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The set of minimal primes of a ring is a very important set as far the spectrum of a 
ring is concerned as every prime contains a minimal prime. So, knowing the minimal 
primes is the first (important and difficult) step in describing the spectrum. In the 
algebraic geometry, the minimal primes of the algebra of regular functions on an 
algebraic variety determine/correspond to the irreducible components of the variety. 
The aim of the paper is to obtain several descriptions of the set of minimal prime 
ideals of localizations of rings under several natural assumptions. In particular, the 
following cases are considered: a localization of a semiprime ring with finite set of 
minimal primes; a localization of a prime rich ring where the localization respects 
the ideal structure of primes and primeness of certain minimal primes; a localization 
of a ring at a left denominator set generated by normal elements, and others. As an 
application, for a semiprime ring with finitely many minimal primes, a description 
of the minimal primes of its largest left/right quotient ring is obtained.
For a semiprime ring R with finitely many minimal primes min(R), criteria are given 
for the map

ρR,min : min(R) → min(Z(R)), p �→ p ∩ Z(R)

being a well-defined map or surjective where Z(R) is the centre of R.
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1. Introduction

Notation. In this paper, module means a left module, and the following notation is fixed:

• R is a ring with 1, R× is its group of units, Z(R) is the centre of R, nR is the prime radical and rad(R)
is the radical of R, and min(R) is the set of minimal primes of R;

• Spec(R) is the prime spectrum and Specc(R) is the completely prime spectrum of R;
• Denl(R, a) is the set of left denominator sets S of R with assl(S) = a where a is an ideal of R and 

assl(S) := {r ∈ R | sr = 0 for some s ∈ S};
• For S ∈ Denl(R, a), min(R, S) := {p ∈ min(R) | p ∩ S = ∅} and min(R, S, id) := {p ∈

min(R) | S−1pS−1R �= S−1R};
• max.Denl(R) is the set of maximal left denominator sets of R (it is a non-empty set, [2]);
• CR is the set of regular elements of the ring R (i.e. CR is the set of non-zero-divisors of the ring R);
• Ql,cl(R) := C−1

R R is the left quotient ring (the classical left ring of fractions) of the ring R (if it exists);
• Sl,a(R) is the largest element of the partially ordered set (poset) (Denl(R, a), ⊆) and Ql,a(R) :=

Sl,a(R)−1R is the largest left quotient ring associated to a, Sl,a(R) exists, [2, Theorem 2.1.(2)];
• In particular, Sl(R) = Sl,0(R) is the largest element of the poset (Denl(R, 0), ⊆) and Ql(R) := S−1

0 R is 
the largest left quotient ring of R;

• For a commutative ring R and p ∈ Spec(R), Rp :=
(
R\p

)−1
R is the localization of R at the prime ideal 

p.

Semiprime ideals and minimal primes. Prime and semiprime rings are large and important classes of rings 
both in commutative and non-commutative algebra. They also have geometric flavour. The algebra of regular 
functions on an affine algebraic variety is a semiprime algebra and the corresponding ideal of definition of 
the variety is a semiprime ideal. If, in addition, the variety is irreducible then the algebra of regular functions 
on it is a prime algebra and the defining ideal is a prime ideal. In the algebraic geometry, the minimal primes 
of the algebra of regular functions correspond to the irreducible components of the algebraic variety and 
generators of minimal primes are the equations of the corresponding irreducible component of the variety. 
In the commutative situation, localizations respect many operations and concepts. This is not the case in 
the noncommutative setting (in general, a localization of an ideal is not an ideal, a localization of a prime 
ideal is not a prime ideal, there is little connection between prime ideals of a ring and its localization, etc).

Let us describe the main results and the structure of the paper. At the beginning of Section 2, we recall 
some results on localizations that are used in the paper. Suppose that a is an ideal of a ring R. In general, 
the left ideal S−1a of the ring S−1R is not an ideal. Proposition 2.4 is a criterion for the left ideal S−1a

being an ideal of S−1R. Corollary 2.7 presents criteria for a localization of a prime ideal being a prime ideal 
(under certain conditions).

The set min(S−1R) where R is a prime rich ring and S respects the ideal structure of primes. A ring is 
called a prime rich ring if each ideal contains a finite product of prime ideals that contain it. Proposition 1.1
is a criterion for a ring being prime rich where min(a) is the set of minimal primes over an ideal a (its proof 
is given in Section 2).

Proposition 1.1. For a ring R the following conditions are equivalent:

1. The ring R is a prime rich ring.
2. Every ideal a of R contains a finite product of its minimal primes.
3. For every ideal a of R, | min(a)| < ∞ and the prime radical nR/a of the factor ring R/a is a nilpotent 

ideal.
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Every one-sided Noetherian ring R is prime rich. A left denominator set S of a ring R is called an ideal 
preserving left denominator set (or a left denominator set that respects the ideal structure of R) if the map

S−1 : I(R) → I(S−1R), I 	→ S−1I

is a well-defined map, i.e. for each ideal I of R, the left ideal S−1I of the ring S−1R is an ideal (where I(R)
is the set of all ideals of R). We say that a left denominator set S of a ring R respects the ideal structure 
of primes of R if for each prime ideal p ∈ Spec(R) the left ideal S−1p of the ring S−1R is an ideal. All the 
left denominator sets of a left Noetherian ring are ideal preserving and as a result also respect the ideal 
structure of primes.

For a prime rich ring R and its left denominator set S ∈ Denl(R, a) that respects the ideal structure of 
primes, Proposition 1.2 describes the set of minimal primes of the ring S−1R via the minimal primes of the 
ring R.

Proposition 1.2. Suppose that R is a prime rich ring, a left denominator set S ∈ Den(R, a) respects the ideal 
structure of primes and S−1p ∈ Spec(S−1R) for all p ∈ min(R, S). Then

1. 1 ≤ | min(R, S)| ≤ | min(R)| < ∞, the set

min(S−1R) = min{S−1p | p ∈ min(R,S)}

is a finite set and | min(S−1R)| ≤ | min(R, S)| < ∞.
2. min(S−1R) = {S−1p | p ∈ min(R, S)} iff the ideals {S−1p | p ∈ min(R, S)} are incomparable.
3. If in addition, for each prime ideal p ∈ min(R, S), the ideal σ−1

S (S−1p) is a finitely generated right 
R-module (e.g. R is a right Noetherian ring) then

min(S−1R) = {S−1p | p ∈ min(R,S)}

where σS : R → S−1R, r 	→ r
1 .

Corollary 1.3. Suppose that R is a right Noetherian ring, S ∈ Den(R, 0) and S−1R is a left Noetherian ring 
(e.g. R is a Noetherian ring). Then

min(S−1R) = {S−1p | p ∈ min(R,S)}.

In particular, min(R, S) �= ∅.

A proof of Proposition 1.2 and Corollary 1.3 are given in Section 2.

Description of the set of minimal primes of a localization of a semiprime ring at a regular denominator 
set. The aim of Section 3 is to prove Theorem 1.4.(2) that provides an explicit description of the set 
of minimal primes of localizations of semiprime rings provided that they have only finitely many minimal 
primes (statement 1 is a known result). Theorem 1.4.(2) is one of the key facts in understanding the structure 
of embeddings of localizations of semiprime rings into semisimple or semiprimary rings, see [5].

Theorem 1.4. Let R be a semiprime ring and S ∈ Denl(R, 0). Then

1. The ring S−1R is a semiprime ring.
2. If, in addition, | min(R)| < ∞ then min(S−1R) = {S−1p | p ∈ min(R)}, i.e. the map min(R) →

min(S−1R), p 	→ S−1p is a bijection and | min(S−1R)| = | min(R)|.
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3. If, in addition, | min(R)| < ∞ then πp(S) ∈ Denl(R/p, 0) and

πp(S)−1(R/p) � S−1R/S−1p � S−1(R/p)

where πp : R → R/p, r 	→ r + p.

In general, for a ring R, its classical left quotient ring of R,

Ql,cl(R) := C−1
R R,

does not exist (e.g. the algebras of polynomial integro-differential operators, [1]) but for each ring R there 
is the largest left Ore set Sl(R) of regular elements of R and the ring

Ql(R) := Sl(R)−1R

is called the largest left quotient ring of R, [1,2]. As a corollary, for a semiprime ring R with finitely many 
minimal primes, Corollary 3.3 describes the set of minimal primes of the largest left quotient ring Ql(R) of 
R.

Corollary 3.4 is a generalization of Theorem 1.4 to the case when the denominator set S contains zero 
divisors of R. To be more precisely, S ∈ Denl(R, a) where a ∈ Spec(R).

Theorem 3.9 is a generalization of Theorem 1.4.(2,3) for left denominator sets that contain zero divisors.
Proposition 1.5, which is a corollary of Theorem 3.9, describes the set of minimal primes, min(S−1R), 

of a localization of a semiprime ring R under conditions that hold for all commutative semiprime rings 
(namely, for all p ∈ min(R, S), p is a completely prime ideal of R and S−1p is an ideal of S−1R).

Proposition 1.5. Let R be a semiprime ring with | min(R)| < ∞ and S ∈ Den(R, a). Suppose that for all 
p ∈ min(R, S), p is a completely prime ideal of R and S−1p is an ideal of S−1R. Then

1. The ring S−1R is a semiprime ring with min(S−1R) = {S−1p | p ∈ min(R, S)} ⊆ Specc(S−1R).
2. In statement 1, all ideals in the set min(S−1R) are distinct, i.e. | min(S−1R)| = | min(R, S)|.

Proofs of Theorem 1.4 and Proposition 1.5 are given in Section 3.

Description of minimal primes of localizations of rings at multiplicative sets generated by normal ele-
ments. Inversion of elements in a ring is an important and difficult operation that ‘simplifies’ the situation 
as a rule. Ore’s method of localization is an example of a theory of one-sided fractions where by definition 
only the elements of a denominator set can be inverted and the result is a ring of one-sided fractions which 
always exists, i.e. it is not equal to zero, [13,9,12]. In [1, Theorem 4.15], it is proven that the elements of an 
arbitrary (left and right) Ore set can be inverted and the result is also a ring of one-sided fractions (which 
always exists) but in general Ore set is not a denominator set. This was the starting point in [3] and [4]
where the most general theory of one-sided fractions was presented.

Theorem 1.6. ([3, Theorem 1.6.(1,2)]) Let R be a ring and S ∈ Ore(R).

