ELSEVIER

Contents lists available at ScienceDirect

Journal of Functional Foods

journal homepage: www.elsevier.com/locate/jff

Black bean (*Phaseolus vulgaris* L.) protein hydrolysates reduce acute postprandial glucose levels in adults with prediabetes and normal glucose tolerance

Luis Mojica ^a, Andrea Susana Ramos-Lopez ^b, Oscar Abel Sánchez-Velázquez ^a, Armando Gómez-Ojeda ^b, Claudia Luevano-Contreras ^{b,*}

ARTICLE INFO

Keywords:
Black bean
Protein hydrolysates
Prediabetes
Bioactive peptides
In silico predictive digestion

ABSTRACT

This study evaluated the acute effect of black bean protein hydrolysate (BPH) on postprandial glucose and insulin levels in adults with normal glucose tolerance (NGT) or prediabetes. First, an *in silico* predictive digestion was performed on twenty peptides identified in BPH. Then, 28 adults with NGT or prediabetes were randomized to a parallel double-blind, placebo-controlled trial. Following consent, participants were randomly assigned to one of two groups, placebo, or 5 g of BPH. To evaluate the acute effects of BPH, an oral glucose tolerance test was administered, and blood samples were collected at 60, 120, and 150 min. In the 5 g BPH group, the area under the curve for glucose, and glucose levels at 120 min were statistically lower compared to the placebo group (p = 0.04, p = 0.02). In this study, BPH had an acute glucose lowering effect after an oral glucose tolerance test in subjects with NGT or prediabetes.

1. Introduction

Type 2 diabetes (T2D) is a chronic disease often preceded by a prediabetes state characterized by impaired fasting glucose, glucose tolerance and/or glycated hemoglobin (Rahim et al., 2023; ADA, 2018). Monitoring glucose blood levels and improving lifestyle habits, such as diet, can slow the progression from prediabetes to type two diabetes (Rahim et al., 2023).

In recent years, functional food ingredients have been designed from natural sources and shown promising results in the blood glucose levels in normal glucose tolerance (NGT) subjects as well as in T2D patients (Reed, Bain, & Kanamarlapudi, 2021; Rendell, 2021). Proteins from black beans (Phaseolus vulgaris L.) have been studied as a source of bioactive peptides. Small bioactive peptides (<1,000–200 Da) present important characteristics such as high biological potential, low toxicity, low or null allergenicity, high structural diversity, and small size (relative to antibodies) (Agyei, Ongkudon, Wei, Chan, & Danquah, 2016). These properties allow bioactive peptides to be applied as therapeutic agents against several diseases, including prediabetes and T2D (Sarmadi & Ismail, 2010).

Enzymatic hydrolysis is the most popular method to generate bioactive peptides from common beans and other pulses' parental protein sequences (Luna-Vital, Mojica, González de Mejía, Mendoza, & Loarca-Piña, 2015; Mojica, Chen, & de Mejía, 2015; Mojica & de Mejía, 2016; Mojica, Luna-Vital, & E. Gonzalez de Mejia, 2018; Oseguera-Toledo, de Mejia, & Amaya-Llano, 2015; Valencia-Mejía, Batista, Fernández, & Fernandes, 2019).

Black bean protein hydrolysates BPH generated with Alcalase® inhibited the *in vitro* activity of dipeptidyl peptidase-IV (DPP-IV), whose biological function is to inactivate glucagon-like peptide-1 (GLP-1) (Mojica & de Mejía, 2016). Also, it inhibited the enzymes α-amylase and α-glucosidase, which are involved in the starch breaking-down process (Mojica, Chen, & de Mejía, 2015; Mojica & de Mejía, 2016; Mojica, Luna-Vital, & González de Mejía, 2017; Nuñez-Aragón et al., 2019). Moreover, it has been reported that BPH could reduce the expression and translocation of glucose transporters in the plasmatic membrane, such as glucose transporter-2 (GLUT2) and the sodium-dependent glucose cotransporter (SGLT1) (Mojica, Gonzalez de Mejia, Granados-Silvestre, & Menjivar, 2017). Besides, *in vivo* experiments have reported the efficacy of BPH reducing postprandial glucose in non-

a Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A. C., CIATEJ, 44270 Guadalajara, Mexico

^b Department of Medical Sciences, University of Guanajuato, Campus León, Mexico

^{*} Corresponding author at: 929 20 de Enero, León, Guanajuato 37320, Mexico. *E-mail address:* c.luevanocontreras@ugto.mx (C. Luevano-Contreras).

hyperglycemic (16.9–24.5 %) and hyperglycemic (22.7–47.7 %) Wistar rats (Mojica, Gonzalez de Mejia, Granados-Silvestre, & Menjivar, 2017). The results of *in vivo* and *in vitro* experimental models reported the potential of BPH to inhibit digestive enzymes and block gastrointestinal glucose transporters (involved in regulating postprandial blood glucose). All these effects are related to potential beneficial effects in hyperglycemic states, especially diminishing postprandial glucose levels.

As the evidence shows, bioactive peptides from BPH may exert antidiabetes effects through several mechanisms. All the studies showing the antidiabetes potential of BPH and bioactive peptides have been performed using *in silico*, biochemical assays, *in vitro*, and *in vivo* studies (Mojica & de Mejía, 2016; Mojica, Luna-Vital, & González de Mejía, 2017; Nuñez-Aragón et al., 2019). However, clinical trials are needed to validate the hypoglycemic effect of black bean protein hydrolysates. In addition, a thorough understanding of the peptide composition of BPH is essential to provide insight into their biological activity. Therefore, the aim of this study was to identify BPH peptides with potential biological properties through *in silico* predictive digestion and to investigate in a clinical trial the acute effects of BPH on post-prandial glucose and insulin levels in adults with normal glucose tolerance or prediabetes.

2. Experimental section

2.1. Materials

Black beans (*Phaseolus vulgaris* L.) "San Luis" cultivar was harvested and acquired in Zacatecas, Mexico (season 2018). HT Proteolytic kit was purchased from ENMEX, S.A. de C.V. (Tlalnepantla, Mexico); glucose-LQ (GOD-POD Liquid), cholesterol-LQ (CHOD-POD Liquid), triglycerides-LQ (GPO-POD Liquid), and HDL-cholesterol P (Precipitating reagent) were supplied by Spinreact (Girona, Spain), the insulin ELISA kit (80-INSHU-E01.1) was supplied by ALPCO (Salem, NH, USA) and the dextrosol 75 g (anhydrous glucose liquid solution 75 g) was supplied by Hycel (Zapopan, Mex); alcalase (EC 3.4.21.62), NaOH, HCl, and other reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Black bean protein hydrolysates production

Black bean protein hydrolysates were generated according to patent request No. MX/a/2021/011985 entitled "Proceso a nivel planta piloto para la generación y purificación de hidrolizados de proteína de frijol común (*Phaseolus vulgaris* L.) con potencial hipoglucemiante". Briefly, dehusked black bean seeds were ground in a 1:10 dilution (ground beans: water), and the pH was adjusted to 9.0 with NaOH. The protein was extracted and then centrifuged at 4,000 rpm, and the supernatant was recovered. The pH was modified to 3.8 using HCl and centrifuged at 4,000 rpm at 2 °C. The precipitated protein was recovered and stored at $-20\,^{\circ}$ C. Protein was solubilized in 0.05 N NaOH in a 1:20 ratio and autoclaved to denature proteins. Then, the sample was cooled, and a commercial protease (HT proteolytic) was added in a 1:10 (v/v) ratio according to the protein content of the solution. Protein hydrolysis was performed, and the undigested protein was separated by centrifugation. The supernatant containing the BPH was recovered.

2.3. LC-MS/MS analysis and peptide sequencing

Selected protein hydrolysates were analyzed at IPICyT laboratory (Instituto Potosino de Investigación Científica y Tecnológica, A.C.). Nanoscale LC separation of BPH was performed with a nano-ACQUITY UPLC System (Waters, Milford, USA) equipped with a Symmetry C18 precolumn (100 Å, 5 $\mu m \times 20$ mm, Waters) and a BEH130 C18 (130 Å, 1.7 μm , 75 mm \times 100 μm , Waters) analytical column. Peptides were eluted at 35 °C with a linear gradient of 3 % to 50 % mobile phase B (acetonitrile with 0.1 % formic acid) over 30 min at a flow rate of 600

nL/min, followed by a 3 min rinse with 85 % of mobile phase B. The column was re-equilibrated at initial conditions for 15 min with mobile phase A (water with 0.1 % formic acid). The lock mass compound, [Glu1]-Fibrinopeptide B (Sigma Aldrich, Saint Luis, USA), was delivered by the auxiliary pump of the nano-ACQUITY UPLC System at 200 nL/ min at a concentration of 100 fmol/mL to the reference sprayer of the Nano-Lock-Spray source of the mass spectrometer. Mass spectrometric analysis (LC-MS/MS) was conducted in an SYNAPT HDMS Q-TOF (Waters). The spectrometer was operated in V-mode, and analyses were performed in positive mode ESI. The TOF analyzer was externally calibrated with [Glu1]-Fibrinopeptide B from 50 to 2,422 m/z. The radiofrequency applied to the quadrupole was adjusted to efficiently transmit ions from 50 to 2,000 m/z. Accurate mass data were collected in an alternating Data-Independent Acquisition mode. In low-energy mode, data were collected at collision energy of 3 eV. In the elevated energy mode, the collision energy was ramped from 15 to 45 eV during 8 s of integration. The data were post-acquisition lock mass corrected using the doubly protonated monoisotopic ion of [Glu1]-Fibrinopeptide B (Sigma Aldrich, Saint Luis, USA). The reference sprayer was sampled every 30 s. The obtained MS/MS data were analyzed for peptide identification using the NCBIprot databases in the Viridiplantae taxonomy and MASCOT v2.3.02 (Matrix Science, London, UK), available at https://www.matrixscience.com. The following search parameters were used for the enzyme: pepsin A; fixed modifications: carbamidomethyl (C); variable modifications: oxidation (M); mass values: monoisotopic; protein mass: unrestricted; peptide mass tolerance: ± 20 ppm; fragment mass tolerance: ± 0.1 Da; max missed cleavages: 1; instrument type: ESI-QUAD-TOF; number of queries: 1,936. Identifications were considered successful when significant MASCOT scores were obtained, indicating the identity or extensive homology at p < 0.05.

