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A Tutorial on Value-Based Adaptive Designs: Could a Value-Based
Sequential 2-Arm Design Have Created More Health Economic Value for

the Big CACTUS Trial?
Laura Flight, PhD, Alan Brennan, PhD, Isabelle Wilson, MSc, Stephen E. Chick, PhD

Objectives: Value-based trials aim to maximize the expected net benefit by balancing technology
adoption decisions and clinical trial costs. Adaptive trials offer additional efficiency. This article
provides guidance on determining whether a value-based sequential design is the best option for
an adaptive 2-arm trial, illustrated through a case study.

Methods: We outlined 4 steps for the value-based sequential approach. The case study re-evaluates
the Big CACTUS trial design using pilot trial data and a model-based health economic analysis.
Expected net benefit is computed for (1) original fixed design, (2) value-based design with fixed
sample size, and (3) optimal value-based sequential design with adaptive stopping. We compare
pretrial modeling with the actual Big CACTUS trial results.

Results: Over 10 years, the adoption decision would affect approximately 215 378 patients. Pretrial
modeling shows that the expected net benefit minus costs are (1) £102 million for the original
fixed design, (2) £107 million (+5.3% higher) for the value-based design with optimal fixed sample
size, and (3) £109 million (+6.7% higher) for the optimal value-based sequential design with
maximum sample size of 435 per arm. Post hoc analysis using actual Big CACTUS trial data
indicates that the value-adaptive trial with a maximum sample size of 95 participant pairs
would not have stopped early. Bootstrap simulations reveal a 9.76% probability of early
completion with n = 95 pairs compared with 31.50% with n = 435 pairs.

Conclusions: The 4-step approach to value-based sequential 2-arm design with adaptive stopping
was successfully implemented. Further application of value-based adaptive approaches could be
useful to assess the efficiency of alternative study designs.

Keywords: adaptive clinical trial, Bayesian trial design, expected value of sample information,
sequential clinical trial, value-based trial design.
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e Value-based trials seek to balance

the cost of a clinical trial with the
expected health and economic
benefits of the subsequent
technology adoption decisions.
Applying this approach to the
adaptive design context has the
potential to better balance the costs
of clinical trials with the health
benefits of health technology
adoption decisions that are based
on the results of those trials.

We bridge the gap between theory
and practice by providing step-by-
step guidance to implementing a
value-based sequential design for
an adaptive 2-arm trial. We
demonstrate the first application of
the value-based sequential design
that uses data from an external pilot
trial and do so in the context of
publicly funded research.

With this tutorial, we hope to
increase experience and application
of these approaches so that they can
be implemented with only small
changes to current skills and
practices. We also demonstrate
mechanisms to assess the health
economic value of doing a value-
adaptive sequential trial compared
with some other clinical trial
designs.

Value-based trials seek to balance the cost of a clinical trial
with the expected health and economic benefits of technology
adoption decisions made with trial evidence,! making them
appealing to healthcare providers and funders such as the United
Kingdom (UK) National Health Service.? Value-adaptive designs
(see Flight et al®) extend this approach to adaptive trials. They
explicitly consider the expected benefits and costs of adapting a

trial to maximize expected population health for the research
money spent.”*

A proposed approach is the value-based sequential 2-arm
design with adaptive stopping.*> This design calculates the
expected health and economic value of gathering further informa-
tion about the cost-effectiveness of 1 health technology compared
with another, as the trial progresses, informing stop-go decisions.”
It has been applied in 2 retrospective case studies using the
observed trial data®’ (chapter 3).