1. a := {r ∈ R | srt = 0 for some elements s, t ∈ S} is an ideal of R such that a �= R.
2. Let π : R → R := R/a, r 	→ r = r + a. Then S := π(S) ∈ Den(R, 0), assR(S) = a, S is a localizable set, 

and R〈S−1〉 � S
−1

R, an R-isomorphism (the ring R〈S−1〉 is defined in (7)).
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Let R be a ring and S be a multiplicative subset of R which is generated by normal elements of R. Recall 
that an element x ∈ R is called a normal element of R if Rx = xR. Clearly, S ∈ Ore(R) is an Ore set of R. 
By Theorem 1.6, S is a localizable set of R such that assR(S) = a and R〈S−1〉 � S

−1
R, see Section 4 for 

details. We keep the notation of Theorem 1.6. Let

π̃ : R → R̃ := R/nR, r 	→ r̃ = r̃ = r + nR

where nR is the prime radical of the ring R. There are bijections

min(a) π→ min(R) π̃→ min(R̃), p 	→ p 	→ p̃.

Let min(a, S) := {p ∈ min(a) | p ∩ S = ∅}.
Theorem 1.7 describes the set of minimal primes of the ring R〈S−1〉. In general, the ring R〈S−1〉 is not 

a semiprime ring but precisely the same result as Theorem 1.4 holds for it but without the ‘semiprimeness’ 
assumption, see Theorem 1.7.(4a). The key ideal of the proof of this result is to reduce it to the semiprime 
case by considering the semiprime ring R〈S−1〉/nR〈S−1〉.

Theorem 1.7. Let R be a ring and S be a multiplicative subset of R which is generated by normal elements 
and such that | min(a)| < ∞ where a is defined in Theorem 1.6.(1), e.g. R is a one-sided Noetherian ring. 
For each p ∈ min(a), let πp : R → R/p, r 	→ r + p. Then

1. The map min(a) → Spec(R〈S−1〉) = Spec(S−1
R), p 	→ S

−1
p is an injection and n

S
−1

R
⊆ S

−1
nR.

2. S̃ ∈ Den(R̃, 0), S−1
R/S

−1
nR � S̃

−1
R̃, and the map min(a) → min(S̃

−1
R̃), p 	→ S̃

−1
p̃ is a bijection.

3. For each p ∈ min(a), πp(S) ∈ Den(R/p, 0) and πp(S)−1(R/p) � S̃
−1

R̃/S̃
−1

p̃ � S
−1

R/S
−1

p and there 
is a commutative diagram:

πp : R
π→ R

π̃→ R̃
π̃p→ R/p

↓ ↓ ↓
S
−1

R → S̃
−1

R̃ → πp(S)−1(R/p)
↓ ↗� ↓ ↗�

S
−1

R/n
S

−1
R

→ S
−1

R/S
−1

nR → S̃
−1

R̃/S̃
−1

p̃

↓ ↗�
S
−1

R/S
−1

p

4. Suppose that the prime radical nR is a nilpotent ideal (e.g. the ring R is a one-sided Noetherian). Then
(a) The map min(a) → min(R〈S−1〉) = min(S−1

R), p 	→ S
−1

p is a bijection, i.e. min(R〈S−1〉) =
{S−1

p | p ∈ min(a)}.
(b) S̃ ∈ Den(R̃, 0), S−1

nR = n
S

−1
R

and S
−1

R/S
−1

nR � S
−1

R/n
S

−1
R
� S̃

−1
R̃.

The proof of Theorem 1.7 is given in Section 4.
Lemma 4.2 is a generalization of Theorem 1.7 to a more general situation.

Minimal primes of a semiprime ring and of its centre. For a ring R, the restriction map

ρR : Spec(R) → Spec(Z(R)), P 	→ P ∩ Z(R) (1)

is a well-defined map. In general, the map
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ρR,min : min(R) → min(Z(R)), p 	→ p ∩ Z(R) (2)

is not a well-defined map, see Lemma 5.2. For each natural number n ≥ 1, Lemma 5.2 provides an example 
of a finitely generated algebra An over a field K such that An is a domain, the centre Z(An) = Pn =
K[z1, . . . , zn] is polynomial algebra in n variables and

ρAn
(min(An)) = {{0}, pI := (xi)i∈I | ∅ �= I ⊆ {1, . . . , n}}.

The set ρAn
(min(An)) contains prime ideals of all possible heights.

Lemma 5.2 provides an example of a countably generated algebra A∞ over a (countable) field K such 
that the set min(A∞) is uncountable and every minimal prime of A∞ is a completely prime ideal. Notice 
that if the field K is a countable field then the algebra A∞ contains a countably many elements.

For a semiprime ring R with | min(R)| < ∞, Proposition 1.8 is a criterion for the map ρR,min being a 
well-defined map.

Proposition 1.8. Let R be a semiprime ring with | min(R)| < ∞. Then the following statements are equiva-
lent:

1. CZ(R) ⊆ CR.
2. CZ(R) ∩ p = ∅ for all p ∈ min(R).
3. The map ρR,min is a well-defined map.

Proof. Proposition 1.8 is equivalent to Proposition 5.4. �
Proposition 1.9 is a criterion for the map ρR,min being a surjection.

Proposition 1.9. Let R be a semiprime ring with | min(R)| < ∞ and | min(Z(R))| < ∞. Then the following 
statements are equivalent:

1. CZ(R) ⊆ CR.
2. CZ(R) ∩ p = ∅ for all p ∈ min(R).
3. The map ρR,min is a well-defined map.
4. The map ρR,min is a surjection.

Proofs of Proposition 1.8 and Proposition 1.9 are given in Section 5.

2. Descriptions of minimal primes of localizations of semiprime rings

At the beginning of the section, we recall some results on localizations that are used in the paper. Suppose 
that a is an ideal of a ring R. In general, the left ideal S−1a of the ring S−1R is not an ideal. Proposition 2.4
is a criterion for the left ideal S−1a being an ideal of S−1R. Corollary 2.7 presents criteria for a localization 
of a prime ideal being a prime ideal (under certain conditions). For a ring R and its left denominator set 
S ∈ Denl(R), Proposition 1.2 describes the set of minimal primes of the ring S−1R via the minimal primes 
of the ring R provided some general conditions hold.

The largest regular left Ore set and the largest left quotient ring of a ring. Let R be a ring. A multi-
plicatively closed subset S of R or a multiplicative subset of R (i.e., a multiplicative sub-semigroup of (R, ·)
such that 1 ∈ S and 0 �∈ S) is said to be a left Ore set if it satisfies the left Ore condition: for each r ∈ R

and s ∈ S,
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Sr
⋂

Rs �= ∅.

Let Orel(R) be the set of all left Ore sets of R. For S ∈ Orel(R), assl(S) := {r ∈ R | sr = 0 for some s ∈ S}
is an ideal of the ring R.

A left Ore set S is called a left denominator set of the ring R if rs = 0 for some elements r ∈ R and 
s ∈ S implies tr = 0 for some element t ∈ S, i.e. r ∈ ass(S). Let Denl(R) be the set of all left denominator 
sets of R. For S ∈ Denl(R), the ring

S−1R = {s−1r | s ∈ S, r ∈ R}

is called the left localization of the ring R at S (the left quotient ring of R at S). In Ore’s method of 
localization one can localize precisely at left denominator sets. In an obvious way, the right Ore condition,
right Ore and right denominator sets of R are defined and they are denoted by Orer(R) and Denr(R), 
respectively. For S ∈ Denr(R), the ring

RS−1 = {rs−1 | s ∈ S, r ∈ R}

is called the right localization of the ring R at S (the right quotient ring of R at S). For S ∈ Orer(R), 
assr(S) := {r ∈ R | rs = 0 for some s ∈ S} is an ideal of the ring R.

A left and right Ore or denominator set is called an Ore set or a denominator set and these sets are 
denoted by Ore(R) and Den(R), respectively. If S ∈ Den(R) then

S−1R � RS−1.

For an ideal a of R, let Den∗(R, a) := {S ∈ Den∗(R) | ass∗(S) = a} where ∗ ∈ {l, r, ∅}.
In general, the set CR of regular elements of a ring R is neither left nor right Ore set of the ring R and 

as a result neither left nor right classical quotient ring (Ql,cl(R) := C−1
R R and Qr,cl(R) := RC−1

R ) exists. 
There exists the largest (w.r.t. ⊆) regular left Ore set Sl(R), [2]. This means that the set Sl(R) is an Ore 
set of the ring R that consists of regular elements (i.e. Sl(R) ⊆ CR) and contains all the left Ore sets in R
that consist of regular elements. Also, there exists the largest regular right (respectively, left and right) Ore 
set Sr(R) (respectively, Sr(R), Sl,r(R)) of the ring R. In general, the sets CR, Sl(R), Sr(R) and Sl,r(R) are 
distinct, for example, when R = I1 = K〈x, ∂, 

∫
〉 is the ring of polynomial integro-differential operators over 

a field K of characteristic zero, [1]. In [1], these four sets are explicitly described for R = I1.

Definition 2.1. ([1,2].) The ring

Ql(R) := Sl(R)−1R

(respectively, Qr(R) := RSr(R)−1 and Q(R) := Sl,r(R)−1R � RSl,r(R)−1) is called the largest left (respec-
tively, right and two-sided) quotient ring of the ring R.

In general, the rings Ql(R), Qr(R) and Q(R) are not isomorphic, for example, when R = I1, [1].
Let R be a ring. We say that two left localizations of R are equal and write S−1R = S′ −1R if the map 

S−1R → S′ −1R, s−1r 	→ s−1r, is a well-defined isomorphism. This isomorphism is an R-isomorphism. Then 
the map S′ −1R → S−1R, s′ −1r 	→ s′ −1r, is also a ring R-isomorphism. So, two localizations are equal iff 
there is an R-isomorphism between them. So, the relation of ‘equality’ is an equivalence relation on the 
set of left localizations of the ring R. The set of all the equivalence classes is denoted by Locl(R). Clearly, 
S−1R = S′ −1R iff assl(S) = assl(T ), s1 ∈ (S′ −1R)× for all s ∈ S and s

′

1 ∈ (S−1R)× for all s′ ∈ S′.
The next theorem gives various properties of the ring Ql(R). In particular, it describes its group of units.
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Theorem 2.2. ([2, Theorem 2.8].)

1. Sl(Ql(R)) = Ql(R)× and Sl(Ql(R)) ∩R = Sl(R).
2. Ql(R)× = 〈Sl(R), Sl(R)−1〉, i.e., the group of units of the ring Ql(R) is generated by the sets Sl(R) and 

Sl(R)−1 := {s−1 | s ∈ Sl(R)}.
3. Ql(R)× = {s−1t | s, t ∈ Sl(R)}.
4. Ql(Ql(R)) = Ql(R).

A ring R has finite left rank (i.e. finite left uniform dimension) if there are no infinite direct sums of 
nonzero left ideals in R. For a non-empty subset T of a ring R, the sets

l.annR(T ) := {r ∈ R | rT = 0} and r.annR(T ) := {r ∈ R |Tr = 0}

are called the left and right annihilators of T , respectively. They are left and right ideals of R, respectively. 
If they coincide, we write annR(T ) for their common value. A ring R is called a left (right) Goldie ring if 
R has finite left (right) uniform dimension and R satisfies the ascending chain condition (the a.c.c.) on left 
(right) annihilators.