2.4. In silico peptide digestion, physicochemical and biological properties prediction

Peptide physicochemical properties were predicted using PepDraw tool (https://www.tulane.edu/?biochem/WW/PepDraw/). *In silico* enzymatic digestions were performed to predict the release of short peptides with biological potential. The predicted digested peptide sequences and their biological potential were performed using BIOPEP database (https://www.uwm.edu.pl/biochemia/index.php/pl/biopep) with the enzymes pepsin (pH 1.3)-EC 3.4.23.1, trypsin-EC 3.4.21.4 and Chymotrypsin A-EC 3.4.21.1/Chymotrypsin C-EC 3.4.21.2 (Minkiewicz, Iwaniak, & Darewicz, 2019).

2.5. Randomized clinical trial

2.5.1. Study design

A parallel double-blind placebo-controlled randomized clinical trial was carried out in 28 adults to evaluate the acute effect of 5 g of BPH on postprandial glucose and insulin levels after an oral glucose tolerance test. All the procedures were performed at the research facilities of the Department of Medical Sciences of the University of Guanajuato, Mexico. The Institutional Ethics Committee from the University of Guanajuato approved this protocol (CIBIUG-P53-2018), and all subjects signed the informed consent before undergoing any procedure.

2.5.2. Participants

Participants in this study were recruited directly from local health fairs in León, Guanajuato, Mexico. As part of the screening process to determine eligibility for participation, capillary glucose, weight, height, and blood pressure measurements were taken. As part of this study, adults between the ages of 25 and 50 with overweight or obesity, according to their body mass index (BMI) (25–34.9 kg/m²) were eligible to enroll. The study did not include participants who reported diabetes, cancer, cardiovascular disease, or other chronic diseases by self-report. Pregnant or breastfeeding women were not included. Following

eligibility determination, participants were referred to the Department of Medical Sciences for clinical, anthropometric, and metabolic assessments. Two study visits were scheduled for participants, the first for the initial assessments and the second for the intervention. The period for each visit was at least one week and maximum four weeks apart.

On the day of the initial assessments, participants attended the clinical laboratory of the Department of Medical Sciences after an overnight fast. The initial metabolic assessment included a lipid profile, and an oral glucose tolerance test (OGTT) with 250 mL of dextrosol 75 g (an anhydrous glucose liquid solution, 75 g) with blood samples at 0 and 120 min. The participants' metabolic status (normal glucose tolerance (NGT) or prediabetes) was defined as followed: Normal glucose tolerance as fasting glucose levels $<100~{\rm mg/dL}$ and postprandial (2 h) glucose levels $<140~{\rm mg/dL}$, and prediabetes as fasting glucose levels of $100-125~{\rm mg/dL}$, postprandial (2 h) glucose levels of $140-199~{\rm mg/dL}$, or both. After determining the participants' metabolic status, the subjects were classified as either with NGT or with prediabetes.

2.5.3. Treatment

The acute effect of BPH on postprandial glucose and insulin levels was assessed using either 5 g of powdered BPH dissolved in 120 mL of a red-colored commercial non-caloric beverage or a placebo consisting of 120 mL of the red-colored non-caloric commercial beverage. Participants could not distinguish which treatment they were receiving due to the red color of the commercial beverage.

2.5.4. Study protocol

Once the participants were included and classified by metabolic status, they were randomly assigned into either the group receiving BPH treatment (5 g) or the placebo group. The randomization plan for treatment assignment was done by a staff member who had no contact with participants using stratification by metabolic status and the online randomization software https://www.graphpad.com/quickcalcs/randomize1/, a similar number of participants with NGT and prediabetes were included in each treatment group (BPH or placebo).

Once participants were randomly assigned to their treatment group, they underwent a second oral glucose tolerance test to evaluate the acute postprandial effect of BPH. On the day of the intervention, participants attended the clinical laboratory of the Department of Medical Sciences after an overnight fast for at least 8 h.

After, a blood draw (0 min) participants drank either the dissolved BPH or the placebo according to their assigned treatment group, followed by 250 mL of the dextrosol 75 g. Successive blood samples were collected at 60, 120, and 150 min to determine glucose and insulin levels

2.5.5. Clinical evaluation and anthropometric assessment

In this study, trained professionals administered a questionnaire to collect clinical data. Blood pressure was measured using a semi-automatic digital blood pressure monitor (Omron HEM-7200) on the participant's right arm in a sitting position and after resting for at least 10 min.

Body weight and height were measured with the subjects barefoot and wearing light clothing using a digital scale (Seca 769) and a stadiometer (Seca 213-I). Waist circumference was measured at the intermediate point between the last rib and the iliac crest using metal tape (Lufkin W606PM). Body mass index (BMI) was calculated as body weight (kg) divided by the squared height (m) according to WHO (Reinahuer, Home, Kanagasabapathy, & Heuck, 2005).

2.5.6. Biochemical assays

In order to perform the biochemical assays, blood samples were collected after fasting with at least 8 h. For glucose (Spinreact, Girona, Spain) and lipid profile (total cholesterol, TG, and HDL-c) (Spinreact, Girona, Spain), enzymatic colorimetric assays were used. LDL-cholesterol was calculated using the Friedewald equation (Krishnaveni

& Gowda, 2015). Glucose and lipid profile levels (triglycerides, total cholesterol, HDL-cholesterol) in serum were determined by internationally standardized methods at the clinical laboratory of the Department of Medical Sciences using a semi-automatic biochemistry analyzer SPINLAB (Spinreact, Girona, Spain).

In addition, insulin levels were performed by a serum sandwich format enzyme-linked immunosorbent assay (ELISA) using an ELISA kit (ALPCO, Inc., Salem, NH, USA). As indices of insulin resistance, the homeostatic model assessment of insulin resistance (HOMA-IR) and the Matsuda Index were calculated (Gastaldelli, 2022). Areas under the curves for glucose (AUC gluc) were calculated based on the trapezoidal rule.

2.5.7. Ethical statement

Ethical approval for the involvement of human subjects in this study was granted by the Institutional Ethics Committee from the University of Guanajuato (CIBIUG-P53-2018), and all subjects signed the informed consent before undergoing any procedure. The clinical trial was registered at ClinicalTrials.gov with the following identifier: NCT05869344.

2.5.8. Statistical analysis

Numerical continuous variables were expressed as mean and standard deviation or median and interquartile range according to their distribution, and categorical variables were summarized by counts and percentages. The outcomes for this study were postprandial glucose and insulin levels after BPH or placebo treatment: glucose 60 min (mg/dL); glucose 120 min (mg/dL); glucose 150 min (mg/dL); AUC gluc (mg.h/dL); insulin 60 min (μ IU/mL); insulin 120 min (μ IU/mL); insulin 150 min (μ IU/mL).

Comparison between groups was performed using independent Student's *t*-test. In addition, considering that fasting glucose and post-prandial 2-h glucose at baseline were used to classify participant's metabolic status, they were used as covariates for an analysis of covariance (ANCOVA). Thus, ANCOVA models were used to compare outcome variables between treatments, and the results were reported as mean differences of the placebo from the 5 g BPH treatment. Bonferroni adjustment was used to account for multiple comparisons. Another confounding variables were also considered for the ANCOVA models such as age, sex, BMI, waist circumference or metabolic status (NGT of Prediabetes). However, they did not have statistical significance and were not include in the ANCOVA models.

A statistical significance of p < 0.05 was accepted, and the statistical program SPSS 28.0 for Windows was used.

3. Results and discussion

3.1. Black bean hydrolysate peptide identification

It was possible to identify 20 peptides from 11 to 18 amino acids length (1,259.54–1,959.43 Da) in the black bean protein hydrolysate. Peptide sequences origin was identified by comparison with parental proteins from *Phaseolus vulgaris* cultivars (Table 1). Eighteen peptide sequences presented a similarity of 90–100 % to phaseolin β -type, the main storage protein (globulin) in this seed. Seven peptides had a similarity of 80 % to PvD1defensin, a metabolic protein synthesized for antimicrobial purposes by several pulses, and other plants. Other metabolic parental proteins identified in at least one sequenced peptide were plastocyanin, tyrosine-tRNA ligase, photosystem I-N subunit, α -amylase inhibitor complex, bean lectin-like inhibitor, L-asparaginase and purple phosphatase complex (similarity about 80 %).

