toward a

cell type that expresses genes characteristic of PMECs (a in Fig-

ure 1E), including the smooth septate junction components

Tetraspanin2a (Tsp2a),20 mesh,21 snakeskin (ssk),21 hoka,22 and

the GATA factor grain (grn)23 (Figures S2A and S2B; Table S1).

To understand which midgut cell types are represented by the

terminal states b, c, and d, we identified gene expression pat-

terns unique to each population.

Prospero (Pros) is highly expressed in cells at endpoint b. Pros

has been a controversial midgut cell marker in the early embryo,

with various reports suggesting it marks AMPs10,24–26 and others

suggesting that it marks emerging EEs.17,27 We find that in addi-

tion to pros, cells at endpoint b express the transcription factors

(TFs) 48 related 1 (Fer1), Hairy/E(spl)-related with YRPW motif

(hey), and homeobrain (hbn) (Figures 1F and S2C; Table S1).

As Pros is a key determinant of pupal and adult EE cell fate,

and these three TFs have all recently been implicated in speci-

fying subsets of EEs,27,28 this suggests that cells in endpoint b

are the cells that will form the EEs in the embryonic and larval

midgut.

In contrast, cells at endpoint c do not express pros but instead

show upregulation of the EMT-transcription factor (EMT-TF)

escargot (esg), a known marker for AMPs and pupal ISCs.7,9,29

We also found high expression of two other EMT-TFs, snail

(sna) and zinc finger homeodomain 2 (zfh2), which is notable,

as EMT-TFs have been implicated in promoting stemness in

many contexts30 (Figures 1F and S2D; Table S1). Another highly

expressed gene in endpoint c cells is headcase (hdc) (Fig-

ure S2D), which is required for the survival of adult progenitor

cells in the Drosophila tracheal system and imaginal discs to

adulthood.31,32 Together, this suggests that the cells at endpoint

c are the AMPs. To investigate further, we examined Esg and
eudotime (bottom) (a–d denote four predicted end states). The arrowhead and

ed by gene expression level.

-15 embryo. Arrows showAMPs, asterisks highlight EEs, andwhite dotted lines

robed for gfp mRNA driven using the midgut-expressing 48YGal4.

a stage-15 embryo.
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Figure 2. Cells at a midgut fate branch point express many of the same genes as neuroblasts

(A) UMAP of scRNA-seq data colored by unsupervised cell state clustering, with clusters numbered. Cluster 5 is highlighted with an asterisk.

(B) Graphical representation of the overrepresented GO annotation classes from the top 50 genes expressed in cluster 5.

(legend continued on next page)

ll
OPEN ACCESS Article

432 Developmental Cell 60, 429–446, February 3, 2025



ll
OPEN ACCESSArticle
Sna expression in the midgut of stage-15 embryos, which is well

after midgut cell specification occurs and when the different cell

types occupy distinct positions within the midgut.14,17 Immuno-

fluorescence (IF) staining for Esg and Sna, together with the EE

marker Pros, revealed co-expression of Esg and Sna in small

cells sitting on the inner surface of the midgut epithelium, the

AMPs (Figure 1G, arrows). Pros also stains small cells sitting

on the apical side of the PMECs (Figure 1G, asterisks), showing

that in stage-15 midguts, the EEs and AMPs localize to the inner

face of the PMECs and are interspersed with each other, as sug-

gested previously17 (Figures 1G and 1I).

While endpoint d is located on the same trajectory as AMPs,

there are clear differences in gene expression between these

two cell types. Cells at endpoint d do not express esg, sna,

zfh2, or hdc, but show high expression of Beadex (Bx), a LIM

domain only protein, and fizzy-related (fzr) (Figure 1F; Table S1).

The increased expression of fzr is particularly interesting, as a

key phenotypic difference between AMPs and ICPs is in their nu-

clear size,with ICPnuclear size already double that of AMPnuclei

in stage-12 embryos (Figure S2F). While AMPs remain small and

diploid throughout development, the nuclei of ICPs become even

larger11,14,15,33 and Fzr is a known regulator of endoreplica-

tion.34,35 We also find that expression of the Hox gene labial

(lab) and defective proventriculus (dve) overlap with both cells

in endpoint d, and a subset of PMECs (Figure S2E). These genes

have previously been associated with the formation of the gastric

region of the midgut, in which the polyploid interstitial cells

sit.36–39 Accordingly, FISH for Bx shows it localizes to cells with

large nuclei localized at the junction of the anterior and posterior

midgut—as previously described for the positioning of ICP cells

mid-embryogenesis11 (Figures 1H arrows and 1I).

The AMPs, ICPs, and EEs form from a common
intermediate cell population
Overall, the scRNA-seq data support previous work suggesting

that midgut cells are specified into four distinct cell types in the

embryo: PMECs, AMPs, ICPs, and EEs (Figures 1F–1I and S2;

Tepass and Hartenstein15 and Takashima et al.17). However,

the branching points implied by pseudotime and the ordering

of cells according to dissection times differ from what has

been proposed previously based on genetic and morphological

studies. Specifically, it has been suggested that AMPs, ICPs,

and EEs delaminate directly from the epithelial endoderm, or

even that EEs form from a subset of AMPs.15,17 This scenario

(Figure 1A) should lead to two or three branch points early on

in the trajectory, but we find just one branch point at early time

points (Figure 1E, bottom, arrowhead) and a second branch

point later (Figure 1E, bottom, arrow). At this second branch

point, one branch gives rise to EEs and the other to AMPs or

ICPs (Figure 1E, bottom). This suggests that embryonic midgut

cells are generated in a different manner than previously pro-

posed (Figure 1J).

The existence of just one early branch point on the path to

becoming AMPs, ICPs, and EEs suggests that these cells arise
(C and D) UMAP (C) and violin plot (D) of the mean expression of the top 10 clus

(E) UMAPs colored by expression level for hnt, a marker for midgut cells; wor, a m

Arrows point to the neuroblast cluster, and asterisks mark cluster 5.

See also Table S2.
from a common intermediate cell type. This appears on the

UMAP as cluster 5, a cell cluster which encompasses cells

around the branch point and lies on the trajectory to all cells

that will form an AMP, ICP, and EE (Figure 2A, cluster 5, asterisk).

To characterize this intermediate cell, we extracted the

globally distinguishing genes for cluster 5 (Figure 2A, asterisk;

Table S2) and carried out gene set enrichment analysis (Fig-

ure 2B). Overrepresented Gene Ontology (GO) terms included

categories involved in stem cell differentiation and cell fate deter-

mination, as expected. However, we were surprised to find that

the majority of other enriched GO terms related to nervous sys-

tem development, sensory organ development, neuroblast fate

determination/commitment, and asymmetric neuroblast division

(Figure 2B). Furthermore, when we extracted the top 10 genes

expressed in cluster 5 and examined the computed mean

expression in all other cells in our dataset, we found that these

genes are also highly expressed in neuroblasts (Figures 2C

and 2D).

We next interrogated cluster 5 cells for the expression of genes

known to regulate neuroblast asymmetric division and fate and

found a large number expressed in both neuroblasts and this

midgut-associatedcluster 5 (Figure2E,neuroblasts arrow,midgut

cluster 5, asterisks), including genes involved in: the asymmetric

division of neuroblasts—inscuteable (insc) and miranda (mira);

cell fate determination—pros and brain tumor (brat); and negative

regulation of the Notch pathway—sanpodo (spdo), insensible

(insb), and phyllopod (phyl). The EMT-TF sna and the proneural

gene asense (ase), both of which are drivers of multipotency,40

are similarly expressed in cluster 5 (Figure 2E). We also noted

expression patterns specific to each population (hnt andwor; Fig-

ure 2E), thereby precluding the possibility of artifacts associated

with doublets in the dataset. Thus, our scRNA-seq data suggest

that there is an intermediate midgut cell population that shows a

highly overlapping gene expressionwith neuroblasts, themultipo-

tent progenitors of the nervous system.