The next theorem is a semisimplicity criterion for the ring Ql(R) (statements 2-5 are Goldie’s Theorem, 
[7,8,11]).

Theorem 2.3. ([2, Theorem 2.9].) The following properties of a ring R are equivalent:

1. Ql(R) is a semisimple ring.
2. Ql,cl(R) exists and is a semisimple ring.
3. R is a left order in a semisimple ring.
4. R has finite left rank, satisfies the ascending chain condition on left annihilators and is a semi-prime 

ring.
5. A left ideal of R is essential iff it contains a regular element.

If one of the equivalent conditions holds then S0(R) = CR and Ql(R) = Ql,cl(R).

Let R be a ring, S ∈ Denl(R, a),

πa : R → R/a, r 	→ r := r + a and σS : R → S−1R, r 	→ r

1 .

Let Il(R) and I(R) be the sets of left and two-sided ideals of the ring R, respectively. Then the maps below 
are well-defined:

S−1 : Il(R) → Il(S−1R), I 	→ S−1I and σ−1
S : Il(S−1R) → Il(R), J 	→ σ−1

S (J). (3)

Furthermore, S−1σ−1
S (J) = J for all J ∈ Il(S−1R). In general, the map S−1 : I(R) → I(S−1R), I 	→ S−1I

is not defined (see [6, Example 10L]) but the map

σ−1
S : I(S−1R) → I(R), J 	→ σ−1

S (J) (4)

is a well-defined map and S−1σ−1
S (J) = J for all J ∈ I(S−1R). So, the localized ring S−1R has ‘less’ ideals 

than expected since the images of some ideals of the ring R are only left ideals but not two-sided ideals of 
the ring S−1R. This phenomenon does not occur if the ring R is a commutative ring or the denominator set 
S consists of central elements of R. Nonetheless all the ideal of S−1R can be obtained from some ideals of 
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R. The latter are precisely the ideals of R that stay two-sided ideals under the localization at S. [6, Example 
10M] is an example of a prime ring S−1R such that the ideal σ−1

S (0) of R is not a prime or even semiprime 
ideal.

Criterion for the left ideal S−1a being an ideal of S−1R where a is an ideal of R. Let R be a ring, 
S ∈ Denl(R, a), R := R/a and πa : R → R, r 	→ r + a. Then

S := πa(S) ∈ Denl(R, 0) and S−1R � S
−1

R.

For a right R-module M , the set

torr,S(M) := {m ∈ M |ms = 0 for some s ∈ S}

is the set of S-torsion elements of M . In general, torr,S(M) is not a submodule of M unless S is a right 
denominator set of R.

Suppose that b is an ideal of a ring R. In general, the left ideal S−1b of the ring S−1R is not an ideal. 
Proposition 2.4 is a criterion for the left ideal S−1b being an ideal of S−1R.

Proposition 2.4. Let R be a ring, S ∈ Denl(R, a) and b be an ideal of R. Then the following statements are 
equivalent:

1. The left ideal S−1b of the ring S−1R is an ideal.
2. For all elements s ∈ S, bs−1 ⊆ S−1b.
3. If rs ∈ b for some elements r ∈ R and s ∈ S then s′r ∈ b for some s′ ∈ S.
4. rs ∈ a + b for some elements s ∈ S and r ∈ R then s′r ∈ a + b for some s′ ∈ S.
5. torr,S(R/πa(b)) ⊆ torl,S(R/πa(b)).
6. For each s ∈ S, the ascending chain of left ideals of the rings S−1R, b′0 ⊆ b′1 ⊆ · · · ⊆ b′i ⊆ · · · , stabilizes 

where b′i :=
∑i

j=0 S
−1bs−j for i ≥ 0.

Proof. (1 ⇔ 2 ⇒ 6) Straightforward.
(2 ⇒ 3) Suppose that rs ∈ b for some elements r ∈ R and s ∈ S. Then

r

1 ∈ bs−1 ⊆ S−1b,

and so s′r ∈ b for some s′ ∈ S.
(3 ⇒ 2) Let b ∈ b and s ∈ S. Then bs−1 = s−1

1 r for some elements s1 ∈ S and r ∈ R or, equivalently,

ts1b = trs

for some element t ∈ S. It follows from the inclusion (tr)s = ts1b ∈ b that t1tr ∈ b for some element t1 ∈ S. 
Now, bs−1 = (t1ts1)−1 · t1tr ∈ S−1b.

(3 ⇒ 4) rs ∈ a + b for some elements s ∈ S and r ∈ R. There is an element s1 ∈ S such that s1rs ∈ b. 
Now, by statement 3, there is an element s2 ∈ S such that s2s1r ∈ b ⊆ a + b.

(4 ⇒ 3) Suppose that rs ∈ b ⊆ a + b for some elements r ∈ R and s ∈ S. By statement 4, there is an 
element s1 ∈ S such that s1r ∈ a + b. Hence, s2s1r ∈ b for some s2 ∈ S.

(4 ⇔ 5) The equivalence is an obvious re-writing of the inclusion torr,S(R/πa(b)) ⊆ torl,S(R/πa(b)) in 
terms of the ring R (since R/πa(b) � R/(a + b)).

(6 ⇒ 2) For each s ∈ S, there is a natural number n ≥ 0 such that b′n = b′n+1. Hence, S−1b ⊇∑n
S−1bsi ⊆ S−1bs−1, and statement 2 follows. �
i=0
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Corollary 2.5. Let R be a ring, S ∈ Denl(R, a) and b be an ideal of R. Then the left ideal S−1b of the ring 
S−1R is not an ideal iff there is an element s ∈ S such that the ascending chain of left ideals of the rings 
S−1R, b′0 ⊂ b′1 ⊂ · · · ⊂ b′i ⊂ · · · , is strictly increasing where b′i =

∑i
j=0 S

−1bs−j for i ≥ 0. In this case, 
neither the ring R nor its localization S−1R is a left Noetherian ring.

Proof. The corollary follows from Proposition 2.4. �
Lemma 2.6. If R is a prime ring and S ∈ Denl(R, 0) then the ring S−1R is a prime ring.

Proof. Since S ∈ Denl(S, 0), the module RR is an essential left R-submodule of S−1R. Suppose that ab = 0
for some ideals a and b of S−1R. Then a′b′ = 0 where a′ = a ∩ R and b′ = b ∩ R are ideals of R. The ring 
R is a prime ring. Therefore, at least one of the ideals a′ or b′ is equal to zero, say a′ = 0. Then a = 0, and 
so the ring S−1R is a prime ring. �
Corollary 2.7. Suppose that R is a ring, S ∈ Denl(R, 0) and p ∈ Spec(R).

1. Suppose that S−1p ∩R = p. Then S−1p ∈ Spec(S−1R) iff the left ideal S−1p of S−1R is an ideal.
2. Suppose that S−1p ∩R ∈ Spec(R). Then S−1p ∈ Spec(S−1R) iff the left ideal S−1p of S−1R is an ideal.

Proof. 1. (⇒) The implication is obvious.
(⇐) Suppose that the left ideal S−1p of S−1R is an ideal. By the assumption, S−1p ∩ R = p. Hence, 

S−1p �= S−1R. Since S ∈ Denl(S, 0), the module RR is an essential left R-submodule of S−1R. Suppose 
that ab ⊆ S−1p for some ideals a and b of S−1R. Then

a′b′ ⊆ R ∩ S−1p = p

where a′ = a ∩ R and b′ = b ∩ R are ideals of R. Since p ∈ Spec(R), at least one of the ideals a′ or b′ is 
contained in p, say a′ ⊆ p. Then S−1p ⊇ S−1a′ = a, and so S−1p ∈ Spec(S−1R).

2. By the assumption p′ := S−1p ∩R ∈ Spec(R). Then

S−1p′ ∩R = S−1(S−1p ∩R) ∩R = S−1p ∩ S−1R ∩R = S−1p ∩R = p′,

S−1p′ = S−1(S−1p ∩R) = S−1p ∩ S−1R = S−1p.

By statement 1, S−1p′ = S−1p ∈ Spec(S−1R) iff the left ideal S−1p′ = S−1p of S−1R is an ideal. �
For a prime ideal p and a left denominator set S, Proposition 2.8 provides sufficient conditions for 

σ−1
S (S−1p) = p.

Proposition 2.8. Suppose that R is a ring, S ∈ Denl(R, a), p ∈ Spec(R), S ∩ p = ∅ and the ideal σ−1
S (S−1p)

of R is a finitely generated right R-module. Then σ−1
S (S−1p) = p.

Proof. Since p is an ideal of R, the left ideal of R,

q := σ−1
S (S−1p) = {r ∈ R | sr ∈ p for some s ∈ S},

is an ideal. Clearly, p ⊆ q and for each element q ∈ q there is an element s ∈ S such that sq = 0. By the 
assumption, the right R-module q is finitely generated. Let q1, . . . , qm be a generating set. Then we can fix 
an element s ∈ S such that sgi ∈ p for all i = 1, . . . , m. Hence, p ⊇ sq, and so
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p ⊇ (s)q,

and q ⊆ p since s �∈ p (since p ∩ S = ∅). Therefore, p = q. �
Proposition 2.9 is a generalization of Lemma 2.6.

Proposition 2.9. If R is a ring and S ∈ Denl(R, q) such that q ∈ Spec(R). Then S−1R is a prime ring.

Proof. Suppose that ab = 0 for some ideals a and b of S−1R. Then a′b′ ⊆ q where a′ = σ−1
S (a) and 

b′ = σ−1
S (b) are ideals of R. Since q ∈ Spec(R), at least one of the ideals a′ or b′ is a subset of q, say a′ ⊆ q. 

Then a = S−1σ−1
S (a) ⊆ S−1q = 0, and so the ring S−1R is a prime ring. �

Lemma 2.10 is a criterion for an epimorphic image of a left denominator set being a left denominator set.

Lemma 2.10. Suppose that R is a ring, S ∈ Denl(R, a) and b be an ideal of R such that a ⊆ b. Let 
πb : R → R/b, r 	→ r = r + b and S = πb(S). Then S ∈ Denl(R/b, 0) iff S ⊆ CR/b.

Proof. (⇒) The implication is obvious.
(⇐) The inclusion S ⊆ CR/b implies that S ∈ Orel(R/b) is a left Ore set of the ring b that consists of 

regular elements of R, i.e. S ∈ Denl(R/b, 0). �
Lemma 2.11 is generalization of Lemma 2.10.

Lemma 2.11. Suppose that R is a ring, S ∈ Denl(R, a), b be an ideal of R such that S ∩ (a + b) = ∅. Let 
πa+b : R → R := R/(a + b), r 	→ r = r + a + b, S = πa+b(S), and c := assl(S). Let πc : R → R/c, 
r 	→ r̃ = r + c and S̃ = πc(S). Then S̃ ∈ Denl(R/c, 0) iff torr,S(R/c) = 0 (i.e. if rs ∈ c for some r ∈ R and 
s ∈ S then r ∈ c).