1098-3015/Copyright © 2024, International Society for Pharmacoeconomics and Outcomes Research, Inc. Published by Elsevier Inc. This is an open access article

under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


www.sciencedirect.com
www.elsevier.com/locate/jval
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jval.2024.06.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/

This article bridges the gap between theory and practice by
providing step-by-step guidance for determining whether a value-
based sequential design is the best option for an adaptive 2-arm
trial. We operationalize this approach in a (UK) case study, using
the National Institute for Health Research (NIHR)-funded “Big
CACTUS?” trial. This provides the first application of a value-based
sequential design using pilot trial data and extends existing ap-
plications of the approach from a within-trial economic analysis to
a model-based health economic analysis.®’

Using Bayesian decision theory, Chick et al* define a value-
based sequential design for a 2-arm trial with adaptive stopping.
Participants are randomized pairwise and sequentially to new
technology or control. Pretrial beliefs about effects and costs are
used to provide a previous distribution for the expected incre-
mental net monetary benefit (INMB) of the new technology versus
a control. The objective is to maximize the expected INMB of the
technology adoption decision minus the cost of the trial.

When the expected benefits of continuing to randomize par-
ticipants are not deemed worth the expected costs the trial stops.
Given that data on INMB arrive from participants reaching the
health economic follow-up time point, the posterior mean for the
expected INMB is calculated. If this lies in the continuation region,
within the upper and lower stopping boundary, the trial continues.
Crossing the stopping boundary or reaching the maximum sample
size halts randomization, and enrolled participants are followed-up.

Four steps to implement the value-based sequential approach
are detailed below (Box 1).

We define 6 key parameters, informed by the research pro-
posal, pretrial data (eg, from a pilot trial), discussions with clinical
researchers, and following existing guidance for good practice in
technology appraisals.®

a. Willingness to pay threshold—the amount a decision maker is
willing to pay for one unit of effectiveness. We used £20 000 for
one quality-adjusted life-year (QALY) based on UK guidance.®

b. Fixed (C;) and variable costs (C,) of conducting the research.
Fixed costs include any costs incurred in the setup, conduct,
and analysis and after the end of the trial regardless of the trial
design and sample size. This can include things such as
dissemination costs. These costs are also independent of
whether the technology is adopted or not. We have assumed
the trial results will be reported and disseminated whether the
trial suggests the new technology is cost-effective or not.
Variable costs include costs associated with randomizing,
monitoring, and delivering the intervention to participants.’

c. Size of the population that will benefit from the health tech-
nology adoption decision (P). This can be estimated by multi-
plying the estimated annual incidence of the clinical condition
by the time horizon over which the adoption decision is
deemed to apply,” incorporating discounting if appropriate.'’
For example, in some jurisdictions the QALYs gained 10 years
from now are considered to be less valuable than QALYs gained
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1. Specify the key parameters required for the trial designs
under consideration.
a. Willingness to pay threshold
b. Fixed and variable costs of conducting the research
and adopting the technology into practice
c. Size of the population to benefit from the health
technology adoption decision
d. Sampling variance of the INMB in the population of
participants considered
e. Delay between randomization and observing the
measure of INMB for each pair of participants
f. Previous mean and variance of the expected INMB
2. Compute the optimal trial design within each of the
design structures under consideration.
a. Traditional fixed sample size design
b. Value-based fixed sample size design
c. Value-based sequential design
3. Compare the candidate trial designs and select a design
for the trial.
a. Compare the expected value and net benefit of
competing designs.
b. Consider practical issues such as being able to
recruit the required population, staffing concerns, and
financial factors.
c. Use simulations to explore the characteristics such
as expected sample size, expected cost, and frequentist
type | and type Il error rates.
4. Conduct the trial with the chosen design.
Additional considerations and resources may be required if a
sequential design is adopted such as additional interim
analyses and greater health economic involvement at the

design stage of the trial.
INMB indicates incremental net monetary benefit.

immediately, and so discounting is applied to the population
that will be benefiting in future years.

d. Sampling variance (ox) of the INMB in the population of par-
ticipants considered based on pilot data and other background
information

e. Delay (r), measured in participant pairs, between randomiza-
tion and observing the measure of INMB for each participant—
calculated by multiplying the expected recruitment rate by the
time to follow-up for the cost-effectiveness data

f. Previous mean (ug) and SD (o¢) of the expected INMB based on
pilot data and other background information

Estimating (ug), (09), and (ox) may require the setup of evi-
dence synthesis on previous existing data and knowledge on the
technology and comparator together with a health economic
model incorporating uncertainty. Estimates for ox may be updated
as evidence accumulates.”!