Cells delaminate from the endoderm-epithelium and
form a neuroblast-like progenitor cell
Embryonic neuroblasts undergo asymmetric divisions to give

rise to two daughters of unequal size and distinct fates. The

larger daughter cell retains multipotent neuroblast identity, while

the smaller daughter cell is committed to differentiation.41 Key

features of neuroblast division are the asymmetric localization

of cell fate determinants that form cortical crescents during

mitosis and the orientation of the mitotic spindle orthogonal to

the cortical protein crescents. Our finding that there is a neuro-

blast-like cell in the endoderm aligns with previous observations

of crescents of Insc and Pros in cells within the early endo-

derm,25,26,42 although this expression of Insc and Pros had

been attributed to the AMPs.25,26,42

To investigate for the presence of neuroblast-like cells in the

early endoderm, we stained stage-10 embryos for the neuroblast

apical complex protein Bazooka (Baz), atypical protein kinase C

(aPKC), the adaptor protein Mira, as well as the cell fate
ter 5 genes in each of the unsupervised cell clusters.

arker for neuroblasts; and insc,mira, pros, bra, spdo, insb, phyl, sna, and ase.
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Figure 3. Neuroblast-like midgut cells undergo asymmetric cell divisions, giving rise to distinct midgut cell types

(A) Immunofluorescence of stage-10 embryos shows that dividing cells are present both in the neuroectoderm (right inserts, top) and endoderm (right inserts,

bottom) and show polarized crescents of Baz, Mira, Numb, Pros, and Brat.

(legend continued on next page)
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determinants Numb, Pros, and Brat. As expected, we identified

neuroblasts in the neuroectoderm that show Baz and aPKC in

apical crescents, while Numb, Pros, and Brat localized basally

together with their adaptor protein Mira (Figures 3A top row

and S3). Strikingly, we also found cells of similar size and shape

that showed identical protein localization delaminated from the

endodermal-epithelium (Figures 3A bottom row and S3). Stain-

ing for aTubulin (aTub) revealed that, as in neuroblasts, mitotic

spindles within these endoderm cells are oriented orthogonal

to the cortical protein crescents (Figure 3A).

Expression of Mira in subsets of cells in the endoderm can

first be detected while they are still part of the outer layer (Fig-

ure 3B1). These cells then become wedge shaped, constrict-

ing basally, and delaminate out of the apical side of the epithe-

lium, (Figures 3B2 and 3B3), in the opposite manner to

neuroblasts, which delaminate basally. As well as being a

key regulator of apicobasal polarity in neuroblasts, Baz also

regulates apicobasal polarity in epithelial cells. When staining

for Baz together with Mira, we noticed that Baz is apically

localized in the cells neighboring the delaminated Mira+ cells,

suggesting that the first cell delaminations initiate prior to EMT

in the remaining epithelial cells, and therefore is a separable

event (Figure 3C).

After the cells have delaminated, they divide to give rise to

daughters of different sizes (Figures 3D and 3E), with the smaller

cell lying close to the epithelium (Figures 3B and 3D arrow-

heads), and the larger cell facing the pocket (Figures 3B and

3D, asterisks). Mira segregates to the smaller daughter cells

(Figures 3B, 4A, and 4B), together with Pros, Brat, and Numb.

This suggests that the smaller daughter cell becomes an EE,

similar to the neuroblast-derived ganglion mother cells

(GMCs) that follow a differentiation path.43 Staining for Pros

and markers for AMPs (Sna) and ICPs (Bx) suggests that the

fate of the larger daughter cell that does not inherit Pros is

regionally determined, with Pros negative cells in the proximal

region of the posterior endoderm forming AMPs (Figures 4C

and 4E) and cells in the distal tip forming ICPs (Figures 4D

and 4E).

These data are further supported by the observation that

despite pros expression being restricted to just endoblasts and

EEs (Figures 4C, 4D, and 4F), when Pros-Gal4 is used to drive

UAS-GFP, many of the inner layer of endoderm cells mosaically

express GFP, not just the Pros+ ones (Figures 4G and 4H). Co-

staining for GFP and cell-specific markers in Pros-Gal4>GFP

embryos show clear GFP expression in a number of AMPs (Fig-

ure 4G) and ICPs (Figure 4H), as well EEs (Figure 4G). This sug-

gests that GFP expression in AMPs and ICPs is due to the per-

durance of GFP that they inherited from their mother cell—the

asymmetrically dividing endoderm cell.
(B) Immunofluorescence for GFP (green) in embryos expressing endogenously t

basal down. Arrowheads point to the basal side of delaminating endoblasts. Ast

(C) Immunofluorescence staining for Baz (green) and GFP (magenta) in Mira::GF

arrow points to localized Baz in the surrounding midgut epithelium.

(D) Immunofluorescence for Baz (green) and Pros (magenta) in a stage-10 embryo

give rise to the larger daughter.

(E) Quantification of the size difference between endoblast daughter cells. Each

expected value if both daughters were equal sizes. Solid line represents the mea

Scale bars, 25 mm (A, left) and 10 mm (all other images).

See also Figure S3.
Asymmetrically dividing endoderm cells use similar
machinery to neuroblasts
These data show that parts of the molecular machinery that are

deployed by neuroblasts to divide asymmetrically are also ex-

pressed in an endoderm-derived intermediate cell type and sug-

gests that the unequal distribution of these molecules is leading

to their asymmetric inheritance. To determine whether these

molecules are functional, we examined mutants for mira or

insc. In neuroblasts, mutation of mira or insc leads to a failure

to form Pros crescents44,45 or to mis-orientation of the mitotic

spindle,46 respectively. In line with what is seen in neuroblasts,44

in mira mutants, Pros remains cytoplasmic in the intermediate

cell throughout all stages of the cell cycle (Figures 5A, 5B arrows,

and S4), while Baz is still able to form a crescent (Figures 5A, 5B,

and S4). Likewise, in mutants for insc the mitotic spindle in inter-

mediate cells no longer orientates orthogonal to the plane of the

overlying epithelium, adopting a random angle within the cell

(Figures 5C–5F) which affects the asymmetric segregation of

cell fate determinants at metaphase (Figures S5A and S5B).

Together, these results suggest that the intermediate cell type

found within the endoderm uses similar machinery to neuro-

blasts to undergo asymmetric cell division. Given the similarities

of this intermediate cell type with neuroblasts, and the fact

that precursors of the nervous system and epidermis have

been called neuroblasts and epidermoblasts, respectively,16

we term these cells ‘‘endoblasts.’’

Endoblasts display ‘‘telophase rescue’’
In insc mutants, the mitotic spindle orients at a random angle to

the basal crescents of cell fate determinants, which should lead

to some inheritance of Pros, Numb, and Brat by both daughter

cells. To understand whether this leads to changes in midgut

cell specification, we stained control and insc mutants for

markers for AMPs (Sna), EEs (Pros), and ICPs (Bx). We counted

the number of each cell type in the midguts of control and insc

mutant stage-15 embryos (Figures 5G, 5H, and 5J) and found

that rather than seeing a loss of one cell type, and increase in

another, we see a general increase in EEs, AMPs, and ICPs in

insc mutants, suggesting that specification of the different cell

lineages does occur in insc mutants.

