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ARTICLE INFO ABSTRACT
Keywords: Efficiently merging fatigue datasets from diverse sources has proven to be a strategic approach for enhancing the
Statistical reliability of fatigue assessment and design within industry, while concurrently streamlining costs and time.

Significance

T e Statistical parametric analysis is an approach that can be applied to fatigue datasets to determine whether the
est-statistic

datasets can be deemed statistically significant (different) or statistically insignificant (similar). This paper
systematically employed statistical parametric test-statistic hypotheses to assess significance. To validate this
approach the paper used as a case study, fatigue data sets generated from varied notched specimens with hole
diameters ranging from 0 mm to 3 mm, in addition to data from the literature. In particular, gross stresses were
utilized to ensure that the only means to identify differences in the fatigue datasets was through statistical
analysis. This approach was observed to work well for geometries with differences in notch geometry as small as
1 mm and was able to identify notch insensitivity in cast iron. Thus, this method can be used to differentiate
fatigue datasets based on statistical parameters rather than other physical parameters.

Collinear
Fatigue

environments. Not only does this aid in consolidating fatigue datasets
for heightened reliability but it also mitigates the time and cost chal-
lenges associated with conducting numerous fatigue experiments [3-5].
A detailed methodology for parametric statistical testing constitutes a
comprehensive exploration, enriching the field of fatigue data analysis
with valuable insights for engineers and researchers striving to optimize
designs and improve material reliability under cyclic loading conditions.
Consequently, conclusions drawn from fatigue test data can be made
confidently based on a predetermined level of significance.

This paper seeks to address the research question of whether statis-
tics alone is sufficient to determine the similarity or dissimilarity be-
tween two datasets. This is not only useful for comparing fatigue data
sets, but it can also be used to differentiate data sets produced using
different manufacturing, specimen preparation protocols or loading
conditions (tension, torsion, load ratio, etc). To answer this question, a
hypothesis is formulated and tested. In this study, the hypothesis under
consideration is the t-test statistics in parametric analysis. The fatigue
data sets used in this study are derived from notches, which serve as a
case study. By employing notches of varying geometries, different fa-
tigue datasets are generated and utilized to validate the hypothesis.

Notches were selected as the basis for generating fatigue data for this
paper because they are well-known for reducing the endurance limit of
engineering materials [6,7] as well as the inverse slope [8], effectively
shifting the mean S-N curve downward. They also change the level of
scattering depending on the notch root radius and the material type [9].

1. Introduction

Fatigue assessment in engineering is a critical process when evalu-
ating the structural durability and performance of structural compo-
nents under dynamic loading. It predicts potential fatigue failure over
time considering cyclic stresses and strains [1]. Historical failures un-
derscore the importance of robust fatigue analysis [2]. Various methods
including theoretical approaches, fracture mechanics, and
non-destructive testing, to enhance fatigue behaviour understanding
and improve engineering safety have been used in industry. With fatigue
failure accounting for a majority of engineering failures, accurately
assessing fatigue is therefore essential to prevent these failures. Engi-
neers can proactively address weaknesses, optimize designs, and ensure
long-term reliability and safety across diverse industries.

Given the critical nature of fatigue data assessment for designing
resilient structures and the variability in fatigue datasets from experi-
ments, statistical analysis serves as a potent tool for exploration. In
addition, fatigue experiments are time-consuming and costly, and
designing reliably requires ample fatigue data for analysis. Addressing
these challenges involves utilizing datasets from different sources and
applying standard approaches for amalgamation and validation, such as
parametric analysis. This method evaluates differences in fatigue prop-
erties, revealing intrinsic mechanical characteristics of materials and
establishing significance within diverse experimental conditions or
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Nomenclature

Co Intercept of mean S-N curve (constant)

C1 Coefficient of independent variable (constant)
Cii Coefficient of independent variable of ith data set,i = 1,2.
k Negative inverse slope

f Degrees of freedom

Fea F-test statistic for variance calculated

Ferit F-test statistic for variance from tables

log Ns; Log of life at the replication level

logNy ~ Mean log of life at the replication level

log o; Mean log of stress level, logo; = Y ;%%
m Mean log of fatigue life, logNy; = ZL%
log Nyp Log of estimated life for design life

m; Replication level at the ith stress level

Ny Number of cycles to failure

Ny Number of cycles to failure at the ith stress level
n Number of experimental results (sample set)
Na Reference number of cycles to failure

Nip Number of cycles to failure at the knee point
P Probability of survival

q Index depending on the probability of survival
R Stress ratio (R = 6 min/ 6 max)

s Standard deviation of log cycles to failure

Sx,2 Variance of measured quantity x

Se2 Equivalent variance of two homogenous data sets

s, ? Variance of common line when slopes of parallel lines are
insignificant

X; Arbitrary measured quantities

t Test statistic

ty Critical value corresponding to a significance level g

t, Test statistic calculated for means

t, Test statistic calculated for means that are significant

tc, Test statistic for slopes

t(5) Test statistic for collinear lines

c Generic stress level (stress amplitude, maximum stress or
stress range)

o ith stress level (i=1,2 ..., n)

Omin; Omax Minimum and maximum stress in the cycle
00 Endurance limit

60.p% Endurance limit at a probability of survival P

6o,1-py» Endurance limit in error at a probability of survival P

T, Scatter ratio of reference stress for (1-P) % and P%
probabilities of survival

B Level of significance

8 Random variable for collinear lines

Hy/x The expected value of logN given log o

By introducing a notch, it is anticipated that the fatigue data sets will be
statistically significant. Altering the notch geometry allowed distinct
fatigue data sets to be generated that were subsequently employed in the
statistical significance testing. Moreover, notch geometry is a parameter
that can be conveniently controlled and accurately measured. For this
reason, three different materials — steel, cast iron, and brass were used to
produce the notched specimens, with three different notch diameters: 0
mm, 1 mm, 2 mm, and 3 mm.