Traditional frequentist power calculation methods can be used
to determine a fixed sample size for a traditional design.'*'®
Although this step is not needed to design a value-adaptive trial,
we do so here for comparison.

A fixed sample size design incorporating QALY and cost infor-
mation can also be computed using expected value of sample infor-
mation (EVSI) calculations to determine the expected value of
different proposed sample sizes using well-established methods '
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and approaches to find the optimal fixed sample size, for example,
https://github.com/andres-alban/ValueBasedTrials.'® The same 6 key
parameters in Section 2.2.1 can be used to produce the expected net
benefit of sampling (ENBS) for each proposed sample size by calcu-
lating the population EVSI minus the estimated cost of carrying out
the research.’ The sample size with the highest ENBS can be rec-
ommended as the most cost-effective fixed sample size design."'°
An adaptive design can be implemented with stopping
boundaries computed using the optimal value-based sequential
model as outlined in Section 2.1. This calculates the EVSI and ENBS
in a way that accounts for adaptive stopping times based on the
theory of dynamic programming as in Chick et al* and computed
using associated MATLAB code.?° In their notation, the expected
value of making a technology adoption decision now (before
conducting a trial) using current information is wy X P if the
previous INMB for the new treatment is positive. The expected
value of collecting further information using the value-based
sequential design is denoted V*(ug). Thus, the ENBS for the
optimal value-based sequential design is V*(ug) — max (0,
wo X P). After the trial starts, a similar computation is made to see
whether the trial should continue or randomization stopped.

Once a range of designs have been calculated, the research
team can make an informed decision on the most appropriate
design. We consider 3 options:

a) traditional fixed sample size design
b) value-based design with a fixed sample size
¢) value-based sequential design

and compare each against not conducting a trial and selecting
the technology based on previous existing knowledge.

The value-based approach highlights the opportunity to select
a design that maximizes the ENBS. In practice, the final judgment
on implementation will consider additional issues such as suc-
cessful recruitment, staffing concerns, financial factors, and public
and participant involvement.?!

Opting not to conduct further research incurs no additional
costs, whereas proceeding with research, regardless of the chosen
trial design, involves fixed costs (Section 2.2.1). Variable costs per
participant are incurred once the trial starts. Although our case
study assumed equal variable costs per participant pair, these
costs might vary based on the trial design.

Additional performance metrics for the trial designs can also
be computed alongside EVSI and ENBS. Bootstrapping or para-
metric simulations can be used to explore the characteristics of
the candidate trial designs including sample size/expected sample
size, expected cost of the study, and probability that the new
technology is cost-effective. It is also possible to produce fre-
quentist power curves for the case of value-based multiarm
trials.??

Upon choosing a design, the trial proceeds, and outputs are
analyzed. For a value-based sequential design, accruing data are
used to calculate incremental costs and incremental effects for the
participant pair and update the estimate of posterior expected
INMB to determine potential early trial termination. This is based on
the observed data collected so far in the trial. Compared with a fixed
design, this requires additional data extraction, cleaning, analysis,
and reporting.?® Further practical considerations are discussed by
Forster et al®” and Flight et al.>°
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We follow 4 steps in a case study based on a real trial with a
fixed sample size design. Pretrial analysis (steps 1-3) uses only
pretrial data to explore the potential benefits of a value-adaptive
design. We illustrate step 4 using the trial’s actual data and in-
sights are gained through bootstrapping simulations on the
accrued data for the value-adaptive designs.

The case study concerns stroke survivors with aphasia, exam-
ining a new intervention—computerized speech and language
therapy (CSLT). The intervention was piloted in the 2-arm CACTUS
pilot trial of CSLT versus usual care (UC).?* The subsequent Big
CACTUS trial was a traditional fixed sample size study that
recruited 278 participants to 3 treatment arms—CSLT, UC, and
attention control.>® Big CACTUS was funded by the NIHR Health
Technology Assessment Programme.?® The results found a signif-
icant difference in effectiveness between CSLT and UC. Long-term
cost-effectiveness of CSLT was assessed using an Excel?’ model-
based cost-utility analysis (see Chapter 5%%).