Since we expected changes in the inheritance of basal cell fate

determinants by endoblast daughters to affect midgut cell fate

decisions, we wondered if, in a further parallel with neuroblasts,

the well documented telophase rescue phenomenon may be

acting. Asymmetric divisions in neuroblasts requires both polar-

ity proteins such as Baz, aPKC, and Par6 (the Par complex) and

Lgl and Dlg to polarize the cortex, as well as a set of proteins

including Insc, partner of inscuteable (Pins), and Gai proteins

to orientate the spindle relative to cortex polarity. They act
agged Mira, and Fkh (magenta) to visualize all endoderm nuclei. Apical is up,

erisks in B4 marks the larger Mira� daughter cell.

P embryos. The asterisk highlights an asymmetrically dividing endoblast, the

shows an asymmetrically dividing endoblast; the side with Baz (asterisks) will

dot represents a dividing endoblast as shown in (D), the dotted line plots the

n, and error bars are standard deviation.
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Figure 4. Endoblast daughters form the AMP, ICP, and EE populations

(A and B) Immunofluorescence for GFP (A, white, B, green), aTub (A, magenta), and Baz (A, green), Pros (B, magenta), or Fkh (B, cyan) in stage-10 embryos ex-

pressing endogenously GFP-taggedMira. Asterisk marks the apical lumen, while the arrowhead indicates the newly formed Pros+ nucleus of a presumptive EE cell.

(C and D) FISH for sna (C, green) or Bx (D, green), and pros (magenta). White boxes are enlarged in (C0) and (D0).
(E) FISH for sna (magenta), Bx (green), and DAPI (white) in a stage-12 embryo.

(F) FISH for pros (green), sna (magenta), and DAPI (cyan) in a stage-10 embryo, arrowheads highlight apical crescents of pros RNA in dividing endoblasts.

(G) UAS-GFP (green) driven with ProsGal4 expresses in both Pros+ (cyan) and Snail+ (magenta) cells, marking EEs (arrowheads) and AMPs (arrows), respectively.

(H) UAS-GFP driven with ProsGal4 also marks Bx+ (white) ICPs. Note that GFP+Bx+ cells do not express pros mRNA (magenta). Yellow dotted lines outline the

posterior midgut.

Scale bars, 25 mm (E–H, left in C, and D) and 10 mm (A and B).
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Figure 5. Telophase rescue ensures asymmetric inheritance of cell fate determinants for correct specification of AMP/ICP vs. EE cell fate

(A and B) Immunofluorescence for Pros (green) and Baz (magenta) in stage-10 control (A) and mira mutant (B) embryos. Arrows highlight a dividing endoblast,

pointing to the cortex opposite the Baz crescent.

(legend continued on next page)
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through two partially redundant pathways: the Insc/Par complex

pathway and the Insc-independent Dlg/Lgl, microtubule-depen-

dent pathway.47 This was demonstrated in neuroblasts by

following the cortical localization of Mira in wild-type and mutant

neuroblasts at different stages of the cell cycle.47 Wild-type neu-

roblasts show basal crescents for Mira at metaphase and telo-

phase.44,45 In contrast, insc mutant neuroblasts fail to localize

Mira at metaphase but exhibit basal Mira localization at telo-

phase—the so-called telophase rescue,46 which is also seen in

mutants for other components of this complex.48,49 Similarly,

dlg mutant neuroblasts also fail to form basal Mira crescents at

metaphase, yet exhibit telophase rescue.50 In contrast, insc;

dlg double-mutant neuroblasts do not display telophase rescue

of Mira localization, suggesting that this phenomenon is a result

of either pathway directly or indirectly inducing basal cortical po-

larity in the absence of the other.47

To investigate whether telophase rescue also happens in en-

doblasts, we examined the localization of Mira in endoblasts at

metaphase and telophase in wild-type, inscmutant, and insc;dlg

mutant embryos. Staining for Mira in insc mutants shows that

while endoblasts at metaphase fail to localize Mira properly

(Figures 5D, S5A, and S5B), in telophase endoblasts, Mira is

segregated to the smaller daughter cell as in controls

(Figures 5K, 5L, S5C, and S5D). In insc;dlg embryos we found

that the reorientation of Mira to align with the mitotic spindle of

telophase endoblasts does not occur correctly, and conse-

quently, Mira is distributed to both daughter cells (Figures 5M,

S5C, and S5D). This suggested that in a further parallel to neuro-

blasts, insc and dlg act in a partially redundant manner in endo-

blasts to regulate the asymmetric segregation of cell fate

determinants.

The asymmetric division of endoblasts is required for
normal midgut cell specification
To examine the role of asymmetric division of endoblasts in

midgut cell specification, we next examined midgut cell specifi-

cation in embryos mutant for both insc and dlg. Staining for

markers for AMPs (Sna), EEs (Pros), and ICPs (Bx) in stage 15

insc;dlg mutant embryos suggests that while EEs are specified

to near wild-type levels, both AMPs and ICPs are almost

completely absent (Figures 5I and 5J). The fact that we find

near normal levels of EEs in insc, dlg mutants suggests that

when mis-specified the second daughter cell that would nor-

mally give rise to an AMP or ICP either dies or fails to turn on ter-
(C and D) Staining for microtubules (aTub, green) and Mira (magenta) in the stage

endoblasts. Dotted white lines outline the endodermal-epithelium.

(E and F) Rose plots for mitotic spindle orientation in control (E) and insc mutant

(G–I) Immunofluorescence for EEs (Pros, green) and AMPs (Sna, magenta) in stage

midgut.

(J) Quantification of the numbers of EEs (Pros+), AMPs (Sna+), and ICPs (Bx+) in sta

individual embryo. Lines represent the mean, and error bars are standard deviat

(K–M) (K) Immunofluorescence for Mira (green) and aTub (magenta) in control (K

(N) Schematic of endoblasts dividing asymmetrically to give rise to an EE and eith

become an AMP or ICP, while the smaller daughter which inherits Pros (magenta

(O) Quantification of the numbers of AMPs (Sna+) and ICPs (Bx+) in stage-15 con

represent the mean, and error bars are standard deviation.

Data analysis for (J) and (O): ordinary one-way ANOVAwith Tukey post hoc test, *p

25 mm (C, D, and G–I), and 5 mm (K–M).

See also Figures S4–S6.
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minal markers like Sna or Bx. These data suggest that in endo-

blasts, similar to that in neuroblasts, the correct inheritance of

cell fate determinants by daughter cells and is crucial for the for-

mation of both AMPs and ICPs. Taken together, our data support

a model in which endoblasts divide asymmetrically to give rise to

either an EE and an AMP, or an EE and ICP (Figure 5N).

In adult intestinal lineages, Pros is required for the correct

specification of EE cells following ISC division51–53 and drives

EE exit from the cell cycle.54 This parallels its role as a suppres-

sor of stemness and proliferation in the Pros+ daughters of neu-

roblasts.55 Having shown that disrupting inheritance of cell fate

determinants such as Pros led to a repression of AMP and ICP

fate, we examined whether the disruption of Pros could result

in ectopic AMP and ICP fate. We found a near-doubling in the

number of AMPs in prosmutant embryonic midguts (Figure 5O),

suggesting that the endoblast daughters, which would otherwise

become EEs, instead default to a progenitor cell fate. Given that

Pros suppresses neuroblast fate genes in embryonic GMCs,55

we hypothesized that a lack of Pros in the midgut may result in

ectopic expression of endoblast fate genes in defective endo-

blast daughter cells. Accordingly, we found that Mira, which is

normally only expressed in endoblasts during early asymmetric

divisions, fails to be downregulated and remains expressed in

a small number of cells in stage-15 midguts (Figure S6). In

contrast, we do not see an increase in ICPs in pros mutants,

suggesting that additional factors are required for cells to

become ICPs.

