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The Capacitated Team Orienteering Problem (CTOP) is a challenging combinatorial optimization
problem, wherein a fleet of vehicles traverses multiple locations, each with distinct prizes,
demand weights, and service times. The primary objective is to determine optimal routes for the
vehicles that collectively accumulate the highest total prize within capacity and time constraints.
The CTOP finds applications across various domains such as disaster response, maintenance,
marketing, tourism, and surveillance, where coordinated teams are required to efficiently
explore and gather prizes from different sites. The complexity of this problem is further
compounded by uncertainties in predicting specific attributes of each location, making it hard
to plan routes accurately in advance. In numerous scenarios in practice, subjective predictions
for these parameters may exist, but their precise values remain unknown until a location is
visited by one of the vehicles. Given the unpredictable nature of these parameters, there is a
pressing need for innovative online optimization strategies that can adapt to new information,
ensuring the strategic allocation of resources and route planning within set constraints. To
address this challenging online optimization problem, we offer a detailed analysis through the
lens of theoretical and empirical competitive ratios. We derive an exact tight upper bound on the
competitive ratio of online algorithms, and we introduce three novel online algorithms, with
two of them achieving optimal competitive ratios. The third algorithm is a polynomial time
approximation-based online algorithm with a competitive ratio of % times the tight upper
bound. To evaluate our algorithms, we measure their empirical competitive ratios on randomly
generated instances as well as instances from the literature. Our empirical analysis demonstrates
the effectiveness of our solutions across a diverse range of simulation scenarios.

1. Introduction

The Orienteering Problem (OP) originates from a hunting game with the goal of maximizing the total collected prize by
determining the sequence of visits to a subset of available locations (Tsiligirides, 1984). Its original version is an outdoor sport
played in mountainous and unfamiliar terrain, where individuals with strong navigational skills compete. In recent years, this
problem and its variants have been studied and implemented in various applications including logistics, transportation and supply
chain management. In a logistics setting, a vehicle visits a subset of available demand nodes in an attempt to maximize its total
collected prize. As an immediate follow up to the original OP, the Team Orienteering Problem (TOP) formulates the same dynamic
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between multiple vehicles with the added constraint that a demand node visited by one vehicle, may not be visited by any other
vehicle (Chao et al., 1996b). In the Capacitated Team Orienteering Problem (CTOP), introduced by Archetti et al. (2009), there
is a weight (demand) on each item collected from a demand node and a total allowable weight as capacity on each vehicle. All
the above mentioned problems are variants of the renowned Traveling Salesman Problem (TSP), and closely related to the general
family of Vehicle Routing Problems (VRP).

We investigate the CTOP within an online optimization framework. We assume a travel time between locations, service time
for the collection from a demand node, and an overall time budget for each vehicle. Our online optimization framework unfolds in
real-time, revealing the weight, service time, and prize associated with each demand node only upon its visit by a vehicle, operating
with limited foreknowledge of these parameters. In the deterministic version of the CTOP, given a set of demand nodes with known
weights, service times, and prizes, and a set of vehicles with limited capacity and time, the goal is to (i) select a subset of demand
nodes for which the total collected prize is maximized, and (ii) to determine the allocation of the demand nodes to the vehicles and
their optimal routes under capacity and time constraints (Tarantilis et al., 2013).

In our study, we assume no prior knowledge of the exact value, the probability distribution, or any uncertainty set for the
uncertain parameters, and the values are realized over time upon a visit by a vehicle, and only a point estimate (i.e., prediction)
is known ex ante. We remark that we do not assume any guarantee on the dispersion or accuracy of the point predictions due to
the inherently limited available information. The source of these predictions may vary depending on the context, from a qualitative
forecasting method (e.g., Delphi method, expert opinion) or a quantitative method (e.g., an extrapolation model based on historical
observations).

On an important note and to elaborate more on the process of solving the online CTOP, a subset of the parameters are assumed to
be uncertain at the beginning while the online optimization algorithm learns the exact values gradually upon visiting new locations.
After arriving at a new location, a new set of exact values are realized and the decisions are updated accordingly. We remark that
within our online optimization framework, the two main decisions at any new location which are being made dynamically as we
traverse through the network are (i) whether the vehicle serves the location and collects the prize or bypasses and moves on to other
locations, and (ii) what route the vehicle takes after leaving the current location. Note that both of these decisions are impacted by
the newly observed parameters at the new location.

In this paper, we model the uncertainty in three pivotal parameters associated with each demand node namely, the prize to
be collected, the demand weight, and the service (pick-up) time. The intricacies of this type of modeling uncertainty fits quite
well within various real-world applications of the CTOP including but not limited to disaster operations management, maintenance
operations, sales and marketing, geological exploration, as well as security and police operations. Common across these applications
is the use of multiple vehicles to collect prizes from (or service) specific locations. The key operational challenge is the real-time
revelation of crucial information upon arrival at these nodes, necessitating immediate strategic adjustments in resource allocation
and routing. This dynamic adaptation is vital, whether in coordinating disaster relief, scheduling industrial maintenance, mapping
exploration routes, or optimizing security patrols, where the accuracy of prior predictions cannot be guaranteed. We refer to this
problem as the Online Capacitated Team Orienteering Problem (OCTOP) hereafter.

Our paper is organized as follows. We survey the related literature in Section 2. We introduce the main problem with
mathematical notation in Section 3. In Section 4, we prove a tight upper bound on our competitive ratio metric. We introduce
and explain our online algorithms in Section 5. We present our computational experiments in Section 6 and conclude the paper in
Section 7.

2. Literature review

We review the related literature of the CTOP and its variants in three sub-sections: (i) exact models and heuristic procedures for
addressing the deterministic (offline) version, (ii) stochastic and robust optimization approaches, and (iii) related studies on online
optimization framework. We highlight our key contributions in this study in the final sub-section.

2.1. Related deterministic literature

The OP was first studied in Tsiligirides (1984) and was investigated further in many papers, e.g., Chao et al. (1996a), Kobeaga
et al. (2023). Different extensions of the OP have been investigated in the extant literature, including the problems where the
vehicle has a limited capacity (Bock and Sanita, 2015), problems with time windows where visits are constrained by specific
time intervals (Vansteenwegen et al., 2009), problems with split delivery options in which a demand node can be serviced
multiple times such that each time a portion of the demand of that demand node is satisfied (Wang et al., 2014), arc routing
orienteering problems (Riera-Ledesma and Salazar-Gonzélez, 2017), generalizations with multiple routes/vehicles (Ruiz-Meza et al.,
2021; Tarantilis et al., 2013), as well as variants which investigate multi-period planning horizons (Kotiloglu et al., 2017). For
comprehensive reviews on OP variants, see Vansteenwegen et al. (2011) and Gunawan et al. (2016).

A generalization of the OP with multiple vehicles is referred to as the TOP which was first introduced as the Multiple Tour
Maximum Collection Problem by Butt and Cavalier (1994). In the TOP the multiple vehicles seek to find a set of vehicle routes that
maximize the total collected profit while respecting the travel time limit for each vehicle (Chao et al., 1996b; Tang and Miller-Hooks,
2005b; Boussier et al., 2007; Yu et al., 2022a).

Transitioning to a more complex variant, the CTOP introduces vehicle capacities and node weights into the problem. Archetti
et al. (2009) first introduced the CTOP and proposed an exact Branch-and-Price method, building upon the formulation by Boussier
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Table 1

Overview of studies on variants of orienteering problem in the presence of uncertainty, their problem characteristics, and modeling frameworks. Note that
following abbreviations are used under the modeling framework in the table; SP: Stochastic Programming, DDSP: Data-driven Stochastic Programming, RO:
Robust Optimization, OO: Online Optimization.