Our case study re-examined the design of Big CACTUS, imag-
ining that we have decided to run a 2-arm trial of CSLT versus UC
and we want to consider different trial design options. We used
the data from the CACTUS pilot trial to specify the previous dis-
tributions, and together with a health economic model, we then
apply steps 1 to 3 to calculate the a priori expected performance of
4 designs:

1. original trial (traditional, fixed sample size) with n, pairwise
allocations

2. value-based fixed sample size design that maximizes ENBS
with a sample size of n, pairwise allocations

3. 2 value-based sequential designs with the maximum number
of pairwise allocations taking 2 values:
e 1. = ng (from the original trial),
e n. =n, (from the optimal value-based fixed sample size

design).

In practice, one may consider value-based sequential de-
signs with any maximum sample size that is practicable given
recruitment rates and project duration constraints.

Full methods are below and in Supplemental Material (Section
6) found at https://doi.org/10.1016/j.jval.2024.06.004. The code
will be made available on the Economics of Adaptive Clinical Trials
website (https://www.sheffield.ac.uk/ctru/completed-trials/enact
#Software).

For simplicity, our reanalysis of the Big CACTUS trial design
focuses on the CSLT and UC arms only, reflecting the new inter-
vention compared with standard practice in the UK. The analysis
uses the multiple imputation data set from the original trial.>® The
original Excel-based model was replicated in R*° for integration
with other code (see Latimer et al*° and its supplementary ma-
terial). Briefly, the model is a standard Markov cohort model with
a cycle length of 3 months, and health states “Aphasia,” “Good
response,” and “Death.” “Good response” is defined by a clinically
meaningful 10% improvement from baseline in either of the
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Parameter values for the CACTUS case study, restricted

to 2 arms, CSLT and UC.

Step 1a: Willingness to pay threshold

Maximum
willingness to pay for
one QALY

£20 000

National Institute for
Health and Care
Excellence®

Step 1b: Fixed and variable costs of conducting the research

Fixed cost of
adopting CSLT

Estimated spend on
fixed costs before
starting trial

Estimated spend
during recruitment
(per participant)

Estimated spend
during follow-up
(per participant)

Estimated spend on
fixed costs post
follow-up

Total spend on fixed
costs

Total spend

Estimate variable
cost per allocation to
2 arms

Fixed cost of
adopting CSLT into
practice

£0

£581 765

£1647

£706

£193 044

G = £774 809

TC = £1 445 565

C, = £4706

Assumption

Big CACTUS grant
application

Big CACTUS grant
application

Big CACTUS grant
application

Big CACTUS grant
application

Big CACTUS grant
application

Big CACTUS grant
application for 3-
arm trial

Big CACTUS grant
application

Assumption

Step 1c: Size of the population that will benefit from the health
technology adoption decision

Population expected
to benefit from
adoption decision
(over a 10-year time
horizon)

P =215 378

Big CACTUS HTA
report®®

Step 1d: Sampling variance of the INMB in the population of

participants considered

SD for INMB in
population

ox = £10 895

Supplementary
material

Step 1e: Delay between randomization and observing the measure
of INMB for each participant

Delay for observing
INMB endpoint
(years)

Delay for observing
INMB endpoint
(participant pairs)

1

t=55

Big CACTUS HTA
report”®

Annual rate of
recruitment

Step 1f: Previous mean and variance of the expected INMB

Effective sample size
of the previous
distribution

ng =7

Pairwise allocations
in CACTUS pilot**

Continued in the next column
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Continued

Previous mean for wo = £3190 Our implementation
unknown expected of the CACTUS
INMB (EINMB) project's cost-
effectiveness
model,>' and
CACTUS pilot data*
Previous SD for oo = £4118 Supplementary

unknown EINMB material

CSLT indicates computerized speech and language therapy; HTA, health
technology assessment; INMB, incremental net monetary benefit; QALY,
quality-adjusted life-year; UC, usual care.

coprimary outcome measures (number of words found correctly
of 100 personally relevant words; increase of =0.5 points on
Therapy Outcome Measures activity scale). Costs for the inter-
vention were based on staff activity logs from the trial. UC costs
were omitted because both arms include UC. Utilities for each
health state were based on analysis of individual participant’s
EQ5D at 6, 9, and 12 months. The model outputs are discounted
mean costs and mean QALYs.

