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ABSTRACT: A fundamental problem in analyzing large longi-
tudinal data sets modeling dynamics in multimolecular systems is
determining the underlying free-energy landscapes as a function of
the committor, the optimal reaction coordinate. Here, we
demonstrate that by combining a nonparametric approach with a
systematic method for generating permutationally invariant
collective variables, the committor can be effectively determined
to describe multimolecular aggregation in a system with
anisotropic interactions. The optimality of the committor is
verified by a stringent validation test, and it is shown that the
diffusive model along the committor yields kinetic properties
identical to those derived from the original dynamics. Our method
is general and relevant to the large machine learning community developing methods to determine the committor from longitudinal
data sets.

Multimolecular systems undergoing transitions between
states with distinct physical properties are ubiquitous in

nature, and prominent examples include condensation of small
molecules,1 protein crystallization,2 and macromolecular
aggregation.3−5 The steady-state kinetics of transitions in
those systems is usually described by projecting the very-high
dimensional configurational space of the molecules onto a few
reaction coordinates (RCs). The remaining large number of
degrees of freedom are modeled as noise by a stochastic model,
such as the diffusive models described by the Smoluchowski
and Fokker−Planck-like equations.6,7 The RC choice, however,
is one of the pivotal difficulties that may lead to discrepancies
when comparing simulated transition rates with their
experimentally measured counterparts.8

In the case of physically motivated RCs,9−11 the projection
usually introduces memory effects, and because of their non-
Markovian character, there is no guarantee that the
corresponding diffusive models can be used to describe
quantitatively the system’s dynamics at arbitrary time
scales.12,13 Alternatively, the formalism of optimal reaction
coordinates14 selects RCs that minimize non-Markovian effects
so that dynamics can be accurately described as simple
diffusion on the corresponding free-energy landscape. For
equilibrium stochastic dynamics between two boundary states,
the committor function is considered an optimal RC.15,16 It is
defined as the probability for the trajectory to reach one
boundary state (B) before reaching the other one (A) starting
from any given configuration.17 It has been shown that, despite
the dynamics projected on the committor coordinate q being
not strictly Markovian, a diffusive model along it can be used

to exactly compute the equilibrium flux J = D(q)peq(q),
15,18 the

mean transition path times (MTPT) ,14 and the mean first
passage times (MFPT)15,19,20
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between any two points on the committor landscape. These
results hold for arbitrarily complex equilibrium stochastic
dynamics in configuration space and do not require a
separation of time scales. Here D(q) and peq(q) are the
temperature-dependent diffusion coefficient and equilibrium
probability density function, respectively. While the description
of the system’s dynamics using the committor is rather simple
since it only depends on the free-energy profile F(q)/kBT ∝
−ln peq(q), as well as the diffusion coefficient D(q), its
determination is an unsolved problem for multimolecular
systems. In principle, the committor can be computed from the
multidimensional Smoluchowski-like equation for diffusing
particles,14,21 but due to its complexity, it has only been solved
for low dimensional systems.22 In this letter, we consider the
high-dimensional case of multimolecular aggregation, and
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present a systematic way of constructing permutationally
invariant collective variables (CVs), which can be used in
nonparametric optimization to determine the committor. The
optimization scheme has been validated previously in
unimolecular systems, such as the analysis of large scale
atomistic protein folding simulations.23,24

The presented approach is timely, given the rapid develop-
ment of computer hardware, which has led to an explosion of
large, high-dimensional longitudinal data sets modeling
transitions in multimolecular systems. These data sets require
sophisticated analysis and interpretation. Recently, numerous
machine learning approaches have been proposed to determine
the committor, but they remain limited to relatively simple or
low-dimensional systems.25−27 Other relevant developments
include path sampling which uses machine learned committor
estimates to improve sampling and to iteratively refine it.28