Sequenced bioactive peptides isoelectric point (pI) ranged from 3.69 to 9.93. ELSKDDVFVIPAA and LKDGLSVISPKW, peptide sequences were the most acid and alkaline protein fractions, respectively. The net charge of peptides ranged from -2 to 1, the 15 of 20 of the sequenced peptides presented a negative charge (-2 = 2 of 20 peptides; -1 = 13 of 20 peptides), 3 of 20 peptides had a neutral charge, and 2 of 20 peptides

 Table 1

 Bioactive peptide sequences identified in the BPH.

Peptide Sequence	Protein name	Parental protein (similarity)	Amino acid length	Mass (Da)	pI	Net Charge	Hydrophobicity (Kcal/mol)
TSDNPIFSDHQ	Cupin type-1 domain-	Phaseolin β-type (100 %)	11	1,259.54	3.91	-2	+17.61
TSDNPIFSDHQK	containing protein		12	1,387.635	5.14	-1	+20.41
LVNPDPKEDLRI	(fragment)	Phaseolin β-type (100 %) or PvD1 defensin	12	1,407.77	4.27	-1	+20.47
NPDPKEDLRIIQ		(80 %)	12	1,436.76	4.27	-1	+21.83
ELSKDDVFVIPAA			13	1,402.732	3.69	-2	+18.21
VNPDPKEDLRIIQ			13	1,535.828	4.27	-1	+21.37
YLVNPDPKEDLRIIQ			15	1,811.975	4.27	-1	+19.41
LVNPDPKEDLRIIQL			15	1,761.996	4.27	-1	+18.87
FYLVNPDPKEDLRIIQ			16	1,959.043	4.27	-1	+17.70
MPVNNPQIHEF	Cupin type-1 domain-	Phaseolin β-type (100 %)	11	1,324.622	5.06	-1	+12.65
AMPVNNPQIHEF	containing protein		12	1,395.659	5.06	-1	+13.15
LVNPDPKEDLRI		Phaseolin β-type (100 %) or PvD1 defensin (80 %)	12	1,407.77	4.27	-1	+20.47
FSDNQKIPAGTIFY		Plastocyanin (100 %) or phaseolyn (92.86 %)	14	1,599.791	6.52	0	+12.09
QGDNPIFSDNQKIPAGTI		Tyrosine-tRNA ligase (100 %) of phaseolin β-type (93.75 %)	18	1,913.945	3.93	-1	+19.94
LKDGLSVISPKW	Uncharacterized protein	Photosystem I-N subunit (80 %), α-amylase inhibitor complex (80 %) or bean lectin-like inhibitor (80 %)	12	1,341.763	9.93	1	+13.18
YSGVWFPQPAPKD	Formate dehydrogenase/ mitochondrial	Non-significant similarity	13	1,490.7172	6.48	0	+12.67
SIGRALDGKDVLG	Uncharacterized protein	Phaseolin β -type (100 %), L-asparaginase (100 %) or purple phosphatase complex (80 %)	13	1,299.7125	6.67	0	+20.12
AMPVNNPQIHD	Cupin type-1 domain-	Phaseolin β-type (90.91 %)	11	1,234.5747	4.98	-1	+14.87
VNPDPKEDLRIIQ	containing protein (fragment)	Phaseolin β-type (100 %)	14	1,648.912	4.27	-1	+20.12
MDKPNGPVWRISG	Peptidase A1 domain containing protein	Phaseolin β-type (100 %)	13	1,455.727	9.91	1	+15.70

pI, isoelectric point. A, alanine; C, cysteine; D, aspartic acid; E, glutamic acid; F, phenylalanine; G, glycine; H, histidine; I, isoleucine; K, lysine; L, leucine; M, methionine; N, asparagine; P, proline; Q, glutamine; R, arginine; S, serine; T, threonine; V, valine; W, tryptophane; Y, tyrosine.

had a net charge of 1. The hydrophobicity of peptides ranged from + 12.09 (FSDNQKIPAGTIFY) to + 21.87 kcal/mol (NPDPKEDLRIIQ).

Amino acid composition, sequence of amino acids, and chain length are some of the main parameters influencing protein hydrolysis during enzymatic treatments. However, net charge, and hydrophobicity are key indicators of peptide digestibility (Ahmed, Sun, & Udenigwe, 2022; Swaney, Wenger, & Coon, 2010). Most of the peptide sequences found in BPH show negative net charge (15 of 20 peptides), which means that these sequences are more unstable at intestinal pH (Ahmed, Sun, & Udenigwe, 2022). Additionally, most of these peptides do not present C-terminal Leu, present relatively high molecular weight (>1,000 Da), and are mostly hydrophobic (>+12.0 kcal/mol) (Ahmed, Sun, & Udenigwe, 2022). These properties are decisive factors in the production of small peptides during gastrointestinal digestion. Therefore, their subsequent bioaccessibility, bioavailability, and bioactivity depend on these key factors (Ahmed, Sun, & Udenigwe, 2022; Amigo & Hernández-Ledesma, 2020).

3.2. In silico prediction of peptide digestion

Biological potential of peptides produced by *in silico* digestive prediction from common beans protein and protein hydrolysates have been previously reported (Luna-Vital, Mojica, González de Mejía, Mendoza, & Loarca-Piña, 2015; Mojica, Gonzalez de Mejia, Granados-Silvestre, & Menjivar, 2015; Mojica, Luna-Vital, & González de Mejía, 2015; Mojica & de Mejía, 2015; Mojica & de Mejía, 2016). *In silico* digestive assays predict the enzymatic breakdown of polypeptides to shorter peptides (<1 kDa) by mimicking enzymatic digestive conditions of the human body (Coscueta, Batista, Gomes, da Silva, & Pintado, 2022; Marseglia et al., 2019). Bioaccessibility, bioavailability, and bioactivity relationships of black bean digested peptides (BDP) have been directly related to

their chemical structure. The small size of generated peptides could facilitate their interaction with enzyme active sites, biological markers in the bloodstream, cell receptors, hormones, etc. BDP could participate in numerous metabolic and physiological processes (Coscueta, Batista, Gomes, da Silva, & Pintado, 2022; Indrati, 2021; Marseglia et al., 2019; Yan, Zhao, Yang, & Zhao, 2019).

In silico prediction revealed that 20 BDP sequences from BPH presented at least one di- or tripeptide with antidiabetes and antihypertensive potential (Table 2). Pepsin and chymotrypsin are endopeptidases that break peptide bonds in hydrophobic and aromatic amino acids. At the same time, trypsin cleaves the peptide bond between the carboxyl group of arginine or the carboxyl group of lysine and the amino group of the adjacent amino acid (Boschin, Scigliuolo, Resta, & Arnoldi, 2014; Simpson, 2006). A combination of pepsin/trypsin/chymotrypsin is a better representation of the enzymatic process during the gastrointestinal digestion of protein substrates. It produces more bioactive BDP compared to digestions using two of these enzymes (pepsin-trypsin, pepsin-chymotrypsin, or trypsin-chymotrypsin). This could be due to the sequence of proteases cleaving proteins, and the resulting peptides were then cleaved by another protease that could not hydrolyze the original protein (Boschin, Scigliuolo, Resta, & Arnoldi, 2014; Maillet, 2019; Simpson, 2006).

Several of the released di- or tripeptides are reported to exert antidiabetes potential, such as α -amylase, α -glucosidase, and dipeptidyl peptidase-IV (DPP-IV) inhibition, as well as GLP-1 receptor agonists (Yan, Zhao, Yang, & Zhao, 2019).

Twenty-three BDP (22 dipeptides and 1 tripeptide ranging in 160–441 Da) from BPH were related to DPP-IV inhibitory activity (Table 2). DPP-IV is an enzyme targeted for the treatment of T2D (Neumiller, Wood, & Campbell, 2010). DPP-IV inactivates two incretin hormones that participate in insulin secretion (GLP-1 and glucose-

Table 2Predicted biological potential of di- and tri-peptides generated by *in silico* digestive prediction of BPH peptide sequences.