Parameter values required to implement the value-based
sequential design are presented in Table 1.52%2831 Costs (step
1b) were estimated using information from the Big CACTUS grant
application available before the trial began. The fixed cost of the
trial is estimated at £774 809. The variable cost per participant pair
(excluding the intervention cost) is £4706. Size of the population
(step 1c) affected over 10 years is 215 378. For simplicity, it is
assumed there are no costs associated with adopting CSLT into
practice if found to be cost-effective. The health economic model
and 1000 bootstraps of the CACTUS pilot data estimated (step 1d)
the sampling SD of the INMB for a pair of participants at £10 895
and (step 1f) the previous mean and SD for the expected INMB at
p = £3190 and o = £4118. This positive expected INMB from the
previous evidence suggests the CSLT intervention is expected to be
cost-effective but with considerable uncertainty.

The traditional fixed sample size design (a) was undertaken
using the original sample size calculation,?® resulting in n, = 95
participant pairs.

For (b) the value-based design with a fixed sample size, the
EVSI was calculated using the standard normal loss function
method,'* and after examining ENBS (EVSI minus trial costs) for
many possible sample sizes, the optimal sample size for partici-
pant pairs was n, = 435.

For (c), Figure 1 illustrates stopping boundaries for the value-
based sequential design with a maximum of n. = 95 (red solid
line) and n, = 435 (blue dashed line) participant pairs. The x-axis
gives the number of pairs randomized and the y-axis gives the
previous/posterior mean of the expected INMB based on accu-
mulating data. The black vertical dotted line shows the point at
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Figure 1. Calculated stopping boundaries for the value-based sequential design for Big CACTUS trial case study using a maximum
sample size of 95 (red solid) and 435 (blue dashed) pairwise allocations.

10000

-10000 1

Prior/Posterior Mean for the Expected Incremental Net Monetary Benefit
o

0 100 200 300 400
Sample Size (number of pairwise allocations)

Table 2. Summary of characteristics for the 4 designs considered based on information available to the trial team before the trial
commences and calculated using htadelay (MATLAB).

Variable ©) (b) (Cn = 95) (Cn = 435)
Original fixed Value-based design Value-based Value-based
sample size with optimal fixed sequential sequential design
design sample size design (n. = 95) (ne = 435)

Maximum sample size 95 435 95 435

Maximum total variable cost of the trial £447 070 £2 047 110 £447 070 £2 047 110

Expected sample size (% increase over original trial) 95 435 86.47 166.01

Expected total variable cost associated with £447 070 £2 047 110 (+357.9%) £406 940 (—9.0%)  £781 227 (+74.7%)

conducting the proposed trial design

Population EVSI (% increase over original trial) £102.4 million £109.3 million (+6.8%) £102.6 million £109.6 million

(+0.20%) (+7.0%)

Expected net benefit (ENBS) (% increase over £101.9 million £107.3 million (+5.3%) £102.2 million £108.8 million

original trial) (+0.3%) (+6.7%)

Proportion of simulated trials that would have 0% 0% 52.00% 94.00%

stopped early

Proportion of simulated trials that would have 0% 0% 47.50% 75.50%

crossed the upper boundary

Proportion of simulated trials that would have 0% 0% 4.50% 18.50%

crossed the lower boundary

Proportion of simulated trials that would not have ~ 100% 100% 48.00% 6.00%

stopped early

Proportion of trial results that find CSLT more 77.83% 77.77%

cost-effective than UC (positive posterior mean
incremental net benefit)

Average over simulations of posterior mean 3064.07 3102.75
incremental net benefit per person

CSLT indicates computerized speech and language therapy; ENBS, expected net benefit of sampling; EVSI, expected value of sample information; UC, usual care.
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The actual observed Big CACTUS data (black line sample path of posterior INMB calculated) super-imposed upon the stopping
boundaries for the value-based sequential design with a maximum sample size of 95 (red solid) and 435 (blue dashed) pairwise
allocation. Sample path continues beyond the vertical portion of the solid red line because delays in observing outcomes result in

information being updated after the last participant is randomized.