Additionally, the committor-based bias potential introduced in
ref 29 iteratively improves sampling of transition states leading
to better committor representations. Independent of these
efforts for constructing optimal RCs to describe transitions in
multimolecular systems, there is a lack of well-established
benchmark systems, which are easy to simulate yet challenging
to analyze. Recent studies either considered complex systems
with relatively simple RCs (e.g., ion association28), or simple
model systems (e.g., alanine dipeptide26,27,29 or Mueller
potential25−27,29). Here, we considered a system with a low
simulation cost, but rather complex RC landscape. In this way,
it can serve as one of such benchmark systems, and the
described approach together with the stringent optimality
criterion, provides state-of-the-art results for aggregating
phenomena. As it is feasible to sufficiently sample this system
with long equilibrium simulations, scarce sample problems
addressed in refs 26−29 are not critical. Nevertheless, our
methodology can be combined with nonequilibrium sampling
using the nonequilibrium nonparametric approach of ref 30.
Here, we consider stochastic dynamics in a multidimensional

configuration space X , where we are interested in describing
the dynamics of a reaction between two specified boundary
states, A and B. To achieve this, we introduce a scalar RC,
r X( ), which projects X onto a one-dimensional coordinate
such that =r X A( ) 0 and =r X B( ) 1. In general, the
dynamics projected onto this coordinate is non-Markovian due
to the loss of information associated with the dimensionality
reduction.12,13 This non-Markovian behavior can be accurately
described using the generalized Langevin equation with a
memory kernel, which can be derived via the Mori-Zwanzig
formalism.31 However, computing the memory kernel for
practical cases is often challenging. Neglecting memory effects,
dynamics can be approximated using a simple diffusive model,
where the free energy F(r) and diffusion coefficient D(r) are
computed as functions of the RC from its time series

=r k t r X k t( ) ( ( )) sampled with Δt (e.g., simulation step).
Such models generally predict faster kinetics manifested as
shorter MFPT, higher flux, and lower apparent free energy
barriers.23,32−35

To improve the accuracy of this description, one can
optimize the RC to mitigate these non-Markovian effects by
employing variational approaches.33−38 Consider, specifically,
the nonparametric approach of RC optimization,23,24,30,39

which improves RC iteratively. It considers iterative variations
o f t h e p u t a t i v e R C t i m e s e r i e s ,

= ++r X k t r X k t r X k t( ( )) ( ( )) ( ( ))m m1 , w h e r e

r X k t( ( )) s a t i s fi e s
= =r X k t A r X k t B( ( ) ) ( ( ) ) 0 to preserve boun-

dary conditions. For optimizing the committor, we used the
variation

=
= =
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where =x x X k t( ( ))m m denotes a randomly chosen CV time
series in the m-th iteration which will be described later. This
definition is convenient as the optimal variational coefficients
aij can be found analytically by minimizing the total squared
displacement (TSD) functional,30,39 see also the Supporting
Information (SI). We note that as the approach deals directly
with the CV time series, there is no need to compute the full
RC function r X( ), in this sense it is nonparametric, as opposed
to most machine learning approaches, which try to parametrize
the function r X( ) with, e.g., an artificial neural network. The
convergence of such an optimization scheme can then be
verified through the ZC,1 validation criterion for the committor,
which states that if the putative RC r closely approximates the
committor q, function ZC,1(r, Δt) is constant, i.e., independent
of r and Δt, and equal to the number of transitions NAB
between the specified boundary states.15 ZC,1(r, Δt) can be
straightforwardly computed from the RC time-series r(kΔt) as

+( ) ( )r k t t r k tk , where the prime indicates that

the sum is over all transitions such that r is between r(kΔt +
Δt) and r(kΔt)15 (further details in the SI).
It is worth noting that, assuming diffusive dynamics over a

putative RC r, the diffusion coefficient can be accurately
estimated as15

=D r t
Z r t

tZ r t
( , )

( , )

