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ARTICLE INFO ABSTRACT
Keywords: Real-time tool condition monitoring (TCM) has been emerging as a key technology for smart manufacturing.
Digital twin TCM can improve the dimensional accuracy of products, minimize machine tool downtime, and eliminate

Tool condition monitoring (TCM)

Fault diagnosis

Nonlinear system identification

Nonlinear output frequency response functions
(NOFRFs)

scraps and re-work costs. Digital twins offer new opportunities for real-time monitoring of machining processes,
which can, in principle, take into account changes in machining processes and operating environments, help
understand mechanisms of cutting tool wear, and improve the anomaly detection accuracy and fault diagnosis
results. The present study exploits these potential advantages of digital twins and proposes a new digital
twin-based anomaly detection framework for real-time TCM in machining. The framework of the digital
twin consists of three parts: the physical product, the virtual product and data flow connections. Within
this framework of the digital twin, the “physical product” represents the machining processes. The “virtual
product” includes a real-time data-driven model representing the dynamic relationship between vibration data
measured from machining processes as well as the model frequency features (MFFs)-based diagnostics for
cutting tool anomaly detection. The “data flow connections” involve real-time measured vibration data and
machine tool numerical controller (NC) signals providing real-time information on machine tool dynamics
and various machining processes. The novelty is associated with an innovative integration of real-time data-
driven modeling, MFFs extraction, and MFFs and machine tool NC signal-based tool wear diagnostics. This,
for the first time, enables the concept of digital twins to be potentially applied to the TCM for complicated
dynamic machining processes which, as far as we are aware of, has never been achieved before. Comprehensive
field studies have demonstrated the effectiveness of the proposed digital twin-based TCM framework and its
potential industrial applications.

1. Introduction (TCM) is of critical importance for the reduction of machine tool

downtime and the increase of production reliability.

Smart manufacturing, a broad category of manufacturing that em-
ploys digital information technology, flexible skilled workforce training
and computer-integrated manufacturing, is the central driver of the
new industrial revolution and will remain the primary pathway for
transforming and upgrading manufacturing in the coming decades [1].
Cutting tools or cutters are one of the keys and essential components
for cutting, shaping and removing materials from workpieces in manu-
facturing. However, cutting tools are often operated in excessive force,
high stresses and high-temperature environments, which can increase
their failure rates [2]. The failure of cutting tools usually damages
the workpieces and entails production disruptions or even production
shutdowns, causing economic loss which usually amounts to plenty
of times the materials cost [2]. Therefore, tool condition monitoring
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An extensive review of the literature shows that the techniques
for TCM generally have two categories, which are direct and indirect
approaches. In the direct approach, the machine has to be stopped; and
the actual tool wear can be directly measured by deploying the Tool
Makers Microscope or Optical Microscope which often causes unneces-
sary downtime during machining [3]. Conversely, indirect approaches
use indirect measurements to deduce tool wear via an empirically
determined correlation between the tool wear and measurements [3].
In contrast to direct approaches, indirect approaches may be less ac-
curate, but they also have lower complexity and are more suitable for
real-time TCM [3]. The most widely reported indirect TCM approach
is the signal analysis techniques shown in Fig. 1(a), which extract
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Fig. 1. TCM techniques. (a) signal feature-based TCM and (b) model feature-based
TCM [9].

significant signal features from deployed sensing devices, e.g., acoustic
emission, cutting force, vibration, sound and power, in order to con-
tinuously monitor the actual health status of cutting tools [4]. Various
signal feature extraction methods, such as time-domain analysis [5],
frequency-domain analysis [6], wavelet packet decomposition [7] and
Al-based methods [8], have been extensively researched for application
in fault diagnosis of cutting tools, but only a few of them have been
implemented in real-world applications. This is because signal feature-
based methods have two fundamental drawbacks and limitations. First,
signal features have low adaptability to overcome the impact of varying
working environments, such as tool materials or workpiece variations,
coolant concentration variations and ambient noises. The other draw-
back is that the design of the signal feature extraction is complicated
because the number of candidate signal features is theoretically infinite,
which significantly increases the difficulty of the feature selection [9].

In order to address the challenges faced by the signal feature-based
method, a model feature-based TCM methods are proposed [9]. As can
be seen in Fig. 1(b), the model feature-based method firstly builds
a dynamic process model from the collected signals via sensor data
modeling rather than directly using the data collected from sensors.
After that, the frequency response characteristics of the model are ex-
tracted and used as the features to conduct TCM, which are referred to
as model features. Experimental studies verify that the model feature-
based method has higher adaptability and lower complexity when
compared with the signal feature-based method.

Whereas, as cited in [9], the model features-based method has only
been validated under simple machining process conditions, such as
straight line cutting. It has not been applied to more complex dynamic
machining processes for real-time tool wear prediction. However, to
the best of the authors’ knowledge, there is still no publication and
industrial standard on real-time TCM for complicated dynamic ma-
chining processes. The very promising concept of digital twin and its
potential applications in advanced manufacturing have provided great
opportunities to solve this more fundamental challenge.