In the analysis of the fatigue results, only the gross stresses were
taken into consideration. The gross stress is the nominal stress experi-
enced by the specimen, assuming it is smooth and free of any geometric
discontinuities that could affect the stress distribution. By using gross
stresses, all specimens are therefore assumed to have the same geometry
and the statistical approach is the only tool used to identify the differ-
ence in notch geometry by analysing the experimental results. By so
doing, this approach focused only on utilizing statistical methods to
determine whether the discrepancies in the generated fatigue data sets
were statistically significant, based on a predetermined threshold.

2. Review of Wohler curves and mean parameters from fatigue
data points (c;, Ny;)

The stress-based approach to fatigue assessment relies on S-N curves,
commonly known as Wohler curves [10]. These curves are derived from
subjecting identical and standardized specimens to constant amplitude
cyclic loading until failure occurs. Fatigue data sets (o, Ny;) generated
from these experiments are used to produce the S-N curve. The S-N curve
in this paper will be limited to the medium cycle fatigue regime, which is
crucial for understanding the endurance and fatigue life of materials,
thereby optimizing design and manufacturing processes in various en-
gineering applications. This curve in the medium cycle fatigue regime is
assumed to be linear [11-15] and there are various formulations to
represent this curve. One of the most popular formulation is the Basquin
equation which is transformed in the log-log space as [16]:

LogN;=C, +C, Logo (€8}

where Ny is the fatigue life and o is the stress level, which can either be
the stress amplitude, range or maximum stress. C, and C; are the
intercept and inverse slope constant respectively which are dependent
on the fatigue data. The inverse slope determines the sensitivity of the
material to fatigue, and a lower value indicates that the material is more
sensitive to small changes in stress or strain amplitude. Generating the S-
N curve represented by equation (1) involves a few assumptions (see
Refs. [11,117] and the references reported therein). The experimental
data points have a standard deviation (s) which is observed in the degree
of scatter and defined by the change in the residuals around the mean
[18,19,20]. Therefore, the mean parameters representing the fatigue
properties from the fatigue data sets can be checked for statistical sig-
nificance. These mean parameters include the variance %, slope C; , and
the vertical intercept Cy. These mean parameters are calculated as:
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The scatter band generated as a result of the scattering of the data is
calculated using the equation [11,12,20]:

T \2
1+1+ n(logal — logo;) )
S (logo; — logo; )?

i=1

Log Ny=Co+C; logo; +ts

in which Cy and C; are the intercept and inverse slope constant
respectively which are dependent on the fatigue data. t is the corre-
sponding percentage point of the student’s t-distribution with of degrees
of freedom equal to n — 2 and s? is the best guess of the variance around
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Fig. 1. The flow chart to illustrate how to test the statistical significance of two S-N curves.
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Fig. 2. Specimen geometry in mm a) plane, b) notched with a circular notch of
diameter @

the mean curve. From these the endurance level o py, for a probability
of survival P is defined as

1
k
<Cot sS4/ 1+ Il1>
10

00,p% =
. N,

While the endurance limit in error at the reference cycle 6o ;_p)y is

defined as

1
k

<C0+t sq/ 1+ %)
10

00,(1-P)% = )
(1-P)% N,
From these therefore the scatter band is calculated as
00,(1-P)%
9o )% (8)
00,P%

The endurance limit at a 50% probability of survival is also calcu-

lated as
1
1000} k

00,50% — {7

N, ©)

3. Brief overview of parametric and non-parametric analysis

Parametric and non-parametric analyses are two types of statistical
procedures through which disparities can be probed between fatigue
data sets [21,22]. In parametric analysis, a fixed number of parameters
are considered for statistical tests [23,24]. Here, statistical tests are
carried out based on some assumptions about the data sets [24]. It re-
quires less data compared to non-parametric methods [25]. More so,
parametric analysis assumed that the data has a normal distribution and
this approach works best when the spread in the data set of each data set
is different [26]. The parameters analysed in this approach include the
variance, slope and intercepts. Meanwhile, non-parametric analysis
tends to test medians. It is utilized based on fewer assumptions about
data sets [27,28], and usually requires a large data set than parametric
methods and has no assumed distribution to the data. Non-parametric
methods can perform well in many situations but its performance is at
peak when the spread of data in each group is the same. Nonparametric
analysis uses the rank test for two or more groups to compare the me-
dians [12]. Here ranks for two groups are totalled separately and the
total for the smallest group should fall within the critical chi-squared
lower and upper rank totals depending on the levels of significance.

In this paper, only the parametric significance test procedures will be
explained. For simplicity, this procedure is used on portions of the S-N
curve that are linear, the data sets also assumed to have a normal dis-
tribution and will generate S-N curves with near parallel or parallel
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¢) Plain cast iron specimen, and failed notched specimen attached to the
grip jaws

Fig. 3. Some samples of failed specimens after fatigue tests.

characteristics. This ensures that comparisons are valid solely for stress
level ranges pertinent to a given design or application. Having deter-
mined the type of analyses that will be discussed in this paper, it is
therefore essential to proceed to explain the fundamental concept in
statistical hypothesis testing of parametric tests, particularly the null
hypothesis which plays a central role when comparing two or more data
sets.