( , )
C

H

,1

(3)

where the histogram ZH(r, Δt) is related to the equilibrium
distribution peq(r) ∝ ZH(r, Δt) and free-energy profile F(r)/
kBT ∝ −ln ZH(r, Δt). In this way, F(r)/kBT and ZC,1(r, Δt)
completely determine the diffusive models over the chosen
RC, whether it displays Markovian dynamics or not.40 In
particular, for the optimal coordinate q, the criteria that ZC,1(q,
Δt) is independent of Δt ensures that the diffusion coefficient
D(q) given by eq 3 is also independent of Δt (this is because
the non-normalized histogram scales as ZH(q, Δt) ∼ Δt−1), just
like it is for normal (i.e., Markovian) diffusion.
What remains is the task of identifying a suitable set of CVs

{xm} for a multimolecular system with N molecules. In
particular, such CVs need to respect the system’s symmetries,
which for multimolecular systems are invariance under
translations, rotations and permutation of identical mole-
cules.41 For the first two, one can just consider distances dij
between molecules noting that, if periodic boundary conditions
are used in simulations, the minimum image convention
should be used. Permutational invariance has proven more
difficult to ensure and here we propose a systematic way of
constructing such invariant CVs: We take the full matrix of
distances d with N × N dij elements and sort it (from small to
large) sequentially along its two axis, i.e., first inside each
column and then inside each row. In this way, the time series
of the elements =d d k t( )ij ij of the sorted matrix d compose
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the set of invariant CVs that can be used as xm in eq 2 (see the
SI for details).
To demonstrate the applicability of our approach for

multimolecular aggregation, we consider a lattice system to
compute its committor q along with the diffusive model, i.e.,
the free-energy profile F(q)/kBT and diffusion coefficient D(q).
As described in refs 40, 42, the system is defined as a regular
two-dimensional square lattice of size L = 200 containing N =
400 molecules. Besides its position, each molecule has an
additional degree of freedom that determines its orientation,
which can be of two types. The interaction between neighbor
molecules is then defined depending on their relative
orientation, which can be stronger, ψs, for aligned molecules
or weaker, ψw, for nonaligned ones. In this way, the quantity ξ
= ψs/ψw is a measure of the interaction anisotropy. Similarly to
ref 40 we perform Metropolis Monte Carlo (MC) simulations
in the canonical (NVT) ensemble at a temperature T = T*
where the system undergoes a first-order phase transition
between diluted and aggregated states (in the SI we indicate
the value of T* for different ξ). For the data production runs
we performed six long equilibrium MC simulations, where
each simulation consists of 108 MC steps (MCs), and
configurations were saved at every Δt0 = 400MCs.
First, for the sake of comparison, we show results obtained

using the number of molecules in the largest aggregate n as RC,
which is commonly used in the context of the classical
nucleation theory.43 We computed the committor as a function
of n, q(n), to evaluate the optimality of n. To do so, we
performed the optimization procedure given by eq 2 with xm =
n(kΔt) for all iteration steps m until convergence is reached (m
= 20). As the transformation n → q(n) does not change the
RC optimality, the profile along q(n) is representative of the
original n RC.15 Moreover, using the q(n) coordinate one can
directly apply the committor validation test to see whether
q(n) approaches the true multidimensional committor function
q. As can be seen in Figure 1 (a), −ln ZC,1(q(n), Δt) increases
from −5.8 to −4.8 as Δt increases from Δt0 to 215Δt0,
indicating that q(n) failed to pass the committor validation
test. For the q(n) coordinate the boundary states A and B are

defined by the corresponding minima on the free-energy
profile F(n)/kBT.
Now we turn our attention to the putative committor RC

obtained from the optimization procedure (eq 2) using {xm} as
the CVs (dij) that respects all the symmetries of the system, for
details see the SI. It can be seen in Figure 1 (b) that the
constructed committor satisfactorily passed the validation test
since ZC,1(q, Δt) is constant, that is, it only fluctuates near the
expected value −ln ZC,1(q, Δt) ≈ −lnNAB ≈ −4.72 for various
Δt up to statistical uncertainty, roughly estimated as