10000

-10000

Prior/Posterior Mean for the Expected Incremental Net Monetary Benefit
o

0 100 200 300

Sample Size (number of pairwise allocations)

INMB indicates incremental net monetary benefit.

400

Summary of the average trial results (5000 simulated trials) in the CACTUS case study comparing the original frequentist fixed
sample size design, the value-based fixed sample size design, and the value-based sequential 2-arm design with adaptive stopping with

maximum sample size equal to the fixed sample size design, value-based 1-stage design.

Proportion of simulated trials that would have 0% 0%
stopped early

Proportion of simulated trials that would have 0% 0%
crossed the upper boundary

Proportion of simulated trials that would have 0% 0%
crossed the lower boundary

Proportion of simulated trials that would not have ~ 100% 100%

stopped early

Expected sample size (% increase over original trial) 95 435 (+358%)

Expected total variable cost associated with £447 070 £2 047 110 (+358%)
conducting the proposed trial design

Expected total cost (fixed and variable) associated ~ £1 221 879 £2 821 919 (+131%)
with conducting the proposed trial design

Proportion of trial results that find CSLT more cost- 35.56% 9.28%

effective than UC (positive posterior mean

incremental net benefit)

Average over 5000 bootstraps of posterior mean —130.16 —371.07

incremental net benefit per person

Note. Also shown is the percentage change relative to the fixed sample size design, for each figure of merit.
CSLT indicates computerized speech and language therapy; UC, usual care.

9.76%

7.02%

2.74%

90.24%

92.88 (—2.2%)
£437 131 (—2.22%)

£1 211 940

(—0.813%)
36.18%

—108.41

31.50%

5.96%

25.54%

68.50%

399.57 (+320.6%)
£1 880 381 (+321%)

£2 655 190 (+117%)

13.00%

—328.68
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Six simulations of the sample pathways from the bootstrap exercises for a value-adaptive design using the Big CACTUS data
with maximum sample size n = 435 participant pairs. Blue and green lines (2 of each) are simulated sample paths, which stopped earlier
than maximum sample size. Dark gray lines are 2 simulated sample paths, which continued through to the maximum sample size. The
larger dots indicate the sample size where the path crossed the boundary.

10000

-10000
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o
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Trial Stopping
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350 400 450 500

Sample Size (number of pairwise allocations)

which data start to become available from randomized partici-
pants accounting for the delay between randomization and data
collection. If, at an interim analysis, the value of the posterior
mean expected INMB is outside the stopping boundary, then the
value-adaptive analysis recommends stopping the trial.

With a maximum sample size of n. = 95 allocations, there is
only a brief opportunity to stop the trial early while participants
are still being recruited, due to the relatively long follow-up time
before health economic outcomes are available compared with the
trial recruitment period. This window of opportunity is extended
when we consider n. = 435 allocations.

Step 3 calculates the EVSI and ENBS using only information
available before the trial begins. We can also calculate other perfor-
mance metrics, such as the probability a given arm is selected as best,
using parametric Monte Carlo simulations as described in Chick et al.*

The estimated expected value of each trial design option over
the 10-year decision relevance horizon for the national population
is presented in Table 2. We have assumed fixed costs are zero
given that they are considered to be the same in all designs (see
case study step 1). As expected, none of the trials would stop early
when using the fixed and value-based designs. For the value-
based sequential design with n. =95 per arm, 52% of the trials
stopped early giving a reduced expected sample size and variable
cost compared with the fixed counterpart. Likewise, for the value-
based sequential design with n. = 435 per arm, 94% of the trials
stopped early giving an expected sample size of 166 and a total
variable cost of £781 243.