Capacity Skipping a visited demand Modeling

Articl Probl # Vehicl Probl
rticle(s) roblem Vehicles roblem type constraint? node as a decision? framework

Teng et al. (2004), Tang and
Miller-Hooks (2005a), Ilhan
et al. (2008), Campbell et al.
(2011), Varakantham and
Kumar (2013),
Papapanagiotou et al. (2014,
2015), Evers et al. (2014b), OoP Single Static SP
Verbeeck et al. (2016),
Angelelli et al. (2017),
Varakantham et al. (2018),
Liao and Zheng (2018),
Chou et al. (2021), Avraham
and Raviv (2023)
Gupta et al. (2015),
Dolinskaya et al. (2018),

Bian and Liu (2018), OoP Single Dynamic DDSP
Angelelli et al. (2021)
Zhang et al. (2014), Zhang . .
et al. (2018) op Single Dynamic v DDSP
Evers et al. (2014a), Shi . .
et al. (2023) oP Single Dynamic RO
Demange et al. (2021) OoP Single Dynamic 00
Panadero et al.
(2020),Panadero et al. TOP Multiple Static SP

(2023), Song et al. (2020)
Karunakaran et al. (2019),
Reyes-Rubiano et al. (2020), TOP Multiple Dynamic DDSP
Juan et al. (2020)
Balcik and Yanikoglu (2020),

Yu et al. (2022b), Zhang TOP Multiple Static RO
et al. (2023)
This paper CTOP Multiple Dynamic v v 00

et al. (2007) for the TOP. In their solution methodologies, they employ column generation and dynamic programming techniques.
Additionally, Archetti et al. (2009) proposed Tabu Search and Variable Neighborhood Search (VNS) algorithms. In subsequent
works, Archetti et al. (2013) presented an exact Branch-and-Price formulation for the CTOP. For other heuristic approaches for
solving the CTOP see Tarantilis et al. (2013), Luo et al. (2013), Ben-Said et al. (2019), Gunawan et al. (2021).

In the next two subsections, we review related work that (i) deal with uncertainty in the parameters with stochastic and robust
optimization models, and (ii) develop an online optimization framework. Table 1 outlines key studies of OP variants, highlighting
their approaches to uncertainty, problem specifics, and modeling techniques.

2.2. Related stochastic and robust optimization literature

Until now, our review has focused on literature that primarily explores deterministic models. There has been a growing interest
in recent years in studying the OP variants in the presence of uncertainty, in a subset of input parameters, both from the stochastic
programming and robust optimization perspectives. From a stochastic programming lens, uncertain parameters are modeled as
random variables with known probability distributions, while in the robust optimization framework, those uncertain parameters are
modeled as random variables given a known uncertainty set, due to lack of information on the exact underlying distribution.

Stochastic OP variants have been widely studied in the literature in a static setting, i.e., where decisions are not updated,
using various approaches such as Two-stage Stochastic Programming (Teng et al., 2004; Evers et al., 2014b), Branch-and-Cut
formulation (Tang and Miller-Hooks, 2005a; Angelelli et al., 2017), Monte Carlo sampling-based procedures (Papapanagiotou et al.,
2014, 2015), mixed-integer programming formulations (Varakantham and Kumar, 2013; Varakantham et al., 2018), as well as
heuristics (Ilhan et al., 2008; Campbell et al., 2011; Verbeeck et al., 2016; Liao and Zheng, 2018; Chou et al., 2021; Avraham and
Raviv, 2023).

There is also a stream of research on the dynamic stochastic variants of the OP. Gupta et al. (2015) focused on a stochastic
OP with uncertain service times. They explored both static and dynamic versions of the problem and developed constant factor
approximation algorithms for both versions which can be implemented in polynomial time. For heuristic algorithms on the same
problem, see Dolinskaya et al. (2018), Bian and Liu (2018), Angelelli et al. (2021), Zhang et al. (2014, 2018). Notably among these
works, Zhang et al. (2014) addressed a dynamic OP variant that incorporates time windows and stochastic service times. In their
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study, while the route for each vehicle is pre-determined, the vehicle is able to skip a demand node after visiting it and realizing its
service time. The authors devised a Variable Neighborhood Search heuristic for solving the problem. Building upon their previous
work, Zhang et al. (2018) extended the problem by considering entirely dynamic routing decisions. They presented an approximate
Dynamic Programming algorithm as an approach to solve this more complex problem, taking into account the dynamic nature of
the routing decisions.

The stochastic TOP has also been investigated in both static and dynamic streams. On the static side, Two-stage Stochastic
Programming (Song et al., 2020) as well as heuristic approaches (Panadero et al., 2020, 2023) have been applied. On the dynamic
stream, the proposed approaches mostly rely on heuristics (Karunakaran et al., 2019; Juan et al., 2020; Reyes-Rubiano et al., 2020;
Best and Hollinger, 2019). Note that these studies do not formulate the decision for bypassing a node by a vehicle, should that node
deemed not-profitable-enough upon the visit.

While the majority of research on Orienteering Problem (OP) variants under uncertainty presumes full knowledge of the
probability distributions of uncertain parameters, there are several studies that developed robust optimization techniques via worst-
case analysis. Among these papers, Evers et al. (2014a), Shi et al. (2023) focus on the OP variants whereas (Balcik and Yanikoglu,
2020; Yu et al., 2022b; Zhang et al., 2023) focus on the TOP variants.

Focusing on scholarly works from a stochastic or robust optimization viewpoint, while there have been studies on the OP and
its extension with multiple vehicles, the TOP, the literature is quite limited in the case of the CTOP, as there are no studies on the
CTOP dealing with uncertainty in the parameters, which warrants a comprehensive investigation of this problem under uncertainty.
Furthermore, to the best of our knowledge, there remains a significant gap in the literature regarding efficient solution methodologies
for the CTOP within an online optimization framework.

2.3. Related online optimization literature

We review related online optimization literature with competitive ratio as their main metric. Over the years, numerous studies
have explored online variants of the TSP, where demands (nodes) are revealed sequentially to the decision maker, rather than being
known a priori. In our study of the OCTOP, we integrate the concept of online demands into our framework. A differentiator of our
approach compared to related studies is twofold: (i) we assume uncertainty in weight, service time, and prize of each demand node,
and (ii) these information are disclosed to the vehicles only upon their arrival at the respective nodes. This approach enables us to
cover a broader spectrum of real-world situations where the critical attributes of locations remain unknown until physically visited
by a team.

The TSP with sequential demands was first studied by Ausiello et al. (2001) through competitive analysis, establishing that
no online algorithm could outperform the optimal offline solution by a factor of less than two in the worst-case scenario
(i.e., competitive ratio is bounded by 2). Following this foundational work, research expanded to include various adaptations of
the online TSP, exploring strategies such as engaging with fair adversaries (Blom et al., 2001), introducing advance notice of
demands (Jaillet and Wagner, 2006), resource augmentation and considering extra resources for the online algorithm compared
to the offline version (Jaillet and Wagner, 2008), and incorporating service flexibility and rejection capabilities (Jaillet and Lu,
2014, 2011). From a practical point of view, Shirdel and Abdolhosseinzadeh (2018) developed an online heuristic for the TSP with
symmetric travel times and triangle inequality, based on Simulated Annealing.

There is a multitude of relevant online problems in the literature. Several online variants of Traveling Repairman Problem
(otherwise known as Minimum Latency Problem) have been investigated in Akbari and Shiri (2022, 2021), Zhang et al. (2019),
Irani et al. (2004), Krumke et al. (2003). The primary goal in these studies is to minimize the summation of completion times of
all demands. Christman et al. (2018) and Feuerstein and Stougie (2001) have analyzed different variants of the dial-a-ride problem
with sequential demands from theoretical competitive analysis viewpoints. Several papers including (Voccia et al., 2019; Bertsimas
et al., 2019; Van Heeswijk et al., 2019) study the pick-up and delivery problems with sequential demands using empirical analysis.
Despite similarity, the underlying assumptions and definitions in these problems distinctly set them apart from the OCTOP.

Another closely related body of research to the OCTOP includes studies on the online prize-collecting TSP and the online quota
TSP with sequential demands . Ausiello et al. (2008) investigated the prize-collecting variant through a competitive analysis lens,
where each node carries specific weights and penalties. The objective is to amass a predetermined aggregate weight while minimizing
the combined travel costs and penalties for bypassed nodes. They establish that no online algorithm can surpass a competitive ratio
of two for this problem, and they introduce an algorithm with competitive ratio of g Since the quota TSP is a special case of the
prize-collecting TSP, with node penalties set to zero, these findings are equally applicable to it. Yu et al. (2014) studied the quota
TSP with sequential demands and provided several online algorithms with optimal competitive ratios under specific conditions. In
a more recent work, Demange et al. (2021) studied a variant of the OP where demands emerge sequentially across different locales
within a territory, each associated with a serviceable time window and a prize indicating its significance. The authors investigate the
problem under simplifying assumptions including a fixed minimum interval between consecutive demands and time window lengths
equal to the territory’s diameter. They offer insights into the competitive ratio of the online algorithms addressing this version of
the problem.
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Problem
Instances

Deterministic CTOP

Stochastic CTOP

Robust CTOP

Online CTOP
(OCTOP)

Parameter
Description

Deterministic parameters
known a priori

Uncertainty in some
parameters with known
probability distribution

Uncertainty in some
parameters with only an
uncertainty set known

Prescriptive
Approach

Exact mathematical
modeling approaches and
heuristic algorithms

Scenario-based stochastic
optimization models (e.g.,
SAA)

Robust optimization
solution methods (e.g.,
Distributionally Robust

Uncertain parameters

realized over time with

limited point estimates
known a priori

Novel online algorithms,
e.g., OTO, IO, AIO

Optimization formulation)

Fig. 1. Different versions of the CTOP based on the uncertainty of parameters and availability of information.