Peptide Sequence	Bioactive Di/Tri-	Bioactivity
	Peptides (MW)	
TSDNPIFSDHQ TSDNPIFSDHQK	IF (278 Da) IF (278 Da), QK	ACE inhibitory ACE inhibitory
10DIN II 0DIIQN	(274 kDa)	.102
LVNPDPKEDLRI	VN (231 Da), DP	DPP IV inhibitory
	(230 Da), PK (243	•
	Da)	
	KE (275 Da)	ACE inhibitory, DPP IV
	ID (007 D-)	inhibitory
	LR (287 Da)	ACE inhibitory, DPP III inhibitory, renin inhibitory
NPDPKEDLRIIQ	NP (229 Da), DP	DPP IV inhibitory
· Č	(230 Da), PK (243	
	Da), IQ (259 Da)	
	KE (275 Da)	ACE inhibitory, DPP IV
EL CADDADANDA A	FI (0(0 D-)	inhibitory
ELSKDDVFVIPAA	EL (260 Da) SK (233 Da)	Antioxidant DPP IV inhibitory
	VF (264 Da), IP	ACE inhibitory, DPP IV
	(228 Da), IPA (299	inhibitory
	Da)	•
	AA (160 Da)	ACE inhibitory, DPP IV
		inhibitory, hypotensive
VNPDPKEDLRIIQ	VN (231 Da), DP	DPP IV inhibitory
	(230 Da), PK (243 Da), IQ (259 Da)	
	KE (275 Da)	ACE inhibitory, DPP IV
	112 (27 0 24)	inhibitory
YLVNPDPKEDLRIIQ	YL (294 Da)	ACE inhibitory, anxiolytic, DPP
		III inhibitory, DPP IV inhibitory
	VN (231 Da), DP	DPP IV inhibitory
	(230 Da)	ACT : 1.1. DDD W
	KE (275 Da)	ACE inhibitory, DPP IV inhibitory
LVNPDPKEDLRIIQL	DP (230 Da), PK	DPP IV inhibitory
	(243 Da), LQ (259	
	Da)	
	KE (275 Da)	ACE inhibitory, DPP IV
	ID (007 D.)	inhibitory
	LR (287 Da)	ACE inhibitory, DPP III inhibitory, renin inhibitory
FYLVNPDPKEDLRIIQ	FY (328)	ACE inhibitory
	VN (231 Da), DP	DPP IV inhibitory
	(230 Da), PK (243	•
	Da), IQ (259 Da)	
	KE (275 Da)	ACE inhibitory, DPP IV
MPVNNPQIHEF	MP (264 Da), VN	inhibitory DPP IV inhibitory
ML AMML ÓHTET.	(231 Da)	DFF IV IIIIIDROLY
	PQ (243 Da)	ACE inhibitory, DPP IV
		inhibitory
	IH (268 Da)	DPP III inhibitory, DPP IV
	EE (004 D.)	inhibitory
	EF (294 Da)	ACE inhibitory, CaMPDE inhibitory, hypolipidemic, renin
		inhibitory
AMPVNNPQIHEF	VN (231 Da)	DPP IV inhibitory
	PQ (243 Da)	ACE inhibitory, DPP IV
		inhibitory
	EF (294 Da)	ACE inhibitory, CaMPDE
		inhibitory, hypolipidemic, renin inhibitory
LVNPDPKEDLRI	VN (231 Da), DP	DPP IV inhibitory
2 VIVI DI KEDEKI	(230 Da), PK (243	222 IV minorolly
	Da)	
	KE (275 Da)	ACE inhibitory, DPP IV
		inhibitory
	LR (287 Da)	ACE inhibitory, DPP III
FSDNQKIPAGTIFY	QK (274 Da), IFY	inhibitory, renin inhibitory ACE inhibitory
TODING ING THE I	(441 Da)	or minorory
	IP (228 Da), IPA	ACE inhibitory, DPP IV
	(299 Da)	inhibitory

Table 2 (continued)

Peptide Sequence	Bioactive Di/Tri- Peptides (MW)	Bioactivity
QGDNPIFSDNQKIPAGTI	QG (203 Da), IF (278 Da), QK (274 Da)	ACE inhibitory
	IP (228 Da), IPA	ACE inhibitory, DPP IV
	(299 Da)	inhibitory
LKDGLSVISPKW	LK (259 Da)	Antioxidant
	KW (332 Da)	ACE inhibitory, DPP IV inhibitory
YSGVWFPQPAPKD	VW (303 Da)	α-glucosidase inhibitory, ACE inhibitory, antioxidant, DPP IV inhibitory
	PQ (243 Da), AP	ACE inhibitory, DPP IV
	(186 Da), KD (261 Da)	inhibitory
	PA (186 Da), PK (243 Da)	DPP IV inhibitory
SIGRALDGKDVLG	IG (188 Da)	ACE inhibitory
	RA (245 Da)	ACE inhibitory, DPP IV inhibitory, ubiquitin-mediator proteolysis activator
AMPVNNPQIHD	VN (231 Da)	DPP IV inhibitory
(PQ (243 Da)	ACE inhibitory, DPP IV inhibitory
	IH (268 Da)	ACE inhibitory, DPP III inhibitory, DPP IV inhibitory
LVNPDPKEDLRIIQ	VN (231 Da), DP	DPP IV inhibitory
	(230 Da), PK (243	
	Da), IQ (259 Da)	
	KE (275 Da)	ACE inhibitory, DPP IV inhibitory
	LR (287 Da)	ACE inhibitory, DPP III inhibitory
MDKPNGPVWRISG	PN (229 Da)	DPP IV inhibitory
	GP (172 Da)	ACE inhibitory, DPP IV
		inhibitory, stomach mucosal activity regulator, antithrombotic & prolyl endopeptidase inhibitor
	VW (303 Da)	α -glucosidase inhibitory, ACE inhibitory, antioxidant, DPP IV inhibitory

A, alanine; C, cysteine; D, aspartic acid; E, glutamic acid; F, phenylalanine; G, glycine; H, histidine; I, isoleucine; K, lysine; L, leucine; M, methionine; N, asparagine; P, proline; Q, glutamine; R, arginine; S, serine; T, threonine; V, valine; W, tryptophane; Y, tyrosine. ACE, angiotensin-converting enzyme; DPP IV, dipeptidyl peptidase-4; DPP III, dipeptidyl peptidase-3; CaMPDE, calmodulin-dependent cyclic nucleotide phosphodiesterase.

dependent insulinotropic peptide (GIP)) (Yan, Zhao, Yang, & Zhao, 2019). BDP could interact with the active site of the DPP-IV enzyme and interrupt the degradation of incretin hormones, which could enhance insulin secretion to decrease the blood glucose levels in T2D patients (Estrada-Salas, Montero-Morán, Martínez-Cuevas, González, & Barba de la Rosa, 2014; Indrati, 2021; Neumiller, Wood, & Campbell, 2010; Saleh et al., 2018; Yan, Zhao, Yang, & Zhao, 2019).

Several BDP with DPP-IV inhibitory potential also have been found in legume and cereal protein hydrolysates, such as soybean (DP, IP, AA, MP, AP, PA, NP, VN), pea (VN, DP, NP, IQ, SK, AA, PQ), lupin (PK), chickpea (YL, VF), rice bran (GP, IP, RA, AA, PQ, VW) and whey protein (IPA) (Bollati et al., 2022; Lammi et al., 2016; Pooja, Rani, & Prakash, 2017; Tulipano, Sibilia, Caroli, & Cocchi, 2011). However, BPH presents the highest diversity of short peptides with DPP-IV inhibitory potential compared to other seed protein hydrolysates.

Twenty-two BDP (20 dipeptides and 2 tripeptides with molecular weight ranging from 160 to 441 Da) presented angiotensin-converting enzyme (ACE) inhibitory potential (Table 2). ACE inhibition is related to hypotensive effects, retarding nephropathies, and cardiovascular disease progression in patients with prediabetes and T2D (Velarde-Salcedo et al., 2013), additionally in animal models of metabolic syndrome

improves insulin sensitivity (Loloi et al., 2018). During digestion, endopeptidases (pepsin, trypsin, and chymotrypsin) can produce short peptides from polypeptides having a hydrophobic and/or aromatic amino acid as a terminal group (mainly proline, tryptophan, phenylalanine, and tyrosine) (Vermeirssen, Van Camp, & Verstraete, 2004). These terminal groups are common in the BDP predicted by *in silico* digestion of BPH (Table 2). The 20 BDP could interact with the ACE catalytic site, permitting its inhibition (Boschin, Scigliuolo, Resta, & Arnoldi, 2014; Vermeirssen, Van Camp, & Verstraete, 2004). Negatively charged BDP may bind to ACE, especially interacting with amino acid residues at *C*- end and/or *N*- end (Daskaya-Dikmen, Yucetepe, Karbancioglu-Guler, Daskaya, & Ozcelik, 2017).

Several short-chain peptides from common beans and other pulses have shown potential to block ACE and interfere with the reninangiotensin system (Fountain et al., 2023). Moreover, dipeptides found in BPH have also been reported with ACE inhibitory activity in other pulses protein hydrolysates such as chickpea (YL, VF, LR), soy (IP, AA, AP), pea (IF, AA, LQ, PQ), as well as rice bran (VF, GP, IP, RA, AA, QG, QK, PQ, IF, VW) (Arámburo-Gálvez et al., 2022; Bollati et al., 2022; Velarde-Salcedo et al., 2013). However, BPH presents higher diversity of these biomolecules.

Most BDP could be released from more than one peptide sequence from the BPH, and some may exhibit more than one biological potential. Dipeptides such as AA, VW, and GP have been reported in other plant protein sources; their biological potential is also related to ACE and DPP-IV inhibition (Bollati et al., 2022; Pooja, Rani, & Prakash, 2017).

BDP presented other bioactivities that could be related to promoting a glucose-lowering effect in diabetic and prediabetic patients (antioxidant, ubiquitin-mediator proteolysis activation, renin, α -glucosidase, and CaMPDE inhibitory activities) (Daskaya-Dikmen, Yucetepe, Karbancioglu-Guler, Daskaya, & Ozcelik, 2017; Hadi & Suwaidi, 2007; Tonyan et al., 2022; Ying, Agyei, Udenigwe, Adhikari, & Wang, 2021). Other dipeptides (160–303 Da) showing different biological

potentials (DPP-III, anxiolytic, hypotensive, etc.) were identified after *in silico* digestion of BPH.

Characterizing peptides in common bean protein hydrolysates helps to understand the relationship between peptide structure and biological potential. Using *in silico* assays is important to compare results with available published data. The information in the *in silico* assays helps theoretically hypostatize biological potential related to the identified peptide structures. Together, they contribute to a comprehensive understanding of the role of bioactive peptides and proteins in *in vivo* or clinical assays.