The first appearance of “digital twin” dates back to 2003 when
Grieves first introduced the term at the University of Michigan Exec-
utive Course on Product Lifecycle Management (PLM) [10]. Although
the concept was not yet concrete enough at the time, Grieves proposed
a preliminary form of the digital twin, consisting of three parts: the
physical product, the virtual product, and their data flow connections.
However, due to some technical limitations, the growth of digital twins
was relatively slow at that time [11]. In 2012, the National Aeronautics
and Space Administration (NASA) and United States Air Force (USAF)
revisited the concept of the digital twin. It is an ultra-fidelity simulation
process that integrates multi-physics, multi-scale, and probability to
reflect the state of the corresponding twin in real-time, based on
historical data, real-time sensor data, and physical models [12]. Since
then, digital twins become a popular research topic due to the great
development of sensor detection, big data analysis, Internet of Things
(IoT), deep learning, etc [13].
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In recent years, digital twins are being more and more used in the
field of condition monitoring and fault diagnosis (CMFD). Moghadam
et al. [14] present a digital twin-based CMFD approach for offshore
wind turbines drivetrain systems where the digital twin in the study
includes a torsional dynamic model, online measurements and fatigue
damage estimation. The remaining useful life of the drivetrain can be
estimated by means of the digital twin. Wang et al. [15] proposed
a digital twin model including a geometric model, physical model,
behavior model and rule model to conduct fault prediction of the
autoclave. Tao et al. [16] proposed a five-dimension digital twin model
for wind turbines in order to improve the accuracy of prognosis. Xia
et al. [17] proposed a digital twin model for machinery fault diagnosis
where the digital twin is built by establishing the simulation model
which can be updated through the real-time data collected from the
physical asset. The proposed digital twin is validated through a case
study of triplex pump fault diagnosis. Qiao et al. [18] presents a data-
driven based digital twin and a deep learning model to conduct TCM
in machining. To realize a more reliable TCM approach, Luo et al. [19]
proposed a hybrid digital twin model that consists of model-based
digital twins and data-driven digital twins to take into consideration the
environmental variations in the life cycle of the tool. As can be seen in
the literature, a digital twin can be used to conduct CMFD in real-time,
which offers a significant approach to the real-time implementation of
the TCM of complicated machining process.

Motivated by the needs to fundamentally address challenges with
TCM in advanced manufacturing, in the present study, an innovative
digital twin-based anomaly detection framework for real-time TCM is
proposed. The framework systematically integrates the advantages of
the novel model feature-based TCM in [9] and the promising concept of
digital twin aiming to comprehensively resolve adaptivity, complexity,
and real-time implementation issues with existing TCM technologies.

In this innovative framework of the digital twin, the “physical prod-
uct” consists of the complex dynamics of the machining process, which
covers the dynamics of the spindle, cutting tool, workpiece, milling
fixture, and the interactions between the cutting tool and workpiece.
The “virtual product” includes an on-line updated data-driven model
describing, in real-time, the overall behaviors of the “physical product”,
the frequency domain analysis results of the data-driven model, as well
as a diagnostic algorithm that performs TCM based on the data-driven
model’s frequency domain characteristics. The “data flow connection”
consists of real-time machine tool vibration data and machine tool
numerical controller (NC) information required to facilitate the “virtual
product” updating, analysis, and TCM implementation.

This novel integration of the innovative model sensor-based TCM
and the promising concept of digital twin would, for the first time,
enable TCM to be literally applied to complicated dynamic machin-
ing processes, which have so far never been achieved. The proposed
new digital twin-based anomaly detection approach is comprehensively
evaluated by conducting a range of in-situ manufacturing experiments.
Very promising results have been achieved demonstrating that the new
digital twin framework for TCM has significant potential to be adopted
and applied in industrial applications.

2. Digital twin for real-time tool condition monitoring (TCM)
2.1. Basic structures

The concept of a digital twin was first proposed by Grieves in
2003 [10]. Subsequently, the University of Sheffield Advanced Manu-
facturing Research Centre (AMRC) provided a more comprehensive and
solid definition, building upon the original concept: “The digital twin is
a live digital coupling of the state of a physical asset or process to a vir-
tual representation with a functional output [20]”. Fig. 2(a) presents a
flowchart to illustrate this definition where six highlighted parts which
are Live, Digital coupling, State, Physical product or process, Virtual
product and Functional output, are showed. Additional explanations of
these parts are provided below [20]:
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Fig. 2. Schematic of the data connections of digital twins, (a) conventional digital twin and (b) proposed new digital twin for real-time TCM.
(1) Live: In the context of a digital twin, the data being utilized must » The physical model adds information such as accuracy

(2)

3

4

(5)

be live, which implies that there is no appreciable difference
between the state of the physical product or process and its
virtual counterpart at any given moment. There are two key
factors for live which are latency and sampling rate. Latency
refers to the delay between the occurrence of an event and the
receipt of information, while sampling rate relates to the regu-
larity of updated information being transmitted. Both factors are
key considerations for a live connection and highly dependent on
the use-case.

Digital coupling: Digital coupling refers to the connection from
the physical product or process to its virtual counterpart, and
it involves the data collection, data transmission and data re-
ceiving. Security is the paramount consideration for the coupling
mechanism because failing to protect the data can be disastrous
for a business. Added security can increase the safety of the
system, but might lose practicality because of the complexity of
the hardware and software development.

State: State refers to the specific condition or situation of a
physical product or process at a given time. Similar to live, the
state description must be measured to an acceptable level of
accuracy in order to avoid making incorrect future decisions.
Furthermore, a state model needs to be accompanied by support-
ing descriptions, often provided through metadata, that provide
context for the live state information.

Physical product or process: A digital twin requires a physical
part which can either be a product or process. The physical
product is a tangible unique item and the physical process is a
specific workflow that has been established. Both of these have
economic, social, or commercial value since they can be owned
and traded. The characteristic of a physical product or process
displaying its behavior in the real world and generating state
information is the starting point for building a basic digital twin.
Virtual product: The virtual product is the utilization of the
information from the physical product in its model. Qi et al. [21]
defined that the virtual product of digital twin comprises five
types of models which are the geometric model, physical model,
behavioral model, and rule model. A brief summary of these
models is provided below.

» The geometric model describes the geometric shape, em-
bodiment and appearance of a physical counterpart in
terms of appropriate data structures.
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information (e.g., dimensional tolerance, shape tolerances,
etc.) and assembly information (e.g., mating relationship
and assembly order.) to describe the attribute and con-
straint of the physical counterpart.

The behavioral model describes various behaviors of a
physical counterpart to achieve functionality, respond to
changes, adjust internal operations, maintain health, etc.
The rule model describes the rules extracted from historical
data, expert knowledge, and predefined logic.