Together, these results demonstrate that the asymmetric

segregation of cell fate determinants results in the formation of

the AMP, EE, and ICP lineages in the embryonic midgut. The

aberrant inheritance of Pros, Brat, and Numb by the intended

Baz+ cell results in the collapse of the progenitor lineage,

whereas the disruption of Pros function in the Mira+ cell blocks

their differentiation and exit from the cell cycle.

Patterning by Hth determines the outcome of
asymmetric endoblast divisions
We next sought to understand what determines whether the

larger daughter cell of an endoblast will become an AMP or an

ICP,which take on very different cell fates. The AMPs aremultipo-

tent cells, which will remain quiescent throughout embryogen-

esis, and then undergo several rounds of divisions to self-amplify

in larval stages.7,9 In contrast, ICPs will upregulate Fzr and un-

dergo endoreplication,33 a well reported function for Fzr.34,35
-10 endoderm of control and insc mutant genotypes. Arrows point to dividing

(F) endoblasts. n is the number of endoblast spindles analyzed.

-15 control (G), insc (H), and insc;dlg (I) embryos. Yellow dotted lines outline the

ge-15 control, inscmutant, and insc; dlgmutant embryos. Each data point is an

ion.

), insc (L), and insc;dlg (M) stage-10 embryos.

er an AMP or ICP. The larger daughter cell that inherits apical proteins (green)

) becomes an EE.

trol and pros mutant embryos. Each data point is an individual embryo. Lines

% 0.05, **p% 0.01, ***p% 0.0001, ****p% 0.0001. Scale bars, 10 mm (A and B),



Figure 6. Hth is regionally expressed in the endoderm and determines AMP vs. ICP cell fate

(A) UMAP of midgut cells colored for hth expression.

(B) Immunofluorescence for Hth (green) and GFP (magenta) in a stage-10 embryo where endogenous Mira is tagged with GFP. White line demarks the proximal

(left) and distal (right) region of the posterior midgut, which is outlined in yellow dashed lines.

(C and D) FISH forBx in stage-12 control or hthmutant embryos. Bx+ cells at the front of the migrating endoderm in controls are ICPs. p, proximal; d, distal; yellow

dashed lines outline the posterior midgut.

(E) Quantification of the number of EEs (Pros+), AMPs (Sna+), and ICPs (Bx+) in stage-15 (EEs, AMPs) or stage-12 (ICPs) embryos. Each data point is an individual

embryo. Lines represent the mean, and error bars are standard deviation.

(F) Model for the role of Hth in patterning endoblasts. Endoblasts asymmetrically divide in both the Hth+ (yellow cells) and Hth� (gray cells) regions of the

endoderm. Daughters that inherit basal determinants (green) become AMPs if Hth� and ICPs if Hth+. Daughter cells that inherit Numb (magenta) and Pros (blue)

become EEs in both regions.

Data analysis for (E): ordinary one-way ANOVA with Tukey post hoc test, *p < 0.05, **p < 0.005. Scale bars, 25 mm.

See also Figure S7 and Table S3.
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A comparison of gene expression between AMPs (cluster c) and

ICPs (cluster d) (Table S3) showed that, while Bx and fzr are

among the ICP-enriched genes, the gene most associated with

ICPs is hth, a Pbc/Meis Hox cofactor. Interestingly, Hth and

extradenticle (Exd) act together with Hox genes of the bithorax

complex to pattern neuroblast identity in the abdomen, thereby

determining the outcome of asymmetric neuroblast divisions.56,57

Hth has previously been found expressed in the midgut during

mid-embryogenesis, where it plays a role in the transduction of

signaling from the underlying visceral mesoderm.58 Our

scRNA-seq data indicated expression of hth in the midgut from

stages 8/9—well before interactions with the visceral mesoderm

occur (Figure 6A). We confirmed this expression by immuno-

staining for Hth and FISH, which showed that in stage-10 em-

bryos Hth is highly expressed in the distal tip of the endoderm

(Figure 6B)—overlapping with ICPs and a subset of PMECs,
EEs, and dividing endoblasts (Figure S7A–S7C). In contrast,

Hth is not expressed in the proximal midgut, where AMPs are

predominantly localized (Figures 6B and S7C). To investigate

whether Hth is required for endoblasts to form ICPs, we exam-

ined hth mutants59 for expression of the ICP marker Bx by

FISH and found a significantly reduced number of ICPs

(Figures 6C–6E). Additionally, in later-stage hth mutants, we

observed only very few cells in the central region of the midgut

with the large nuclei characteristic for ICPs (Figures S7D and

S7E). Remarkably, while the numbers of ICPs are reduced, the

numbers of AMPs increase in almost equal proportions, while

there are no changes in the corresponding number of EEs (Fig-

ure 6E). These results suggest that it is the patterning of the

endoderm downstream of Hth, and likely Hox gene regionaliza-

tion, which determines whether an endoblast division will give

rise to an EE and an AMP, or an EE and an ICP (Figure 6F).
Developmental Cell 60, 429–446, February 3, 2025 439



Figure 7. EEs undergo a second asymmetric division leading to differential Notch activation in daughter cells and specification of subpop-

ulations of EEs

(A) Immunofluorescence for Baz (green) and aTub (magenta) in a stage-12 embryo. Arrowheads point to asymmetrically dividing cells. White box is

enlarged in (A0).

(legend continued on next page)
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The Pros+ endoblast daughter cell undergoes a second
asymmetric division, generating distinct EE lineages
Our data show that in theDrosophila embryo commonmolecular

mechanisms drive asymmetric divisions of intestinal and neural

stem cells to generate multipotent progenitor cells. To determine

whether there are additional similarities in how downstream cell

lineages are determined, we focused on the Pros+ daughter cell.

In the embryonic nervous system, this cell is called the GMC and

divides a second time.41 The majority of GMC divisions are

asymmetric. The fate of the two daughters is dictated by levels

of Notch signaling, which is determined by differential inheri-

tance of Numb, an inhibitor of Notch signaling.60 Intriguingly, it

has recently been proposed that there may be an asymmetric di-

vision of a Pros+ midgut cell around embryonic stage 12–13,27

and the number of Pros+ EEs has been reported to double

mid-embryogenesis.17 Notch-dependent Hey expression is de-

tected in half of these,27 mirroring the asymmetric expression

of Hey after GMC divisions.60 By immunostaining for Pros and

aTub, we found that the Pros+ midgut cells undergo a second

asymmetric division, localizing Baz and Numb to opposing cres-

cents (Figures 7A–7D). As a result, while all daughter cells inherit

Pros and Brat (Figures 7C and 7D), one daughter inherits Numb,

which represses Notch signaling (Figure 7E), whereas the other

activates Notch, as seen by expression of the Notch target

Hey (Figure 7E).

These findings suggested that the Pros+ daughter of an endo-

blast division undergoes a second division, drawing parallels

with GMCs and as well as the so-called enteroendocrine mother

cells (EMCs) that have been described in the pupal midgut.29,61

We therefore named this cell the embryonic EMC (eEMC). Insc is

required for the correct orientation of GMC division with respect

to the basal orientation of Numb. Accordingly, GMC daughter

cells adopt equivalent cell fates in insc mutant embryos.62 To

determine whether the asymmetric division of EMCs plays a

functional role in the establishment of unequal daughter EE cell

fate, we stained for Hey in insc mutants and found that the pro-

portion of Hey+ EEs decreases significantly (Figure 7F). Further-

more, Numb is also required for the specification of EEs into

distinct populations, as the Hey+ EE population was significantly

increased inmutants with reduced numb activity (Figure 7F). This

suggests that Numb acts as a cell fate determinant in the embry-

onic midgut to produce EE diversity.