Proof. The condition that S ∩ (a + b) = ∅ implies that S ∈ Orel(R, c). Then S̃ ∈ Orel(R/c, 0). Now, the 
lemma is obvious. �

The set of minimal primes of the ring S−1R where S ∈ Denl(R). For an ideal a of a ring R, let min(a)
be the set of minimal prime ideals over a. So, the map

min(a) → min(R/a), p 	→ p/a (5)

is a bijection where min(R/a) is the set of minimal prime ideals of the factor ring R/a. For a ring R, the 
ideal

nR :=
⋂

p∈Spec(R)

p =
⋂

p∈min(R)

p

is called the prime radical of R. If nR = 0, the ring R is called a semiprime ring. The ring R is a semiprime 
ring iff the zero ideal is the only nilpotent ideal of R. Then the map

min(R) → min(R/nR), p 	→ p/nR (6)

is a bijection. So, in dealing with minimal primes of a ring without less of generality we may assume that 
the ring is a semiprime ring. For S ∈ Denl(R), let
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min(R,S) := {p ∈ min(R) | p ∩ S = ∅} and min(R,S, id) := {p ∈ min(R) |S−1pS−1R �= S−1R}.

Since S−1p ⊆ S−1pS−1R,

min(R,S) ⊆ min(R,S, id).

Definition 2.12. A ring is called a prime rich ring if each ideal contains a finite product of prime ideals that 
contain it.

Example 2.13. Every one-sided Noetherian ring R is prime rich (since | min(R)| < ∞ and the prime radical 
nR is a nilpotent ideal).

Proposition 2.14.

1. Suppose that R is a ring such that p1 · · · pn = 0 for some prime ideals pi of R. Then min(R) ⊆
min{p1, . . . , pn} and | min(R)| ≤ n < ∞.

2. Every ideal of a prime rich ring has only finitely many minimal primes.

Proof. 1. Let q ∈ min(R). Then the inclusion p1 · · · pn = {0} ⊆ q implies the inclusion pi ⊆ q for some i, 
and so pi = q, by the minimality of q, and the result follows.

2. Statement 2 follows from statement 1. In more detail, if a is an ideal of R then q1 · · · qm ⊆ a for some 
prime ideals qi of R that contains a. Let R → R = R/a, r 	→ r = r + a. Then

q1 . . . qm = 0 and {q1, . . . , qm} ⊆ Spec(R).

By statement 1, min(a) = min{q1, . . . , qm}, and so min(a) = min{q1, . . . , qm} and statement 2 follows. �
Proof of Proposition 1.1. (1 ⇒ 3) Suppose that the ring R is a prime rich ring. Then each ideal a of R
contains a product of prime ideals, say p1 · · · pn. By Proposition 2.14.(1),

min(a) ⊆ {p1, . . . , pn}.

Recall that the map min(a) → min(R/a), p 	→ p/a is a bijection. Now, it follows from the inclusions

a ⊇ p1 · · · pn ⊇
( ⋂

p∈min(a)

p

)n

that the prime radical nR/a of the factor ring R/a is a nilpotent ideal.
(3 ⇒ 2) Let a be an ideal of R. By the assumption, | min(a)| < ∞ and the prime radical nR/a of the 

factor ring R/a is a nilpotent ideal. Hence,

a ⊇
( ⋂

p∈min(a)

p

)n

⊇
( ∏

p∈min(a)

p

)n

,

as required.
(2 ⇒ 1) Straightforward. �

Definition 2.15. A left denominator set S of a ring R is called an ideal preserving left denominator set (or a 
left denominator set that respects the ideal structure of R) if the map S−1 : I(R) → I(S−1R), I 	→ S−1I
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is a well-defined map, i.e. for each ideal I of R, S−1I is an ideal of the ring S−1R. The set of all ideal 
preserving left denominator sets is denoted by Denl,ip(R). A ring R is called an ipl-ring (an ideal preserving 
ring under left localizations) if Denl,ip(R) = Denl(R), i.e. every left denominator set of R is ideal preserving.

Definition 2.16. We say that a left denominator set S of a ring R respects the ideal structure of primes of 
R if for each prime ideal p ∈ Spec(R) the left ideal S−1p of the ring S−1R is an ideal.

If the left denominator set respects the ideal structure of a ring then it also the respects the ideal structure 
of primes. By Corollary 2.7, if a left denominator set S of a ring R respects the ideal structure of primes 
then it also respects primeness of those prime ideals of R that satisfy the assumption of Corollary 2.7.

Example 2.17. Every denominator set that belong to the centre of a ring respects the ideal structure. All 
denominator sets of a commutative ring respect the ideal structure of the ring.

Proposition 2.18. Let R be a ring and S ∈ Denl(S, a). Suppose that the ring S−1R is a left Noetherian ring 
(e.g. R is a left Noetherian ring) then S respects the ideal structure of R.

Proof. Let b be an ideal of the ring R and s ∈ S. For each natural number for i ≥ 0, let bi =
∑i

j=0 S
−1bs−j . 

By the assumption, the ring S−1R is a left Noetherian ring. So, the ascending chain of left ideals of the ring 
S−1R,

b = b0 ⊆ b1 ⊆ · · ·

stabilizes, say on n’th step. Then S−1bs−n−1 ⊆ bn, and so

S−1bs−1 ⊆ bns
n =

n∑
j=0

S−1bsj ⊆ S−1b,

i.e. the left ideal S−1b of the ring S−1R is an ideal. �
Proof of Proposition 1.2. 1. (i) | min(R| < ∞: The ring R is prime rich. By Proposition 2.14.(2), | min(R| <
∞.

(ii) min(S−1R) ⊆ min{S−1p | p ∈ min(R, S)}: Let q ∈ min(S−1R). Then the ideal σ−1
S (q) of the prime 

rich ring R contains a finite product of prime ideals of R, say p1 · · · pn, that contain σ−1
S (q). The left 

denominator set S ∈ Den(R, a) respects the ideal structure of primes. So,

S−1p1 · · ·S−1pn = S−1p1p2 · · · pn ⊆ S−1σ−1
S (q) = q.

Hence, S−1pi ⊆ q for some i since q ∈ Spec(S−1R), and so pi ⊆ σ−1
S (S−1pi) ⊆ σ−1

S (q). There exists a 
minimal prime ideal p ∈ min(R) such that p ⊆ pi. Since S−1p ⊆ S−1pi ⊆ q, we have that p ∈ min(R, S). 
Then, by the assumption, S−1p ∈ Spec(S−1R). Hence,

S−1p ⊆ S−1σ−1
S (q) = q,

and so q = S−1p, by the minimality of q, and the statement (ii) follows.
(iii) min(S−1R) = min{S−1p | p ∈ min(R, S)}: The statement (iii) follows from the statement (ii).
(iv) 1 ≤ | min(R, S)| ≤ | min(R)| < ∞: The set of minimal primes of an arbitrary ring is a non-empty 

set. Now, the statement (iv) follows from the statements (i) and (iii).
2. Statement 2 follows from statement 1.
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3. (i) For each p ∈ min(R, S), σ−1
S (S−1p) = p: The statement (i) follows from Proposition 2.8

(ii) min(S−1R) = {S−1p | p ∈ min(R, S)}: In view of statement 2, we have to show that the ideals S−1p

and S−1p′ are incomparable for all distinct prime ideals p, p′ ∈ min(R, S). Suppose that S−1p ⊂ S−1p′, a 
strict inclusion. Then, by the statement (i),

p = σ−1
S (S−1p) ⊆ σ−1

S (S−1p′) = p′.

Hence, p = p′ (since p, p′ ∈ min(R)), a contradiction. �
Proof of Corollary 1.3. (i) The ring R is a prime rich ring: The prime radical of an one-sided Noetherian 
ring is a nilpotent ideal. For each ideal a of R, the factor ring R/a is also one-sided Noetherian. Hence, 
there is a natural number n such that

a ⊇
( ⋂

p∈min(a)

p

)n

⊇
( ∏

p∈min(a)

p

)n

.

(ii) S respects the ideal structure of the ring R: Since the ring S−1R is a left Noetherian, the statement 
(ii) follows from Proposition 2.18.

(iii) For each p ∈ min(R, S), σ−1
S (S−1p) = p: Since the ring R is a right Noetherian ring, the statement 

(iii) follows from Proposition 2.8.
(iv) S−1p ∈ Spec(S−1R) for all p ∈ min(R, S): The statement (iv), follows from Corollary 2.7.(1) and 

the statements (ii) and (iii).
Now, the corollary follows from Proposition statements (i), (iii) and (iv), and 1.2.(3). �

3. Description of the set of minimal primes of a localization of a semiprime ring at a regular denominator 
set

The aim of this section is to prove Theorem 1.4.(2) that provides an explicit description of the set 
of minimal primes of localizations of semiprime rings provided that they have only finitely many minimal 
primes. Theorem 1.4.(2) is one of the key facts in understanding the structure of embeddings of localizations 
of semiprime rings into semisimple or semiprimary rings, see [5]. As a corollary, for a semiprime ring R with 
finitely many minimal primes, Corollary 3.3 describes the set of minimal primes of the largest left quotient 
ring Ql(R) of R. Corollary 3.3 shows that the largest left quotient ring Ql(R) of a semiprime ring R is also 
a semiprime ring and provides an explicit description of the set of the minimal primes min(Ql(R)) provided 
that | min(R)| < ∞. Corollary 3.4 is a generalization of Theorem 1.4. Theorem 3.9 is a generalization of 
Theorem 1.4.(2,3) for left denominator sets that contain zero divisors. A proof of Proposition 1.5 is given 
in this section.

Characterization of the set of minimal primes of a semiprime ring.

Definition 3.1. A finite set Q of ideals of a ring R with zero intersection is called an irredundant set of ideals 
if 
⋂

q∈Q\{q′} q �= 0 for all q′ ∈ Q.

Lemma 3.2 is a useful characterization of the set min(R) of minimal primes of a semiprime ring R provided 
| min(R)| < ∞.

Lemma 3.2. Let R be a semiprime ring with | min(R)| < ∞. Then the set min(R) is the only irredundant 
set that consist of prime ideals of R.
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Proof. Evidently, the set min(R) is an irredundant set that consist of prime ideals of R.
Suppose that Q is an irredundant set that consist of prime ideals of R. We have to show that Q = min(R). 