Finally, model verification, validation and accreditation
(VV&A) is used to analyze if and to what extent the cor-
rectness, tolerance, availability, and operation results meet
the requirements, with the aim of improving the accuracy
of the model and the confidence of the simulation.

(6) Functional output: For functional output to occur, the digital twin
must provide actionable information to an external system or a
human observer. Information can be considered actionable if it
facilitates an informed decision that generates economic, social,
or commercial benefits for one or more stakeholders.

2.2. Existing challenges

The current digital twin framework presented in Fig. 2(a) consti-
tutes a foundational aspect of a digital twin, where geometric and
physical models are established through the incorporation of vari-
ous modeling assumptions and expert input. However, the application
of this framework in the context of TCM is challenging due to the
complexity of machine tools and the limited understanding of the
mechanisms of tool degradation. As a result, the geometric and phys-
ical model-based digital twin is only capable of detecting significant
tool damage, such as tool breakage. The monitoring of tool wear,
particularly in extreme and complicated working environments, poses
challenges for the conventional digital twin framework [19,22].

2.3. Proposed digital twin framework

In order to fundamentally address the challenges faced by conven-
tional digital twin-based TCM methods and improve the monitoring
accuracy of cutting tools, this study introduces a novel digital twin
framework. This approach abandons the dependence on geometric and
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physical models and instead constructs digital twin models based on the
dynamic relationship between vibration data measured from machining
processes. The fundamental principle is that cutting tool anomalies in
machining can introduce additional dynamic effects. By analyzing the
changes in these dynamics, the digital twin model can evaluate the
health status of cutting tools. Fig. 2(b) illustrates the framework of the
proposed digital twin, with further elaborations on the novel approach
provided below.

(1) Live: In the context of the proposed digital twin, live represents
the “real-time” operation data collected from sensors mounted
on the machine tool, characterized by specific sampling rates
and latency. For example, at AMRC, the real-time data can be
sampled at a minimum rate of 1 Hz, with an approximate latency
of 100 ms when transmitted to a shop-floor network [20].

(2) Digital coupling: Digital coupling incorporates aspects of data
collection, transmission, and receiving. At AMRC, the collected
data can be sent over a shop floor integration layer, such as an
Open Platform Communications United Architecture (OPC UA)
server [20].

(3) State: State in the proposed digital twin refers to a description of
the execution status, such as in machining and shutdown, as well
as the positions of cutting tools and machining features. In real-
time machining, state information will be provided in numerical
control (NC) code.

(4) Physical product or process: The physical product or process com-
prises two parts.

« The first part consists of sensors installed on the machine
tool, such as those measuring vibration signals on the
spindle and milling fixture, as well as sensors providing NC
signals.

The second part encompasses the machining process,
which includes the dynamics of the spindle, cutting tool,
workpiece, milling fixture, and the interactions between
the cutting tool and workpiece. Cutting tool anomalies can
give rise to additional dynamic effects within the physical
product, subsequently leading to further changes in the
product’s behavior.

(5) Virtual product: As can be seen in Fig. 2(b), the virtual product
has the following three steps:

 The first step is the virtual product generation where
the vibration signals measured from the spindle and the
milling fixture, respectively, are used to build the dynamic
model to represent the dynamics between the cutting tool
supported by the spindle and the workpiece clamped on
the milling fixture. This process is termed as sensor data
modeling.

The second step involves the virtual product characteriza-
tion which is to conduct model frequency analysis to ex-
tract the frequency response characteristics of the dynamic
model. It is well known that the extracted frequency re-
sponse characteristics can represent unique and physically
meaningful features of a dynamic process [9,23].

The last step is the virtual product characteristic-based
TCM where the extracted frequency response character-
istics are used as the features for evaluating the health
conditions of cutting tools.

More explanations of the proposed virtual product will be pro-
vided in Section 3.

(6) Functional output: The functional output of the proposed digital
twin is the health status of the cutting tool, which serves to
indicate whether the tool is in a healthy condition, indicating
that the tool can still be used, or in a worn state, indicating the
tool needs replacement.
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3. Sensor data modeling and model frequency analysis
3.1. Sensor data modeling for virtual product generation

Virtual product generation in Fig. 2(b) uses sensor data modeling to
model the dynamics between the cutting tool supported by the spindle
and the workpiece clamped on the milling fixture in real-time. As
depicted in Fig. 3, let u,(r) and y,(r) represent the vibration signals
of time length T collected from the spindle and milling fixture at the
moment of the kth data collection, respectively, i.e. u; (1) = u[t+(k—1)T;]
and y,(t) = ylt + (k — DT;] with r = 1,...,T and k = 1,...,K. The
notation T; represents the monitoring period of the digital twin such
that the vibration signals will be transferred from the physical product
to the virtual product at every 7, time interval. An explanation of u,(t)
is shown schematically in Fig. 4.

Since u,(r) and y,(t) are two vibration responses of the machining
process, a general model representing the dynamics of the machining
process can be represented as

u () =Dy [PO] k=1,....K ()

@ =D, [P] . k=1,....K 2

where P,(7) represents the input power applied to the machining pro-
cess at the moment of the kth data collection. D, , denotes the dynamic
relationship between u(f) and P (7), and D, denotes the dynamic
relationship between y,(r) and P, (r). Under the condition that there
exist unique inverse operations ]D);}( and ]D);}c for D, , and D,

Pe(t) = D) [ (0)] (3
P () =D} [n®)] @
Therefore,

D3 [pe®] = Dy [ )] ®)
which implies

2® =Dy { D7k 0] } = Dy [ 0)] ®)

where D, represents the dynamic relationship between u,(¢) and y, (1).
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For sensor data modeling, it can incorporate additional dynamic
effects from cutting tool anomalies into the model D,. In particular,
sensor data modeling is a data-driven technique. An effective modeling
strategy, as discussed in Section 3.4, can explicitly represent the state of
the tool while mitigating the adverse effects of external environmental
factors on fault detection.