3.1. The t-test and null hypothesis meaning and application

A t-test is an inferential statistic used to determine if there is a sig-
nificant difference between two measured observables. It compares the
values of the measured quantities from two data sets and determines if
they came from the same population. This comparison helps to deter-
mine the effect of chance on the difference, and whether the difference is

outside that chance’s range. T-tests are used when the data sets follow a
normal distribution and have unknown variances. The t-test value is
calculated as the ration of the difference between the measured quan-
tities to the variation that exists in the sample data sets as shown below
[12,20,29,30].

t— X1 — X2 (10)

Sx12 _ sxzz

Where x; and x; are any two observed quantities (such as mean, slope,
etc.) with variances s,,2 and s,,? respectively. Higher values of the t-
score calculated using equation (10) indicate that a large difference
exists between the two sample data sets. The smaller the t-value, the
more similarity exists between the two sample sets. The value of the
calculated test statistic is compared with a critical value t; obtained from
the critical value table known as the t-distribution table. This value
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Table 1

Summary of fatigue properties at a probability of 95%, of notch specimens under uniaxial loading in tension at a frequency of 10Hz

Probabilistic Engineering Mechanics 77 (2024) 103651

Specimen type

Fatigue test results

Sample set, n R Inverse slope, k Variance s* oo [MPa] 00,950 [MPa] 00.5% [MPa] Ty
S 17 0.1 50.9 0.09 224.5 231.5 217.6 1.1
S.1 mm 10 0.1 9.4 0.024 119.1 108.6 130.7 1.2
S_2 mm 10 0.1 8.4 0.023 96.1 86.9 106.2 1.2
S_3 mm 10 0.1 8.1 0.015 79.9 73.3 87.0 1.2
Br 5 0.1 40.1 1.17 140.6 177.7 111.2 1.6
Br_.1 mm 10 0.1 8.6 0.012 72.6 67.6 77.9 1.2
Br_2 mm 10 0.1 6.9 0.011 56.3 51.7 61.4 1.2
Br_3 mm 10 0.1 6.1 0.015 46.7 41.9 52.1 1.2
CI 15 0.1 8.9 0.36 32.7 40.9 26.2 1.6
CI.1 mm 10 0.1 11.1 0.257 33.0 25.6 42.7 1.7
CI.2 mm 10 0.1 13.0 0.071 27.8 24.7 31.2 1.3
CL.3 mm 10 0.1 10.7 0.031 21.1 19.2 23.1 1.2

depends on the level of significance f, and the degrees of freedom f.

The t-distribution table can either be for a one-tail or two-tail for-
mats. While one-tail values are used for assessing changes in data sets
that have a fixed direction of change, two-tail values represent varia-
tions in more than one direction, which can either increase or decrease.
For the analysis involved in this research, the two-tail distribution table
will be use so that both positive and negative effects can be monitored on
the measured observables.

Comparing the t-statistic with the critical value of t; obtained from a
two-tail t-distribution table, the null hypothesis is used to conclude as
follows.

For:

t < ty, Null hypothesis accepted (no statistical significance from the
two observables)
t > t, Alternate hypothesis or null hypothesis rejected.

What follows is a description of how parametric analysis is used in
conjunction with the null hypothesis to establish statistical significance
between fatigue data sets.

3.2. Statistical test on sample fatigue life data sets (Ny;) generated at the
same stress level

Parametric analysis can be used on fatigue life data sets to ascertain
whether sample sets exhibit statistical significance compared to the
parent population for the fatigue lives that are generated at the same
stress level. To use this approach, the fatigue lives are assumed to follow
a normal distribution at this stress level. In this case, the parameters to
be tested for significance are the variance and the mean. The test on
variance is otherwise known as the test for homogeneity of variance and
is assessed and described as below.

3.3. Statistical test on homogeneity of variances of two fatigue life data
sets

Consider two normally distributed fatigue datasets at the same stress
level with variances s;2 and s,2 with corresponding sample sets n; and
ng, respectively. The test statistic F,q;, for the homogeneity of the fatigue
data sets is calculated as [12,29,31-33].
2
s
F, cal = Sli (1 1)

2
2

In order to ascertain the presence of a significant difference at a
designated level of significance (), the critical value of the F, distri-
bution associated with n; — 1 degrees of freedom for s; and n, — 1 de-
grees of freedom for s,, derived from statistical tables found in Refs. [17,
20,30,32] is compared with the F-distribution value F.,, calculated
using equation (11). Should F.y < F, the sample variances are deemed

not significantly different (homogeneous) in accordance with the null
hypothesis. Conversely, if F.q > F,, the two datasets are considered
significant.

3.4. Statistical test on two means when the standard deviations are not
significantly different

Suppose two homogenous fatigue life data sets belong to the same
population; in this scenario, the common estimate of the population
variance s.2, is calculated as follows [29,34]:

o (m —1)s12 + (np — 1)s,?

= 12
Se m+ny,—2 a2

in which n; and nj represent the sample sizes of the two fatigue life
datasets, and s; and sy are their respective standard deviations. The test
statistic for comparing their means t,, is calculated as [12,32]:

f_ log Ny, — log Ny,
W
S\/atis

where log Ny, and log Ny, represent the mean values of the logarithm of

13

fatigue life for the two fatigue life sample sets. Given a predetermined
significance level f, the corresponding critical value t; associated with
degrees of freedom f = n; + ny — 2 is obtained from statistical tables as
in Refs. [17,33,35,36]. If /t,/ > tg, it can be concluded that the pop-
ulations from which the sample datasets are derived are distinct;
otherwise, there is no statistically significant difference in the means of
the sample sets.

3.5. Statistical test on two means when the standard deviations are
significantly different

If the sample standard deviations can be verified to be significantly
different, then the hypothesis that the populations’ means are significant
or not can be tested by calculating a test statistic t;l as [12,30]:

¢ log Ny, — log Ny, 14)

1
O
m ny

Similarly, for a predefined significance level f, the associated char-
acteristic value t; is determined based on a defined value of the degree of
freedom defined as:

f= {L+u} (15)

Tl1—1 ng—l

where c is a dimensionless quantity defined as [12]:
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If the value for the calculated degree of freedom f is not an integer,
then its value is approximated to the nearest smaller integer. The value
of f is then used to extract the associated characteristic value t; based on
the predefined level of significance. In the same way, if / £,/ < t;, then
there is no significance in the means of fatigue lives of the two data sets
and for /t,/ > ts, the means are judged to be different.