The estimated expected value of (a) traditional fixed sample
size design of n, = 95 per arm was EVSI, = £102 358 847, with a
total variable trial cost TV, = £447 070 and hence an expected
ENBS, = £101911 777.

For (b) the fixed sample size value-based design, the resulting
optimal sample size was n, =435 per arm. The EVSI, =
£109 333 687, with an expected variable trial cost TV}, = £2 047 110
and expected ENBS;, = £107 286 577 [+1.8% higher than (a)].

For the value-based sequential designs (c), the expected ENBS
result for maximum sample size n. = 95 is ENBSgs = £102 208 364
[+0.3% higher than fixed sample size design (a)]. Finally, ENBS435 = £
108 772 817 [+6.7% higher than (a)]. This shows that a value-based
sequential design with maximum sample n. = 435 would be ex-
pected to produce approximately £7 million more value than the
traditional fixed design.

For step 4 we did not conduct real-time interim analyses of the
accruing data because the Big CACTUS trial had already been
completed with a traditional fixed design. However, we could
imagine the actual trial data accruing. We used these data,
together with the health economic model to compute posterior
expected INMB of CSLT versus UC after each set of 5 participant
pairs. We plot this accruing data “sample path” alongside the
stopping boundaries to see whether the trial would have stopped
early based on the observed data.

Figure 2 retrospectively compares the actual observed Big
CACTUS data with the value-based sequential design stopping
boundaries. The Big CACTUS trial data for CSLT and UC were



analyzed to compute the (black line) estimated posterior mean
for the expected INMB (each dot is after every 5 randomized
pairs with reported outcomes). The black line extends beyond
the red stopping boundary due to the delay between randomi-
zation and outcome observation. The sample path does not cross
any stopping boundaries during the trial, only touching the red
stopping boundary at its maximum sample size of 95. This in-
dicates that if the original trial had used a value-based sequential
design and accrued data as it did, it would not have stopped
early. This is due to the small differences in observed QALY and
the relatively small cost difference between the interventions.
The previous expected INMB was £3190, and as the observed
data accrued, the posterior expected INMB estimate fell slightly,
and after 20 participant pairs, the estimate was approximately
zero and remained within the stopping boundary. At each point
of interim analysis, it continued to be cost-effective to collect
more data to reduce uncertainty regarding the cost-effectiveness
of CSLT versus UC.

We conducted a simulation analysis to gain insights into each
design’s performance. The observed Big CACTUS data represents
just one realization of what could have happened in the trial. To
simulate the possible range of trial results, we took the observed
trial data and performed 5000 bootstraps on the actual data,
assuming random pair allocation to CSLT or UC. Parameters for the
health economic model were calculated at every 5 pairs ran-
domized. Each simulation compared results with stopping
boundaries to determine whether the trial would have stopped
early. This allowed calculation of expected sample size and total
cost for the Big CACTUS trial under a value-based sequential
design. The results of these computations are presented in Table 3
and Figure 3. We do not expect the data in Table 2, which are
based on data available from the pilot study and which represent
an average over uncertainty in the mean INMB, to match the
analogous data in Table 3, because the results in Table 3 are
computed based on conditioning from the Big CACTUS data that
were collected after the pilot study.

The first bootstrap exercise indicates that 9.76% of simulated
trials would have stopped early for the value-based sequential
design with maximum sample size of n. = 95. With a larger
maximum sample size of n. = 435, a second bootstrapping
exercise showed 5.66% of trials finishing with a sample size
<95 (different from the first only due to random noise) and
31.50% finishing before the maximum n, = 435. For the value-
based sequential design with n, = 95, the resulting expected
sample size is 92.88 (2.2% lower than the maximum 95), indi-
cating that such a trial would rarely stop early. The design with
ne = 435 is more likely to stop early, with an expected sample
size of 399.57 participant pairs (8.1% lower than the maximum
435, but 320.6% higher than the original fixed design trial
n = 95).