Beyond their similarities to nervous system development, the

division of EMCs to produce distinct EE subtypes draws parallels

with both the pupal and adult Drosophila midgut. In the pupal
(B and C) Immunofluorescence for Baz (green), Pros (magenta), and GFP (white) in

a second asymmetric division where Pros remains cytoplasmic (B and C,magenta

to polarized crescents (B) and are differentially inherited (C).

(D) Immunofluorescence for GFP (magenta) and Baz (green) in GFP-tagged Brat

(E) Immunofluorescence for GFP (white), Pros (green), and Hey (magenta) in sta

Notch inhibitor Numb (E0, white, asterisks) or the Notch target Hey (E00, magenta

(F) Quantification of the number of Hey+ EEs in stage-15 ctrl, insc, and numb mu

(G) Immunofluorescence for Hey (magenta), GFP (green), and Pros (blue) in stag

cells, and asterisks highlight Pros+Hey+Mirr+ cells.

(H) Quantification of the number of Mirr+ EEs in stage-15 ctrl, insc, and numb mu

(I and J) Diagram depicting the parallels between generation of the diverse cell typ

lines in (A) outline the posterior midgut.

In (F) and (H), each data point is an individual embryo. Lines represent the mean,

ordinary one-way ANOVA with Tukey post hoc test. Scale bars, 25 mm (A), 5 mm
midgut, an EMC is derived from the asymmetric division of a

pupal ISC. This pupal EMC also divides asymmetrically with

respect to Notch,29 although this appears independent of

Numb activity,61 and a role for Insc has not yet been described.

Similarly, adult ISCs can divide to produce an EE progenitor cell,

which divides again to produce EEs expressing different hor-

mones.54 The hormone signature of adult EEs is determined first

by differential Notch activation, wherein Notch-inactive (class I)

EEs express allatostatin C and Notch-active (class II) EEs ex-

press Tachykinin,63 with further subtypes determined by region-

alization along the midgut. The TF Mirror (Mirr) is expressed in

class II EEs in the adult midgut in a Notch-dependent manner

and is required for the expression of class II hormones.28,64 To

further establish the functional relevance of the eEMC asym-

metric division in EE diversity, we assayed our scRNA-seq

data for mirr expression and found that it expressed in the

same subpopulation of EEs as hey.

To confirm this, we examined Mirr expression in the stage-15

midgut. First, we found thatMirr was expressed in approximately

half of the EEs, consistent with its activation in only one of two

eEMC daughters (Figures 7G and 7H). Next, we saw that Mirr

and Hey were co-expressed in these EEs, consistent with their

joint activation through Notch activity (Figure 7G). Finally, the

number of Mirr+ EEs also decreased significantly in inscmutants

and increased in numb mutants (Figure 7H). This suggests that

the specification of embryonic EE subpopulations is reminiscent

of both the GMCs of the embryonic nervous system and the EE

precursors of the adult midgut. Furthermore, it suggests that the

Mirr+, Hey+, and Numb� cells will go on to form the Tk+ EEs of the

larval midgut, whereas the Mirr�, Hey�, and Numb+ cells will

form the presumptive AstC+ class I EEs.

DISCUSSION

Inmost organisms themost fundamental type of stem or progen-

itor cell in our body, the primordial germ cell, is set aside early

during embryogenesis and requires suppression of the somatic

program.65 In contrast, multipotent progenitor cells are gener-

ated from somatic tissue during later stages of development, af-

ter some degree of patterning and differentiation has already

occurred. One of the most well-understood examples is

Drosophila neuroblasts, which delaminate from the neuroecto-

derm and give rise to the entire nervous systemof an animal. Pre-

vious work has shown that the neurogenic and proneural gene

cassettes that act upstream of neuroblast specification in the
stage-12 embryos expressing GFP-tagged Numb. Pros+midgut cells undergo

), and Baz (B andC, green, arrow) and Numb (B and C, white, asterisks) localize

-expressing embryos during the second asymmetric division.

ge-12 embryos expressing GFP-tagged Numb. Pros+ EEs either express the

, arrows) at this stage.

tant embryos.

e-15 embryos expressing GFP-tagged Mirr. Arrows point to Pros+Hey�Mirr�

tant embryos.

es in the Drosophila nervous system (I) and digestive system (J). Yellow dotted

and error bars are standard deviation. **p < 0.01, ***p < 0.001, ****p < 0.0001,

(B–E), and 10 mm (G).
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neuroectoderm are also active in the endoderm and required for

midgut cell specification in the early embryo.15 Here, we focus on

events after Notch/Delta signaling has refined the expression of

proneural genes to individual cells and show that there are many

commonalities in how the progenitors cells of the nervous and in-

testinal system are generated, as well as in the initial stages of

lineage specification (Figures 7I and 7J).

We show that three of the embryonic midgut cell types, the

AMPs, ICPs, and EEs, are generated from a cell that delaminates

from the endoderm-epithelium. These precursor cells—which

we call endoblasts—showmarked parallels with embryonic neu-

roblasts. First, after delamination, both cells undergo an asym-

metric cell division to generate daughter cells of uneven size,

with the smaller GMC/eEMC subsequently undergoing a second

asymmetric division. Second, they both use Insc to orientate the

mitotic spindle such that cortical Mira, Pros, Brat, and Numb are

segregated to the smaller daughter to direct the cell toward dif-

ferentiation. Third, when the spindle orientation is perturbed, loss

of basal protein targeting at metaphase is rescued through telo-

phase rescue.50 Finally, the outcome of divisions of both cell

types is determined by regional patterning, with Hth determining

whether the larger daughter of an endoblast will produce an AMP

or an ICP, with AMPs entering quiescence and remaining

capable of renewed division at a later stage, and the Hth+ ICPs

permanently exiting the cell cycle. Interestingly, in a subset of

neuroblasts, Hth has been shown to trigger cell-cycle exit,

although these cells then undergo apoptosis, rather than

endoreplication.56

In addition to the marked similarities in how the progenitor

cells of the nervous and intestinal systems are generated, there

are also several differences. While neuroblasts delaminate

basally from the neuroepithelium, the endoblasts delaminate

apically. By delaminating basally, neuroblasts and their lineages

can proliferate toward the center of the embryo, forming an inter-

nal central nervous system, which is further structured and strat-

ified through orientation of the dividing stem cells.66 However,

were endoblasts to delaminate basally from the endoderm, this

would perturb the endoderm-mesoderm contact required for

embryonic midgut morphogenesis.11,67 This may have placed

constraints on the direction of delamination of endoderm cells

and raises the question of how the mechanisms of delamination

differ. Neuroblast delamination is driven through apical constric-

tion and adherens junction disassembly,68 whereas endoblasts

undergoing delamination appear to maintain an apical surface

and are basally constricted (Figures 3B2 and 3C). It would be

interesting to examine whether the delamination of endoblasts

is mechanistically similar to the apical extrusion of cells during

epithelial homeostasis, where neighboring cells act to squeeze

the extruded cells at their basal sides to remove them.69,70

Another difference is that in the embryo neuroblasts divide

multiple times, self-renewing with each asymmetric division,

whereas the AMPs appear to immediately enter quiescence until

early larval stages.7–9 At this point, signals from the visceral mus-

cle, which ensheathes the midgut, activates EGFR signaling in

the AMPs and triggers their self-amplification through multiple

rounds of symmetric divisions.7While themajority of neuroblasts

divide and then enter apoptosis once the neuronal lineages are

complete, a subset of neuroblasts in the cephalic and thoracic

regions enter quiescence later in embryogenesis before re-
442 Developmental Cell 60, 429–446, February 3, 2025
entering mitosis in larval stages.43 It will be interesting to see

whether quiescence in AMPs and in these neuroblasts are driven

through similar mechanisms.