The analysis outlined above is carried out on fatigue life datasets
under the assumption that they have been collected at uniform stress

levels and follow a normal distribution. When dealing with datasets
acquired from a variety of stress levels, the parametric analysis is
extended by considering the parameters within the mean curves
generated from these datasets, as elaborated below.

4. Parametric analysis of the parameters of two mean curves

To statistically compare the significance of two mean S-N curves
using the null hypothesis, three steps are employed [29,31]. The initial
step entails testing whether the variance or standard deviations (s)
around the distinct lines can be assumed to be drawn from the same
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population, thus demonstrating homogeneity. Secondly, the examina-
tion involves assessing whether the two mean curves can be viewed as
parallel (approximated by the same inverse slope C; ). And lastly,
determining if the two parallel regression lines can be considered
collinear, meaning they lie on the same line [36].

4.1. Test that the variance of the data set is homogenous

Homogeneity of variance is used to describe a data set that has the
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same variance as another [20,30]. This equivalence can be visually
identified through consistent scatter on a scatter plot or by observing
equivalent standard deviations in the derived parameters like sample
size, mean, slope and variance [29,37]. If, upon inspection, the data
exhibits heteroscedasticity, a statistical hypothesis test is carried out by
constructing a test for the homogeneity of variances between the fatigue
data sets.

Consider for example two data sets 1 & 2 having sample sizes n; and
ny respectively, with corresponding degrees of freedom (n; — 2), and
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Fig. 6. Scatter bands at 95% level of confidence and 5% level of significance for: a) CI and CI_1 mm, b) CI and CI_2 mm, ¢) CI and CI_3 mm, d) CI_1 mm and CI_2 mm,

e) CI_1 mm and CI_3 mm and f) CI-2mm and CI_3 mm.

(ny — 2). Additionally, assume that s;2 and s»? represent the variances of
the respective data sets 1 and 2, with s; > sp. The test statistic F,y is
calculated according to equation (11) [12,17,30,32]. By referring to
standard F-distribution tables, the critical value entry (F) corre-
sponding to the degrees of freedom f; = (n; — 2) and fo = (ny — 2) is
extracted and subsequently compared with the calculated value.

If it turns out that F.; < F., it can be concluded that both variance
estimates are homogeneous and can be considered as independent es-
timators of the population. Consequently, the null hypothesis is vali-

dated, signifying that the difference in variance of the two mean curves
is not significant. In this situation, the variance estimate s,? defining
both data sets is defined as:

2 (Tll — 1)312 + (Tlg — 1)822

S = (n; —2)+ (ny —2)

a7

To summarize, the two sample variances are considered significant if
the equation below is validated.
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Table 2
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Summary of statistical analysis using the null hypothesis for the fatigue data sets generated by testing brass, cast iron and steel specimens with 1 mm, 2 mm and 3 mm

notches.

Source of data sets compared

Variance test (f = 1.7%)

Slope test (f = 1.7%)

Intercept test (f = 1.7%)

Conclusion (3~ f = 5%)

Steel Sand S_1 mm —0.76 31.94 1.40 Significant
S and S_2 mm —0.53 32.89 2.01 Significant
S and S_3 mm 1.44 33.44 2.58 Significant
S_1 mm and S_2 mm —4.00 —1.47 0.48 Significant
S_1 mm and S_3 mm -3.50 -0.88 1.09 Significant
S_2 mm and S_3 mm —3.58 -1.87 0.41 Significant

Brass Br and Br_1 mm 106.83 10.99 —0.52 Significant
Br and Br 2 mm 112.92 12.05 —-0.103 Significant
Br and Br_3 mm 88.24 12.97 —0.06 Significant
B_1 mm and B_2 mm —4.01 —0.77 0.52 Significant
B_1 mm and B_3 mm -3.87 -0.03 0.90 Significant
B_2 mm and B_3 mm -3.80 -1.69 0.23 Significant

Cast Iron Cl and CI_.1 mm —3.00 —6.78 -0.27 Insignificant
CI and CI_2 mm —-3.22 -1.49 1.01 Significant
CI and CI_3 mm 0.10 —2.72 1.61 Significant
CI_1 mm and CI_2 mm —2.04 —6.75 0.69 Significant
CI_1 mm and CI_3 mm 3.30 -7.36 1.36 Significant
CI_.2 mm and CI_3 mm —2.87 —0.86 0.69 Significant

Table 3

Summary of statistical analysis using the null hypothesis for the fatigue data sets generated by testing brass, cast iron and steel specimens with 1 mm, 2 mm and 3 mm
notches around their mean stresses.

Source of data sets compared

Variance test (f = 1.7%)

Slope test (f = 1.7%)

Intercept test ( = 1.7%)

Conclusion (Y f = 5%)

Steel S_1 mm and S_2 mm —4.00 -1.47 —2.55 Insignificant
S_1 mm and S_3 mm —3.50 —0.88 —0.56 Insignificant
S_2 mm and S_3 mm —3.58 -1.87 —-3.35 Insignificant
Brass B_1 mm and B_2 mm —4.01 -0.77 —0.82 Insignificant
B_1 mm and B_3 mm —-3.87 -0.03 1.09 Significant
B_2 mm and B_3 mm -3.80 -1.69 —2.69 Insignificant
Cast Iron CI.1 mm and CI_.2 mm —2.04 —6.75 —12.40 Insignificant
CI_1 mm and CI_3 mm 3.30 —7.36 —9.97 Significant
CI_2 mm and CI_3 mm —2.87 -0.86 —0.34 Insignificant
Tal?le N ¢ As-forged (gas) 35 HRC (Cantilever) Data
Fatigue data from Ref. [41]. points
As-forged cantilever As-forged bending E - - As-forged (gas) 35 HRC (Cantilever)
=
o (MPa) Neycles) o (MP2) N(eycles) TN —— As-forged (gas) 35 HRC (Rotating)
892 5951 546 43586 ™
607 23826 398 94495 N N O As-forged (gas) 35 HRC (Rotating) Data
596 39661 396 110938 1000 U1 points
551 43176 273 698654 SHY RN
396 144489 274 820228 W . ‘.\
396 195427 227 851781 Mh
324 328393 227 981303 NS
324 367768
274 753441
248 623852
249 760585
229 1327244
S a1 — pofafa) < O (18) 100 '
sg2 Pon-Ja 1000 10000 100000 1000000 10000000
N [cycles]