Moreover, through peptide identification and *in silico* assays, more potent or interesting peptide sequences could be purified or synthesized to evaluate their individual biological potential.

3.3. Randomized clinical trial

In this study, 52 subjects were assessed for eligibility in the Department of Medical Sciences, 22 adults failed to meet the inclusion criteria, and 2 adults retired their consent before randomization. Thus, 28 adults, (65 % women) (14 subjects with normal glucose tolerance and 14 with prediabetes), were randomly assigned by stratification to one of the two treatments: 5 g BPH (n = 14) or placebo (n = 14). Hence, 7 participants with NGT and 7 with prediabetes were included in each treatment group (Fig. 1).

Table 3 shows the general baseline characteristics by metabolic status, normal glucose tolerance (NGT), and prediabetes. Anthropometric and biochemical variables (age, weight, BMI, waist circumference, systolic/diastolic blood pressure, cholesterol values, and triglycerides) did not show significant differences at baseline (p > 0.05). As expected by the selection criteria, only fasting glucose (NGT = 94.8 mg/dL, prediabetes = 109.9 mg/dL) and postprandial glucose (2 h) (NGT = 99.5, mg/dL, prediabetes = 124.8 mg/dL) had significant differences (p < 0.01).

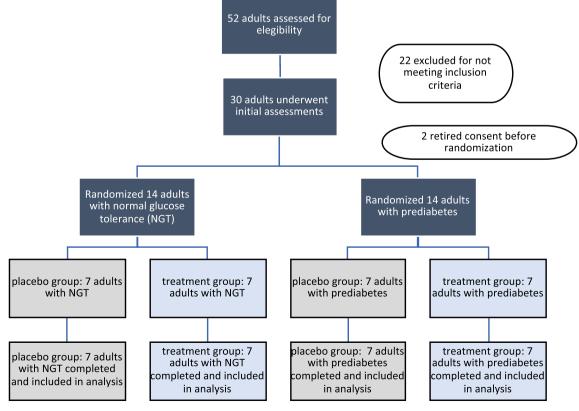


Fig. 1. Participants flow chart.

Table 3Baseline general characteristics by metabolic status (normal glucose tolerance and prediabetes).

Clinical and Metabolic Variables	NGT (n = 14)	Prediabetes (n = 14)	p- value
Age (years)	40.5 ± 8.3	38.3 ± 8.8	0.5
Weight (kg)	79.8 ± 10.0	78.7 ± 9.1	0.8
Body mass index (kg/m ²)	29.3 ± 2.1	30.5 ± 3.5	0.3
Waist circumference (cm)	98.5 ± 7.2	100.0 ± 9.1	0.6
Systolic blood pressure	113.6 \pm	115.1 ± 12.3	0.8
(mmHg)	12.4		
Diastolic blood pressure (mmHg)	73.6 ± 7.0	73.5 ± 9.6	0.9
Fasting glucose (mg/dL)	94.8 ± 3.7	109.9 ± 8.2	< 0.01*
Postprandial glucose (mg/dL)	99.5 ± 15.7	124.8 ± 27.5	< 0.01*
Total cholesterol (mg/dL)	$194.2 \pm \\39.9$	183.6 ± 46.9	0.5
C-HDL (mg/dL)	41.2 ± 7.4	44.1 ± 8.5	0.3
C-LDL (mg/dL)	$123.5 \pm \\39.4$	119.4 ± 34.1	0.8
Triglycerides (mg/dL)	$125.9 \pm \\42.3$	100.6 ± 47.3	0.1

All variables are presented as mean \pm Standard Deviation. The difference between groups was evaluated with a Student's t-test for independent variables. *P < 0.05. NGT: Normal glucose tolerance; C-HDL: high-density lipoprotein; LDL-C: low-density lipoprotein

In Table 4, the general baseline characteristics are shown for both treatment groups (5 g BPH and placebo), without regard to metabolic status. Anthropometric and biochemical variables (age, weight, BMI, waist circumference, systolic/diastolic blood pressure, cholesterol, triglycerides, and HOMA-IR values) did not show significant differences at baseline (p > 0.05). Thus, randomization resulted in similar groups.

In Table 5 and Fig. 2, the unadjusted outcome variables are shown during the intervention. Postprandial glucose levels were lower in the 5 g BPH group, but only at 120 min were statistically significant (p = 0.02) (93.1 \pm 21.6 mg/dL) when compared with the placebo (116.2 \pm 27.2 mg/dL) (Fig. 2 A). Similarly, insulin levels were lower in the 5 g BPH group, however, the results were not statistically significant (p > 0.05) (Fig. 2B).

To account for the participants metabolic status ANCOVA models were built to include as covariates fasting glucose and 2-h postprandial glucose levels at baseline. The adjusted results for outcome variables are

Table 4Baseline general characteristics by intervention group.

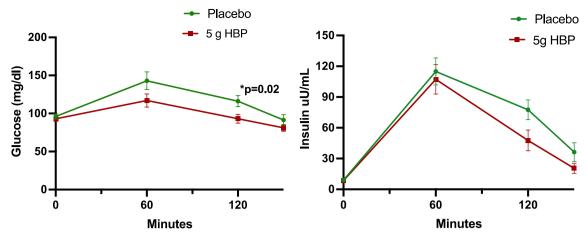
Baseline Clinical and Metabolic Variables	Placebo (n = 14)	BPH (n = 14)	p- value	
Age (years)	38.7 ± 9.3	40.2 ± 7.9	0.7	
Weight (kg)	77.7 ± 7.7	80.6 ± 11.0	0.4	
Body mass index (kg/m ²)	30.4 ± 2.8	29.5 ± 3.0	0.4	
Waist circumference (cm)	98.7 ± 6.7	99.6 ± 9.6	0.6	
Systolic blood pressure (mmHg)	112.1 ± 11.4	116.7 ± 12.9	0.3	
Diastolic blood pressure (mmHg)	71.2 ± 6.8	76.1 ± 9.1	0.1	
Fasting glucose (mg/dL)	102.9 ± 8.9	$101.8 \pm \\11.2$	0.8	
Postprandial glucose (mg/dL)	116.2 ± 26.6	$108.1\ \pm$ 24.5	0.4	
Total cholesterol (mg/dL)	189.8 ± 50.0	$188.1 \pm \\36.9$	0.9	
C-HDL (mg/dL)	40.9 ± 8.0	44.5 ± 8.0	0.2	
C-LDL (mg/dL)	120.4 ± 44.1	$122.6 \pm \\28.0$	0.9	
Triglycerides (mg/dL)	121.6 ± 42.0	104.9 ± 49.6	0.3	
HOMA-IR	2.1 ± 0.9	1.9 ± 0.9	0.5	

All variables are presented as mean \pm Standard Deviation. The difference between groups was evaluated with a Student's t-test for independent variables. *, P < 0.05. C-HDL: high lipoprotein; LDL-C: low-density lipoprotein; HOMA-IR: Homeostatic model assessment.

Table 5Metabolic variables during the intervention.

Placebo (<i>n</i> = 14)	BPH (n = 14)	Mean difference	p- value
96.2 ± 13.4	93.0 ±	3.2 (-6.0 to	0.5
	10.0	12.0)	
142.9 ± 43.6	117.1 \pm	25.8 (-4.0 to	0.09
	32.5	55.7)	
116.2 ± 27.2	93.1 \pm	23.1 (4.0 to	0.02*
	21.6	42.3)	
91.4 ± 26.5	81.1 \pm	10.3 (-7.0 to	0.2
	16.6	27.4)	
300.9 ± 66.2	253.6 \pm	47.3 (2.4 to	0.04*
	48.1	92.2)	
9.0 ± 3.7	$\textbf{8.6} \pm \textbf{3.9}$	0.4 (-2.5 to 3.3)	0.8
114.9 ± 49.3	107.2 \pm	7.7 (-32.4 to	0.7
	53.7	47.7)	
77.2 (70.86)	32.61	25.7 (-3.2 to	0.06
	(47.83)	54.5)	
24.47 (51.58)	13.17	15.8 (-5.7 to	0.4
	(16.14)	37.3)	
2.91 (2.48)	4.10 (4.01)	-0.8 (-3.5 to	0.1
		1.9)	
	$\begin{aligned} &14)\\ &96.2\pm13.4\\ &142.9\pm43.6\\ &116.2\pm27.2\\ &91.4\pm26.5\\ &300.9\pm66.2\\ &9.0\pm3.7\\ &114.9\pm49.3\\ &77.2\ (70.86)\\ &24.47\ (51.58) \end{aligned}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Variables are presented as mean \pm Standard Deviation or median (interquartile range). Also mean difference (95 % CI) is presented, the difference between groups was evaluated with a Student's t-test for independent variables or the Mann-Whitney U test for nonparametric variables. *, P < 0.05.


presented in Table 6. Indeed, glucose levels at 120 min presented a significant mean adjusted difference of 18.1 mg/dL with 95 % IC (2.8 to 33.3 mg/dL) (p = 0.03) when comparing placebo to the 5 g BPH group. Insulin levels remained not statistically different between groups.

Furthermore, the AUC for glucose was lower in the 5 g BPH group (260.4 \pm 10.9 mg.h/dL) when compared with the placebo (294.2 \pm 10.9 mg.h/dL) (p = 0.04) with a mean adjusted difference of 18.1 mg.h/dL with 95 % IC (1.7 to 65.9 mg.h/dL) (Table 6). These results suggest that BPH could have an acute effect on lowering postprandial glucose independent of the metabolic status.