2.3.1. Related online optimization problems with predictions

Recent research within the computer science community has seen a growing interest in TSP variants that incorporate predictions.
This body of work adopts a predictive-model-agnostic approach, where online algorithms utilize predictions regardless of their origin,
acknowledging that these predictions may carry errors of unknown magnitude. The main focus of this line of research is to develop
online algorithms that perform close to optimal when the predictions are accurate, while also maintaining theoretical guarantees
in terms of worst-case competitive ratios, even with less accurate predictions. Moreover, the goal is to develop algorithms with
the versatility to handle varying degrees of predictive accuracy, thereby enhancing their applicability and resilience in real-world
scenarios where the accuracy of predictions cannot be guaranteed.

The overarching objective in these studies is to design an online algorithm with three desirable properties: (i) consistency,
ensuring the algorithm delivers solutions that closely mirror the offline optimal solution under ideal prediction conditions; (ii)
robustness, guaranteeing the algorithm’s output remains within a limit defined by multiplying a positive constant with the offline
optimal solution, regardless of the prediction’s accuracy; and (iii) smoothness, ensuring that the algorithm’s solution quality
diminishes in a controlled manner as prediction errors increase, maintaining a performance level limited by a function of prediction
accuracy times the offline optimal solution.

Research in this domain has predominantly been theoretical, focusing on competitive ratios. Hu et al. (2022) investigated the
online TSP with predictions with various prediction models and proposed algorithms that enhance existing results and extend these
improvements to the online dial-a-ride problem. Gouleakis et al. (2023) tackled the online TSP with predictions where the input
graph is restricted to a line. Chawla and Christou (2023) studied the online TSP with predictions and time-windows constraints,
and Bampis et al. (2023) studied the online TSP with predictions on rings, trees, and general metric space.

2.4. Our contributions

Our key contributions in this study are as follows. (i) We introduce a new variant of the CTOP, namely the OCTOP, which
models various real-life scenarios, filling a notable gap in the literature. (ii) Building upon the established frameworks in related
literature, we adopt the competitive ratio metric to study the OCTOP, and we propose a tight upper bound on the competitive
ratio for online optimization algorithms. We extend our theoretical analysis and analyze the competitive ratio of online algorithms
from resource augmentation, as well as consistency, robustness, and smoothness perspectives. (iii) We develop three novel online
algorithms, namely, One-Time Optimization (OTO), Iterative Optimization (10), and Approximation-based Iterative Optimization (AIO)
algorithms. We prove optimal competitive ratios for OTO and IO algorithms. As for AIO, despite exhibiting a comparatively lower
competitive ratio, it runs significantly faster than the IO counterpart. (iv) Through extensive empirical analysis, we benchmark our
algorithms against optimal offline solutions, offering insights into their effectiveness across various settings, particularly noting the
IO algorithm’s robust performance with varying prediction accuracies. We conduct our experiments on both randomly generated
instances as well as instances from the literature. Fig. 1 shows the distinction between different problem instances discussed in the
Literature Review section and the research gap we are targeting in our paper (i.e., under online CTOP).

3. The problem

Let G = (¥, E) be a complete directed graph. There are N demand nodes indexed from 1 to N and V = {1,2,..., N} is the set
of demand nodes. The online uncertainty is defined as follows. Each demand node i € V has a demand to be satisfied which is
associated with three positive parameters, namely, weight, service time, and prize denoted by W, S;, and P, respectively, which
are all initially unknown to the decision maker. Due to the lack of past data, no reliable distributional information about these
unknown parameters is at hand. Instead, the decision maker is given predictions which are not necessarily accurate, denoted by
W,, S;, and P. For i € V, the actual values of W, P, and S, are revealed once node i is visited by one of the vehicles. We assume
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Table 2
Notation and input parameters for the online and offline problem.
Notation Description Online inputs Offline inputs
G =V, E) Input network v v
V,=1{0,1,2,...,N} Set of nodes v v
0oeV, Depot node v v
V={12,....,N} Set of demand nodes v v
E Set of edges v v
K={1,2,...,|K|} Set of vehicles v v
C, Capacity of vehicle k v v
T, Time limit of vehicle k v v
1 Travel time of edge (i,j) € E v v
W, e R* Weight of node i € V v
S, e R Service time of node i € V' v
P, eR* Prize of node i € V' v
W, e R* Prediction for weight of node i € V v v
S, eR* Prediction for service time of node i € V' v v
P eR* Prediction for prize of node i € V' v v
WE; e R* Normalized error for prediction of weight of node i € V' v
SE, e R* Normalized error for prediction of service time of node i € V/ v
PE;, e R* Normalized error for prediction of prize of node i € V v
WE eR* Maximal normalized weight error over nodes in V' v
SE eR* Maximal normalized service time error over nodes in V' v
PE e R* Maximal normalized prize error over nodes V' v

complete communication between vehicles in the sense that once the values of online parameters for a node are revealed by one
of the vehicles, this information is shared among all the vehicles in real-time. This real-time information sharing is pivotal, as it
allows other vehicles to instantly adjust their routes and strategies based on the newly acquired data, ensuring that every vehicle
operates with the most current information, thereby optimizing the collective performance of the fleet.

The rest of the problem inputs are deterministic and are defined as follows. The depot node is denoted by 0. As a result,
Vo = 0U {1,2,...,N}. There are |K| homogeneous vehicles in the graph that are initially positioned at node 0, i.e., the depot.
The vehicles are represented by set K = {1,2,...,|K]|} such that each vehicle k has a known capacity of C; and a known maximum
travel time availability of 7). For each arc (i, j) € E, we denote the travel time from i to j by #;; which satisfy the triangle inequality
and are known to all the vehicles. Note that while we assume travel times satisfy the triangle inequality, in real-life applications
where this may not hold, the Floyd-Warshall algorithm can be applied to ensure the inequality is satisfied. Additionally, we note
that traversing through a node without visiting it is possible. This remark, along with the aforementioned conditions of the triangle
inequality, justifies the use of a complete graph to represent the shortest path between any two nodes (Pallottino, 1984).

In the offline problem, each node i € V' can be visited by one and only one of the vehicles. In the online problem, where online
parameters are not known, however, some nodes might be visited by multiple vehicles in different iterations of the algorithm. We
clarify that this happens due to the iterative use of the offline formulation and since the vehicles can bypass a node without servicing
it after learning the actual values of its online parameters. That is, in both the offline and online solutions, a node can be serviced
by at most one vehicle. In the following mathematical model, since we are solving the offline problem, each node is allowed to be
visited by at most one vehicle. The objective is to identify a tour for each vehicle which starts and ends at node 0 such that the
capacity and time limit constraints of the vehicles are not violated and total collected prize by all the vehicles is maximized. The
notation and input parameters for both the online and offline problems are provided in Table 2.

3.1. A mixed-integer programming formulation for the offline CTOP

Given predictions W}, S;, P., we can model the offline version of the OCTOP as a Mixed-Integer Programming (MIP) formulation.
In the following, we first present the decision variables and then give this MIP model.
Decision Variables:

k 1, if node i € V is visited by vehicle k € K. o)
y, =
! 0, otherwise.

o 1, if edge (i,j) € E is traversed in the direction from i to j by vehicle k € K. @

Y 0, otherwise
uf.‘ > 0 : flow amount on node i € ¥, for vehicle k € K 3)

MIP model:

[CTOP] max z z If’,yf‘ 4)

keK ieV
st. Y Wpk<e, kek 5)

iev
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Y tyxk+ Y Sk < Ty, keK (6)
(i,))eE eV

xfj— 2 xﬁ.:O,ieVO,keK @
JEVy#i 1€V, #i
Y xk=1 kek ®)
eV

xﬁ‘j:yf,keK,jeV ©
i€Vy. i
Yks<t jev (10)
kek
Wiz uf + 1=Vl + (1 =x), (L) €EE:j#0,keK. amn
ufgzyjf, keK,ieV 12)

jev

up =0, ke K (13)
ywelo1} viev,kek a4
xf.‘je{O,l} Y(i,j)e E.ke K (15)
uf>0 VieVy,kek (16)

Objective function given in (4) maximizes total collected prize. (5) and (6) constraints ensure that capacity and time limit
restrictions for each vehicle are not violated. Constraints (7) are flow balance constraints and (8) is to guarantee that all the vehicles
start their routes from the depot. Constraints (9) set if a node is visited by a vehicle or not. By constraints (10), each node can be
visited by at most one vehicle. Constraints (11)-(13) prevent the formation of subtours in serving nodes. Constraints (14)-(16)
define the domains of the decision variables.