In this equation, s,? and s;? represent the variances of the numerator
and denominator of equation (11) respectively. Additionally, f, and f;
correspond to the degrees of freedom of the numerator and the de-
nominator, respectively. And F.(1 — j,fa,fa) denotes the critical value
obtained from entries corresponding to the significance level g, and the

respective degrees of freedom.

Fig. 7. Scatter band at 95% level of confidence and 5% level of significance for
significant data set of as-forged (cantilever) and as-forged (bending)

in Ref. [41].
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Table 5
Summary of parametric statistical analysis of fatigue data set from Ref. [41].
Source of data Variance test Slope test Intercept test Conclusion
sets compared B =1.7%) B =17% B =1.7%) B = 5%)
)
Considering the entire S-N curve with extrapolationd
Forged —5.64 —0.89 —0.07 Insignificant
bending-
cantilever
Stress levels in the vicinity of the mean stress
Forged —5.64 -0.89 -2.29 Insignificant
bending-
cantilever

4.2. Test that the lines are parallel
Let C; ;1 and C; 2 represent the slopes of two data sets 1 & 2 respec-

tively. The t-test statistic for the significance of the slopes t¢, is calcu-
lated as [30,32]:

Table 6

Probabilistic Engineering Mechanics 77 (2024) 103651

|C1,1 — Cl.z‘

19

1 1
+ & Se

Ay — —
Z (1og 611 —log "il)z Z (tog 612~log 5:.2)2
=

This value of t;, is then compared with the student’s distribution
value t; obtained from statistical tables aligning with degrees of freedom
fi +f>=(n; —2)+ (ny — 2) and the chosen significance level. Should
the value of t;, be lower than this critical value, the slopes are deemed
not statistically significant. Conversely, if t;, is more than the critical
value, there is no bases to accept the null hypothesis.

In the case of statistical insignificance, the mean curves are consid-
ered to be parallel. Hence, a common estimate for the slopes C; is
determined. This estimation takes the form of the weighted average of
both slopes C; ; and C; 5, and can be calculated as [29]:

ny

> (log i1 — log 61‘.1)2 x C11 + Zz (log iz — log Ui.z)z X C12

C] — i=1 - - i:zl - (20)
> (logoi1 — logoi1)” + > (log 6;2 — log 6;2)
i=1

i=1

The resulting estimate of the variance of C; denoted as sc,? is such

Summary of fatigue test results under uniaxial loading in tension (R = 0.1) at a frequency of 10Hz

Material type Fatigue test results

1 mm notch 2 mm notch 3 mm notch Plain
oo [MPa] Ny [Cycles] oo [MPa] Ny [Cycles] oo [MPa] Ny [Cycles] oo [MPa] Ny [Cycles]
Steel 215.2 8103 183.0 8606 154.7 12684 75.5 109362
214.6 8643 182.7 10000 146.7 7826 72.7 140561
188.0 34155 175.5 12105 135.6 31457 67.8 194403
187.2 24110 161.6 26734 135.3 27529 66.9 196858
147.8 203115 151.7 23547 108.6 210278 59.6 410938
147.5 193751 133.8 155536 108.6 196032 59.0 676739
142.4 374787 133.8 136806 108.1 208275 55.7 706821
140.9 483252 129.7 291168 94.4 481826 55.3 507491
136.9 362177 128.8 185460 92.5 519988 53.4 616481
136.2 1215396 107.9 496775 92.2 540895 52.5 1568334
75.5 109362
72.7 140561
67.8 194403
66.9 196858
59.6 410938
59.0 676739
55.7 706821
Cast iron 56.9 5176 54.4 406 40.8 1455 76.4 751
54.4 8798 48.8 645 40.5 1708 70.0 1690
51.1 8442 46.2 1183 37.9 5641 69.8 2101
46.1 132604 46.1 4025 37.6 2933 64.8 5651
43.4 24487 44.7 15354 37.4 4988 64.6 2264
43.4 303117 43.5 16266 27.2 187383 61.0 16839
43.2 39080 35.3 64586 26.9 137409 60.5 18501
42.8 963511 35.2 110298 25.6 174677 56.3 23930
42.3 67485 32.3 347842 25.3 159794 55.7 14745
421 68918 30.0 563403 24.7 660480 55.4 7987
51.7 66103
51.1 17621
51.0 197025
46.6 142029
46.4 14235
Brass 112.6 55514 94.8 59018 75.5 109362 192.2 8
107.9 65518 94.4 36739 72.7 140561 178.1 13
107.5 74827 84.0 178161 67.8 194403 164.4 131262
97.1 161869 83.8 130672 66.9 196858 155.4 57180
97.0 121909 75.8 240122 59.6 410938 145.7 87888
84.2 541945 75.7 292589 59.0 676739
84.1 739815 70.5 359750 55.7 706821
80.9 776713 70.5 337359 55.3 507491
80.5 530996 67.8 460968 53.4 616481
75.9 1903387 67.5 732233 52.5 1568334

10
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that the combined estimate of both variances and the error in the esti-
mation of C; has one degree of freedom and is calculated as:

2
Ci1—-C
8612 _ . ( 11 1.2) . (21)
+ -
Z (log oiz—log 'fi.z)

i=1

3|

(log oi1—log oiy )2

However, sc, 2 is always small [29] when the two lines are considered
parallel. Alternatively, the estimated common variance s.? is defined as
in equation (17) and according to the null hypothesis, the individual
slopes are significant if t;, > t; in equation (19).