During late metamorphosis, the majority of AMPs will activate

Notch and differentiate into ECs, the absorptive epithelial cells

that will line the majority of the adult midgut. A small fraction of

AMPs maintain expression of esg, move basally, and form the

pupal ISCs.7 These cells undergo a phase of self-amplification

through symmetric divisions until the secretion of ecdysone

from the dorsal internal oblique muscles triggers them to switch

to asymmetric divisions.71 Previous studies have highlighted the

similarities between asymmetric divisions in pupal ISCs and em-

bryonic and larval neuroblasts including the use of Baz/Par3 to

define apical-basal polarity, the segregation of Mira and Pros

to the basal daughter cell, and the generation of pupal EMCs,

which divide once more using asymmetric Notch signaling to

establish different faces among their daughters.29,61 It is

intriguing to note that all these features appear to be shared

with the endoblast in the early embryo, suggesting that as for

the nervous system, these mechanisms are reiterated

throughout the different developmental stages.

Our study establishes that during Drosophila embryogenesis

neural and ISC lineages arise through parallel cascades of asym-

metric cell division driven by common molecular mechanisms.

Drosophila neuroblasts have long been considered a powerful

model for vertebrate neural stem cell biology,72 and our results

suggest that findings in this system may be more widely appli-

cable than previously anticipated. Finally, they lend weight to

the concept of a shared evolutionary origin for the digestive

and nervous systems. This has largely been driven by studies

in basal animals such as the cnidarian Nematostella vectensis,

a useful model for the emergence of the early nervous system,

and sea sponges. Despite not having a nervous system, a ‘‘neu-

roid’’ cell typewas recently identified in the sea sponge Spongilla

lacustris. Associated with the digestive chambers, it signals to

digestive cells using gene networks shared with the neuronal

synapses of higher organisms.73 Additionally, while the nervous

system and digestive system are derived from distinct germ

layers in bilaterians—namely the ectoderm and endoderm,

respectively—in Nematostella, there appears to be an overlap

between these two germ layers,74 suggesting that while sepa-

rated in bilaterians, the digestive system and nervous system

may share a common ancestral tissue. Additionally, recent

studies of Nematostella development showed that neurons and

secretory cells originate from a common pool of progenitor

cells,75,76 potentially providing the first glimpse of a digestive-

nervous system intermediate cell type. Incorporating our find-

ings in Drosophila, we propose that the putative ancestor tissue

to the digestive and nervous systems possessed the ability to

divide asymmetrically through the segregation of conserved

cell fate determinants. This machinery, and the cell fate special-

ization it can provide, would then have been inherited by both or-

gans to drive the functional specification of their constituent

cell types.

Limitations of the study
A central finding in this paper was that the AMP, ICP, and EE

cells in the embryonic midgut are derived from an intermediate

cell type. While these findings were supported by scRNA-seq
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data, IF staining and FISH for cell markers in precisely staged

fixed wild-type embryos, as well as cell counts in mutants,

we have not yet followed the emergence of these cell types us-

ing live imaging. Imaging of the midgut at this stage of develop-

ment is extremely challenging due to the timing of endoblast

delamination and the depth of the tissue within the embryo.

Development of live imaging should inform further on the tem-

poral dynamics of this process. Furthermore, while other

studies have focused on midgut cell behavior and fate during

the larval-to-pupal and pupal-to-adult transitions, the precise

behavior of midgut cells during late embryogenesis and early

larval stages remains unclear. A full lineage tracing from em-

bryo to adult using new markers provided in this study would

be the definitive way of revealing the link between the endo-

dermal cells in the embryo and the cells of the adult

intestine and could also be refined to reveal deeper layers of

regionalization that are likely formed during the earliest stages

of embryogenesis.
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Deposited data
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release/data/annotation/html/
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D. melanogaster: OreR Bloomington Drosophila Stock Center BDSC: 5; Flybase: FBsn0000277

D. melanogaster: hkb-Gal4 Gift from Helen Skaer (University of

Cambridge)

N/A

D. melanogaster: 48Y-Gal4 Bloomington Drosophila Stock Center BDSC: 4935; Flybase: FBal0063393
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Bloomington Drosophila Stock Center BDSC: 66463; Flybase: FBal0280034

D. melanogaster: Mi{PT-GFSTF.1}bratMI02407-GFSTF.1 Bloomington Drosophila Stock Center BDSC: 59793; Flybase: FBti0178502

D. melanogaster: mirrGFP.FPTB Bloomington Drosophila Stock Center BDSC: 68183; Flybase: FBti0187379

D. melanogaster: P{Gal4-pros.MG}3 Bloomington Drosophila Stock Center BDSC: 80572; Flybase: FBti0201782

D. melanogaster: P{neoFRT}82B miraL44 e* Bloomington Drosophila Stock Center BDSC: 66670; Flybase: FBal0082443

D. melanogaster: w*; pros17 Bloomington Drosophila Stock Center BDSC: 5458; Flybase: FBal0032479

D. melanogaster: insc22 Bloomington Drosophila Stock Center BDSC: 39678; Flybase: FBal0046159

D. melanogaster: w* dlg114 P{FRT(whs)}101 Bloomington Drosophila Stock Center BDSC: 36283; Flybase: FBal0002683

D. melanogaster: Df(3R)Exel6158 Bloomington Drosophila Stock Center BDSC: 7637; Flybase: FBab0038213

D. melanogaster: P{hsneo}numb1 Bloomington Drosophila Stock Center BDSC: 4096; Flybase: FBti0002470

Oligonucleotides

d2eGFP HCR v3.0 probe set (B3) Molecular Instruments N/A

eGFP HCR v3.0 probe set (B3) Molecular Instruments N/A

Bx HCR v3.0 probe set (B1) Molecular Instruments Accession Number: NM_167625.3

Bx HCR v3.0 probe set (B2) Molecular Instruments Accession Number: NM_167625.3

pros HCR v3.0 probe set (B1) Molecular Instruments Accession Number: NM_001260116.2

sna HCR v3.0 probe set (B4) Molecular Instruments Accession Number: NM_057384.4

mirr HCR v3.0 probe set (B2) Molecular Instruments Accession Number: NM_079323.4

hth HCR v3.0 probe set (B2) Molecular Instruments Accession Number: NM_057228.5

B1 546 HCR amplifier Molecular Instruments N/A

B1 647 HCR amplifier Molecular Instruments N/A
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B2 546 HCR amplifier Molecular Instruments N/A

B2 647 HCR amplifier Molecular Instruments N/A

B3 488 HCR amplifier Molecular Instruments N/A

B4 488 HCR amplifier Molecular Instruments N/A

B4 647 HCR amplifier Molecular Instruments N/A

Software and algorithms

Fiji Fiji https://imagej.net/Fiji/Downloads

Zen Blue v2.3 Carl Zeiss Inc. N/A

Zen Black v2.3 Carl Zeiss Inc. N/A

Cellranger v4-0.0 and v3.0.2 10x Genomics https://www.10xgenomics.com/

support/software/cell-ranger/latest

R The R Foundation https://www.r-project.org/

Seurat v4.1.1 Hao et al.90 https://satijalab.org/seurat/;

RRID: SCR_016341

RMagic (v2.0.3) van Dijk et al.91 https://github.com/cran/Rmagic

Monocle v3_1.0.0 Trapnell et al.19 http://cole-trapnell-lab.github.io/

monocle-release/
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Fly Husbandry
Flies were raised at 18�C to 25�C on standard cornmeal food during stock maintenance. During embryo collections, flies were fed on

apple juice plates supplemented with yeast paste.