4. Tight upper bounds on the competitive ratio

Online optimization problems have been examined in the academic literature using the theoretical framework known as
competitive analysis, e.g., see Shiri et al. (2023), Gong et al. (2022), Akbari et al. (2021), Ma et al. (2021), Ma and Simchi-Levi
(2020), Jaillet and Wagner (2008). The competitive ratio measures the proximity of the solution of the online algorithm under
partial information to the offline optimal solution obtained with complete information (Sleator and Tarjan, 1985).

Online algorithms belong to either deterministic or randomized family of algorithms. The output of a deterministic online
algorithm remains the same if it is applied to the same online problem instance several times. In contrast, a randomized online
algorithm may produce a different output each time that it is executed on the same instance, hence, for randomized algorithms the
expected objective function value is considered.

To define the competitive ratio, we denote an arbitrary online algorithm by ALG, i.e., ALG can be deterministic or randomized,
and the offline optimal algorithm by O PT. We also represent the solutions of ALG and OPT applied to an instance § of an arbitrary
online problem by ALG(8) and OPT($), respectively. For an online maximization problem, we refer to Ma and Simchi-Levi (2020)
for defining the competitive ratio for ALG as the infimum of the (expected) objective function value of ALG over the objective
function value of OPT for any problem instance 6 € 4, i.e.,

inf E(ALG(5)) <1

T sea OPT(6) ~ a7

To analyze the OCTOP from a competitive ratio viewpoint, we define below six metrics to study the deviation of predicted online
parameters from their respective actual values.

Definition 1. For each node i € V, define the normalized errors for weight (W E,), service time (SE;), and prize (PE;) preclictions

as the relative discrepancies between the predicted and actual values of these parameters, i.e., WE; = W"V;—W", SE; = 'S";i, and
~ i i

PE; = @, representing the parameters’ absolute percentage errors, respectively. Furthermore, the maximum normalized errors

across all nodes in V' for each parameter are denoted as W E = max;cy WE,;, SE = max,cy SE;, and PE = max;.), PE;.

Remark 1. A key feature of the OCTOP which differentiates it from stochastic or robust optimization problems is the fact that no
information is assumed about the normalized errors defined in Definition 1. That is, W E;, SE;, PE;, WE, SE, and PE are defined
as unknown parameters in this paper.

Utilizing Definition 1, we prove an upper bound on the competitive ratio of online algorithms against the OCTOP, which is
sensitive to the accuracy of the predictions, i.e., the unknown normalized errors.
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Lemma 1. No online algorithm has a competitive ratio higher than

I=PE ;¥ WE=SE=0 & PE<1
Competitive ratio = 4 1+PE . (18)
0 otherwise,

for the OCTOP.

Proof of Lemma 1 is provided in Appendix A.

Remark 2. Lemma 1 immediately implies that incorporating randomization into the design of online algorithms for solving the
OCTOP does not significantly improve the competitive ratio, especially when dealing with a large number of candidate locations, a
common characteristic in the OCTOP.

The nonzero part of the upper bound proved in Lemma 1 holds relevance for decision makers in situations where: (i) the
predictions on weight and service time at locations are accurate, e.g., the type of service is identical with a known weight and
service time, or (ii) the capacity constraint is relaxed and service times at locations are negligible. In particular, the tight upper bound
on the competitive ratio finds merit in security and police operations, where the decision maker can be fed with adversarial false
information on the prize at different target locations (Gupta et al., 2020). We will further investigate this upper bound empirically in
Section 6.3.1 by testing our algorithms on simulated instances which satisfy the conditions in the nonzero part of the upper bound.

Remark 3. The upper bound in Lemma 1 is also valid for similar online variants of the special cases of CTOP, including the OP
and the TOP.

4.1. Resource augmentation

Lemma 1 highlights a challenge for online algorithms in the face of uncertain node weights and service times, due to the
competitive ratio’s inherent conservatism. Resource augmentation, a strategy discussed in Section 2.3 and introduced by Jaillet
and Wagner (2008) for VRP variants, is proposed as a solution to mitigate this issue. We adapt this strategy to the OCTOP’s
maximization context, examining the effects of granting online algorithms additional time and capacity resources. This exploration
aims to determine how investments in these resources could strategically enhance the competitive ratio amidst system uncertainties.

Lemma 2. Suppose that the time budget of the vehicles in the online and offline algorithms is « - T and T, respectively, and the capacity of
the vehicles in the online and offline algorithms is § - C and C, respectively, where « > 1 and § > 1. No online algorithm has a competitive
ratio higher than

1-PE
Competitive ratio = { 1+PE
0

if WE<El & sE<®! & PE<]1
5 « (19)
otherwise,

for the OCTOP.!

Proof of Lemma 2 is provided in Appendix A. Lemma 2 implies that simultaneous resource augmentation on time and capacity
results in a nonzero competitive ratio under uncertainty in time and capacity. This improves the upper bound in Lemma 1. However,
investing on only one of these two parameters (e.g., time) will not improve the competitive ratio in the presence of uncertainty in
the other parameter (e.g., capacity).

4.2. Consistency, robustness, and smoothness

In this section, we present upper bounds on the consistency, robustness, and smoothness of online algorithms which are described
in Section 2.3.1. In the problem we introduced in this paper, the OCTOP, as we have three online parameters, i.e., P, W;, and S,
for i € V, we utilize the definition given by Gouleakis et al. (2023), for evaluating problems characterized by multiple online
parameters. We remark that we present our results for the resource augmentation case henceforth. This includes its special case
without resource augmentation as well.

Definition 2. Letn = (W E, SE, PE) be an error metric which is defined as a tuple (Gouleakis et al., 2023), where W E, SE, PE > 0.
An online algorithm is called

+ y-consistent if its competitive ratio be equal to y if # = (0,0, 0).
» y-robust, if its (worst-case) competitive ratio equals y among all possible scenarios for #, and
» f-smooth for a continuous function f(.), if its competitive ratio equals f(5) for any given scenario for 7.

1 The upper bounds for the cases where resource augmentation is conducted separately only on time availability or capacity of vehicles are trivial given the
proof of Lemma 2
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Given Definition 2, Lemma 1, and Lemma 2, we present tailored upper bounds on the concepts of consistency, robustness, and
smoothness of online algorithms for the OCTOP.

Corollary 1. No online algorithm can be better than 1-consistent. Moreover, no online algorithm is robust against the OCTOP. This is

because there are scenarios for n, i.e, WE > E, or SE > ﬂ, or PE > 1, which enforce the competitive ratio of zero to any online
p a

algorithm. Where n permits nonzero competitive ratio, i.e., W E < %, SE < % and PE < 1, no online algorithm can be better than
1-PE

1TPE -smooth.

Proof of Corollary 1 is provided in Appendix A. In the next section, we propose three different online algorithms to solve the
OCTOP. In Proposition 1 as well as Corollaries 2 and 3, we will comment on the competitive ratio of our algorithms as well as their
consistency, robustness, and smoothness.

5. Online algorithms

We introduce three alternative online algorithms. Two of these algorithms are based on the MIP formulation given in Section 3.1
and the third one is an approximation-based algorithm which can be implemented in polynomial time.

5.1. A one-time optimization algorithm

We introduce the following two-phase algorithm. In the first phase, the MIP formulation given in Section 3.1 is applied by setting
W, =W, S, =S8, and P, = P, to assign a cluster of nodes to the vehicles, as well as an order of servicing the assigned nodes by the
vehicles. Let V,, i.e., k € K, be the set of the assigned demand nodes to vehicle k, and let O, be the order of visiting the nodes in
V..

In the second phase, vehicles are dispatched to the assigned nodes with respect to the order specified in the first phase. Once a
vehicle arrives at a node, it checks if servicing the node is feasible considering the current capacity and remaining time. If servicing
the node is feasible, the vehicle services the node, otherwise, the vehicle skips the node. Hereafter, we refer to this solution as the
one-time optimization (OTO) algorithm. The pseudo-code of the OTO algorithm is given in Procedure 1.

Proposition 1. The OTO algorithm matches the upper bounds in Lemma 1, Lemma 2, Corollary 1; hence it has an optimal competitive
ratio.

Proof of Proposition 1 is provided in Appendix A.

Procedure 1: OTO algorithm.