3.2. Model frequency analysis for virtual product characterization

After the relationship between u, (r) and y,(?) is modeled, the second
step is to perform virtual product characterization. This is achieved
by conducting model frequency analysis where the frequency response
properties of the model D, are evaluated. These properties can rep-
resent unique and physically meaningful features of milling processes
[23].

If the dynamics of the machining process shown in (6) is a linear
system, data-driven modeling techniques will produce a linear model to
represent the dynamics D,. In such a situation, the frequency domain
properties of model (6) can be expressed as
(o)  Fly®l _ F{Du®]}
Uo) — Fu@®) — Fuy ()
where %(-) denotes the Fourier transform. U,(jw) and Y,(jw) are,
respectively, the Fourier transform of u,(f) and y,(r). H,(jw) indicates
the frequency response function (FRF) of model (6) at the moment of
the kth data collection, and the notation w is the frequency variable.

Nonetheless, in real-world situations, the dynamics of the machining
process are often nonlinear; so model (6) is, in general, a nonlinear
model, which makes data-driven modeling and the associated model
frequency analysis be a complicated task. To solve this issue, nonlinear
system modeling and nonlinear model frequency analysis were pro-
posed by the authors in [9] where the Nonlinear Output Frequency
Response Functions (NOFRFs) were used to extend the FRF to the
nonlinear cases to fulfill more complicated TCM tasks.

The definition of NOFRFs is that if a nonlinear system is asymptot-
ically stable at the zero equilibrium, the model output response can be
determined by a Volterra series as [23]

)

= Hy(jw)

N
IROED NG

=1 0 (s n
PIRSDINICINE ] | AN
;=0 7,=0 i

n
N
n i=1

=1

(€))

where the notation N indicates the maximum order of the system
nonlinearity. y, ,(t) denotes the nth order output at the moment of the
kth data collection, and h,, (7, ..., 7,) is the nth order Volterra kernel of
the system output at the moment of the kth data collection. According
to [23,24], the output spectrum y,(r) can be represented as

N N
Fy0) =Y, (jo) & Y Y, (o) = Y. G, (jo)U, 4 (jo) ©
n=1 n=1

where Y, ,(jo) and U, (jw) are the nth order output frequency spec-
trum and input frequency spectrum, respectively.
Y, (o)
U, n‘k(ja))
is defined as the nth order NOFRF at the moment of the kth data
collection withw € 2, andn = 1,..., N with U, , (jo) # 0 [25]. 2, is the
frequency support of U, ,(jw) where U, ,(jw) # 0. As can be seen, (10)
is expressed in a manner which is similar to the FRF. When n= N =1,
G, (jo) = G (jo) = H;(jw) reduces to the FRF of a linear system
shown in (7).

The evaluation of the NOFRFs can be carried out using the equations
shown in Appendix and the evaluated NOFRFs can be expressed as
G* (jo) with

G (jo) = (10)

£, =[G} (oDl ... |G Gy "] an
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Fig. 5. An illustration of how the proposed new digital twin works for TCM.

where f, , denotes the nth order NOFRFs-based features at the moment
of the kth data collection. Here L, represents the number of model
features of the nth order, and !, ..., wf” € 8, O, € Q, As a
result, the overall NOFRFs-based features at the moment of the kth data
collection can be obtained as

Fi=[f0...fln=1..,Nk=1..K 12)

where F, is defined as the model frequency features (MFFs) having the
potential to reflect and monitor the process of tool wear from the 1-st
to the Kth data collection period.

3.3. Frequency response characteristics-based TCM

As can be seen in Fig. 5, at time T1, the machine tool dynamics
represented by the dynamic relationship between the spindle vibration
signal u,(r) and the milling fixture vibration signal y,(r) are modeled
using a nonlinear system identification approach and the measured
data of u,(r) and y, (¢), producing a data-driven model (known as NARX
model in the paper). Then, from D;, the frequency domain features
(known as NOFRFs) of the identified NARX model are extracted, pro-
ducing MFF F, for monitoring the cutting tool conditions at time T1. At
a subsequent time Tk, following the same procedure, the data-driven
NARX model is updated to D,, and then the corresponding MFF is
updated to F, and used to monitor the cutting tool conditions at time
Tk.

The advantages of the frequency response characteristics-based
TCM are that MFFs describe exactly the state of the cutter over time.
This is due to the fact that the model developed via sensor data
modeling can often be uniquely determined by the cutter status; and
the frequency analysis of the model can effectively reveal unique
and physically meaningful features of the health conditions of the
cutter [9]. The details of the MFFs-based diagnostics will be introduced
in Section 4.

3.4. Implementation algorithm

3.4.1. Sensor data modeling

Sensor data modeling is a data-driven modeling technique aiming to
find the dynamic relationship between the u, () and y, (¢) collected from
the vibration sensors mounted on the spindle and milling fixture. The
relationship at the moment of the kth data collection can be described
by using the Nonlinear AutoRegressive with eXogenous input (NARX)
model

Ye(6) =F Iyt = 1), -,y (6 = 8,),
w(t =1), - u (t = 6,)1 + e, (1)

13

where F? indicates the polynomial function and the notation ¢ is
the maximum polynomial degree with £ € Z%. e(r) indicates the
unmodeled dynamics and noise. é, and §, are the maximum lags for the
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milling fixture and spindle vibration signals, respectively. To identify
the polynomial function F ?, (13) is presented as follows

M
yk(t) = z em,kdm,k(t) + ek(t)

m=1

(14

where 6,,, with m =1,.... M are the model parameters at the moment
of the kth collection, and the notation M indicates the total number of
the model terms. d,, () are the regressors composing y,(t—1), -+, y, (t—
8 (t = 1), oy (t = 8,). The polynomial model (14) can be further
written in the matrix form

Vi =D O, + 5 (15)

where y, e(D, ...,y (MIT with & l,....,K, and @,
(014044 ]%, and 5, = [e,(1), ..., e, (T)]T. The dictionary D, is a
matrix of Dy = {d; .....dy,} and d,,; = [d,, ; (D), ....d,, ; (T)].