4.3. Test that the parallel lines are collinear

The two mean curves from the fatigue data sets are collinear if both
have similar intercept and slope. Suppose the expected values for both
curves are defined as HNpy Jor = Co + C; log 61 and HNyo /oy = Co+ C; log o2
for any stress level o, with both intercept and slope constant. Then at the
mean point, there is a random variable § defined as:

(lOg Ny; — lOg N, ) -G (lOg 01— lOg 02 ) =0 (22)

§ is normally distributed with mean equal to zero and variance Var(5)
defined by Ref. [28].
T T \2
(log 01— lOg 02 )
Zl (log 6;1 — log ai.l)z + Zz (log 6;2 — log ai,2)2
i=1 i=1
23)

Then a test statistic t(5) for the random variable § can be calculated as
shown in equation (15) where s, is the new-pooled estimate of the
combined variance corresponding to [(n; — 2) +(ny — 2) +1] degrees of
freedom.

Co1 — Co2

t(5) = 24)

(g ri-g oz )

et

n ng ) — 2
> (tog 611 —log a11)"+ _ (log 12—log 07
=1 f

Se

Hence, the two mean curves are considered not to be collinear if the
test statistic t(6) is significant. i.e. /t(6)/ > t; where t; is the character-
istic value associated with the predefined significance level and degrees
of freedom. If /t(5)/ < t;, then the null hypothesis confirms that the two
curves are collinear [29].

In conclusion, when considering the null hypothesis, two mean
curves from two fatigue data sets are considered insignificant if the
variances, gradients, and intercepts are found to be statistically insig-
nificant. If there is no substantial evidence to support the acceptance of
significance for any of these parameters, then, in accordance with the
criteria of the null hypothesis, there is no foundation to assert that the
data sets are insignificant.

4.4. Composite hypotheses and its significance level

It is important to highlight that in composite hypothesis testing, the
null hypothesis is evaluated separately for each parameter of variance,
intercept, and slope, all at a specified significance level. The cumulative
level of significance is obtained by summing all the individual signifi-
cance levels when each parameter is tested as illustrated in the flow
chart in Fig. 1. This can potentially lead to a high chance of rejecting
these hypotheses even if all three parameters are accurate. As a result, it
is advisable to employ a lower significance level for each individual
parameter test when conducting composite hypothesis testing [12,20,
29]. For instance, a significance level of 1.7% could be used, resulting in
an approximate combined level of significance of about 5%. Under a
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similar condition, when testing for the consistency in sample variance
and means, a significance level of 2.5% would be appropriate. This
approach helps reduce the increased risk of erroneous rejections asso-
ciated with composite hypothesis testing. In general, the level of sig-
nificance of each of the parameters tested is determined by dividing the
significance level used to test the null hypothesis by the number of pa-
rameters considered [29-33].

The composite hypothesis is deemed acceptable only when all the
test statistics pertaining to the parameters of variance, intercept, and
slope are insignificant. If any of these parameters lack sufficient evi-
dence to support the acceptance of the null hypothesis, it follows that
there is no valid ground to accept the significance of two S-N curves from
the data sets.

5. Experimental procedure and results

To evaluate the accuracy and reliability of the mentioned test sta-
tistics, experimental fatigue data were generated. These datasets were
derived from both plane specimens and specimens altered by notches of
different geometries with varied sharpness. The geometries ranged from
a 0 mm diameter hole notch (plain specimens) to a 3 mm diameter hole
notch on the chosen materials.

5.1. Materials, specimen geometry and experimental testing

The materials chosen for this analyses were ex-service pipeline ma-
terials of cast iron (348HVj3), brass (111HV,3), and X52 carbon steel
(184HV,3), where HV, > denotes the Vickers Hardness using an applied
load of 2 N. The specimens underwent surface preparation to make them
smooth by manual machining. For plane specimens, the dog-bone design
was used as shown in Fig. 2a. The dimensions consisted of a length of 65
mm, a thickness of 2 mm, and a width of 5 mm. The thickness mea-
surement was taken at different points along the length of each specimen
and the results averaged. For notched specimens, the notches were
created from rectangular strips using drills with varying diameters (1-3
mm) to produce circular holes at the centre of the specimens. The di-
mensions of the specimens measured on average a length of 65 mm,
8.5mmm in width and had a cross sectional thickness of 2 mm as shown
in Fig. 2b.

The fatigue machine used to generate the data was the Multipurpose
Servo Hydraulic Testing machine, the LFV-L series, with a static load test
capacity of up to 25 kN, and a recommended fatigue testing capacity of
20 kN. Each specimen was loaded into the test machine in tension
(R=0.1) at a chosen stress amplitude and a frequency of 10Hz until the
specimen failed by complete breakage or survived 2 x 10 cycles (run-
out). For each of the runout results, the specimen was retested at a
higher stress amplitude.

The failure criterion was defined as the complete breakage of spec-
imens occurring at the critical region with a small net area, in which the
crack propagation part of the total life was considered to be negligible.
Some of the failed specimens are shown in Fig. 3.