: Input:
: an instance of the problem > see Table 2
: Output: a feasible online solution with an optimal competitive ratio
: Phase 1:
a W, =W,
b: S, = Si
@ P =P
d: solve the MIP formulation given in §3.1
e: find ¥V, and O, for k € K
5: Phase 2:
a: while K # ¢:
b: dispatch vehicle k € K to the next node v € ¥, with respect to O,
observe exact values of W, S, P,
if servicing v is feasible then:
service v
else:
skip v
end if
update capacity and time
Vi =V \ {v}
: if v, = for k € K then:
I: K =K\ {k} > dispatch k to depot
m: end if
n: end while

S W N =

g0 e a0

o




D. Shiri et al. Transportation Research Part B 185 (2024) 102984

Procedure 2: IO algorithm.

1: Input:
2: an instance of the problem > see Table 2
3: Output: an improved feasible online solution with an optimal competitive ratio
4: Phase 1: see Phase 1 of Procedure 1
5: Phase 2:
a: while K # @:
b: V' =V \Uex Vi
c OBJ, =Y,cy, B forke K
d: dispatch vehicle k € K to the next node v € V, with respect to O,
e observe exact values of W, S, P, and update predictions to exact values for node v
f: solve the single-vehicle MIP formulation in §3.1 in real time (see §5.2)2.
> this is the rival solution
g find Vk/ and O;c
SOL, = Zievk, P
i if OBJ, < SOL, then:
jt Vi = Vk/ and O; = 0;{ > use the rival solution henceforth
k: if v € V), then:
I: if servicing v is feasible then:
m: service v
n: V=V\{v}
o else:
p: skip v
q end if
I end if
s: else:
t if servicing v is feasible then:
u service v
v: V=V\{v}
w: else:
X: Skip v
y: end if
z end if
aa: update capacity and time
ab: Ve =i\ (v)
ac: if V,, = ¢ for k € K then:
ad: K=K\ {k} > dispatch k to depot
ae: end if

af: end while

5.2. An iterative optimization algorithm

The OTO algorithm does not effectively utilize the online information which is obtained dynamically at the demand nodes. This
fact motivates us to design an online algorithm whose foundation is the solution of the OTO algorithm such that it maintains the
optimal competitive ratio, which also involves gradual refinements that are incorporated into the algorithm, dynamically as the new
information is revealed.

To this end, we introduce the iterative optimization (I0) algorithm. In the IO algorithm, we first execute the solution of the first
phase of the OTO algorithm from which we obtain an assignment of nodes to vehicles, as well as the order of visiting those nodes.
Let v, i.e., k € K, be the set of the assigned demand nodes to vehicle k, and let O, be the order of visiting the nodes in V.
Furthermore, let OBJ, be the total prize that is expected to be achieved by vehicle k based on this solution, i.e., OBJ, = Z,EVk P.

As the OTO algorithm solves an orienteering problem instance, there might be a subset of nodes V' C V, such that V' =
V \ Uyek Vi Hereafter, we decompose this solution into k different single-vehicle sub-problems, namely, §, for k € K, i.e., §; is an
instance of the OCTOP with a single vehicle. We modify the solution in each sub-problem in a way that it maintains the optimality
of the solution from the competitive ratio perspective, while it improves the solution wherever possible. For this purpose, each
single vehicle k, in sub-problem §,, is dispatched to the demand nodes based on O,. Once the vehicle arrives at node v € ¥} and

2 This is done using the actual values of online parameters for the unserviced visited nodes and predictions for the unvisited nodes. In this modified MIP
formulation, the set of nodes is reduced to V' U V,, with the starting depot being node v and the ending depot being node 0.

10
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observes the actual values of W,, S,, and P,, a single-vehicle version of the MIP formulation provided in Section 3.1 is solved. This
is done using the actual values of online parameters for the unserviced visited nodes and predictions for the unvisited nodes. In this
modified MIP formulation, the set of nodes is reduced to V' UV, with the starting depot being node v and the ending depot being
node 0.

We denote the set of nodes that are assigned to be serviced by the vehicle in this new solution by V/, the order of servicing these
nodes by O}, and the total prize that is expected to be achieved from nodes in V/ by SOL, = Zievk/ P,. We consider the following
two cases.

+ IfOBJ, < SOL,, then V, and O, are updated to ¥, and O}, respectively. If node v still belongs to ¥, (which is recently updated)
and it is feasible to service this node, the vehicle services node v, removes v from V, and then moves to the next node based on
the updated O, . Otherwise, the vehicle is directly dispatched to the next node based on the updated O,, i.e., without servicing
node v. In this case, if the obtained solution consists nodes from V' that are not in set ¥}, those nodes are added to ¥, and
are removed from V. Also, any node which was previously in V, and was not included in Vk’ is added to V.

* If OBJ, > SOL,, then V} and O, are not updated. The vehicle services node v if servicing this node is feasible, removes i
from V, and then moves to the next node based on the current O,. Otherwise, the vehicle skips node v and moves to the next
node based on O,.

After both of the above cases, when the vehicle departs from node v, this node is removed from V,. This procedure is repeated
until all the vehicles return back to the depot. The pseudo-code of the IO algorithm is given in Procedure 2.

Proposition 2. The IO algorithm achieves tight upper bounds in Lemmas 1 and 2, as well as the bounds on the consistency, robustness,
and smoothness given in Corollary 1; hence it has an optimal competitive ratio.

Proof of Proposition 2 is provided in Appendix A.

5.2.1. Node exclusion in IO algorithm

To improve the performance of the IO algorithm in scenarios with a large number of nodes, we introduce a node reduction
technique inspired by the arc reduction strategy in the “Backbone” algorithm outlined in Bertsimas et al. (2019). A key differentiator
of our approach compared to the “Backbone” algorithm is the fact that we focus on reducing nodes rather than arcs. Within each
iteration of the IO algorithm (line 5:f), an orienteering problem is solved, where the starting point of the vehicle dynamically changes
based on where they are located at that point in time. As the cardinality of V' grows, the associated optimization problem may
demand excessive computational time. The primary objective of the node reduction heuristic is to strategically eliminate certain
nodes from V' that are deemed less probable to contribute to the optimal solution. To do this, we first associate a score to each of
the nodes in V' as follows:
A
Wi Sitig -1
where t;, denotes the required time to travel from node i to the depot and 7, is the time to travel from the current node of
the corresponding vehicle to node i. We then sort the nodes based on their scores and only include the upper y percent of the
corresponding nodes. An effective value of y that guarantees a balance between computational time and solution quality can be
obtained by parameter tuning using computational experiments.

Corollary 2. The version of the IO algorithm with node exclusion feature matches the upper bounds in Lemmas 1 and 2, as well as the
bounds on the consistency, robustness, and smoothness given in Corollary 1; hence it has an optimal competitive ratio.

Proof of Corollary 2 is provided in Appendix A. This implies that the OTO and IO algorithms are equivalent from a worst-case
theoretical point of view over different scenarios for prediction accuracy. However, we further distinguish between the performance
of these algorithms empirically in Section 6. By doing so, we go beyond the theoretical literature of online VRP variants, e.g., the
works of Jaillet and Wagner (2006, 2008), Akbari and Shiri (2021), Akbari et al. (2021), Zhang et al. (2019). We explore the
distinctions among various online algorithms with optimal worst-case competitive ratios based on their average-case performance.
This exploration is motivated by Ma et al. (2021), which highlights the importance of analyzing the average-case performance of
online algorithms beyond their theoretical competitive ratio, specifically in the context of another online optimization problem
within the revenue management domain. We close this subsection by introducing another feature of the IO algorithm which we
apply to reduce the running time of this algorithm in real-time.

5.2.2. An acceleration technique for the IO algorithm

In our study, we enhance our iterative optimization model by incorporating an acceleration technique inspired by Bertsimas et al.
(2019). This technique leverages the existing route of each vehicle as an initial solution for the optimization model in consecutive
iterations, thus facilitating a faster optimization process. By providing the solver with an initial feasible solution, we ensure that
our model can swiftly converge to a high quality feasible solution. This acceleration technique holds practical significance as well.
Given that the optimization step is performed whenever a decision regarding item collection or bypassing is required, it is imperative
to minimize the decision-making time to avoid prolonged waiting periods for nodes. Therefore, the ability to make such decisions
rapidly is of utmost importance for efficient operations. This technique is implemented in line 5:f of Procedure 2.