In practical data-driven modeling, the parsimonious principle is the
fundamental principle which ensures the smallest possible model is
used to explain the data [26]. In this study, the orthogonal least squares
(OLS) algorithm is used because it proved to be an efficient learning
procedure for building parsimonious models in smart manufacturing-
related TCM [9]. After OLS is applied to select the model structure, the
final model can be written as

Vi = Wea + B (16)

where W, is the OLS selected model structure which can be formed
as W, = {dy,....,dy ,} and M, < M. The notation a, is an OLS
parameter vector which can be evaluated by solving the following
I,-norm optimization problem.

a; = argmin{[|Wya, — Vell2 + Al |} a”n

=W, W, + 4D7'W, Ty,

where I is an M, x M, identity matrix; and the notation A, denotes the
penalty parameter which is one of the key factors to obtain a satisfac-
tory NARX model. The discussion of penalty parameter 4, tuning has
been well defined in [9].

3.4.2. Model frequency analysis

To evaluate the NOFRFs of the model, the Generalized Associated
Linear Equations (GALEs) algorithm is used to decompose the built
NARX model (13) into a series of linear difference equations. Depend-
ing on the decomposed equations, NOFRFs can be evaluated from low
order to an arbitrarily high order [27]. The evaluated NOFRFs can
be expressed as G:’k(jw) and the equations of NOFRFs evaluation are
presented in Appendix.

4. Algorithm of model frequency features (MFFs) and machine
tool numerical controller (NC) signal-based diagnostics

4.1. Status index modeling

Suppose that the machine tool is in operation and H (k) represents
the status index (SI) reflecting the tool wear status of the cutter at the
moment of the kth data collection. H(k) can be defined as a moving
average model shown below

H(k) = {

where the notation W is the window length, and Y'(k) € {0,1} is
defined as the binary prediction result shown below:

Y00 =C [Frogy] k= 1. K
sq’kf[ }

5}

YWDt dYK) 1 s 7
k2

0,k<W

18

C, |Fr, @il @ E{(p Y
l[k k] k ' ! 19

C, [Fkafl’k],(Pk € {(pk}],
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MF¢

MF1

Fig. 6. An example of a final designed workpiece [28].

with

N =gl (20)
JV=[q)k},...,q)kcivl,...,(pk}i,...,tpkquT 2n
o =loy,....,01,r=1..,R (22)
Cc={C.....C,}.q=1,....0 (23)

The notation N is the collected NC signal, and N represents the NC
program employed to control the manufacturing operations, enclosing
the entire machining process. ¢, indicates the NC signal of the ma-
chining process at the moment of the kth data collection; and ?5

represents the ¢ -th NC signal at k,-th set. C,[.] is a sub-classification
model that is a function of both F, and ¢, . C[.] is a binary classification
model that composes the Q sub-classification models to produce binary
prediction results. As can be seen in (19), the sub-classification model
C,[.] to be updated is determined by the set to which g, is assigned.

For example, Fig. 6 shows a final designed workpiece (FDW) where
six machining features (MF1 to MF6 shown in Fig. 6) need to be re-
moved, and the designed machining processes to remove these features
are recorded in the NC program N. Assuming that the machining
process for these six features are different, A can be partitioned into
six distinct sets, each correlating to a specific machining feature. The
binary classification model can be set to C = {C,,...,C,}.g=1,....6,
and the collected NC signals ¢, will update the sub-classification
models C,l.] to output the prediction result Y (k).

4.2. Prediction threshold determination

In real-time machining, it is necessary to monitor the SI for TCM. If
the SI value exceeds the prediction threshold T, the tool is classified as
worn. Otherwise, the tool can be deemed to be in a healthy condition.
The determination of 7, is in the training stage which is based on the
following polynomial curve fitting.

T, = H(k) — e, (k)
= Hy; (k)
=9kY + kT 9,k + 9, k=T,

(24

where y indicates the maximum degree of the polynomial function,
and 9 = [9,,9,,...,9,,9,,,]" indicates the coefficients of the function
which can be determined using the least square method. Hy; (k) in-
dicates the polynomial fitted curve and e,(k) represents the residual.
The notation 7, is defined as the True Moment indicating the moment
when the tool wear reaches the predetermined tool wear threshold.
Therefore, this tool wear threshold is directly linked to the moment
T,, and can be expressed as a function of T,,, denoted as W (T,,).
Consequently, as illustrated in Fig. 7, the MMFs and NC signal-based
diagnostics incorporate two AI models: the moving average model,
which outputs the SI, and the classification model, which predicts
binary results. These two models work cooperatively to conduct TCM,
thus ensuring real-time and accurate monitoring of the tool condition.
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Fig. 7. Flowchart of the MMFs and NC signal-based diagnostics.

5. A new digital twin-based anomaly detection technique for real-
time tool condition monitoring

The proposed digital twin-based anomaly detection technique inte-
grates the aforementioned real-time sensor data modeling and model
frequency analysis (introduced in Section 3), and MFFs and machine
tool NC signal-based diagnostics (described in Section 4), aiming to
monitor the cutting tool status in real-time and diagnose cutting tool
anomalies when tool wear reaches a certain threshold. The technique
involves two parts: off-line training and on-line monitoring.

5.1. Off-line training

Step 1: Off-line MFFs evaluation

MFFs are evaluated based on off-line collected spindle and
milling fixture vibration signals. The details of the MFFs eval-
uation have been described in Section 3.

Al labeling

To label the MFFs, the condition of the tool is firstly defined. If
the tool wear is within a predetermined wear threshold W (T,,),
the tool is classified as healthy. Otherwise, the tool is classified
as worn. If the MFFs are extracted from the machining process
under healthy tool conditions, the labeling is the binary number
0 (health). Alternatively, if the tool is worn, the label is the
binary number 1 (worn).