Fly strains
Embryos driving UAS-stingerGFP (BDSC 84277) in the midgut using either hkb-Gal4 (a gift from Helen Skaer) or 48Y-Gal4 (BDSC

4935), or OreR (BDSC 5), were used as wildtype controls. Embryos collected for analysis were of mixed sex, with the exception

of dlg114 mutants, which were hemizygous mutant males.

Null mutant alleles used in this study are pros17 (BDSC 5458), insc22 (BDSC 39678), and dlg114 (BDSC 36283). Df(3R)Exel6158

(BDSC 7637) is a deficiency which abolishes transcription of all hth splice variants except the G isform, the product of which remains

cytoplasmic.59 For reducing the activity of Numb, the hypomorphic numb1 allele77 was used (BDSC 4096). All mutant embryos were

zygotic mutants but not maternal. Fluorescently tagged stocks used are MiraeGFP, 78, NumbGFP,79 ProsGFP.FPTB (BDSC 66463), Brat-

GFP (59793) and MirrGFP (BDSC 68183). Lineage tracing in the embryo was performed using Pros-Gal4 (BDSC 80572)

METHOD DETAILS

Drosophila embryo fixation and immunofluorescence
Embryos for standard stainings were dechorionated using 50% bleach for 3 minutes, fixed in 4% PFA for 20 minutes, and then de-

vitellinisedwithmanual shaking. Embryoswere permeabilised and blocked in PBS+ 0.2%Triton X-100 (PBT) + 0.1%BSA for 2 hours.

Primary antibodies were incubated overnight at 4�C, while secondary antibodies were incubated for 2 hours at room temperature.

Embryos for microtubule stainings were fixed in accordance with previous studies,80 and blocked in PBT + 5% BSA for 2 hours. Pri-

mary antibodies used were: goat anti-GFP 1:500 (AB6673), rabbit anti-GFP 1:1000 (PABG1), mouse anti-prospero 1:100 (MR1A),

guinea pig anti-Snail 1:100081 (a gift fromMoWeng), mouse anti-Hindsight 1:20 (1G9), rabbit anti-Snakeskin 1:20082 (a gift fromMikio

Furuse), rat anti-Grain 1:200 (Ab87)83 (a gift from Alain Garces), rabbit anti-Bazooka N-term 1:20049 (a gift from Andreas Wodarz),

rabbit anti-aPKC 1:200 (sc-216), mouse anti-aTubulin 1:200 (T6199), guinea pig anti-Miranda 1:40078 (a gift from Jens Januschke),

guinea pig anti-Forkhead 1:500 (a gift from Jordi Casanova), rat anti-brat84 1:100 (a gift from Robin Wharton), rabbit anti-Homo-

thorax85 (a gift from Barry Denholm), rat anti-Escargot86 1:200 (a gift from Claude Desplan) and guinea pig anti-Hey 1:100060

(a gift from Maria Monastirioti). DAPI was used as a DNA stain at a concentration of 1:250. Secondary antibodies, used at a concen-

tration ranging from 1:100-200, were as follows: Donkey anti-Goat Alexa Fluor Plus 488 (A32814), Donkey anti-Rabbit Alexa Fluor

Plus 488 (A32790), Donkey anti-Mouse Alexa Fluor Plus 555 (A32773), Donkey anti-Rat Alexa Fluor Plus 555 (A48270), Donkey

anti-Rabbit Alexa Fluor Plus 555 (A32794), Donkey anti-Mouse Alexa Fluor Plus 647 (A32787), Goat anti-Guinea Pig Alexa Fluor

647 (A-21450), and Donkey anti-Guinea Pig Cy5 (Jackson ImmunoResearch; AB_2340462). Unless otherwise stated, secondary

antibodies were sourced from Thermo Fisher Scientific. Embryos were mounted in ProLong Glass Antifade Mountant

(Thermo Scientific).
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HCR in situ hybridisation
HCR in situ hybridisation was performed using an adapted versions of previously-published protocols.87,88 HCR v3.0 probes

(d2eGFP-B3, eGFP-B3, Bx-B1, Bx-B2, pros-B1, sna-B4, hth-B2 and mirr-B2) and hairpins (B1 546, B1 647, B2 546, B2 647, B3

488, B4 488 and B4 647) were synthesised by Molecular Instruments. Following standard fixation, embryos were incubated in Probe

Hybridization Buffer (Molecular Instruments) at 37�C for 30 minutes then hybridised with Probe Hybridisation Buffer (Molecular In-

struments) containing HCR probes overnight at 37�C. Embryos were washed four times for 15 minutes each, using pre-warmed

Probe Wash Buffer (Molecular Instruments) at 37�C. Embryos were then washed twice at room temperature in 5x SSC buffer,

pre-amplified in Probe Amplification Buffer (Molecular Instruments) for 10 minutes, and then incubated overnight in Probe Amplifi-

cation Buffer containing snap-cooled HCR hairpins at room temperature in the dark. Excess hairpins were removed with two

5 min washes with 5x SSC, followed by 2 washes for 30 minutes and a final 5 minute wash in 5x SSC. Embryos were mounted in

ProLong Glass Antifade Mountant (Thermo Scientific).

Image collection
Confocal images were generated using a Zeiss LSM880 with the Plan-Apochromat 25x/0.8 multi-immersion lens with oil, Plan-

Apochromat 40x/1.3 oil immersion lens, or the Plan-Apochromat 63x/1.4 oil-immersion lens. Images were captured with either

the internal GaAsP detector or an Airyscan detector; Airyscan processing was performed on Zen software. All images in the paper

are oriented with the anterior facing the left. Image analysis (detailed below) was performed using Fiji and associated plugins.

ScRNAseq methods
Sample collection

Living embryos were collected within 2 hour time windows (3.5-5.5 hours (T1) 5-7 hours (T2) 6.5-8.5 (T3) 8-10 hours (T4)). They were

dechorionated and gently stuck down on a thin strip of double-sided sticky tape, and the tape mounted on poly-L-lysine coated cov-

erslips. They were covered in cold 0.01% PBS-BSA and dissected by mouth pipetting using sharpened pulled capillary needles as

described in.9 Immediately after dissecting 10 embryos within a 30 mins period, the tissue was pooled and dissociated into single

cells by mouth pipetting using pulled glass capillaries while the samples are incubating in 1X of the mild cell dissociation buffer

TrypLE Express (Gibco). After a total of 10 mins of time dissociating, cells were fixed in pre-chilled to -20�C Methanol to a final con-

centration of 80:20Methanol:PBS and stored at -80�C. Prior to library preparation, 15 samples of 10 embryoswere pooled per collec-

tion window. Cells were rehydrated in 0.01% PBS-BSA with the RNAase inhibitor RiboLock and filtered through a 20mm cell strainer

before resuspending, ready for scRNA library preparation.

Library Generation

Single cell RNA libraries were generated from each of the four single cell suspensions using the 10xGenomics Chromium single cell 3’

reagents kit v3. Cells were mixed with reagents for Gel Beads-in-emulsion (GEM) formation and loaded onto a Chromium Next GEM

Chip B for GEM creation. 100ml of each sample was recovered from the chip and placed into tubes and incubated in a GEM reverse

transcriptase reaction for 45 mins at 53�C and 5 mins at 85�C. Recovery reagent was added to each sample and the aqueous phase

recovered. This was then cleaned with magnetic Dynabeads MyOne silane beads by incubation with the beads at room temperature

for 10 mins, 80% ethanol washing of captured beads and finally eluting the sample from the beads. cDNA primers and amplification

mix was added and 11 cycles of RT amplification performed. The product was purified with SPRIselect reagent and the recovered

sample checked for concentration and profile on an Agilent Bioanalyser high sensitivity chip.