11
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Table 3
Predictions and actual values of prize, weight, and service time for each node in the illustrative example.
Node Node 1 Node 2 Node 3 Node 4
Actual Predicted Actual Predicted Actual Predicted Actual Predicted
Prize 500 1000 200 150 900 900 800 800
weight 150 350 250 200 300 350 150 200
Service time 50 100 200 100 200 100 100 100

5.3. Polynomial time approximation-based IO algorithm

Although the OTO and IO algorithms achieve optimal competitive ratios, their reliance on solving the MIP formulation makes
them impractical for real-time solutions in large-scale scenarios due to the exponential execution time of the formulation. This
limitation underscores the importance of an alternative approach that offers competitive ratio guarantee and can operate within
polynomial time. Utilizing the 3.53-approximation algorithm for solving the CTOP given in Bock and Sanita (2015) (see Appendix B
for a detailed description of this approximation algorithm), we implement a modified version of the IO algorithm in polynomial time.
We refer to this algorithm as Approximation-based IO (AIO) algorithm. In the first stage of this algorithm, instead of solving the MIP
formulation of the CTOP (line 4:d in Procedure 1), we apply the 3.53-approximation algorithm. In the second stage, when solving
iterations that involve a single-vehicle scenario (line 5:f of Phase 2 in Procedure 2), with different starting and ending points, we
introduce a strategic adjustment. Rather than tackling the sub-problem with varying depots, we standardize the starting and ending
points at the actual depot. To navigate from the actual depot to various nodes, we assign a high travel time value, effectively
deterring their selection, except for the current vehicle node, which is assigned a minimal travel time to facilitate its preference.
This method allows the AIO algorithm to efficiently approximate solutions in polynomial time without the computational burden
of exact formulations.

Corollary 3. The AIO algorithm which can be implemented in polynomial time, has a competitive ratio of at least é times the tight

upper bounds in Lemmas 1 and 2, as well as the bounds on the consistency, robustness, and smoothness given in Corollary 1.

Proof of Corollary 3 is provided in Appendix A.

5.4. An illustrative example

To elaborate more on the logic of our algorithms, we generate a small example and discuss the implementation of the OTO,
IO, and AIO algorithms, alongside the solution for the offline optimal scenario in this example. We consider a single vehicle with
a capacity of 500 and a maximum tour duration of 1000. The vehicle is initially positioned at the depot and the network contains
four demand nodes. The travel time in any direction between any two locations is fixed at 100. The predictions and actual values of
prize, weight, and service time for each demand node are shown in Table 3. We discuss four illustrated routing solutions in Fig. 2:

+ Offline model: In the offline optimal solution, the actual values of the parameters are known a priori. Hence, the vehicle
services node 3 and node 4 and collects a maximum prize of 900 + 800 = 1700.

OTO algorithm: As the OTO algorithm only has access to the predictions, the MIP formulation in Section 3.1 that is solved
in the first phase of the OTO algorithm enforces the vehicle to only visit node 1. In the second phase of the OTO algorithm,
since the weight of node 1 is less than the capacity of the vehicle (i.e., 150 < 500), the vehicle visits node 1 and collects a
prize of 500. Since the OTO algorithm has no re-optimization mechanism, even though the vehicle has remaining capacity, it
follows the same route that was enforced in the first phase and returns to the depot.

IO algorithm: Similar to the OTO algorithm, in the first phase of the IO algorithm, node 1 is assigned to the vehicle. In the
second phase, upon visiting node 1 and observing the actual values of prize, weight, and service time, the vehicle realizes that
the actual parameters are less than the predictions. Specifically, the weight of the item is 200 units less than the predicted
weight, i.e., the remaining capacity of the vehicle would be 350 rather than 150 if the item at node 1 is collected which
implies that re-optimizing the decisions may lead to greater prize collection. Subsequently, the IO algorithm solves the MIP
formulation discussed in Section 5.2 for re-optimizing the decisions. The re-optimized decision enforces the vehicle to collect
the item from node 1 followed by a visit to node 3. Upon arriving at node 3, the vehicle observes the actual values of the
parameters and solves the MIP formulation discussed in Section 5.2 for re-optimizing the decisions. As a result, the vehicle
collects the item at node 3 and returns to the depot. Hence, the IO algorithm collects a total prize of 500 + 900 = 1400.

AIO algorithm: The AIO algorithm approaches this example in a similar fashion to the IO algorithm, except after the realization
of the properties of the visited node, instead of an exact formulation, an approximation algorithm is used to re-optimize the
vehicle’s decision problem. Similar to the eventual route taken by the IO algorithm, AIO visits nodes 1 and 3 before returning to
the depot, collecting 500 + 900 = 1400 as total prize along the way. Note that, as the approximation algorithm favors exploring
longer routes within time and capacity limits, we expect to see deviation from the IO’s solution in larger instances.

12
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Offline optimal oTO

AlO

Fig. 2. An illustrative example.

6. Computational experiments

In this section, we discuss our experimental setup, both in terms of hardware as well as models and performance criteria.
Subsequently, we present our results based on our extensive computational experiments conducted on randomly generated synthetic
instances, followed by analyzing the special case where prize is the only online parameter. We then examine the impact of resource
augmentation presented in Section 4.1. To end the section, we validate the performance of our online algorithms using instances
sourced from the existing literature.

6.1. Experimental setup and preliminaries

In all our experiments, we coded various models using Python 3.9, executed on a system equipped with an Intel Core i5 processor,
8 GB of RAM, and a 64-bit Windows 10 operating system. We used Gurobi 9.5.0 solver under an academic license for solving
our optimization formulations. In the following subsections, we elaborate on the performance criteria for evaluating the empirical
performance of our algorithms. We then explain the procedures we have used in simulating both our offline and online models.
Lastly, we discuss an important distinction between two concepts, simulation run time and iteration run time, particularly relevant
within the context of online algorithms.

6.1.1. Performance criterion for the empirical analysis

For measuring the computational performance of online algorithms, the notion of experimental competitive ratio (ECR) has been
widely applied in the literature (Shiri et al., 2024; Yao et al., 2022; Akbari et al., 2021; Shiri et al., 2020; Zhang et al., 2019).
Formally, for a given set of test instances {§,,6,,...,6,} C 4, the ECR of ALG is calculated as

i ALG(5;) 20)

OPT(5;)

i=1
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In this paper, we investigate the ECR of our online algorithms on two different data sets. Initially, we examine smaller instances
where MIP formulation is solvable, allowing for exact ECR calculation. We refer to these instances as the synthetic instances
(Section 6.2 and Section 6.3) and we conduct a thorough analysis to determine the algorithms’ ECR across tested scenarios.
Additionally, to validate the performance of our online algorithms on larger instances, known as CTOP instances, drawn from existing
literature (Archetti et al., 2009). On the CTOP instances, for the first phase of the OTO and the IO algorithms, that involve solving the
offline CTOP using the predicted values of prize, weight and service time, we used the heuristic procedure presented in Appendix C.
In the second phase of the IO algorithm implemented on the CTOP instances, we have used the MIP formulation for solving the
sub-problems described in Section 5.2 and incorporated the acceleration and node reduction techniques described in Section 5.2.2
and Section 5.2.1 to obtain high quality solutions in real time. Implementation of both phases in the AIO algorithm is inspired by
the approximation algorithms presented in Bock and Sanita (2015). Furthermore, we used the best known offline solutions in the
literature for computing the ECR values.

6.1.2. Experimental setup for our solution methodologies

Offline experiments. Our datasets, both synthetic and CTOP instances, contain parameters representing offline input values,
including the exact values for prize, weight, and service time associated with each demand node. These values, stored in our original
data sets, form the basis of our offline experiments and calculating the offline optimal objective function values.

Online experiments. For conducting the online experiments, we need realizations (i.e., scenarios) for normalized deviations of
predictions from actual values of the online parameters (see Definition 1). To generate the scenarios for the online predictions, we
apply two distinct procedures for introducing prediction errors. The first procedure involves the generation of random prediction
errors within specified intervals (i.e., deviations) of 10%, 20%, 50%, and 100% around the exact offline values for each of the
parameters prize, weight, and service time for each demand node. For this, we considered the scenarios of WE = SE = PE =
10%,20%, 50%, 100%. We note that W E,SE and PE are not known to the online algorithms and are solely used to generate the
predictions. That is, we generate W;, S;, P, using uniform probability distribution within intervals [W;(1 — W E), W;(1+ W E)], [S;(1 —
SE),S;(1+SE)],[P(1 - PE), P(1 + PE)], respectively. We refer to this procedure for simulation of prediction errors as the bounded
randomized error (BRE) procedure. In the second procedure, to simulate predictions containing false information, we deliberately
impose maximal errors of WE = SE = PE = 10%,20%, 50%, 100% to all demand nodes where W E, SE and PE are not known to
the online algorithms. We refer to this procedure for generating prediction errors as the forced errors (FE) procedure. Specifically,
for half of the nodes, the predictions are at their worst possible values to simulate false negative predictions, while for the other
half, the predictions are at the best possible values to impose false positive predictions.