Machining features definition

The categories of machining features are defined based on
the geometric shapes and topology structures. In accordance
with the feature definition methods outlined in previous litera-
ture [29], O different machining features are defined, necessi-
tating the development of Q sub-classification models to predict
the health status of the cutting tool.

Data partitioning

The identified machining features enable partitioning of the NC
program N into Q different sets.

Then, the collected NC signals N can be divided into train NC
signals N i, and test NC signals N, and each dataset can
be expressed as

Step 2:

Step 3:

Step 4:

Nlrain = [(pl’ ’(pk] ]T (25)

N test (26)

In parallel, the off-line evaluated MFFs are also divided into
two datasets which are train MFFs datasets, denoted as F
and test MFFs datasets, denoted as F

[@,, ... s(sz]T

train»

test*

Ftrain = [Fy. ... Fy 1" 27

Frog = By F, 1" @8)

Step 5: MFFs and NC signal-based AI model training
The objective of this step is to train the AI models, includ-
ing classification and moving average models introduced in

Section 4, for TCM. Specific procedures are as follows:

169

Journal of Manufacturing Systems 75 (2024) 163-173

77 ERR=[W(T,) - W(T,)
e

0 L L L L L L
1 2 3 4 5 6 7 8 9

Moments

Status Index
o
o
T

Fig. 8. 2-D plot of the status index. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

(a) The binary classification model C[.] is trained off-line
using the labeled N, and F.,, where C[.] encloses
O sub-classification models.

(b) Substituting N ;pin and F,i, into (18) and (19), the SI
of the train dataset can be obtained as H,,,(k) which
can further determine the prediction threshold 7, based
on (24).

Step 6: Model testing

By substituting N, and F . into (18) and (19), the SI of the
test dataset can be obtained as H,. (k). If H,. (k) exceeds the
prediction threshold T, the tool is regarded as worn. The mo-
ment when SI reaches 7, is defined as the Prediction Moment
T,,, and the tool wear at T,, moment is defined as the prediction
tool wear W (T,,). The difference between the prediction tool
wear W(T,,,) and the predetermined tool wear threshold W (T,,)
is

ERR = |W(T,,) - W(T,,) (29)

where W (T,,) and W (T,,) indicate the prediction tool wear and
predetermined tool wear which are the function of 7, and T,
respectively. ERR represents the prediction error, indicating
the precision of the diagnostics. If the prediction error ERR
is greater than a predefined error threshold 7,, e.g. 20 pm,
the off-line training is deemed invalid, necessitating a reset
of the relevant tunable parameters in the modeling stage for
another training round. It is worth mentioning that, to prevent
mistaken alarms, if the H, (k) curve surpasses the prediction
threshold 7, persistently (e.g., for more than three moments),
this indicates that the tool is definitively worn. Otherwise, the
tool is considered to be in good condition and can remain in
use.

For example, Fig. 8 displays the 2-D plot of SI, where the black
curve represents H (k) [0,0,0.33,0.67,0.67,0.67,0.67,0.33,
0.67,0.67], and the green curve represents the polynomial fit-
ted curve Hy; (k). The red dash line is defined as prediction
threshold T,,. The purple dash line symbolizes the prediction
moment 7, where the tool wear at this moment is W (T,). The
blue dash line indicates the true moment 7, indicating when
tool wear meets the predetermined tool wear threshold W (T,,,).
ERR indicates the differences between the predicted tool wear
w(T,) at the moment T, and the predetermined tool wear
threshold W (T,,) at the moment T,,.

5.2. On-line monitoring

The second part involves online monitoring using the online ex-
tracted MFFs and off-line trained AI models for real-time TCM. The
online monitoring can be implemented through the following steps.

Step 7: On-line MFFs evaluation
The on-line MFFs are evaluated based on the real-time collected
vibration signals in order to describe the state of the cutter over
time.
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Fig. 9. Flowchart of the proposed digital twin-based anomaly detection technique
enclosing off-line training and on-line monitoring.

Step 8: On-line MFFs and NC signal-based diagnostics
The evaluated MFFs and online collected NC signals are input
to the off-line trained moving average models and classification
models for real-time TCM. If the on-line predicted SI, denoted
as Hine(k), surpasses the off-line trained prediction threshold
T, persistently, the tool is considered to be worn.

5.3. Discussion of parameter tuning

With all the steps introduced earlier, the schematic flowchart of
the digital twin-based anomaly detection technique enclosing off-line
training and on-line monitoring is depicted in Fig. 9. In regard to the
off-line training, modeling parameters in step 1, such as time delay 6,
d, and polynomial degree ¢, play a vital role in optimizing the TCM
results. When tuning these modeling parameters, the prediction error
ERR can be compared. The parameters that yield the smallest ERR in
the test dataset are selected for use.

The second prominent factor is the window length of the moving
average model shown in (18). A smaller window length for TCM will
make the model more responsive to changes in tool wear. Conversely,
a larger window length results in less sensitivity in the prediction.
However, there is scant information on how to preset this window
length. The most effective method to identify the optimal length is
to try a number of different window lengths until the one that is
appropriate for the TCM strategy is found.

6. Field experiment
6.1. Design of experiment

To validate the effectiveness of the newly proposed digital twin-
based anomaly detection framework for real-time TCM in machining,
a run-to-failure experiment was carried out at the Advanced Manufac-
turing Research Centre (AMRC), The University of Sheffield, Sheffield,
U.K., as shown in Fig. 10. The machine is branded as a 5-axis DMU
40 evo machine center, and Sandvik 4-flute carbide end mills were
used to cut the Ti-6AL-4V workpieces. For the machining parame-
ters, the rotation speed and feed rate were set to 2586.27 r/min
and 1055.20 mm/min, respectively. Furthermore, the cutting width
and depth were 2 mm and 20 mm, respectively. As can be seen in
Fig. 10, vibration signals of the spindle and platform were acquired
from two PCB-type accelerometers mounted on the spindle and milling
fixture. The sensitivities for the spindle accelerometer and milling
fixture accelerometer are 10 mV/g and 500 mV/g, respectively; and the
frequency range for both accelerometers is from 1 Hz to 5 kHz. In this
study, the sampling rate for both accelerometers was set to 51.2 kHz.