Since the set min(R) is an irredundant set of prime ideals, it suffices to show that Q ⊇ min(R). For each 
p ∈ min(R),

⋂
q∈Q

q = {0} ⊆ p,

and so q ⊆ p for some q ∈ Q. Hence p = p, by the minimality of p. Therefore, Q ⊇ min(R). �
Description of the set of minimal primes of a localization of a semiprime ring at a regular denominator 

set. If T is an ideal of R then non-empty subset T of a ring R, the sets l.annR(T ) and r.annR(T ) are also 
ideals. Ideals of that kind are called annihilator ideals.

A submodule of a module is called an essential submodule if it meets all the nonzero submodules of the 
module. In a semiprime ring the left annihilator of an ideal is equal to its right annihilator and vice versa.

Proof of Theorem 1.4. Since S ∈ Denl(S, 0), RR is an essential left R-submodule of S−1R.
1. Suppose that a is a nonzero nilpotent ideal of S−1R then a′ = R ∩ a is a nonzero nilpotent ideal of R, 

a contradiction (since R is a semiprime ring). Therefore, R is a semiprime ring.
2 and 3. The case where | min(R)| = 1, i.e. the ring R is a prime ring, follows from Lemma 2.6.
So, we assume that | min(R)| ≥ 2. For each p ∈ min(R), let pc :=

⋂
q∈min(R)\{p} q. By Lemma 3.2, pc �= 0.

(i) For all p ∈ min(R), ann(pc) = p: The ring R is a semiprime ring, i.e. 
⋂

p∈min(R) p = 0. Hence, ppc = 0. 
Therefore,

p ⊆ annR(pc).

Suppose that apc = 0 for some ideal a of R. Then apc ⊆ p, and so

a ⊆ p

(since pc �⊆ p), and the statement (i) follows.
(ii) For all p ∈ min(R), ann(p) = pc: By the statement (i), ann(p) ⊇ pc. Suppose that ap = 0 for some 

ideal a of R. Then ap ⊆ q for all q ∈ min(R)\{p}, and so

a ⊆ q

(since p �⊆ q), i.e. a ⊆ pc and the statement (ii) follows.
(iii) For all p ∈ min(R), S ∩ p = ∅: Since pc �= 0, pcp = ppc = 0 (the statement (i)), and S ⊆ CR, we must 

have S ∩ p = ∅ for all p ∈ min(R).
Let πp : R → R/p, r 	→ r + p.
(iv) For all p ∈ min(R), πp(S) ⊆ CR/p and πp(S) ∈ Denl(R/p, 0): Suppose that πp(S) �⊆ CR/p. Then 

there are elements s ∈ S and r ∈ R\p such that either sr ∈ p or rs ∈ p. Let us to consider the first case as 
the arguments in the second case are ‘symmetrical’ to the ones in the first case. It follows from the inclusion 
sr ∈ p and the statement (i) that srpc = 0. Hence, rpc = 0 since s ∈ S ⊆ CR. By the statement (i), r ∈ p, 
a contradiction. The image of a left Ore set under a ring epimorphism is a left Ore set provide that it does 
not contain 0. Hence, π(S) ∈ Denl(R/p, 0) since πp(S) ⊆ CR/p.

(v) For each p ∈ min(R), the left ideal S−1p of S−1R is an ideal: By the statement (iv),

torr,S(R/p) = 0.
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Hence S−1p is an ideal of S−1R, by Proposition 2.4.(1).
(vi) {S−1R | p ∈ min(R)} ⊆ Spec(S−1R) and S−1(R/p) � S−1R/S−1p � πp(S)−1(R/p): By Lemma 2.6, 

for each p ∈ min(R), the ring S−1(R/p) is a prime ring. By the statements (iv) and (v), S−1(R/p) �
S−1R/S−1p � πp(S)−1(R/p), and so

S−1p ∈ Spec(S−1R).

(vii) The set {S−1R | p ∈ min(R)} is an irredundant set of prime ideals of S−1R: Since S ∈ Denl(R, 0), 
we have that

0 = S−10 = S−1
( ⋂

p∈min(R)

p

)
=

⋂
p∈min(R)

S−1p,

0 �=
⋂

p∈min(R)\{p′}
p ⊆ S−1

( ⋂
p∈min(R)\{p′}

p

)
=

⋂
p∈min(R)\{p′}

S−1p for all p′ ∈ min(R),

and the statement (vii) follows.
(viii) min(S−1R) = {S−1R | p ∈ min(R)}: The statement (viii) follows from the statement (vii) and 

Lemma 3.2. �
Corollary 3.3.(1) shows that the largest left quotient ring Ql(R) of a semiprime ring R is also a semiprime 

ring. Corollary 3.3.(2) and provides an explicit description of the set of its minimal primes provided that 
| min(R)| < ∞.

Corollary 3.3. Let R be a semiprime ring. Then

1. The ring Ql(R) is a semiprime ring.
2. If, in addition, | min(R)| < ∞. Then

(a) min(Ql(R)) = {Sl(R)−1p | p ∈ min(R)}.
(b) For all p ∈ min(R), πp(Sl(R)) ∈ Denl(R/p, 0) and

πp(Sl(R))−1(R/p) � Sl(R)−1R/Sl(R)−1p � Ql(R)/Sl(R)−1p � Sl(R)−1(R/p)

where πp : R → R/p, r 	→ r + p.
(c) For all p ∈ min(R), πp(Sl(R)) ⊆ Sl(R/p) and Ql(R)/Sl(R)−1p ⊆ Ql(R/p).

Proof. 1 and 2. By the definition, Ql(R) = Sl(R)−1R and Sl(R) ∈ Denl(R, 0), and statement 1 and 2 follow 
from Theorem 1.4.(1,2).

3. Statement 3 is a particular case of Theorem 1.4.(3).
4. By the definition, Sl(R/p) is the largest left denominator set of the ring R/p that consists of regular 

elements of R/p. By statement 3,

πp(Sl(R)) ∈ Denl(R/p, 0),

and so πp(Sl(R)) ⊆ Sl(R/p) and Ql(R)/Sl(R)−1p ⊆ Ql(R/p). �
Corollary 3.4 is a generalization of Theorem 1.4.

Corollary 3.4. Let R be a ring, S ∈ Denl(R, a), a be a semiprime ideal, R = R/a and S = {s + a | s ∈ S}. 
Then
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1. The ring S−1R � S
−1

R is a semiprime ring.
2. If, in addition, | min(R)| < ∞ then min(S−1R) = {S−1p = S

−1
p | p ∈ min(R)}, i.e. the map min(R) →

min(S−1R), p 	→ S−1p is a bijection and | min(S−1R)| = | min(R)|.
3. If, in addition, | min(R)| < ∞ then πp(S) ∈ Denl(R/p, 0) and πp(S)−1(R/p) � S

−1
R/S

−1
p � S

−1(R/p)
where πp : R → R/p, r 	→ r + p.

Proof. The ideal a is a semiprime ideal of R. Hence, the factor ring R = R/a is a semiprime ring. It follows 
from the inclusion S ∈ Denl(S, a) that S ∈ Denl(R, 0), S−1R � S

−1
R is an R-isomorphism. Now, the 

corollary follow from Theorem 1.4. �
Proposition 3.5. Let R be a semiprime ring with | min(R)| < ∞ and ∗ ∈ {l, r, ∅}. Then

1. S∗(R) ⊆
⋂

p∈min(R) π
−1
p (S∗(R/p)).

2. The homomorphism

∏
p∈min(R)

π′
p : Q∗(R) →

∏
p∈min(R)

Q∗(R/p)

is an R-monomorphism where the homomorphisms π′
p : Q∗(R) → Q∗(R/p) are defined in the commu-

tative diagram below.

Proof. Let us prove the result for ∗ = l. The other two cases can be treated in a similar way.
1. By Theorem 1.4.(3), πp(Sl(R)) ∈ Denl(R/p, 0) and so πp(Sl(R)) ⊆ Sl(R/p), by the maximality of 

Sl(R/p), and there is a commutative diagram of ring homomorphisms:

R
πp

σ

R/p

σp

Ql(R)
π′
p

Ql(R/p)

where σ(r) = r
1 , σp(πp(r)) = πp(r)

1 and π′
p(s−1r) = πp(s)−1πp(r) for all r ∈ R and s ∈ Sl(R). Now, 

statement 1 follows from Theorem 2.2.(1) and the commutative diagram above.
2. By the commutative diagram above, the map

∏
p∈min(R)

π′
p : Q∗(R) →

∏
p∈min(R)

Q∗(R/p)

is an R-monomorphism. �
For an ideal a of a ring R, let Orel(R, a) := {S ∈ Orel(R) | assl(S) = a}, Denl(R, a) := {S ∈

Denl(R) | ass(S) = a}. Let Assl(R) := {assl(S) | S ∈ Denl(R)}.

Definition 3.6. ([2]) Let Sl,a(R) be the largest element of the poset (Denl(R, a), ⊆) (Sl,a(R) exists, [2, 
Theorem 2.1.(2)]). The ring

Ql,a(R) := Sl,a(R)−1R

is called the largest left quotient ring associated to a.
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For each denominator set S ∈ Denl(R, a) where a := assl(S), there are natural ring homomorphisms 
R

π→ R/a → S−1R.

Lemma 3.7. ([2, Lemma 3.3.(2)]) Let a ∈ Assl(R) and π : R → R/a, a 	→ a + a. Then π−1(Sl(R/a)) =
Sl,a(R), π(Sl,a(R)) = Sl(R/a) and Ql,a(R) = Ql(R/a).

Let R be a semiprime ring with | min(R)| < ∞. For each p ∈ min(R), the subset of R,

Tl(p) :=
(
σpπp

)−1
(Ql(R/p)×) = π−1

p (Sl(R/p)),

is a multiplicative set, see the diagram in the proof of Proposition 3.5.(1) for the definitions of the maps 
πp and σp. The second equality follows from the equality Sl(R/p) = σ−1

p (Ql(R/p)×) (Theorem 2.2.(1)). For 
each p ∈ min(R), let

al(p) := assl(Tl(p)) = {r ∈ R | tr = 0 for some t ∈ Tl(p)},

ar(p) := assr(Tl(p)) = {r ∈ R | rt = 0 for some t ∈ Tl(p)}.

By the definition, al(p) and ar(p) are right and left ideals of the ring R, respectively, but not ideals, in 
general.

Proposition 3.8. Let R be a semiprime ring with | min(R)| < ∞. Then

1. al(p) ⊆ p, ar(p) ⊆ p and 
⋂

p∈min(R) al(p) =
⋂

p∈min(R) ar(p) = 0.
2. Tl(p) ∈ Orel(R) iff for each pair of elements (s, p) ∈ Tl(p) × p there is a pair of elements (s′, r′) ∈

Tl(p) ×R such that s′r − r′s ∈ al(p).
3. Suppose that Tl(p) ∈ Denl(R). Then

(a) Tl(p)−1p is an ideal of the ring Tl(p)−1R.
(b) Tl(p)−1R/Tl(p)−1p � Ql(R/p).
(c) If, in addition, al(p) = p then Sl,p(R) = Tl(p) and Ql,p(R) � Ql(R/p) � Tl(p)−1R.