While both the BRE and FE procedures yielded an average error of 0, the FE procedure introduced data points with more
pronounced deviations. To illustrate, consider a hypothetical scenario where the actual service time at a node is 10 min. In the
case of a 50% error using the BRE approach, the predicted service time for that node would be a uniformly distributed random
value between 5 and 15 min. However, in the FE procedure, the service time for this particular node would be either 5 or 15 min.
We remark that we apply WE, SE, PE as online parameters in our analysis for the sake of simulating a comprehensive range of
scenarios to trace the performance of our online algorithms as a function of prediction accuracy. That is, W E, SE, PE are not input
parameters for our online algorithms in our simulations (see Remark 1 and Table 2). In our analysis, we generated 10 different
random scenarios using the BRE and one scenario using FE procedure and tested the average performance of our online algorithms
on them. We emphasize that, in the FE procedure, intentional errors were introduced to alter the status of a node from good to
bad and vice versa. Consequently, the generation of multiple scenarios was deemed unnecessary, as they would all yield identical
outcomes.

6.1.3. Measuring run time in our online algorithms

It is crucial to highlight that the provided run times in Section 6.2, Section 6.3.1, and Section 6.4 pertain to the total simulation
run times of the algorithms, rather than traditional total CPU times. In practical implementation, when vehicles reach a demand
node, they execute the decision step of their respective algorithms to make the subsequent decision—either accepting the item,
collecting it, and proceeding to the next selected demand node (or depot), or rejecting the item and moving on to the next demand
node (or depot). Therefore, the run time of the decision step is of paramount importance, as it is impractical to keep the vehicles
waiting for an extended duration to execute the algorithm. Consequently, in the IO algorithm, the run time of the decision step
(the iterative optimization model) was restricted to 1 min. The acceleration and node reduction techniques played a vital role in
facilitating this feature of the IO algorithm on the CTOP instances. Due to its focus solely on checking the feasibility of an item
collection, the OTO algorithm executes its decision step in less than 1 s. Similarly, the decision step of the polynomial time AIO
algorithm remains less than 1 s in our experiments.

6.2. Synthetic instances

The first data set named synthetic instances consisted of 10 randomly generated instances, each containing 20 demand nodes. In
these synthetic instances, travel distances satisfy the triangle inequality. These instances were utilized as preliminary offline samples
to assess the efficacy of the online algorithms. Further details about these 10 instances, including average prize, service time and
weight at demand nodes (P, S and W), number of vehicles and their capacity and availability duration (K, T and C) and minimum,
maximum and average travel time among all the demand node pairs (min ¢;;, max t;; and ;) are presented in Table 4.
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Table 4
Characteristics of the synthetic instances.
Instance N P N w K T C min 7, max f;; 1
SI'1 20 28.35 16.10 17.25 3 240 40 6.08 101.83 49.63
SI 2 20 34.50 13.75 17.45 3 280 40 5.83 123.75 54.29
SI 3 20 25.20 18.25 14.80 4 180 65 0.00 110.54 52.05
SI 4 20 13.40 11.75 19.65 3 280 65 8.25 104.81 49.77
SI5 20 27.55 18.25 19.10 2 400 65 3.00 123.07 52.04
SI 6 20 20.40 19.30 19.15 3 300 60 7.28 109.79 47.93
S17 20 25.10 14.60 13.25 4 240 40 7.07 64.03 31.56
SI 8 20 27.45 25.40 13.60 4 360 30 6.40 115.88 51.41
SI 9 20 26.95 26.05 12.80 3 450 40 6.32 111.13 49.45
SI 10 20 33.90 18.40 18.10 5 280 35 9.00 118.79 54.43
mean 20 26.28 18.19 16.52 3.4 301 48 5.92 108.36 49.26
Std Dev 0 6.11 4.64 2.65 0.84 80.89 13.98 2.63 17.17 6.56
1.0
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Fig. 3. ECR of synthetic instances under BRE.

Figs. 3 and 4 illustrate the average computational results obtained from applying our online algorithms on 10 synthetic instances
with the BRE procedure simulating prediction errors across various scenarios. Fig. 3 presents the ECR, and Fig. 4 displays the
simulation run time of the algorithms in seconds. In the context of a maximization problem, the ECR values are capped at 1, as the
best solutions generated by an online algorithm cannot surpass the optimal solution of the offline problem.

Fig. 3 illustrates that as the error increases, both OTO and IO algorithms tend to yield solutions of lower quality. However, an
intriguing opposite trend is observed for the AIO algorithm, wherein higher errors can lead to higher quality solutions. Furthermore,
it is evident that the IO algorithm consistently outperforms both OTO and AIO across all scenarios. While one might anticipate the
superiority of IO over AIO, especially in scenarios with lower errors, the superior performance of IO over OTO can be attributed to
the absence of a bypassing mechanism for feasible item collections in OTO.

Regarding running times, it is noteworthy that the execution time of the IO algorithm is comparable to that of the OTO algorithm.
This suggests that the majority of the IO algorithm’s execution time is dedicated to generating initial solutions rather than the
iterative procedure. This can be attributed to the acceleration technique discussed in Section 5.2.2.° In contrast, the running time of
the AIO algorithm remains consistently low irrespective of variations in error. This aligns with expectations, as the AIO algorithm
is a polynomial time approximation of IO.

Figs. 5 and 6 present the average results obtained from the synthetic instances utilizing the FE procedure to simulate the
prediction errors. Compared to the BRE scenarios, the performance of all three algorithms has been deteriorated under FE scenarios.
Notably, in two of the four cases, the IO algorithm outperforms the AIO algorithm. Both IO and AIO outperform the OTO solution
in all cases. We remark that the IO algorithm achieves the best overall results considering all error scenarios. Another important
observation is that the superiority of I0 to OTO is more evident in FE scenarios when compared to BRE. This highlights the
importance of incorporating online observations in the decision making process particularly when they are significantly different
from predictions.

From a run-time perspective, a similar pattern to the BRE scenarios can be observed in which the run time of the IO algorithm
is comparable to that of the OTO algorithm, indicating that the majority of the execution time of the IO algorithm is allocated to
generating initial solutions rather than the iterative procedure. The AIO algorithm converges very quickly in all the scenarios due
to its polynomial time execution time.

3 The node exclusion feature discussed in Section 5.2.1 is only incorporated for the CTOP instances.
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6.3. Sensitivity analysis

In this section, we conduct sensitivity analysis on synthetic instances aligned with the theoretical discussions presented in
Section 4 and Section 4.1. The choice to focus on the synthetic instances stems from our ability to derive exact ECR values within this
subset. This decision ensures the clarity and precision of our sensitivity analysis by leveraging instances where optimal solutions can
be determined for mathematical formulations embedded in our online optimization algorithms. Here we aim to isolate the effects
of varying parameters on the ECR, ensuring that our sensitivity analysis remains unaffected by the nuances of sub-optimal solutions
associated with larger instances.

6.3.1. Revisiting Lemma 1 and Proposition 1 and Corollary 2

We note that our computational experiments in the previous subsections correspond to the scenarios where the upper bound
on the competitive ratio fixes at 0. In this subsection we revisit Lemma 1 and Proposition 1 and Corollary 2. Specifically, we focus
on the conditions imposing the nonzero part of the upper bound in Lemma 1, i.e., when WE = SE = 0. The upper bound in
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Lemma 1 is the worst-case possible performance that an optimal online algorithm may have against a worst-case instance of the
OCTOP. We have specifically demonstrated the characteristics of such worst-case instance in the proof of Lemma 1. Since the OTO
and IO algorithms are of optimal competitive ratio according to Proposition 1 and Corollary 2, their ECR values must never fall
below the upper bound in Lemma 1. This has been confirmed on the synthetic instances by our empirical experiments in Figs. 7
and 8, where the curve TUB represents the tight upper bound proved in Lemma 1. Interestingly, while the AIO algorithm is not of
an optimal competitive ratio, its ECR values remain higher than the worst-case upper bound. Another notable observation from our
experiments in this subsection is the fact that where the uncertainty on weight and service time is relaxed, i.e., where WE = SE =0,
the performance of the OTO algorithm improves significantly and this algorithm meets the performance of the IO algorithm. This is
because in such scenarios all the assigned demand nodes to the vehicles in the first phase of the OTO algorithm, would be feasible
collections in the second phase of the algorithm. A similar analysis on the CTOP instances is provided in Appendix D.

6.3.2. Impact of resource augmentation

In this section, we conduct an empirical analysis of resource augmentation, as introduced in Section 4.1. For this analysis, we
focus on the Synthetic Instances over the FE scenarios and examine various error cases, including 10%, 20%, 50%, and 100%.
Additionally, we consider time («) and capacity () augmentations, ranging from 25% to 100%. Fig. 9 presents the average results
over the 10 synthetic instances using the IO algorithm, i.e., we have focused on our best algorithm in this subsection.