5.2. Experimental results and application of parametric test analysis

Table 1 summarises the fatigue results generated from testing the
notched specimens of steel, cast iron and brass with different notch radii.
The experimental data used to generate these fatigue results are also
summarized in Table 6. Considering any two data sets for each material
type, the scatter bands and data points are illustrated on respective
graphs to visually depict the significance of the data. The chosen
approach uses gross stress amplitudes with fatigue life. The utilization of
gross stress amplitudes is intended to minimize the impact of notch
geometry variations within the compared data sets. The primary
objective is to assess the effectiveness of using statistical approaches in
identifying the presence of different notch geometries in the datasets.
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5.3. Application of parametric analyses on generated data sets

It is assumed that the data sets from each group of specimens/ma-
terial are normally distributed at each stress level and are statistically
independent of each other. Additionally, the variance at each stress level
is constant, and therefore, the data sets follow the same form of the S-N
curve and have the same residual standard deviations. Linear regression
is applied to generate these mean S-N curves. Figs. 4-6 provide a sum-
mary of the S-N curves and scatter bands for steel, brass, and cast-iron
specimens generated in this investigation, with a 95% confidence level
and a significance level of 5%. These curves also present the estimated
endurance limits after 2 x 10° cycles, along with the values of their
inverse slopes. The parameters of these mean curves are then utilized to
assess statistical significance of the data sets. The significance test-
statistics for variance, slope, and intercept, calculated using gross
stress amplitudes for all materials, are summarized in Table 2 by
employing equations (18), (19) and (24). In this table, a negative entry
indicates that the calculated test statistic is smaller than the critical
value or the p-value corresponding to the chosen level of significance.

As depicted in Table 1, the anticipated notch effect was evident in the
fatigue data sets [6,7], with the endurance limit decreasing upon the
introduction of the notch. Statistical significance is observed in the
characteristic test value retention when comparing each notch with the
plain fatigue data, notably due to a change in slope. Upon examination
of the variances of the S_1 mm and S_2 mm data sets, along with their
inverse slopes, it becomes apparent that the two data sets are statistically
insignificant when considered together. However, the mean curves
representing these data sets do not lie on the same plane and are not
collinear. Therefore, it is concluded, with a 95% confidence level, that
these data sets cannot be represented by the same line, indicating sta-
tistical significance. Similarly, S.1 mm and S_3 mm data sets exhibit
statistically insignificance in variance and inverse slope. However, their
mean curves are not collinear, leading to the conclusion that these two
data sets are also statistically significant. The same pattern is observed
with the S_2 mm and S_3 mm data sets, confirming their statistical sig-
nificance. Given that these fatigue data sets were generated by testing
specimens with different notch radii, the t-test statistical analysis proves
capable of detecting changes in the geometry of these notches for steel
specimens.

Considering the brass specimens, Fig. 5 provides a summary of the
data sets at a 95% confidence level and a 95% probability of survival.
Similar to the steel specimens, the data sets in Table 2 show that the
fatigue properties change with the introduction of notches and are
deemed statistically significant with changes in the slope being more
statistically significant. Comparing the notched specimens amongst
themselves also shows statistical significance due to the absence of
collinearity between each pair of data. This lack of collinearity is evident
from the positive characteristic test values, indicating that the difference
in intercepts for each curve exceeds the characteristic value at the
chosen probability. Therefore, the statistical test analysis effectively
detects changes in geometry within the brass fatigue data sets.

For cast iron specimens, the statistical significance test does not
indicate any changes upon the introduction of a 1 mm notch geometry.
This finding aligns with the explanation provided in Refs. [38,39]
regarding the low sensitivity of cast iron to notches. Additionally, sta-
tistical significance is only observed in the notched specimens due to
collinearity, as will be further elucidated. Fig. 6 illustrates the scatter
bands for any two data sets for cast iron at a 95% confidence level and a
95% probability of survival, utilizing gross stresses. The results of the
statistical test analyses for significance are summarized in Table 2.

As observed from the test statistic values for cast iron, the data sets
from cast iron specimens with 1 mm and 2 mm notches, and using gross
stresses, the spread in these data sets suggest that they are insignificant
and drawn from the same population. The inverse slopes of these sets are
also statistically insignificant. However, the mean curves representing
these datasets are not collinear, indicating statistical significance.
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Similarly, for data sets from specimens with 1 mm and 3 mm notches the
spread shows that they do not belong to the same population, even
though the inverse slopes from these datasets are not statistically sig-
nificant. In addition, the mean curves representing the data sets are not
collinear. Therefore, it is reasonable to conclude that these datasets are
indeed significant. In addition, specimens with 2 mm and 3 mm notches
are also statistically significant because the mean curves representing
both sets are not collinear. Thus, it is concluded that, by using gross
stresses and statistical approaches, the data sets from cast iron are all
significant. This approach has been able to verify that notches with
varied geometry will have an impact on the fatigue property of cast iron
even when some types of cast iron show less sensitivity to small notch
radii as stated in Ref. [40].

The analysis was conducted by examining the mean curves derived
from the compared data sets. If the stress levels, considered in gener-
ating fatigue data during testing, are statistically insignificant, their
mean stress levels should also be statistically insignificant. Ref. [30]
recommends performing a check for statistical significance only for
stress levels around the mean stress levels during testing. In this sce-
nario, the variance and slope test statistics are calculated using equa-
tions (18) and (19) respectively, while equation (24) is adjusted for
checking collinearity, as follows:

!Co,l - Co.2|

t(6)= (25)

4o (108 [T )2

1pay (o) ; -
> (tog 012-log a;2)
=

" " Z (log oi1—log oj1 )2+
=1

Se

In which Cy; and Cy, are the estimated intercepts of the regression
lines through the two data sets and s, is the estimate of the common
variance of the two data sets defined by equation (17). By applying this
to the experimental data, Table 3 summarises the significance test
conclusions arrived at. The results in this table show that restricting the
stress range to a narrow region around the mean stress field for the
statistical significance tests, the endurance limit must only change by
approximately 36% (see Table 1) to indicate a potential statistical sig-
nificance within the fatigue data sets. Therefore, restricting the statis-
tical significance analysis to only sections of the data sets will result in
conclusions about significance that are not consistent with the fatigue
properties revealed by the entire data set. One explanation for this is the
K, which is around 3 in this case. In the medium/low cycle fatigue
regime, the elastic peak stress is larger than the yield stress.