This lower expected sample size is reflected in a lower ex-
pected total variable. A fixed design trial with a sample size of 435
pairs has a cost of £2.047 million, whereas the value-based
sequential design with maximum sample of 435 has an expected
total variable cost of £1.880 million.

We note that some of these results differ from the pretrial
simulation results calculated using htadelay and summarized in
Table 2. This is because the bootstrap results represent a range of
possible results from trials that gave the actual data observed,
rather than the possible results from the previous distribution (as
used in htadelay).
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Outlined are 4 steps to compare traditional fixed sample size
designs, value-based designs with a fixed sample size, and a value-
based sequential 2-arm design with adaptive stopping. Using pilot
trial data and model-based cost-effectiveness analysis in the case
study, it was demonstrated that a value-based sequential design
with a maximum sample of n. = 435 is expected to provide better
value for money to the funder than shorter or fixed sample size
designs. This result is as expected given that the value-based
sequential design allows for early termination of the trial if the
accumulating evidence indicates one treatment is more cost-
effective, enabling a decision on adopting the technology
without additional research expenses. Conversely, if data are
inconclusive, flexible collection enables gathering more evidence
to inform effectiveness and cost-effectiveness decisions with
greater precision. The size of the additional value of the value-
based sequential design compared with the traditional fixed
design in the example was approximately £7 million.

This case study supplements recent retrospective applications
with 2 other UK trials—ProFHER® and HERO.” It extends the
methods to a scenario with pilot data available before the full trial
is designed and where a health economic model will be used to
analyze the cost-effectiveness adoption decision.

The broader project—Economics of Adaptive Clinical Trials*?>—
explored the potential implementation of value-adaptive methods
across the portfolio of NIHR-funded research; see reports on
stakeholder workshops and case studies.>’

We envision value-adaptive designs becoming part of the
repertoire for clinical trials alongside traditional and value-based
fixed sample size designs. The framework facilitates design com-
parisons, suggesting a value-adaptive approach when it signifi-
cantly enhances expected value, as shown in the example earlier.
The framework is adaptable beyond just sample size, including
features such as arm allocation probabilities.

Research teams will need to consider the practicality of imple-
mentation case by case. Not all trials are suited to adaptive
designs,> especially when the recruitment period is short but
follow-up is long. Practical considerations also include the fre-
quency of interim analyses, the availability of a health economic
model before assessing trial designs, and accurate costing of the
proposed designs. Multidisciplinary team engagement will be
important and has been the focus of qualitative research®' because
stakeholders in health technology assessments will continue to
consider clinical effectiveness to be the main focus of a clinical trial.

The scale and direction of our case study findings cannot be
generalized. The specific costs and benefits of value-based
sequential versus fixed designs depend on each case. However,
the principles remain. Value-based sequential designs offer the
potential to end trials early or continue them longer depending on
how the evidence accrues during the trial. Therefore, they can
tailor investment of research resources to areas where reduction
of uncertainty adds value.

Our methods focus on a publicly funded healthcare system
with publicly funded health research investment. Consideration of
commercially funded research is beyond the scope of this article.
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For simplicity, our case study assumed that the fixed cost and
variable costs per participant pair were the same for both fixed
sample and the value-based sequential design. In practice, there
could be differences because the value-based sequential design
could incur additional research costs to cover design and interim
analyses.”!

This application only considered a 2-arm trial. Extending these
steps to 3-arm trials is possible by applying multiarm, multistage
value-based methods.?” The methods could also extend to other
adaptive designs,’ including group sequential trials.>*

This tutorial outlined 4 steps to calculate the expected value
and ENBS for a value-based sequential design in a 2-arm trial with
existing pilot data and a cost-effectiveness model. The case study
showed that a value-based sequential 2-arm design with an
adaptive ability to stop early or collect more data, as appropriate,
would be the best design when comparing its expected net benefit
with that of the traditional fixed trial design and a value-based
fixed design. In addition, further data collection through a
longer trial would have represented a cost-effective use of
research monies. We hope this tutorial will support increased
application of value-based sequential design.
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