Proof. 1. Let us prove that statement 1 holds for al(p). The second case can be treated in a similar way 
(using symmetrical arguments). If r ∈ al(p) them tr = 0 for some element t ∈ Tl(p). By the definition, 
σpπp(Tl(p)) ⊆ Ql(R/p)×. It follows that 0 = σpπp(tr) = σpπp(t)σpπp(r), and so

σpπp(r) = 0,

i.e. πp(r) = 0. This means that r ∈ p. So, al(p) ⊆ p. Now, 
⋂

p∈min(R) al(p) ⊆
⋂

p∈min(R) p = 0, and so ⋂
p∈min(R) al(p) = 0.
2. (⇒) Suppose that Tl(p) ∈ Orel(R). Then for each pair of elements (s, p) ∈ Tl(p) × p there is a pair of 

elements (s′, r′) ∈ Tl(p) ×R such that s′r − r′s = 0 ∈ al(p).
(⇐) We have to show that the left Ore condition holds for the multiplicative subset Tl(p). By the 

assumption, for each pair of elements (s, p) ∈ Tl(p) × p there is a pair of elements (s′, r′) ∈ Tl(p) × R such 
that s′r − r′s ∈ al(p). By the definition of the set |gal(p), there is an element t ∈ Tl(p) such that

t(s′r − r′s) = 0.

Then (ts′)r = (tr′)s with ts′ ∈ Tl(p) and tr′ ∈ R, as required.
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3. By the assumption, Tl(p) ∈ Denl(R), and so Tl(p) ∈ Denl(R, al(p)). Recall that

σpπp(Tl(p)) ⊆ Ql(R/p)×.

By the universal property of localization, there is a homomorphism

ιp : Tl(p)−1R → Ql(R/p), t−1r 	→ t−1r.

Recall that Sl(R/p) = σ−1
p (Ql(R/p)×) (Theorem 2.2.(1)) and Tl(p) = π−1

p (Sl(R/p)) (see the definition of 
the set Tl(p)). The map πp : R → R/p, r 	→ r + p is an epimorphism. Hence,

πp(Tl(p)) = Sl(p),

and so the homomorphism ιp is an epimorphism. By applying the localization functor Tl(p)−1 (which is an 
exact functor) to the short exact sequence of left R-modules

0 → p → R → R/p → 0,

we obtain the short exact sequences of left Tl(p)−1R-modules

0 → Tl(p)−1p → Tl(p)−1R → Tl(p)−1(R/p) �
(
πp(Tl(p))

)−1
(R/p) = Sl(R/p)−1(R/p) = Ql(R/p) → 0,

i.e. 0 → Tl(p)−1p → Tl(p)−1R
ιp→ Ql(R/p) → 0. Hence, ker(ιp) = Tl(p)−1p is an ideal of the ring Tl(p)−1R

such that

Tl(p)−1R/Tl(p)−1p � Ql(R/p).

The proofs of the statements (a) and (b) are complete.
Finally, suppose that al(p) = p, i.e. Tl(p) ∈ Denl(R, p). Then, by the statement (b),

σ : R → Tl(p)−1R � Ql(R/p), r 	→ r

1 .

By [2, Lemma 3.3.(2)],

Ql,a(R) = Sl,a(R)−1R = Ql(R/p) and Sl,a(R) = π−1
p (Sl(R/p)).

By the definition of the set Tl(p), π−1
p (Sl(R/p)) = Tl(p). The proof of the statement (c) is complete. �

Description of the set of minimal primes of a localization of a semiprime ring at a not necessarily regular 
denominator set. An element n of a ring R is called a normal element if

Rn = nR.

Theorem 3.9 is a generalization of Theorem 1.4.(2,3) for left denominator sets that contain zero divisors. 
The general situation is described by Proposition 1.2 but the goal is to describe a situation that has the 
‘same’ answer as in Theorem 1.4.(2,3).
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Theorem 3.9. Let R be a semiprime ring with | min(R)| < ∞ and S ∈ Denl(R, a). Then

min(R,S) := {p ∈ min(R) | p ∩ S = ∅} �= ∅

and statements 1 and 2 below are equivalent:

1. The ring S−1R is a semiprime ring with min(S−1R) = {S−1p | p ∈ min(R, S)}.
2. For each p ∈ min(R, S), S−1p is an ideal of S−1R and the factor ring S−1R/S−1p is a prime ring.
3. Suppose that the equivalent conditions 1 and 2 hold. Then

(a) If the left denominator set S is generated by normal elements of R then all ideals in the set 
min(S−1R) are distinct, i.e. | min(S−1R)| = | min(R, S)|.

(b) If for each element s ∈ S there is an element t ∈ S such that the element ts is a normal element of 
R then all ideals in the set min(S−1R) are distinct, i.e. | min(S−1R)| = | min(R, S)|.

Remark. In statement 1, not all ideals in the set min(S−1R) are assumed distinct.

Proof. Suppose that min(R, S) = ∅, i.e. p ∩ S �= ∅ for all p ∈ min(R). Choose an element sp ∈ p ∩ S �= ∅ for 
each p ∈ min(R). Then on the one hand

0 �= s :=
∏

p∈min(R)

sp ∈ S

where the product is taken in an arbitrary order. On the other hand, s ∈
⋂

p∈min(R) p = 0 (since the ring R
is a semiprime ring), a contradiction. Therefore, min(R, S) �= ∅.

(1 ⇒ 2) Straightforward.
(2 ⇒ 1) By the assumption, for each p ∈ min(R, S), S−1p is an ideal of S−1R and the factor ring 

S−1R/S−1p is a prime ring, i.e. the ideal S−1p is a prime ideal of the ring S−1R. Since the ring R is a 
semiprime ring with | min(R)| < ∞, we have that

{0} = S−1{0} = S−1
⋂

p∈min(R)

p =
⋂

p∈min(R)

S−1p =
⋂

p∈min(R,S)

S−1p =
⋂
p∈P

S−1p

for some subset P of min(R, S) such that the last intersection is irredundant. By Lemma 3.2, min(S−1R) =
{S−1p | p ∈ P}.

3. Suppose that the equivalent conditions 1 and 2 of the theorem hold.
(a) The statement (a) is a particular case of the statement (b).
(b) Suppose that S−1p = S−1q for some ideals p, q ∈ min(R, S). We have to show that p = q. It suffices 

to show that

p ⊆ q

(since then the inclusions p, q ∈ min(R) imply the equality p = q). For each element p ∈ p, p1 = s−1q for 
some element q ∈ q. Hence, t(sp − q) = 0 for some element and t ∈ S, and so

ts · p = tq ∈ q and ts ∈ S\q

(since S ∩ q = ∅). By the assumption, there is an element t′ ∈ S such that the element n := t′ts ∈ S is a 
normal element of R. Now, the inclusion np ∈ t′q ⊆ q implies the inclusion of ideals

(n)(p) ⊆ q
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(since the element n ∈ R is a normal element). Therefore, (p) ⊆ q since n �∈ p, i.e. p ∈ q for all elements 
p ∈ p. This implies the inclusion p ⊆ q, as required. �

Corollary 3.10 describes the minimal primes of a localization of a semiprime commutative ring.

Corollary 3.10. Let R be a semiprime commutative ring with | min(R)| < ∞ and S ∈ Den(R, a). Then

1. The ring S−1R is a semiprime ring with min(S−1R) = {S−1p | p ∈ min(R, S)}.
2. In statement 1, all ideals in the set min(S−1R) are distinct, i.e. | min(S−1R)| = | min(R, S)|.

Proof. 1. Since the ring R is a commutative ring, for each p ∈ min(R, S), S−1p is an ideal of S−1R and the 
factor ring

S−1R/S−1p � S−1(R/p)

is a prime ring since the factor ring R/p is a domain (hence so is its localization S−1(R/p)). Therefore, 
statement 2 of Theorem 3.9 holds, and so statement 1 follows from Theorem 3.9.

2. Statement 2 follows from Theorem 3.9.(3a). �
An ideal p of a ring R is called a completely prime ideal of R if the factor ring R/p is a domain. Every 

completely prime ideal is a prime ideal but not vice versa, in general. We denote by Specc(R) be the set of 
all completely prime ideals of R. Notice that Specc(R) ⊆ Spec(R).

Proof of Proposition 1.5. 1. By the assumption, for each p ∈ min(R, S), p ∈ Specc(R) and S−1p is an ideal 
of S−1R. So, the ring R/p is a domain, and so is the factor ring

S−1R/S−1p � S−1(R/p).

Therefore, statement 2 of Theorem 3.9 holds, and so statement 1 follows from Theorem 3.9. Clearly, S−1p ∈
Specc(S−1R) (since the factor ring S−1R/S−1p � S−1(R/p) is a domain).

2. Suppose that S−1p = S−1q for some ideals p, q ∈ min(R, S). We have to show that p = q. It suffices 
to show that p ⊆ q. For each element p ∈ p, p1 = s−1q for some element q ∈ q. Hence, t(sp − q) = 0 for some 
element and t ∈ S, and so

ts · p = tq ∈ q and ts ∈ S\q

(since S ∩ q = ∅). Therefore, p ∈ q for all elements p ∈ p, i.e. p ⊆ q (since the factor ring R/q is a domain), 
as required. �
4. Minimal primes of localizations of rings at multiplicative sets generated by normal elements

Let R be a ring and S be a multiplicative subset of R which is generated by normal elements of R. The 
goal of the section is to prove Theorem 1.7 that describes the set of minimal primes of the ring R〈S−1〉. 
In general, the ring R〈S−1〉 is not a semiprime ring but precisely the same result as Theorem 1.4 holds 
for it but without the ‘semiprimeness’ assumption, see Theorem 1.7.(4a). Lemma 4.2 is a generalization of 
Theorem 1.7 to a more general situation.

Description of minimal primes of localizations of rings at multiplicative sets generated by normal ele-
ments. Let R be a ring, S be a non-empty subset of R, R〈XS〉 be a ring freely generated by the ring R and 
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a set XS = {xs | s ∈ S} of free noncommutative indeterminates (indexed by the elements of the set S). Let 
IS be the ideal of R〈XS〉 generated by the set {sxs − 1, xss − 1 | s ∈ S}. The factor ring

R〈S−1〉 := R〈XS〉/IS . (7)

is called the localization of R at S. Let ass(S) = assR(S) be the kernel of the ring homomorphism

σS : R → R〈S−1〉, r 	→ r + IS . (8)

The factor ring R := R/assR(S) is a subring of R〈S−1〉 and the map πS : R → R, r 	→ r := r+assR(S) is an 
epimorphism. The ideal assR(S) of R has a sophisticated structure, its description is given in [3, Proposition 
2.12] when

R〈S−1〉 = {s−1r | s ∈ S, r ∈ R}

is a ring of left fractions. There is an example of a domain R and a finite set S such that ass(S) = R, i.e. 
R〈S−1〉 = {0} [10, Exercises 9.5].