N1/ 2 0.07AB . Here, the boundary states were defined in
a more accurate, systematic way, by allowing optimization of
the putative RC (soft committor) around the corresponding
free-energy minima (see the SI for details). As the constructed
optimal coordinate q passed the validation test, eq 3 implies
that the diffusion coefficient D(q, Δt) is independent of Δt. On
the other hand, for the suboptimal coordinate q(n), our
estimates for ZC,1(q(n), Δt), and hence for the diffusion
coefficient D(q(n), Δt) depend on sampling interval
(observation time scale) Δt, indicating the presence of strong
non-Markovian effects. Interestingly, the non-Markovian
behavior of q(n) and n is similar to the one observed when
considering the energy as a RC.40

Next, we include in Figure 1(c) and (d) the free-energy
profiles F q n k T( ( ))/ B and F q k T( )/ B , where q n( ) and q are the
rescaled coordinates where the diffusion coefficient is
unitary,32,44 =D q t( , ) 10 and =D q n t( ( ), ) 10 (see the
SI for implementation details), so that the diffusive model and
kinetics are specified by the free-energy profile alone. The
comparison between the two free-energy profiles indicates that
the free-energy barriers are almost the same, so the main
difference is due to the ranges observed over q n( ) and q. While
for q the minima are separated by q q q 90B A , the n-
b a s e d v a r i a b l e s h ow s a s e p a r a t i o n a r o u n d

q n q n q n( ) ( ) ( ) 45B A . As the diffusion coefficients
over those coordinates are unitary, the smaller separation over
q n( ) implies a higher diffusivity for the n-based coordinate so
that the related diffusive model leads to faster kinetics, with
e.g., the MFPT τB→A = 1.8 × 103Δt0 calculated via eq 1 that is
smaller than the τB→A = 4.7 × 103Δt0 determined directly from
the time series n(kΔt) (See Table 1). On the other hand, for
the proposed optimal coordinate q, τB→A = 5.4 × 103Δt0
calculated via eq 1 is very close to the value τB→A = 5.3 ×
103Δt0 extracted directly from the series q(kΔt).

Figure 1. Functions −ln ZC,1(r, Δt) and free-energy profiles F(r)/kBT
for the n-based RC q(n) and the optimized committor q. Panels (a)
and (b) show the ZC,1-based committor validation tests for both RCs,
where different colors correspond to different Δt = 2iΔt0, with i = 0, 1,
2, ..., 15 (from the bottom to the top). In panels (c) and (d), the
profiles are presented as a function of the rescaled RCs where D(r,
Δt0) = 1.

Table 1. Estimates for MFPT τB→A and Number of
Transitions NAB Obtained from Both n-Based RC q(n) and
Commitor q for Systems with Different Anisotropies ξa

ξ = 1 ξ = 3 ξ = 5 ξ = 7
τB→A from eq 1 with q(n) 1.8 3.3 3.6 6.2
τB→A from time series of q(n) 4.7 9.7 13 22
NAB from ZC,1(q(n), Δt0) 336 171 161 114
NAB from time series of q(n) 122 55 40 28
τB→A from eq 1 with q 5.4 11 15 26
τB→A from time series of q 5.3 10 14 25
NAB from ZC,1(q, Δt0) 113 52 38 26
NAB from time series of q 112 53 37 27

aAll times are given in units of 103 × Δt0.
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Next we include results for systems with different
anisotropies ξ to show how the estimates for the kinetic
properties evaluated through the diffusive model over the
committor q compare with those obtained from the physically
motivated RC q(n). In addition to the estimates for the
MFPTs evaluated through eq 1 and from the time series of the
RCs, we include in Table 1 the values of the number of
transitions NAB which can be computed not only directly from
the times series but also from15 NAB = ∫ ZC,1(r, Δt0)dr. The
values displayed in Table 1 corroborate the fact that the
diffusive model along q(n) gives MFPTs and number of
transitions that would correspond to aggregation kinetics that
is about three to four times faster than the corresponding
values determined directly from the time series n(kΔt).
Conversely, the values of τB→A and NAB obtained from the
diffusive model along our constructed optimal coordinate q
give essentially the same results measured directly from the
trajectories q(kΔt). In the SI we include additional results
obtained for larger systems sizes, as well as for the reverse
MFPT τA→B and MTPT , which indicates that the agreement
between the diffusive model along the proposed committor q
and the discrepancies for the q(n) coordinate are observed for
all cases.
To demonstrate the generality of our approach, we also