Finally, HOMA-IR and Matsuda index did not show statistical difference (p > 0.05) between the 5 g BPH and placebo groups (Tables 4 and 5).

These results found in the clinical study may indicate that the post-prandial hypoglycemic effect of BPH may occur at the small intestine level by reducing the glucose absorption (Geerts et al., 2011; Mojica, Chen, & de Mejía, 2015; Mojica, Luna-Vital, & Gonzalez de Mejia, 2018; Mojica & de Mejía, 2016; Oseguera-Toledo, de Mejia, & Amaya-Llano, 2015; Valencia-Mejía, Batista, Fernández, & Fernandes, 2019; Wu et al., 2020). A previous *in vitro* study indicated that small bioactive peptides delayed the breakdown of dietary carbohydrates and reduced glucose absorption from the small intestine. This suggests an inhibitory effect on postprandial glucose levels (Ibrahim et al., 2018).

Additionally, transepithelial transport of glucose could block the transduction signals for the expression of SGLT1 glucose transporter by BPH/BSH peptides in the intestine cell epithelium. Since this protein depends on glucose concentration in the intestine's apical site (Chan-Zapata, Sandoval-Castro, & Segura-Campos, 2022; Ina et al., 2020). BPH peptides could also act as antagonists of the sweet-taste receptor (T1R2/ T1R3) and inhibit the expression of SGLT1; moreover, these peptides may retard the diffusion rate of glucose in the intestine (Ina et al., 2020; Rahmi & Arcot, 2023; Shirazi-Beechey, Moran, Batchelor, Daly, & Al-Rammahi, 2011). SGLT1 is responsible for the induction of membrane depolarization of Ca⁺⁺, which subsequently activates the protein kinase C II leading to the translocation of GLUT2 to the apical membrane from the cytoplasm by vesicle transport (Kellett & Brot-Laroche, 2005). GLUT2 is the main cellular glucose transporter at the intestine level; thus, by interrupting its activity, it is possible to modulate glucose absorption and its following incorporation into the bloodstream (Kellett &

Fig. 2. (A) Glucose levels during the oral glucose tolerance test intervention. **(B)** Insulin levels during the oral glucose tolerance test intervention. The difference between the means was evaluated with a Student's *t*-test for independent variables.

Table 6Outcome variables adjusted for metabolic status.

	Placebo (n = 14)	BPH (n = 14)	Mean adjusted difference	p- value
Glucose 60 min (mg/dL)	139.0 ± 8.3	$120.9 \pm \\8.3$	18.1 (-6.3 to 42.4)	0.09
Glucose 120 min (mg/dL)	113.7 ± 5.2	95.6 \pm 5.2	18.1 (2.8 to 33.3)	0.03*
Glucose 150 min (mg/dL)	88.7 ± 4.0	$83.7 \pm \\ 4.0$	4.9 (-6.8 to 16.8)	0.4
AUC for glucose (mg.h/dL)	294.2 ± 10.9	$260.4 \pm \\10.9$	33.8 (1.7 to 65.9)	0.04*
Insulin 60 min (μIU/mL)	115.2 ± 14.4	$106.8 \pm \\14.4$	8.4 (-33.8 to 50.7)	0.7
Insulin 120 min (μIU/mL)	72.5 ± 10.2	$48.6 \pm \\10.2$	23.9 (-6.1 to 53.9)	0.1
Insulin 150 min (μIU/mL)	$\textbf{34.2} \pm \textbf{6.6}$	$\begin{array}{c} \textbf{22.5} \pm \\ \textbf{6.6} \end{array}$	11.7 (-7.7 to 31.1)	0.2

Variables are presented as mean \pm Standard error of mean, these results are adjusted for the covariates baseline fasting glucose and 2-h postprandial glucose. The mean adjusted difference (95 % CI) was calculated using ANCOVA models with baseline fasting glucose and 2-h postprandial glucose as covariates. *, P < 0.05.

Brot-Laroche, 2005). Mojica, Luna-Vital, and Gonzalez de Mejia (2018)

found that acute expression and translocation of GLUT2 decreased 0.5-fold with an acute exposition of BPH and glucose to Caco-2 cells. Thus, derived peptides from BPH may induce acute hypoglycemic effects by interfering with glucose uptake by reducing the expression of SGLT1 and interrupting the expression and the translocation of GLUT2 from the cytoplasm.

Other studies have found similar hypoglycemic effects in small peptides (<400 Da) from rice albumin hydrolysates (Ina et al., 2020), germinated chickpea protein hydrolysate (Chandrasekaran & de Mejia, 2022), soy protein derivatives (Lu et al., 2012; Oliva et al., 2015; Lammi, Zanoni, & Arnoldi, 2015) and black bean peptides (Mojica & de Mejía, 2016; Mojica, Luna-Vital, & Gonzalez de Mejia, 2018). Also, in protein hydrolysates from defatted salmon backbones (Slizyte et al., 2016) and milk-protein hydrolysate in a chronic evaluation (Sartorius et al., 2019) using cell culture models or clinical trials.

Similar to our results in the AUC for glucose, peptide fractions from rice and common beans also showed lower glucose AUC levels in acute in vivo and human clinical trials, whose mechanisms of action could be related to the reduction in the expression of glucose transporters and inhibition of α -glucosidase activity at intestine level (Chan-Zapata, Sandoval-Castro, & Segura-Campos, 2022; Ibrahim et al., 2018; Mojica, Luna-Vital, & González de Mejía, 2017; Mojica & de Mejía, 2015; Mojica

& de Mejía, 2016; Oseguera-Toledo, de Mejia, & Amaya-Llano, 2015; Valencia-Mejía, Batista, Fernández, & Fernandes, 2019).

Similar to our results, in other acute or chronic clinical assays, casein milk-protein, soy, and egg white hydrolysates did not present changes in HOMA-IR or Matsuda index values between placebo and experimental treatments (de Campos Zani, Wu, & Chan, 2018; Gutch, Kumar, Razi, Gupta, & Gupta, 2015; Sartorius et al., 2019).

The *in silico* assays showed that BPH presents a great diversity of short peptides with DPP-IV and ACE inhibitory activity as shown in Table 2. Since ACE inhibition has shown to decrease glucose levels and improve insulin sensitivity in long term studies the observed results in this clinical trial could not be attributed to ACE inhibition.

Furthermore, DDP-IV is identified as an important marker related to the hypoglycemic effect of black bean peptides. However, DPP-IV inhibition could not be the mechanism of action for the results observed in this study. This clinical trial only evaluated the acute effect of BPH (60 to 150 min), and since the peptides must be absorbed and enter circulation to block DDP-IV, 120 min is not enough time to promote insulin release and, in this way, to regulate blood glucose levels through DPP-IV inhibition. In addition, in this study participants did not show a significant increase in insulin secretion.

Mojica et al., 2017, 2018, described the potential mechanism of action of the bean peptides through the interaction with glucose transporters GLUT2 and SGLT1, decreasing their expression and translocation to the membrane. This interaction could be the main responsible for lowering postprandial glucose levels in this clinical trial.

The current study represents the first clinical trial evaluating the effects of black bean protein hydrolysates (*Phaseolus vulgaris* L.) on postprandial glucose and insulin levels along with the identification of BPH peptides with potential biological properties through *in silico* predictive digestion. A major strength of this study is its randomized placebo-controlled design. Furthermore, confounding variables, such as sex, age, body mass index, and metabolic status (normal glucose tolerance and prediabetes), were controlled by design or included as covariates in the statistical analysis.

Despite the strengths of the study, there are some limitations as well. First of all, we could not conduct a randomized crossover study, which would have been the ideal experimental design for our research question. Considering the disadvantages of crossover studies, which have a longer duration and higher dropout rates, we decided to evaluate the acute effect of BPH in a clinical setting using a parallel randomized trial. Moreover, the acute evaluation of HPF did not allow us to observe long-term glucose metabolism changes, and it did not show effect on post-prandial insulin levels.

Nonetheless, our study showed that 5 g of HPF could be used acutely to reduce postprandial blood glucose levels in adults with NGT or

prediabetes. Comprehensive pharmacologic and chemical studies are required to address the detailed molecular mechanism responsible for the acute glucose-lowering effect of the BPH observed in the study. In addition, long-term clinical trials are needed to evaluate if BPH could have a hypoglycemic effect in adults with NGT or prediabetes.

Our results indicate that the evaluated postprandial glucose inhibition in patients is influenced by the composition, sequence, and molecular weight of the derived peptides. The specific peptides responsible for inhibiting acute postprandial glucose levels are not precisely identified, and only certain combinations of peptides from BHP demonstrate inhibitory effects in adults with NGT or with prediabetes, which is also supported by *in silico* approaches.

4. Conclusion

This study shows a glucose lowering effect of BPH after an acute oral glucose tolerance test on adults with prediabetes and normal glucose tolerance. *In silico* digestive peptide prediction of BPH can infer the profile of small bioactive peptides with the ability to interact with cellular mechanisms to decrease glucose uptake at the small intestine level. BPH could assist in regulating glucose metabolism and maintaining blood glucose homeostasis to treat or prevent prediabetes. These results provide scientific evidence to validate the health benefits of common bean biofunctional ingredients.

CRediT authorship contribution statement

Armando Gómez-Ojeda: Methodology, Investigation, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

The data that has been used is confidential.