Definition 4.1. ([3]) A multiplicative set S of a ring R is called a left localizable set if

R〈S−1〉 = {s−1r | s ∈ S, r ∈ R} �= {0}

where R = R/a, a = assR(S) and S = (S+a)/a, i.e., every element of the ring R〈S−1〉 is a left fraction s−1r

for some elements s ∈ S and r ∈ R. Similarly, a multiplicative set S of a ring R is called a right localizable 
set of R if

R〈S−1〉 = {rs−1 | s ∈ S, r ∈ R} �= {0},

i.e., every element of the ring R〈S−1〉 is a right fraction rs−1 for some elements s ∈ S and r ∈ R. A right 
and left localizable set of R is called a localizable set of R.

Every left denominator set S ∈ Denl(R) is a left localizable set and R〈S−1〉 � S−1R.
Let R be a ring and S be a multiplicative subset of R which is generated by normal elements of R. 

Clearly, S ∈ Ore(R) is an Ore set of R. By Theorem 1.6, S is a localizable set of R such that assR(S) = a

and R〈S−1〉 � S
−1

R. Wen keeps the notation of Theorem 1.6. Let

π̃ : R → R̃ := R/nR, r 	→ r̃ = r + nR

where nR is the prime radical of the ring R. There are bijections

min(a) π→ min(R) π̃→ min(R̃), p 	→ p 	→ p̃.

Let min(a, S) := {p ∈ min(a) | p ∩ S = ∅}.
An element a ∈ R is called strongly nilpotent if any sequence a = a0, a1, a2, . . . such that ai+1 ∈ aiRai

is ultimately zero. The prime radical nR of R is precisely the set of strongly nilpotent elements of R, [12, 
Theorem 0.2.2]. In particular, the prime radical nR is nil, i.e. all elements of nR are nilpotent elements.

Proof of Theorem 1.7. 1–3. By Theorem 1.6.(2), S ∈ Den(R, 0) and R〈S−1〉 � S
−1

R. Hence, for each 
element s ∈ S, the map
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ωs : R → R, r 	→ ωs(r) where sr = ωs(r)s,

is an automorphism.
(i) For all s ∈ S, ωs(nR) = nR: The statement (i) follows from the fact that ωs ∈ Aut(R).
(ii) S ∩ nS = ∅: Each element s ∈ S is a regular element of R. In particular, it is not a nilpotent element. 

Since the prime radical nS is nil, we have that S ∩ nS = ∅.
(iii) S̃ ∈ Den(R̃, 0) and ωξ ∈ Aut(R̃) for all ξ ∈ S̃: By the statement (ii), the subset S̃ of R̃ is a 

multiplicative set. By the statement (i), the set S̃ is generated by regular normal elements. Hence, ωξ ∈
Aut(R̃) for all ξ ∈ S̃ and S̃ ∈ Den(R̃, 0).

(iv) The map min(R̃) → min(S̃
−1

R̃), p̃ 	→ S̃
−1

p̃ is a bijection: By the definition, the ring R̃ is a semiprime 
ring with

|min(R̃)| = |min(a)| < ∞, and S̃ ∈ Den(R̃, 0)

(the statement (iii)). Now, the result follows from Theorem 1.4.(2).
(v) For all p ∈ min(R), S ∩ p = ∅: The result follows from the statement (iv).
(vi) The map min(R) → {S−1

p | p ∈ min(R)}, p 	→ S
−1

p is a bijection, S−1
p �= S

−1
R and S ∩ p = ∅: 

The result follows from the statement (iv).
Notice that | min(R)| = | min(a)| < ∞.
(vii) There is a natural number n ≥ 1 such that ωn

s (p) = p for all elements s ∈ S and p ∈ min(R): Let 
G be the subgroup of Aut(R) which is generated by the automorphisms ωs, where s ∈ S. The group G acts 
on the finite set min(R) in the obvious way. The image of the group G, say G′, in the symmetric group of 
the finite set min(R) is a finite group. So, it suffices to take n = |G′|, the order of the group G′.

(viii) For all p ∈ min(R) and s ∈ S, ps−1 ⊆ s−np, where n is as in the statement (vii), and the left ideal 
S
−1

p of the ring S
−1

R is an ideal: The second part of the statement (viii) follows from the first (since then 
ps−1 ⊆ S

−1
p for all element s ∈ S). Now,

ps−1 = s−n · snps−n · sns−1 = s−nωn
s (p)sn−1 = s−npsn−1 ⊆ s−np.

(ix) For all p ∈ min(R), S−1
p ∈ Spec(S−1

R): By statement (viii), S−1
p is an ideal of the ring S

−1
R. 

Furthermore, S−1
p �= S

−1
R, by the statement (vi). The ring R/p is a prime ring. Hence so is its localization

S
−1(R/p) � S

−1
R/S

−1
p,

by Lemma 2.6. Therefore, S−1
p ∈ Spec(S−1

R).
(x) n

S
−1

R
⊆ S

−1
nR and S

−1
nR is an ideal of S−1

R: By the statement (ix) and | min(R)| < ∞,

n
S

−1
R

=
⋂

q∈Spec(S−1
R)

q ⊆
⋂

p∈min(R)

S
−1

p = S
−1

( ⋂
p∈min(R)

p

)
= S

−1
nR

and the intersection of ideals of S−1
R, S−1

nR =
⋂

p∈min(R) S
−1

p, is an ideal of S−1
R, see the statement 

(viii).

(xi) S−1
R/S

−1
nR � S̃

−1
R̃: By the statement (x), S−1

nR is an ideal of the ring S
−1

R. Now, by the 

statement (iii), S̃ ∈ Den(R̃, 0), and so

S
−1

R/S
−1

nR � S
−1(R/nR) � S̃

−1
R̃.



24 V.V. Bavula / Journal of Pure and Applied Algebra 229 (2025) 107776
(xii) For all p ∈ min(R), R ∩ S
−1

p = p: Clearly, p ⊆ R ∩ S
−1

p. Suppose that 
(
R ∩ S

−1
p

)
\p �= ∅. Fix an 

element r ∈
(
R ∩ S

−1
p

)
\p. Then sr ∈ p for some element s ∈ S. The element s is a normal element of the 

ring R and s �∈ p, by the statement (vi). Therefore, we have the inclusion of ideals

(s)(r) ⊆ p

which implies the inclusion (r) ⊆ p (since s �∈ p and p is a prime ideal of the ring R), and so r ∈ p, a 
contradiction.

(xiii) The map min(a) → Spec(R〈S−1〉) = Spec(S−1
R), p 	→ S

−1
p is an injection: The result follows 

from the statements (ix) and (xii) (if S−1
p = S

−1
p
′ for some p, p′ ∈ min(q) then, by the statement (xii),

p = R ∩ S
−1

p = R ∩ S
−1

p
′ = p

′,

and so p = p′).
(xiv) For each p ∈ min(a), πp(S) ∈ Den(R/p, 0): By the statement (v) and (vii),

S ∩ p = ∅ and ωs(p) = p.

Hence, the subset πp(S) of R/p is a multiplicative set that is generated by regular normal elements, and so 
πp(S) ∈ Den(R/p, 0).

(xv) For each p ∈ min(a), πp(S)−1(R/p) � S̃
−1

R̃/S̃
−1

p̃ � S
−1

R/S
−1

p: By the statements (iii), (viii) 
and (xiv),

S
−1

R/S
−1

p � S
−1(R/p) � S

−1(R̃/p̃) � S̃
−1

R̃/S̃
−1

p̃ � πp(S)−1(R/p).

The commutativity of the diagram is obvious.
4. (b) (xvi) n

S
−1

R
= S

−1
nR: By the assumption, the ideal nR =

⋂
p∈min(a) p is a nilpotent ideal, i.e. 

nm
R

= 0 for some natural number m ≥ 1. Since the left ideal S−1
nR of the ring S

−1
R is an ideal (the 

statement (x)),

(
S
−1

nR

)m

= S
−1

nm
R

= 0,

and so S
−1

nR ⊆ n
S

−1
R
. By the statement (x), we have the opposite inclusion, and the statement (xvi) 

follows.
(xvii) S−1

R/S
−1

nR � S
−1

R/n
S

−1R: The statement (xvii) follows from the statement (xvi).
The proof of the statement (b) is complete (in view of statement 3).
(a) (xviii) The map min(R) → min(S−1

R), p 	→ S
−1

p is a bijection: By the statement (xvi),

n
S

−1
R

= S
−1

nR = S
−1

( ⋂
p∈min(R)

p

)
=

⋂
p∈min(R)

S
−1

p.

By the statements (vi) and (ix), the prime ideals {S−1
p | p ∈ min(R)} of the ring S

−1
R are distinct. The 

second intersection above is irredundant since otherwise

S
−1

p
′ ⊆

⋂
′

S
−1

p ⊆ p.
p∈min(R)\{p }
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for some p′ ∈ min(R). By the statement (xii),

p
′ = R ∩ S

−1
p
′ ⊆ R ∩ S

−1
p = p,

a contradiction (since min(R) = {p | p ∈ min(a)}). Since the second intersection is irredundant, the statement 
(xviii) follows from Lemma 3.2. �

Lemma 4.2 extends the results of Theorem 1.7 to a more general situation.

Lemma 4.2. Let R be a ring and S′ ∈ Denl(R, a). Suppose that for each element s ∈ S′ there is an element 
t ∈ S′ such that the element ts is a normal element of R. Let S be the set of all normal elements in S′. 
Then

1. S ∈ Denl(R, a) and S−1R � S′ −1R.
2. Theorem 1.7 holds for the denominator set S′ ∈ Denl(R, a).

Proof. 1. As a product of normal elements is a normal element and S ⊆ S′, the set S is a multiplicative set 
of R. The set S consists of normal elements. So, S ∈ Ore(R). Let π : R → R := R/a, r 	→ r := r + a and 
S
′ := π(S′). Then

S
′ := π(S′) ∈ Denl(R, 0) and S′ −1R � S

′ −1
R.

(i) assl(S) = a: Since S ⊆ S′, assl(S) ⊆ assl(S′). The reverse inclusion follows from the fact that for each 
element s ∈ S′ there is an element t ∈ S′ such that the element ts is a normal element of R. Therefore, 
assl(S) = assl(S′) = a.

(ii) S ∈ Denl(R, a): In view of the statement (i), it remains to show that if rs = 0 for some elements
s ∈ S and r ∈ R then tr = 0 for some element t ∈ S. Since S ⊆ S′ and S′ ∈ Denl(R, a), there is an element 
s′ ∈ S′ such that s′r = 0. Choose an element t′ ∈ S′ such that the element t := t′s′ is a normal element of 
R, i.e. t ∈ S, and so tr = t′s′r = 0, as required.