5.4. Application of parametric test analysis of data sets from literature
(insignificance)

Notch parameters have a significant impact on the fatigue strength of
materials. However, what if parameters that have a lesser influence on
the material’s fatigue strength are considered? In such cases there might
be minimal change in the fatigue strength when these parameters are
utilized. To investigate this scenario, we analysed data from the litera-
ture to highlight situations where fatigue data sets become insignificant.
Consider the data in Ref. [41], in which the data sets were generated by
testing plain specimens with two types of surface finishes: a
smooth-polished surface finish and a hot-forged surface finish with
different levels of hardness. These data sets were used to evaluate and
quantify forged surface finish effect at several hardness levels. It should
be noted that this project is only interested in using the data sets pro-
duced in this reference rather than reviewing the research reported
therein.

The data set considered in this case is shown in Ref. [41] of this
reference for as-forged in bending and as-forged in cantilever testing.
This data is summarized in Table 4, while the overlapping scatter bands,
from the S-N curves plotted at confidence level of 95% with a probability
of survival of 95%, derived from this data set is as shown in Fig. 7.
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The analysis for this pair of data sets is summarized in Table 5 and it
clearly shows that the difference in the data set is statistically insignif-
icant at a level of 5%. These two data sets can be seen as drawn from the
same population, despite the difference in the endurance limits extrap-
olated at 2 million cycles. In this example, the endurance limits differ by
about 3%. Because the data sets are insignificant, it can be concluded
that there is no difference in the fatigue behaviour of the forged surface
finish in rotating bending and cantilever bending.

It can be observed that if there is a case of statistical insignificance
observed when evaluating both the entire S-N curves, the same holds
true when examining stress levels around the mean stress levels
considered during testing for both data sets.

6. Discussion

In this investigation it has been established that statistical tests can
be used to compare different fatigue data sets by assessing the signifi-
cance of differences and test hypotheses under varying conditions. By
using gross stresses, it has been inferred that no geometrical information
is attributed a priori to each data set. The results have shown that the
fatigue data sets are statistically significant and thus have been gener-
ated from specimens with different geometries. Indeed, the data sets
have been generated from specimens with different notch dimensions,
root radius.

Thus, parametric analysis employs a well-established statistical
method that provide robust conclusions based on the level of signifi-
cance. This greatly helps in making informed decisions between about
fatigue data sets for design purposes. It offers an objective way to assess
the significance of differences in fatigue properties by reducing subjec-
tive biases in interpretation of results. It is data driven, consistent, and
efficiently handles all the parameters that define the mean curve and
further offers a more comprehensive assessment of the fatigue behaviour
as opposed to visual assessments. When utilized accurately, parametric
analysis helps minimize errors that might arise from misinterpreting
data or drawing conclusions solely based on visual observations.
Furthermore, this analysis has demonstrated a comprehensive approach
that can be used to determine the feasibility of merging fatigue datasets
from various sources for enhanced reliability. This approach aims to
minimize the time and cost associated with conducting fatigue experi-
ments, as well as comparing the impact of specific characteristics on the
mechanical properties of a material. Some of these characteristics may
include surface finish, environmental impacts or conditions, curing,
machining, etc. This is important because more data increases the level
of reliability and fatigue experiments are costly and time consuming.
Using data sets from a variety of sources will reduce the cost in time and
money. More so, in the case of fatigue data sets used in the very high
cycle fatigue regime, where a substantial amount of data are needed to
establish distributions at each stress level, this process becomes espe-
cially valuable. In addition, this statistical parametric analysis approach
of fatigue data sets will assist in determining whether the differences
observed in fatigue behaviour of are due to chance, material properties,
or the conditions in which the data were collected. This approach aids in
understanding what causes variations in fatigue behaviour and whether
they have meaningful reasons behind them.

However, when dealing with ferrous metals lacking a fatigue limit,
the comparison of data sets is influenced by the stress range considered
in generating the data sets. Stress levels significantly distant from the
mean stress are more susceptible to the collinearity condition.
Restricting the analysis to the vicinity of the mean stress can result in
different conclusions regarding significance levels compared to situa-
tions where stress levels far from the mean stress are involved.

7. Conclusion

This paper has clarified and substantiated the application of para-
metric statistical analysis for identifying disparities in specimen
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geometry. The method proves effective in detecting even small geo-
metric alterations through the analysis of data set behaviour. However, a
notable challenge lies in determining the significance of changes in ge-
ometry, particularly when monitored using significance levels. Never-
theless, this approach remains valuable as long as a clearly defined
significance level is employed.

It is concluded that:

e Parametric analysis can detect changes of 1 mm in the geometry of
specimens used to generate data sets.

e The mean points of fatigue data sets influence statistical parametric
analysis. Parametric analysis for two or more mean S-N curves is very
effective for stress ranges near the mean stress. Thus, using the
analysis for points extrapolated far off from the mean stress consid-
ered during testing can lead to misleading or erroneous conclusions.
Collinearity stands out as the most influential factor in establishing
statistical independence. When S-N curves exhibit collinearity, it
indicates that the precision of the estimated coefficients in the
common S-N curve diminishes due to inflation in the variance and
standard error of the coefficient estimates. This reduction in preci-
sion weakens the statistical power of the final S-N curve, thereby
decreasing its reliability. Although this issue can be addressed by
considering variance inflation factors, it is not applicable in this
context since the various parameters determining changes in the data
sets cannot be determined a priori. Therefore, it falls beyond the
scope of this paper.
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