25% of this product was used for library generation. Reagents for fragmentation/end repair were added and the samples heated at

32�C for 5 mins followed by incubation at 65�C for 30mins. The samples were purified using SPRIselect using a double size selection

approach. Adaptor oligos were added by ligation and after a further clean up step, sample indexes (chromium i7 plate single index)

were added via 11/12 cycles of PCR, with 12 cycles for samples that had a lower cell count. The final product was cleaned with

SPRIselect reagent using a double size selection approach.

Library Sequencing

The libraries were checked using Qubit assay and the size by an Agilent Bioanalyser high sensitivity chip. Libraries were pooled at an

equimolar proportion based on this information and the quantity and quality of the pool was assessed by Qubit and the Bioanalyzer,

and subsequently by qPCRusing the Illumina Library Quantification Kit fromKapa on a Roche Light Cycler LC480II according toman-

ufacturer’s instructions.

For the above qPCR, a 10 ml PCR reaction (performed in triplicate for each pooled library) was prepared on icewith 6 ml SYBRGreen

I Master Mix and 2 ml diluted pooled DNA (1:1000 to 1:100,000 depending on the initial concentration determined by the Qubit dsDNA

HSAssay Kit). PCR thermal cycling conditions consisted of initial denaturation at 95�C for 5minutes, 35 cycles of 95�C for 30 seconds

(denaturation) and 60�C for 45 seconds (annealing and extension), melt curve analysis to 95�C (continuous) and cooling at 37�C
(LightCycler LC48011, Roche Diagnostics Ltd, Burgess Hill, UK).

Following calculation of the molarity using qPCR data, template DNA was diluted to 250pM and denatured for 8 mins at room tem-

perature using freshly diluted 0.2 N sodium hydroxide (NaOH) and the reaction was subsequently terminated by the addition of

400mM pH 8 Tris-HCl. To improve sequencing quality control 1% PhiX (Illumina) was spiked in. The libraries were sequenced on

the Illumina NovaSeq 6000 platform (Illumina) following the XP workflow on 2 lanes of an SP flow cell at the configuration 28/8/91

as specified by 10x genomics. scRNAseq libraries were sequenced obtaining a total of 1723M raw reads.
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ScRNAseq data processing
Alignment and read count

Fastq files were processed with the 10x Genomics software Cellranger (v4-0.0) using the Drosophila melanogaster reference tran-

scriptome built with genome version r6.32 for data from collection windows (CWs) 1 and 2. For CWs 3 and 4, Cellranger (v3.0.2)

and reference 6.29 was used. Default values were used for all parameters. The number of genes and cells detected per sample

were: CW1, 23932 genes, 10093 cells; CW2, 23932 genes, 8509 cells; CW3, 17562 genes, 7731 cells; CW4, 17562 genes,

6080 cells.

Normalization

Count matrices were read into R (v4.1.3)89 and merged into a single Seurat (v4.1.1) object.90 All following functions belong to the

Seurat package unless specified. Ribosomal genes were excluded from the count matrix and cells with less than 2500 read counts

were discarded. After applying quality filters, this resulted in the gene expression profiles of 21796 cells, with an average of 10886

counts and 3919 genes detected per cell. Cell cycle phase scores were computed using the function CellCycleScoring with the

homologs of the human gene sets included in the Seurat package. Expression was normalized with the SCT_transform function,

regressing out the S and G2M scores and the percent of mitochondrial reads per cell.

Normalization of the Midgut compartment

We selected cells in the connected component containing Midgut and Malpighian tubules and normalized them following the same

procedure as in the whole dataset. To generate two-dimensional maps of midgut cells only, we recalculated the Uniform Manifold

Approximation and Projection (UMAP) representation after removing all Malpighian tubule cells. Midgut-only UMAPs were vertically

reflected for ease of annotation.

Dimensionality reduction and clustering

Dimensionality reduction was performed through the function RunPCA, followed by the calculation of the UMAP using the first 12

principal components. Unsupervised clustering was found with the functions FindNeighbors, with 12 components, and FindClusters

with resolution 1.2.

Gene expression imputation and smoothing and marker identification

Gene expression was imputed and smoothed usingMAGIC (Rmagic v2.0.3).91 For theMidgut compartment we used 9 principal com-

ponents for finding clusters. MAGIC expression scores were used for all expression plots. Population markers were found using the

function FindMarkers with default parameters. Gene set scores were computed as the mean of the Magic expression of the corre-

sponding genes.

Annotation of cell populations

Differential expression of unsupervised clusters against the rest of the cells were found and compared to markers of known

populations.

Pseudotime computation

Monocle (v 3_1.0.0)19 was used to compute pseudotimes. For the whole dataset the number of centres for the learn_graph function

was set to the default value (300 for the midgut subset).

Gene set enrichment analysis

Functional enrichment was computed using a hypergeometric test as implemented in the function phyper from R. The universe was

defined as all the genes in the expression matrix. Gene ontology definitions were downloaded org.DM.eg.db v3.0.0.92 Broad Hall-

marks were downloaded from the Molecular Signatures database v5.193 and converted to Drosophila melanogaster gene symbols

using the biomaRt T package.94 GOSLIM gene sets were downloaded from http://geneontology.org/docs/download-ontology/ and

filtered to retain only main terms.

QUANTIFICATION AND STATISTICAL ANALYSIS

Cell counting
Embryoswere imaged at stage 15when intending to count EEs, EE subpopulations, or AMPs. Stage 12 embryoswere imaged for ICP

cell counts, as this allowed us to count cells in the posterior midgut cluster prior to both its fusion with the anterior midgut and the

initiation of signalling from the mesoderm to specify the gastric region.95 All cells were counted using the Cell Counter plugin. Any

Sna+Pros+ cells were considered EEs for the purposes of cell counting.

Spindle orientation
To quantify spindle orientation, a segmented line was drawn following the apical surface of the midgut epithelium on either side

of the endoblast. A third line was drawn to span the endoblast and connect the two lines on either side. A fourth line was drawn

along the angle of the mitotic spindle, and the angle of intersection between the third and fourth lines was determined. Mitotic

spindle orientation quantification was performed on dividing endoblasts from early stage 10 embryos when endoblasts sit atop

the apical layer of the midgut epithelium. During late stage 10 and early stage 11, endoblasts continue dividing concurrent with

the epithelial-mesenchymal transition, making orientation of the spindle with respect to the epithelial layer difficult to calculate

accurately.
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Nuclear area and cell size measurement
Nuclear area was calculated by drawing around the border of DAPI signal at the largest z-frame of a nucleus. The Fiji measure tool

was then used to determine the area at this widest point. To normalise nuclear size values between embryos, mesoderm nuclei were

measured in each embryo and a size value relative to mesoderm nuclei was calculated for each of the midgut AMP and ICP nuclei.

Daughter cell sizes during endoblast cell division were measured during anaphase or telophase. A line was drawn between the

narrowest points of the cleavage furrow, separating a dividing cell into two daughters. A line was then drawn around the cell cortex

for each daughter and the area determined using the measure tool.

Neuroblast and endoblast polarity quantification
The Fiji line tool was used to draw a 50 pixel-wide line across the length of a dividing cell, and fluorescence intensity measured. Fluo-

rescence levels were normalised to the maximum intensity value, and normalised for cell length. The line was oriented along the axis

of division by drawing the line through themitotic spindle or, where themitotic spindle was not stained, drawing the line perpendicular

to the DAPI signal at metaphase. To quantify asymmetric segregation of cell fate determinants in wild type versus mutant genotypes,

the highest intensity signal in the first 10% versus the last 10% of each cell was used to calculate the proportion of signal segregated

along the axis of division.
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