During the machining process, two cutting tools, termed T1 and T2,
were used to cut the workpiece. The milling strategy for the experiment
is dynamic milling dividing the workpiece into four layers, each of
which can be divided into six different machining features with the
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Fig. 10. Test rig of the milling experiment.
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Fig. 11. Image of (a) the workpiece after each round cut and (b) the experiment
process.
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Fig. 12. History of the most severe tool wear among 4 flute cutters measured from
microscope (a) Tool 1 and (b) Tool 2.

shape of a ring round (see Fig. 11(a)). After the last round cut of the
layer is completed, the surface of the workpiece will be cleaned, which
will be used for the other new six round-cuts (see Fig. 11(b)). Every
time a round cut is completed, the machine will stop to check the tool
wear via the microscope. At the end of the experiment, both tools have
cut 6 layers, for a total of 36 round cuts. Fig. 12 shows the history
of the most severe tool wear among 4 flute cutters measured from a
microscope where the tool wear of both tools changes from around
150 pm to over 400 pm.

6.2. Off-line training

The dataset collected from T1 was firstly used to conduct off-
line training. Based on Fig. 9, the off-line training process for T1
involves the evaluation of MFFs. This evaluation consists of sensor
data modeling and model frequency analysis. Sensor data modeling
involves setting the signal length T to 1 s and the monitoring period
of the digital twin T; to 5 s. This configuration dictates that the digital
twin will update every 5 s, and a 1-second snapshot of the signal is
collected for each modeling analysis. For model frequency analysis,
given the tooth passing frequency of 172.41 Hz, an input excitation
ranging from 167 Hz to 177 Hz, u*(f) = 3 (1 TTmx)sin(ax16741) with
—1 <t < 1, was designed to investigate the nonllnear characteristics at
this frequency range and to evaluate the corresponding NOFRFs of each
identified NARX model.
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Fig. 13. Machining features of the designed experiment.

The experiment of T1 conducted 36 round cuts, and the final MFFs
over the life cycle of the tool totally has 2160 MFFs. To label the MFFs,
the predetermined tool wear threshold W (T,,) is set to 280 pm. MFFs
derived from machining processes where the tool wear is below 280 pm
were labeled as 0, signifying a healthy tool status. MFFs associated
with tool wear exceeding the tool wear threshold were labeled as 1,
indicative of a worn tool state. As a result, the initial 24 round cuts,
which span the first four layers of the machining process, yielded MFFs
assigned the label 0; and the last 12 round cuts collected from the last
2 layers were labeled as 1.

As can be seen in Fig. 13, the design of the experiment enclosed
six unique machining features. Each of the round cuts can be as-
sociated with a distinct machining feature due to the varying rates
of cutting force changes across different rounds, which consequently
lead to alterations in the dynamics of the machining process. As a
result, in response to these six distinct machining features, six different
sub-classification models, denoted as R1 to R6, were necessarily con-
structed to address each machining feature. The NC program can thus
be separated into six different sets, each corresponding to a specific
machining feature. The collected NC signals and off-line evaluated
MFFs are then partitioned into training datasets and test datasets,
respectively. Each dataset comprises 1080 entities, including NC signals
and NOFRFs-based features.

In MFFs and NC signal-based AI model training, the Support Vector
Machine (SVM) was employed as the classification model to gener-
ate binary prediction results because it is a powerful classification
technique in relevant applications. As can be seen in Fig. 14(a), the
Area Under the Curve (AUC) from six sub-classification models (R1
to R6) varies from 0.78 to 0.88, and the Distance to Top Left Corner
(DTLCs) [9] changes from 0.24 to 0.36, indicating a comparable level
of reliability across these sub-classification models.

After inputting the train MFFs and NC signals into the trained
classification models and moving average models, the SI of the train
dataset, denoted as H,,;,, can be received shown in Fig. 14(b). This in
turn allows for the calculation of the prediction threshold T, based on
(24), as presented by the red dash line in Fig. 14(b).

The final step in the off-line training involves testing the perfor-
mance of the trained Al models by feeding in the test MFFs and NC
datasets. As presented in Fig. 14(c), the SI of the test dataset, denoted

as H,., was computed. From the plot, H,., surpasses the prediction
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threshold T, [red dash line in Fig. 14(c)] at the 644-th moments
and remains above it for more than three moments. Therefore, the
prediction moment 7, [indicated by the purple dash line in Fig. 14(c)]
was set at the 644-th moment which corresponds to W (T},) = 268.95 pm.
The difference between W(Tm) and W (T,,) is 11.05 (= |268.95 — 280|)
pm which falls within the predefined error threshold 7, of 20 pm, thus
validating the efficacy of the off-line training process.

6.3. On-line monitoring

After successfully testing the AI models trained off-line, on-line
monitoring was carried out. In this stage, the monitoring period of the
digital twin T; was set to 10 s. This setup was based on the consideration
that our computational system (equipped with an Intel(R) Core(TM) i9-
12900K CPU and 64-GB RAM) typically requires approximately 5 to 8 s
to evaluate a single NOFRFs-based feature. To ensure effective monitor-
ing, it is crucial that this computational duration remains shorter than
T,.