present results for a more realistic three-dimensional Lennard-
Jones system governed by overdamped Langevin dynamics, as
detailed in the Supporting Information. The proposed method
successfully computes the committor and associated kinetic
properties.

Finally, in Figure 2 we show the free-energy profiles
F q k T( )/ B obtained for systems with different anisotropies ξ
along the rescaled commitor RC q. Interestingly, just as for the
energy-based profiles,42 the free-energy barriers display a
nonmonotonic behavior with anisotropy. Even so, as the values
included in Table 1 indicate, anisotropy slows down overall
kinetics, as measured by τB→A and NAB. This is explained by the
monotonic decrease of diffusivity with increasing ξ, that is, the
range =q q qB A between the two basins in Figure 2
increase monotonically with ξ.

To the best of our knowledge, the computation of
committor q and its landscape for the entire aggregation
process in finite yet large systems (i.e., with N ∼ 102
molecules) is not available in the literature. Studies including
committor analysis are generally restricted to the first steps of
aggregation with only a handful of aggregating molecules (see
e.g., refs 45, 46 where more sophisticated models of protein
aggregation were considered). By considering a nonparametric
variational approach39 supplied with a proposed set of
permutationally invariant CVs, we confirmed that the diffusive
model along the committor can be used to reproduce kinetic
properties exactly. In addition, our results indicate that usual
physically motivated RCs like n may not lead to accurate
kinetic description at arbitrary time scales due to strong non-
Markovian effects. When dealing with such suboptimal
coordinates, more sophisticated stochastic models with a
memory kernel are needed,13 in which case the free-energy
profile loses its simple interpretation, or one needs to employ a
suitable separation of time scales, as we did recently for the
energy coordinate.40 The use of the committor as RC preserves
the appealing simple picture of diffusion on the free-energy
profile while avoiding the need for time scale separation. Such
an accurate model of the dynamics can also be used to
compute rigorously and in a direct manner, the pre-exponential
factor,23,34,47 a key determinant of aggregation kinetics. Finally,
it is worth mentioning that our approach is general and its
implementation for the analysis of aggregation kinetics in more
realistic multimolecular systems1−5,45,46 is straightforward. Our
method is also of interest to the machine learning community,
which is seeking methods to determine the committor for
longitudinal data sets.25−29 In particular, the stringent ZC,1
validation test can be used to assess the accuracy of committor
estimates obtained by various methods, including the many
neural network architectures currently available, thereby
greatly simplifying direct comparison between approaches.
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orcid.org/0000-0002-3890-6022

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.5c01427

Funding
The Article Processing Charge for the publication of this
research was funded by the Coordenacao de Aperfeicoamento
de Pessoal de Nivel Superior (CAPES), Brazil (ROR identifier:
00x0ma614).
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
Lair F. Trugilho thanks FAPEMIG and CAPES (PSDE
program) for the studentships. Leandro G. Rizzi acknowledges
the support from CNPq (Grants No. 312999/2021-6 and No.
308285/2025-5) and FAPEMIG (Process APQ-01462-24).
The authors also thank the computational resources made
available by GISC-UFV.