Acknowledgments

CONACYT Master's degree scholarship No. 752692, and Post-doctoral scholarship No. 3882867. Consejo Estatal de Ciencia y Tecnología de Jalisco, FODECIJAL No 10231-2022.

Funding

COECYTJAL-FODECIJAL Grant Number 10231-2022.

References

- ADA, American Diabetes Association. (2018). 6. Glycemic Targets: Standards of Medical Care in Diabetes—2018. Diabetes Care, 41, S55–S64. https://doi.org/10.2337/dc18-S006
- Agyei, D., Ongkudon, C. M., Wei, C. Y., Chan, A. S., & Danquah, M. K. (2016). Bioprocess challenges to the isolation and purification of bioactive peptides. *Food and Bioproducts Processing*, 98, 244–256. https://doi.org/10.1016/j.fbp.2016.02.003
- Ahmed, T., Sun, X., & Udenigwe, C. C. (2022). Role of structural properties of bioactive peptides in their stability during simulated gastrointestinal digestion: A systematic review. Trends in Food Science & Technology, 120, 265–273. https://doi.org/ 10.1016/j.tifs.2022.01.008
- Amigo, L., & Hernández-Ledesma, B. (2020). Current evidence on the bioavailability of food bioactive peptides. *Molecules*, 25(19), 4479. https://doi.org/10.3390/ molecules25194479
- Arámburo-Gálvez, J. G., Arvizu-Flores, A. A., Cárdenas-Torres, F. I., Cabrera-Chávez, F., Ramírez-Torres, G. I., Flores-Mendoza, L. K., ... & Ontiveros, N. (2022). Prediction of ACE-I Inhibitory Peptides Derived from Chickpea (Cicer arietinum L.): In Silico Assessments Using Simulated Enzymatic Hydrolysis, Molecular Docking and ADMET Evaluation. Foods, 11(11), 1576. https://doi.org/10.3390/foods11111576.

- Bollati, C., Xu, R., Boschin, G., Bartolomei, M., Rivardo, F., Li, J., ... Lammi, C. (2022). Integrated Evaluation of the Multifunctional DPP-IV and ACE Inhibitory Effect of Soybean and Pea Protein Hydrolysates. *Nutrients*, 14(12), 2379. https://doi.org/ 10.3390/mul4122379
- Boschin, G., Scigliuolo, G. M., Resta, D., & Arnoldi, A. (2014). Optimization of the enzymatic hydrolysis of lupin (Lupinus) proteins for producing ACE-inhibitory peptides. *Journal of Agricultural and Food Chemistry*, 62(8), 1846–1851. https://doi. org/10.1021/jf4039056
- Chan-Zapata, I., Sandoval-Castro, C., & Segura-Campos, M. R. (2022). Proteins and peptides from vegetable food sources as therapeutic adjuvants for the type 2 diabetes mellitus. Critical Reviews in Food Science and Nutrition, 62(10), 2673–2682. https:// doi.org/10.1080/10408398.2020.1857331
- Chandrasekaran, S., & de Mejia, E. G. (2022). Effect of Germinated Chickpea Protein Hydrolysate on Markers of Type-2 Diabetes and Its Relationship to Bitter Taste Receptor Expression. Current Developments. Nutrition, 6(Supplement_1), 274. https://doi.org/10.1093/cdn/nzac053.015
- Coscueta, E. R., Batista, P., Gomes, J. E. G., da Silva, R., & Pintado, M. M. (2022). Screening of novel bioactive peptides from goat casein: In silico to in vitro validation. *International Journal of Molecular Sciences*, 23(5), 2439. https://doi.org/ 10.3390/ijms23052439
- Daskaya-Dikmen, C., Yucetepe, A., Karbancioglu-Guler, F., Daskaya, H., & Ozcelik, B. (2017). Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from plants. Nutrients, 9(4), 316. https://doi.org/10.3390/nu9040316
- de Campos Zani, S. C., Wu, J., & Chan, C. B. (2018). Egg and Soy-Derived Peptides and Hydrolysates: A Review of Their Physiological Actions against Diabetes and Obesity. *Nutrients*, 10(5), 549. https://doi.org/10.3390/nu10050549
- Estrada-Salas, P. A., Montero-Morán, G. M., Martínez-Cuevas, P. P., González, C., & Barba de la Rosa, A. P. (2014). Characterization of antidiabetic and antihypertensive properties of canary seed (Phalaris canariensis L.) peptides. *Journal of Agricultural and Food Chemistry*, 62(2), 427–433. https://doi.org/10.1021/jf404539y
- Fountain, J. H., Kaur, J., & Lappin, S. L. (2023) Physiology, Renin Angiotensin System. [Updated 2023 Mar 12]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470410/.
- Gastaldelli, A. (2022). Measuring and estimating insulin resistance in clinical and research settings. Obesity, 30(8), 1549–1563. https://doi.org/10.1002/oby.23503
- Geerts, B. F., Dongen, M. G. V., Flameling, B., Moerland, M. M., Kam, M. L. D., Cohen, A. F., ... Burggraaf, J. (2011). Hydrolyzed casein decreases postprandial glucose concentrations in T2DM patients irrespective of leucine content. *Journal of Dietary Supplements*, 8(3), 280–292. https://doi.org/10.3109/ 19390211.2011.593617
- Gutch, M., Kumar, S., Razi, S. M., Gupta, K. K., & Gupta, A. (2015). Assessment of insulin sensitivity/resistance. *Indian Journal of Endocrinology and Metabolism*, 19(1), 160. https://doi.org/10.4103/2230-8210.146874
- Hadi, H. A., & Suwaidi, J. A. (2007). Endothelial dysfunction in diabetes mellitus. Vascular Health and Risk Management, 3(6), 853–876.
- Ibrahim, M. A., Bester, M. J., Neitz, A. W., & Gaspar, A. R. (2018). Rational in silico design of novel α-glucosidase inhibitory peptides and in vitro evaluation of promising candidates. *Biomedicine & Pharmacotherapy*, 107, 234–242. https://doi. org/10.1016/j.biopha.2018.07.163
- Ina, S., Hamada, A., Nakamura, H., Yamaguchi, Y., Kumagai, H., & Kumagai, H. (2020).
 Rice (Oryza sativa japonica) albumin hydrolysates suppress postprandial blood glucose elevation by adsorbing glucose and inhibiting Na+-d-glucose cotransporter SGLT1 expression. Journal of Functional Foods, 64, Article 103603. https://doi.org/10.1016/j.iff.2019.103603
- Indrati, R. (2021). Bioactive Peptides from Legumes and Their Bioavailability.. https://doi. org/10.5772/intechopen.99979
- Kellett, G. L., & Brot-Laroche, E. (2005). Apical GLUT2: A major pathway of intestinal sugar absorption. *Diabetes*, 54(10), 3056–3062. https://doi.org/10.2337/ diabetes 54.10.2056
- Krishnaveni, P., & Gowda, V. M. (2015). Assessing the Validity of Friedewald's Formula and Anandraja's Formula for Serum LDL-Cholesterol Calculation. *Journal of Clinical* and Diagnostic Research, 9(12), BC01-4. https://doi.org/10.7860/JCDR/2015/ 16850-6870
- Lammi, C., Zanoni, C., & Arnoldi, A. (2015). Three peptides from soy glycinin modulate glucose metabolism in human hepatic HepG2 cells. *International Journal of Molecular Sciences*, 16(11), 27362–27370. https://doi.org/10.3390/ijms161126029
- Lammi, C., Zanoni, C., Arnoldi, A., & Vistoli, G. (2016). Peptides Derived from Soy and Lupin Protein as Dipeptidyl-Peptidase IV Inhibitors. In Vitro Biochemical Screening and in Silico Molecular Modeling Study. *Journal of Agricultural and Food Chemistry*, 64, 9601–9606. https://doi.org/10.1021/acs.jafc.6b04041
- Loloi, J., Miller, A. J., Bingaman, S. S., Silberman, Y., & Arnold, A. C. (2018). Angiotensin-(1–7) contributes to insulin-sensitizing effects of angiotensin-converting enzyme inhibition in obese mice. *American Journal of Physiology-Endocrinology and Metabolism.*, 315(6), E1204. https://doi.org/10.1152/ajpendo.00281.2018
- Lu, J., Zeng, Y., Hou, W., Zhang, S., Li, L., Luo, X., Xi, W., Chen, Z., & Xiang, M. (2012). The soybean peptide aglycin regulates glucose homeostasis in type 2 diabetic mice via IR/IRS1 pathway. *The Journal of Nutritional Biochemistry*, 23(11), 1449–1457. https://doi.org/10.1016/j.jnutbio.2011.09.007
- Luna-Vital, D. A., Mojica, L., González de Mejía, E., Mendoza, S., & Loarca-Piña, G. (2015). Biological potential of protein hydrolysates and peptides from common bean (Phaseolus vulgaris L.): A review. Food Research International, 76(P1), 39–50. https://doi.org/10.1016/j.foodres.2014.11.024
- Maillet, N. (2019). Rapid Peptides Generator: Fast and efficient in silico protein digestion.