The on-line evaluation process involved the input of the on-line
evaluated MFFs and the collected NC signals into the trained Al models
to obtain the on-line SI result H ;... As can be seen in Fig. 14(d), this
on-line diagnostics indicates that the prediction moment 7,,, when the
tool begins to wear out, is at the 845-th moment, corresponding to
a tool wear W (T,,) of 285.73 um. The difference between the on-line
predicted tool wear W (T,,) and the predetermined tool wear threshold
W (T,,) is 5.73 (= |285.73 — 280|) pm. This falls within the predefined er-
ror threshold 7, of 20 um, thus affirming the reliability and effectiveness
of the proposed digital twin-based TCM method.

6.4. Validation results

To further validate the feasibility of our proposed digital twin-based
anomaly detection framework, we changed the order of the tests where
the data collected from T2 was applied to off-line training and the data
from T1 was used for on-line monitoring. Fig. 15(a) shows the SI of the
off-line test results where the ERR is 6.65 pm. For the online monitoring,
as can be seen in Fig. 15(b), the ERR is 11.05 pm. Both ERRs, including
off-line and on-line, are within the error threshold 7, of 20 pm proving
that our proposed digital twin-based anomaly detection framework is
effective and accurate for TCM in machining.

6.5. Comparative study

To evaluate the performance of the proposed method, a compar-
ative study using the conventional signal feature-based method was
conducted, in which the collected signals are directly used for fea-
ture extraction, and the extracted feature is the amplitude in the
frequency domain of the tooth passing frequency. More discussions of
the conventional signal feature-based method can be seen in [30].

First, the dataset from T1 was used to conduct off-line training; and
the candidate signal features included mean, kurtosis, entropy, vari-
ance, skewness, standard deviation, and median. After using some fea-
ture selection methods, the dominant signal features were selected [9].
Then, the selected features were used to train the AI model for TCM.
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Fig. 14. The result of T1 off-line training and T2 on-line testing. (a) The ROC of the six sub-diagnostic models, (b) the SI of the train datasets, (c) the SI of the off-line test

datasets and (d) the SI of the on-line monitoring.
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Fig. 16(a) displays the SI of the train dataset. It can be seen that the
generated SI randomly produced large fluctuations. This is because
machining processes are complicated, and signal features have low
robustness and reliability to overcome the variations during machining.
Finally, the trained AI model was applied to the test dataset with the
aim of validating the performance of the trained model. As presented
in Fig. 16(b), the model starts to trigger wear at a very early stage
which corresponds to 183.34 pm, resulting in an ERR of 96.66 pm,
exceeding the set error threshold 7, of 20 pm. This comparative study
underscores the robustness and reliability of NOFRFs-based features,
and demonstrates the effectiveness of the proposed digital twin-based
anomaly detection framework in real-time TCM applications.
Furthermore, the evaluated model features were used to train the
logistic regression classifier instead of the SVM classifier. Fig. 17 shows
the SI of online monitoring results where the ERR is 10.48 pm which
falls within the predefined error threshold T, of 20 pm. This results fur-
ther indicate the robustness and reliability of NOFRFs-based features.

7. Conclusion

In this article, a new digital twin-based anomaly detection frame-
work is proposed to provide a solution for real-time tool condition
monitoring (TCM) in machining. The “physical product” of the pro-
posed digital twin consists of the complex dynamics of the machining
process, incorporating the dynamics of the spindle, cutting tool, work-
piece, milling fixture, and the interactions between the cutting tool
and workpiece. The “virtual product” includes an on-line updated data-
driven modeling that describes the overall behaviors of the “physical
product” in real time, as well as the frequency domain characteristics

172

Journal of Manufacturing Systems 75 (2024) 163-173

of the data-driven model, and a diagnostic algorithm that performs
TCM based on the frequency domain characteristics of the data-driven
model. The “data flow connection” includes measured vibration signals
and machine tool numerical controller (NC) signals to facilitate the
virtual product” updating, analysis, and implementation of TCM.

The principal contributions of this novel digital twin framework lie
in its high robustness and reliability, which can overcome variations in
difficult parts with different machining features in machining and can
harmonize the diagnostic results generated by the different machining
processes. Experimental studies have demonstrated the effectiveness of
the proposed method, especially for complicated machining processes.

Our near future work will be devoted to the application study on
more complicated machining parts and extending it to remaining useful
life estimation. In the course of this work, research will also be made in
the areas of (i) improving the modeling speed of sensor data modeling
and model frequency analysis, and (ii) application to other rotating
components in manufacturing.
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Appendix. Generalized associated linear equations

Consider rewriting the built NARX model (13) into the following
discrete-time equation

o) 'Z Z Z Cpailliseslpry)
J=1p=011,0 0 pyg=1 (A1)
p ptq
x Hyk(t—l) I we-10
i=p+1

where J and L are integers, p+¢ = j, and ¢, , (I}, ..., /,,,) denotes the
coefficients of the model at the moment of the kth data collection [31].
The Generalized Associated Linear Equations (GALEs) of the NARX
model (A.1) are decomposed as

L

Vuie® = D 1oyt -

=1

X f[uk(t —1)

L
D+ Y coupllys )

Iy=1

n—1n— (AZ)
D) epqillis oo L)V g0
gq=1 p=11,, p+q—1
ptq
X H ”k(’_1)+2 Z pOk(llﬂ"’lp)yi‘,p‘k(t)
i=p+1 p=211.0,=1
wheren=1,...,N,L=[l,...,/,] and
(t)—Z" -, (t-1) L, o)
Pk Vi p yn—i,p—l,k (AS)

yﬁlyk()=yn,k (t-1,)

Suppose u; (1) is the input excitation signal for NOFRFs evaluation,
so the model output y* k(t) can be evaluated using (A.2). Substitute
uy, e and yn (1) into (10), the NOFRFs, G* k(jw), can be determined
as
Y,,’fk(jw)
U,ik(jw)

Fly,, 0l Fly,, 0
Fluwy, (0] Flu 01"}

where Uy, (jo) #0andn=1,...,

(A.4)

G, (jo)=

N representing the nth order NOFRFs.
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