(iii) S−1R � S′ −1R: By the statement (ii) and the inclusion S ⊆ S′, there is a monomorphism

S−1R → S′ −1R, s−1r 	→ s−1r.

By the assumption, for each element s′ ∈ S′, there is an element t′ ∈ S′ such t := t′s′ is a normal element 
of the ring R, i.e. t ∈ S. Then for each r ∈ R,

s′ −1r = t−1t′r ∈ S−1R,

i.e. the monomorphism is a surjection, and the statement (iii) follows.
2. Statement 2 follows from statement 1 and Theorem 1.7. �

5. Minimal primes of a semiprime ring and of its centre

In this section, proofs of Corollary 1.8 and Proposition 1.9 are given. Recall that Corollary 1.8 is a criterion 
for the map ρR,min : min(R) → min(Z(R)), p 	→ p ∩ Z(R) being a well-defined map and Proposition 1.9 is 
a criterion for the map ρR,min being a surjection.

Let R be a ring and Z(R) be its centre. For each prime ideal q ∈ Spec(Z(R)), the field

k(q) := Z(R)q/qq �
(
Z(R)/q

)

q
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is called the residue field of the prime ideal q. By applying the right exact functor − ⊗Z(R) R to the short 
exact sequence of Z(R)-modules

0 → qq → Z(R)q → k(q) → 0

we obtain an exact sequence of right and left R-modules

qq ⊗Z(R) R → Z(R)q ⊗Z(R) R � Rq → k(q) ⊗Z(R) R → 0.

Therefore,

Rq/Rqq � k(q) ⊗Z(R) R (9)

is an isomorphism of rings. Let q ∈ Spec(Z(R)) and p ∈ Spec(R). Then R/p is a prime ring. By Lemma 2.6, 
the ring 

(
R/p

)
q
� Rq/pq is a prime ring. Therefore, the map

Spec(R) → Spec(Rq), p 	→ pq (10)

is a well-defined map.

Proposition 5.1. Let R be a ring and Z(R) be its centre. Then

1. Let q ∈ Spec(Z(R)). Then q ∈ im(ρR) iff Rq �= Rqq.
2. For each q ∈ Spec(Z(R)), the maps

{p ∈ Spec(R) | p ∩ Z(R) = q} → VRq
(Rqq) → Spec(k(q) ⊗Z(R) R),

Q 	→ Qq 	→ Qq/Rqq � k(q) ⊗Z(R) Q,

are bijections where VRq
(Rqq) := {P ∈ Spec(Rq) | Rqq ⊆ P}.

3. For each q ∈ im(ρR), there is a minimal prime p ∈ min(R) such that p ∩ Z(R) = q.

Proof. 2. By (10), the first map is a well-defined map. By the definition of the localization at the prime 
ideal q of the centre Z(R) of R, the first map is a bijection. By (9), Rq/Rqq � k(q) ⊗Z(R) R, and so the 
second map is a bijection.

1. Statement 1 follows from statement 2.
3. Since q ∈ im(ρR), there is a prime ideal p′ ∈ Spec(R) such that p′ ∩ Z(R) = q. The prime ideal p′

contains a minimal prime ideal, say p ∈ min(R). Notice that p ∩ Z(R) ∈ Spec(Z(R)) and p ∩ Z(R) ⊆
p′ ∩ Z(R) = q. Now, by the minimality of q, p ∩ Z(R) = q, and the statement (ii) follows. �

In general, the restriction map ρR,min : min(R) → min(Z(R)), p 	→ p ∩ Z(R) is not well-defined, see 
Lemma 5.2. Let K be a field, n ∈ {1, 2, . . .} ∪ {∞}, [n] := {i ∈ N | 1 ≤ i ≤ n}, Fn = K〈xi | i ∈ [n]〉 be a free 
K-algebra, Pn = K[zi | i ∈ [n]] be a polynomial K-algebra and

An = Fm ⊗K Pn/(xizi | i ∈ [n]).

Lemma 5.2.

1. min(An) = {pI | I ⊆ [n]} where pI = (xi, zj)i∈I,j∈CI and CI = [n]\I.
2. For every I ⊆ [n], An/pI � FCI⊗KPI is a domain where FCI = K〈xj | j ∈ CI} and PI = K[zj | j ∈ CI].
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3. If n = ∞ then set min(A∞) is an uncountable set.
4. Z(An) = Pn.
5. For every I ⊆ [n], pI ∩ Z(An) = (zj)j∈CI .

Proof. 2, 4 and 5. Statements 2, 4 and 5 are obvious.
1. Let p be a minimal prime. For all i ∈ [n],

p ⊇ {0} = (xizi) = (xi)(zi).

By the minimality of p, precisely one of the elements xi or zi belongs to p, and statement 1 follows.
3. Statement 3 follows from statement 1 and the fact that the set of all subsets of the set of natural 

numbers is an uncountable set. �
Lemma 5.3. Let R be a semiprime ring with | min(R)| < ∞. Then the centre Z(R) of R is a semiprime ring 
with | min(Z(R)) ∩ im(ρR)| ≤ | min(R)| < ∞.

Proof. Suppose that the centre Z(R) is not a semiprime ring. Then it contains a nonzero nilpotent ideal, 
say a. Then Ra is a nonzero nilpotent ideal of the semiprime ring R, a contradiction. Therefore, the centre 
Z(R) is a semiprime ring. By Proposition 5.1.(3), | min(Z(R)) ∩ im(ρR)| ≤ | min(R)| < ∞. �
Proposition 5.4. Let R be a semiprime ring with | min(R)| < ∞. Then the following statements are equiva-
lent:

1. CZ(R) �⊆ CR.
2. CZ(R) ∩ p �= ∅ for some p ∈ min(R).
3. The restriction map min(R) → min(Z(R)), p 	→ p ∩ Z(R) is not a well-defined map.

Proof. (1 ⇒ 2) Suppose that CZ(R) �⊆ CR. Then let us fix an element, say c ∈ CZ(R)\CR, i.e. the central 
element c is a zero divisor in the ring R. Therefore, a := annR(c) is nonzero annihilator ideal. It follows 
from the equality (c)a = 0, that the ideal (c) = Rc of R is contained in the annihilator ideal annR(a). Then

c ∈ annR(a) ⊆ p for some p ∈ min(R),

(since the ring R is a semiprime ring with | min(R)| < ∞), i.e. CZ(R) ∩ p �= 0.
(2 ⇒ 3) Suppose that CZ(R) ∩ p �= ∅ for some p ∈ min(R). Notice that

q := Z(R) ∩ p ∈ Spec(Z(R)).

Then q �∈ min(Z(R)) since otherwise q ⊆ Z(R) where Z(R) :=
⋃

l∈min(Z(R)) l is the set of zero divisors of 
the semiprime commutative ring Z(R) with min(Z(R)| < ∞ but the non-empty subset CZ(R) ∩ p of q has 
zero intersection with Z(R), a contradiction.

(3 ⇒ 2) Suppose that the restriction map min(R) → min(Z(R)), p 	→ p ∩Z(R) is not a well-defined map. 
So, q := p ∩ Z(R) �∈ min(Z(R)) for some p ∈ min(R). Notice that q ∈ Spec(Z(R)). Therefore,

q �⊆ Z(R) =
⋃

l∈min(Z(R))

l

since otherwise q ⊆ l for some l ∈ min(Z(R)), i.e. q = l ∈ min(Z(R)), a contradiction. Then

p ∩ CZ(R) = q ∩ CZ(R) �= ∅
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since CZ(R) = Z(R)\Z(R).
(2 ⇒ 1) Suppose that CZ(R) ∩ p �= ∅ for some p ∈ min(R). Fix an element c ∈ CZ(R) ∩ p. Recall that 

pc =
⋂

q∈min(R)\{p} q �= 0 and ppc = 0. Then cpc ⊆ ppc = 0, and so c ∈ CZ(R)\CR. �
Proof of Proposition 1.9. The equivalences (1 ⇔ 2 ⇔ 3) are equivalent to Corollary 1.8.

(1 ⇒ 4) Suppose that CZ(R) ⊆ CR. By Lemma 5.3, the centre Z(R) is a semiprime ring. By the assumption, 
| min(Z(R))| < ∞. Since the centre Z(R) is a commutative semiprime ring with | min(Z(R))| < ∞,

CZ(R) = Z(R)\
⋃

q∈min(Z(R))

q.

Hence, the quotient ring Q(Z(R)) = C−1
Z(R)Z(R) is a semiprime commutative Artinian ring with

min(Q(Z(R))) = {C−1
Z(R)q | q ∈ min(R)}.

Hence, the ring Q(Z(R)) is a semisimple Artinian ring with Spec(Z(R)) = min(Z(R)), and so the quotient 
ring

Q(Z(R)) = C−1
Z(R)Z(R) �

∏
q∈min(Z(R))

Z(R)q =
∏

q∈min(Z(R))

k(q)

is a finite direct product of fields Z(R)q = k(q). Since CZ(R) ⊆ CR,

C−1
Z(R)Z(R) ⊆ C−1

Z(R)Z(R) �
∏

q∈min(Z(R))

Z(R)q ⊗Z(R) R �
∏

q∈min(Z(R))

Rq,

and so the map ρR,min is a surjection, by Proposition 5.1 (since Rq = Rq/Rqq).
(4 ⇒ 3) The implication is obvious. �

Corollary 5.5. Let R be a semiprime ring such that | min(R)| < ∞, | min(Z(R))| < ∞ and CZ(R) ⊆ CR. 
Then

1. R ⊆ C−1
Z(R)R �

∏
q∈min(Z(R)) Rq.

2. Z(C−1
Z(R)R) = C−1

Z(R)Z(R) �
∏

q∈min(Z(R)) Z(R)q is a finite direct product of fields Z(R)q.
3. For every q ∈ min(Z(R)), Rq is a semiprime ring, min(Rq) = {pq | p ∈ min(R)} and | min(Rq)| ≤

| min(R)| < ∞.
4. For every q ∈ min(Z(R)), Z(Rq) � Z(R)q, i.e. the Z(R)q-algebra Rq is a central algebra.

Proof. 1. Statement 1 was proven in the proof of Proposition 1.9.
2. By the assumption, CZ(R) ⊆ CR. Hence, R ⊆ C−1

Z(R)R. Let c−1r ∈ Z(C−1
Z(R)R) for some elements c ∈

CZ(R) and r ∈ R. Then r ∈ Z(R). It follows that Z(C−1
Z(R)R) = C−1

Z(R)Z(R). The isomorphism C−1
Z(R)Z(R) �∏

q∈min(Z(R)) Z(R)q was proven in the proof of Proposition 1.9.
3. Statement 3 follows Theorem 1.4.(1,2).
4. Statement 4 follows from statements 1 and 3. �
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