 NAR Genomomics and Bioinformatics, 2(1), lqz004. https://doi.org/10.1093/nargab/

- Marseglia, A., Dellafiora, L., Prandi, B., Lolli, V., Sforza, S., Cozzini, P., ... Caligiani, A. (2019). Simulated gastrointestinal digestion of cocoa: Detection of resistant peptides and in silico/in vitro prediction of their ace inhibitory activity. *Nutrients*, 11(5), 985. https://doi.org/10.3390/nu11050985
- Minkiewicz, P., Iwaniak, A., & Darewicz, M. (2019). BIOPEP-UWM Database of Bioactive Peptides: Current Opportunities. *International Journal of Molecular Science*, 20, 5978. https://doi.org/10.3390/jims20235978
- Mojica, L., & de Mejía, E. G. (2015). Characterization and Comparison of Protein and Peptide Profiles and their Biological Activities of Improved Common Bean Cultivars (Phaseolus vulgaris L.) from Mexico and Brazil. Plants for Foods and Human. Nutrition, 70(2), 105–112. https://doi.org/10.1007/s11130-015-0477-6
- Mojica, L., & de Mejía, E. G. (2016). Optimization of enzymatic production of antidiabetic peptides from black bean (Phaseolus vulgaris L.) proteins, their characterization and biological potential. Food & Function, 7(2), 713–727. https:// doi.org/10.1039/c5fo01204j
- Mojica, L., Chen, K., & de Mejía, E. G. (2015). Impact of commercial precooking of common bean (Phaseolus vulgaris) on the generation of peptides, after pepsin–pancreatin hydrolysis, capable to inhibit dipeptidyl peptidase-IV. *Journal of Food Science*, 80(1), H188. https://doi.org/10.1111/1750-3841.12726
- Mojica, L., Gonzalez de Mejia, E., Granados-Silvestre, M.Á., & Menjivar, M. (2017). Evaluation of the hypoglycemic potential of a black bean hydrolyzed protein isolate and its pure peptides using in silico, in vitro and in vivo approaches. *Journal of Functional Foods*, 31, 274–286. https://doi.org/10.1016/j.jff.2017.02.006
- Mojica, L., Luna-Vital, D. A., & González de Mejía, E. (2017). Characterization of peptides from common bean protein isolates and their potential to inhibit markers of type-2 diabetes, hypertension and oxidative stress. *Journal of the Science of Food and Agriculture*, 97(8), 2401–2410. http://doi.wiley.com/10.1002/jsfa.8053.
- Mojica, L., Luna-Vital, D. A., & Gonzalez de Mejia, E. (2018). Black bean peptides inhibit glucose uptake in Caco-2 adenocarcinoma cells by blocking the expression and translocation pathway of glucose transporters. *Toxicology Reports*, 5, 552–560. https://doi.org/10.1016/j.toxrep.2018.04.007
- Neumiller, J. J., Wood, L., & Campbell, R. K. (2010). Dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes mellitus. *Pharmacotherapy: The Journal of Human Pharmacology and Drug. Therapy*, 30(5), 463–484. https://doi.org/10.1592/ phco.30.5.463
- Nunez-Aragón, P. N., Segura-Campos, M., Negrete-León, E., Acevedo-Fernández, J. J., Betancur-Ancona, D., & Chel-Guerrero, L. (2019). Protein hydrolysates and ultrafiltered < 1 KDa fractions from Phaseolus lunatus, Phaseolus vulgaris and Mucuna pruriens exhibit antihyperglycemic activity, intestinal glucose absorption and α-glucosidase inhibition with no acute toxicity in rodents. *Journal of the Science of Food and Agriculture*, 99(2), 587–595. https://doi.org/10.1002/jsfa.9219
- Oliva, M. E., Chicco, A., & Lombardo, Y. B. (2015). Mechanisms underlying the beneficial effect of soy protein in improving the metabolic abnormalities in the liver and skeletal muscle of dyslipemic insulin resistant rats. European Journal of Nutrition, 54 (3), 407–419. https://doi.org/10.1007/s00394-014-0721-0
- Oseguera-Toledo, M. E., de Mejia, E. G., & Amaya-Llano, S. L. (2015). Hard-to-cook bean (Phaseolus vulgaris L.) proteins hydrolyzed by alcalase, and bromelain produced bioactive peptide fractions that inhibit targets of type-2 diabetes and oxidative stress. Food Research International, 76, 839–851. https://doi.org/10.1016/j.foodres 2015.07.046
- Pooja, K., Rani, S., & Prakash, B. (2017). In silico approaches towards the exploration of rice bran proteins-derived angiotensin-I-converting enzyme inhibitory peptides. *International Journal of Food Properties*, 20(sup2), 2178–2191.
- Rahmi, A., & Arcot, J. (2023). In Vitro Assessment Methods for Antidiabetic Peptides from Legumes: A Review. Foods, 12(3), 631. https://doi.org/10.3390/ foods12030631

- Reed, J., Bain, S., & Kanamarlapudi, V. (2021). A review of current trends with type 2 diabetes epidemiology, aetiology, pathogenesis, treatments and future perspectives. *Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14*, 3567–3602. https://doi.org/10.2147/DMSO.S319895
- Reinahuer, H., Home, P. D., Kanagasabapathy, A. S., & Heuck, C. (2005). OMS (pp. 40–50). Editorial Momento Médico Iberoamericano: Diagnóstico y monitorización de la Diabetes Mellitus desde el laboratorio. Madrid.
- Rendell, M. (2021). Pharmacotherapeutic options for prediabetes. Expert Opinion on Pharmacotherapy, 22(1), 45–54. https://doi.org/10.1080/14656566.2020.1817381
- Saleh, L., Schrier, N. L., Bruins, M. J., Steegers, E. A., van den Meiracker, A. H., & Visser, W. (2018). Effect of oral protein hydrolysate on glucose control in patients with gestational diabetes. Clinical Nutrition, 37(3), 878–883. https://doi.org/10.1016/j.clnu.2017.03.009
- Sarmadi, H. B., & Ismail, A. (2010). Antioxidative peptides from food proteins: A review. Peptides, 31, 1949–1956. https://doi.org/10.1016/j.peptides.2010.06.020
- Sartorius, T., Weidner, A., Dharsono, T., Boulier, A., Wilhelm, M., & Schön, C. (2019). Postprandial effects of a proprietary milk protein hydrolysate containing bioactive peptides in prediabetic subjects. *Nutrients*, 11(7), 1700. https://doi.org/10.3390/nu11071700
- Shirazi-Beechey, S. P., Moran, A. W., Batchelor, D. J., Daly, K., & Al-Rammahi, M. (2011). Glucose sensing and signalling; regulation of intestinal glucose transport. Proceedings of the Nutrition Society, 70(2), 185–193. https://doi.org/10.1017/S0029665111000103
- Simpson, R. J. (2006). Fragmentation of protein using trypsin. Cold Spring Harbor Protocols, 2006(5), pdb-prot4550. https://doi.org/10.1101/pdb. prot4550.
- Slizyte, R., Rommi, K., Mozuraityte, R., Eck, P., Five, K., & Rustad, T. (2016). Bioactivities of fish protein hydrolysates from defatted salmon backbones. Biotechnology Reports, 11, 99–109. https://doi.org/10.1016/j.btre.2016.08.003
- Swaney, D. L., Wenger, C. D., & Coon, J. J. (2010). Value of using multiple proteases for large-scale mass spectrometry-based proteomics. *Journal of Proteome Research*, 9(3), 1323–1329. https://doi.org/10.1021/pr900863u
- Tonyan, Z. N., Nasykhova, Y. A., Danilova, M. M., Barbitoff, Y. A., Changalidi, A. I., Mikhailova, A. A., & Glotov, A. S. (2022). Overview of Transcriptomic Research on Type 2 Diabetes: Challenges and Perspectives. *Genes (Basel)*, 13(7), 1176. https://doi.org/10.3390/genes13071176
- Tulipano, G., Sibilia, V., Caroli, A. M., & Cocchi, D. (2011). Whey proteinases source of dipeptidyl dipeptidase IV (dipeptidyl peptidase-4) inhibitors. *Peptides*, 32, 835–838. https://doi.org/10.1016/j.peptides.2011.01.002
- Valencia-Mejía, E., Batista, K. A., Fernández, J. J. A., & Fernandes, K. F. (2019). Antihyperglycemic and hypoglycemic activity of naturally occurring peptides and protein hydrolysates from easy-to-cook and hard-to-cook beans (Phaseolus vulgaris L.). Food Research International, 121, 238–246. https://doi.org/10.1016/j.foodres.2019.03.043
- Velarde-Salcedo, A. J., Barrera-Pacheco, A., Lara-González, S., Montero-Morán, G. M., Díaz-Gois, A., De Mejia, E. G., & De La Rosa, A. P. B. (2013). In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Food Chemistry, 136(2), 758–764. https://doi.org/10.1016/j.foodchem.2012.08.032
- Vermeirssen, V., Van Camp, J., & Verstraete, W. (2004). Bioavailability of angiotensin I converting enzyme inhibitory peptides. *British Journal of Nutrition*, 92(3), 357–366. https://doi.org/10.1079/bin20041189
- Wu, T., Rayner, C. K., Jones, K. L., Xie, C., Marathe, C., & Horowitz, M. (2020). Role of intestinal glucose absorption in glucose tolerance. *Current Opinion in Pharmacology*, 55, 116–124. https://doi.org/10.1016/j.coph.2020.10.017
- Yan, J., Zhao, J., Yang, R., & Zhao, W. (2019). Bioactive peptides with antidiabetic properties: A review. *International Journal of Food Science & Technology*, 54(6), 1909–1919. https://doi.org/10.1111/ijfs.14090