■ REFERENCES
(1) Cho, W. J.; Kim, J.; Lee, J.; Keyes, T.; Straub, J. E.; Kim, K. S.
Limit of Metastability for Liquid and Vapor Phases of Water. Phys.
Rev. Lett. 2014, 112, 157802.
(2) Sosso, G. C.; Chen, J.; Cox, S. J.; Fitzner, M.; Pedevilla, P.; Zen,
A.; Michaelides, A. Crystal Nucleation in Liquids: Open Questions
and Future Challenges in Molecular Dynamics Simulations. Chem.
Rev. 2016, 116, 7078.
(3) Auer, S.; Kashchiev, D. Phase Diagram of α-Helical and β-Sheet
Forming Peptides. Phys. Rev. Lett. 2010, 104, 168105.
(4) Wang, Y.; Bunce, S. J.; Radford, S. E.; Wilson, A. J.; Auer, S.;
Hall, C. K. Thermodynamic phase diagram of amyloid-β(16−22)
peptide. Proc. Natl. Acad. Sci. U.S.A. 2019, 116, 2091.
(5) Duan, C.; Wang, R. Electrostatics-Induced Nucleated Conforma-
tional Transition of Protein Aggregation. Phys. Rev. Lett. 2023, 130,
158401.
(6) Nadler, W.; Hansmann, U. H. E. Generalized ensemble and
tempering simulations: A unified view. Phys. Rev. E 2007, 75, 026109.
(7) Balakrishnan, V. Elements of Nonequilibrium Statistical Mechanics;
Springer, 2021.
(8) Blow, K. E.; Quigley, D.; Sosso, G. C. The seven deadly sins:
When computing crystal nucleation rates, the devil is in the details. J.
Chem. Phys. 2021, 155, 040901.
(9) Chahine, J.; Oliveira, R. J.; Leite, V. B. P.; Wang, J.
Configuration-dependent Diffusion Can Shift the Kinetic Transition
State and Barrier Height of Protein Folding. Proc. Natl. Acad. Sci.
U.S.A. 2007, 104, 14646−14651.
(10) Best, R. B.; Hummer, G. Coordinate-dependent Diffusion in
Protein Folding. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 1088−1093.
(11) Trugilho, L. F.; Rizzi, L. G. Shape-free theory for the self-
assembly kinetics in macromolecular systems. EPL 2022, 137, 57001.
(12) Kuhnhold, A.; Meyer, H.; Amati, G.; Pelagejcev, P.; Schilling,
T. Derivation of an exact, nonequilibrium framework for nucleation:
Nucleation is a priori neither diffusive nor Markovian. Phys. Rev. E
2019, 100, 052140.
(13) Tepper, L.; Dalton, B.; Netz, R. R. Accurate Memory Kernel
Extraction from Discretized Time-Series Data. J. Chem. Theory
Comput. 2024, 20, 3061−3068.
(14) Banushkina, P. V.; Krivov, S. V. Optimal reaction coordinates.

WIREs Comput. Mol. Sci. 2016, 6, 748−763.

(15) Krivov, S. V. On Reaction Coordinate Optimality. J. Chem.
Theory Comput. 2013, 9, 135−146.
(16) Peters, B. Reaction Coordinates and Mechanistic Hypothesis
Tests. Annu. Rev. Phys. Chem. 2016, 67, 669−690.
(17) Du, R.; Pande, V. S.; Grosberg, A. Y.; Tanaka, T.; Shakhnovich,
E. S. On the transition coordinate for protein folding. J. Chem. Phys.
1998, 108, 334−350.
(18) Berezhkovskii, A. M.; Szabo, A. Diffusion along the Splitting/
Commitment Probability Reaction Coordinate. J. Phys. Chem. B 2013,
117, 13115−13119.
(19) Vanden-Eijnden, E.; Venturoli, M.; Ciccotti, G.; Elber, R. On
the assumptions underlying milestoning. J. Chem. Phys. 2008, 129,
174102.
(20) Lu, J.; Vanden-Eijnden, E. Exact dynamical coarse-graining
without time-scale separation. J. Chem. Phys. 2014, 141, 044109.
(21) E, W.; Vanden-Eijnden, E. Transition-Path Theory and Path-
Finding Algorithms for the Study of Rare Events. Annu. Rev. Phys.
Chem. 2010, 61, 391−420.
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