The findings from our sensitivity analysis reveal a nuanced relationship between resource augmentation and solution quality.
Specifically, increasing the time allocation for vehicles does not necessarily enhance the outcomes. Conversely, increasing vehicle
capacity by 50% can improve our solution quality by approximately 35%. Notably, while solely extending time limits shows no
positive effect, a combined augmentation of both time and capacity lead to better solutions. For a comprehensive analysis including
the impact of error percentages within these augmentation scenarios, refer to Appendix E. This sensitivity analysis serves as a
strategic tool within our overall methodology, enabling any given instance to be evaluated for resource value enhancement towards
improving the ECR. It offers guidance on which resources (time or capacity in our problem setting) warrant prioritization by the
management to optimize outcomes, which in our case investing on capacity augmentation appears to be the preferred choice. This
analytical framework thus empowers decision-makers to allocate resources more effectively, ensuring targeted improvements in
solution quality.
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Table 5
Characteristics of the CTOP instances adopted from Archetti et al. (2009).
Instance N P K w K T C min 7, max 1, 1
B1 100 14.09 10.00 14.58 4 100 100 1.41 91.83 33.95
B2 50 15.22 10.00 15.54 4 100 100 2.24 85.63 32.43
B3 75 17.69 10.00 18.19 4 100 100 2.24 85.28 33.23
B 4 100 14.09 10.00 14.58 4 100 100 1.41 91.83 33.95
B5 150 14.63 10.00 14.90 4 100 100 0.00 91.83 33.47
B 6 199 15.32 10.00 16.01 4 100 100 0.00 91.83 32.91
B7 120 10.73 10.00 11.46 4 100 100 0.00 114.98 53.62
B8 100 17.10 10.00 18.10 4 100 100 1.00 96.18 39.47
B9 150 14.39 10.00 14.90 4 100 100 0.00 91.83 33.47
B 10 199 15.41 10.00 16.01 4 100 100 0.00 91.83 32.91
mean 124.30 14.87 10.00 15.43 4 100 100 0.83 93.31 35.94
Std Dev 49.69 1.89 0.00 1.92 0 0 0 0.95 8.26 6.52

6.4. CTOP instances from the literature

Subsequently, we expanded our computational analysis by applying our online algorithms to the CTOP instances which are larger
than the synthetic instances and have been extracted from Archetti et al. (2009). The travel times in CTOP instances also follow
the triangle inequality. The characteristics of the CTOP instances are presented in Table 5. Similar to our analysis for the synthetic
instances, we applied both the BRE and FE procedures to simulate the prediction errors for generating the realizations of the online
inputs for the CTOP instances.

Before testing the performance of the IO algorithm on CTOP instances, in Section 6.4.1, we will first investigate the impact of y
from the node exclusion feature presented in 5.2.1.

6.4.1. Parameter tuning for CTOP instances

Figs. 10 and 11 show the impact of using varying y values on the quality and total CPU time of the solutions obtained from the
10 algorithm on the CTOP instances. Figs. 10 and 11 give the summary of the results over the BRE and FE scenarios, respectively.
We recall that y denotes the percentage of the nodes from V' that are considered in each iteration of the IO algorithm. In both
of these figures, we can see that reducing y does not necessarily lower the quality of the IO algorithm. However, reducing y can
reduce the run time of the algorithms significantly. As a result of this, for our computational experiments over the CTOP instances,
we fixed the value of y to 25%.

6.4.2. Results on the CTOP instances

Fig. 12 presents the comparison of the ECR of the three algorithms (OTO, IO, and AIO) under different prediction error scenarios
that are generated using the BRE procedure (10%, 20%, 50%, and 100%) across ten CTOP instances taken from Archetti et al. (2009).
We observe that while both I0 and OTO exhibit declining performance with higher errors, AIO shows an improvement first when
the error increases from 10% to 20% and then faces a slight decline. It is important to observe that despite this decline in the
performance of the AIO, it is still able to find better solutions compared to OTO in the case of 50% errors, and better solutions
compared to both IO and OTO in the case of 100% error. The reason why AIO slightly outperform IO in the case of 100% errors is
perhaps because AIO does not use the node exclusion procedure and investigate all the nodes. Moreover, in the case of 100% error,
obtained solutions are not reliable as they contain unreliable predictions.

18



D. Shiri et al. Transportation Research Part B 185 (2024) 102984

1.00
800| “@= v =25%
== v =50%
- v=75%
0.95 700| @ y = 100%
600
0.90 m o - a4
~ 500
)]
x S
O oss .— 400
L —
C
S 300
0.80 o
200
0.75 100 .—./‘\‘
0
10% 20% %50 %100 10% 20% %50 %100
Error Error
Fig. 10. Impact of y on solution quality and runtime on BRE instances.
0.95 = y=25% 600 = y=25%
== v =50% == v=50%
- v=75% -9~ v=75%
-@= v =100% -@= v =100%
0.90 500
—
WV 400| @
0.85 o L
5 £
Ll i= 300
0.80 c
>
& 500
0.75
100
0.70 0
10% 20% %50 %100 10% 20% %50 %100
Error Error

Fig. 11. Impact of y on solution quality and runtime on FE instances.

1.0
oTo
-@- 10
0.9 AIO
0.8

ECR

07 ~N

0.6

0.5

10% 20% %50 %100
Error

Fig. 12. ECR of CTOP instances under BRE.

Fig. 13 presents a comparison of simulation run times for the same 10 CTOP instances. In contrast to synthetic instances, where
initial solution generation constitutes over 99% of the simulation run time, in the CTOP instances, as more nodes are considered, the
run time of IO surpasses that of OTO. This underscores the importance of developing acceleration and node reduction techniques.
We highlighted in Section 6.1.3 the distinction between simulation run time and iteration run time, noting that each iteration of
the IO algorithm is solved within a maximum of 1 min.
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Figs. 14 and 15 show the average ECR and simulation run times for CTOP instances under varied prediction errors within the FE
scenarios. A notable trend emerges in Fig. 14 where the AIO algorithm’s performance exceeds that of OTO for errors beyond 10%.
Despite this, the IO algorithm consistently outperforms both AIO and OTO across all levels of prediction error. Moreover, this analysis
reveals that the gap in performance between I0 and OTO widens compared to the BRE case. Furthermore, an increase in prediction
error leads to a wider gap, which underscores the importance of leveraging online observations in enhancing decision-making
processes.

In terms of simulation run time, it is evident that AIO completes its execution in just a few seconds, owing to its design based
on polynomial time algorithms. For OTO, it is observed that prediction errors do not affect simulation run time, with the only
variation being in the values used to find the initial solutions. The IO algorithm converges relatively quicker as the prediction
error increases. Our conjecture is that with higher prediction errors, the fluctuating parameters may inadvertently simplify the
optimization process in each iteration, allowing for more efficient identification of optimal solutions in our IO algorithm. Note that
these observations pertain to a single instance according to FE scenarios rather than an average across multiple instances in our
BRE scenarios, underscoring the specific context of this performance analysis.

7. Conclusions

In our study, we introduced the Online Capacitated Team Orienteering Problem (OCTOP), a problem that, to the best of our
knowledge, has not been studied and addressed in the literature. Our analysis reveals that incorporating capacity constraints
significantly complicates the problem which requires tailored solution methods. We design our online optimization algorithms to
not only address the challenges posed by the capacity limitations, but also the uncertainty in the parameters. In this study, we focus
on the uncertainties in prize, weight and service time for each demand node.

In our model, the true value of these uncertain parameters are revealed only when a vehicle visits each demand node. The
online algorithm relies on initial point estimates up until that point. Our approach does not assume any inherent accuracy in these
predictions, operating without any assurance of their precision. Thus, our online algorithms make decisions based on these initial
estimates, effectively navigating the problem space without prior knowledge of the accuracy of the provided data.

We presented a comprehensive worst-case theoretical analysis for the OCTOP which is also valid for the special cases of this
problem such as the OP and the TOP. We established a tight upper bound on the competitive ratio for online algorithms as delineated
in Lemma 1, incorporating prediction accuracy as a variable through a set of online parameters (Definition 1). This analysis yields
vital insights for decision-makers, particularly under conditions where predictions about location attributes such as weights and
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service times are accurate or when the impact of constraints on weights and service times can be minimized. Notably, this tight
upper bound on competitive ratio holds significance in security and police operations, especially when confronting adversarial
misinformation regarding prize values at distinct target sites (Gupta et al., 2020). Moreover, we expanded our investigation to
include a review of recent advancements in online optimization with predictions, offering tailored tight upper bounds on the novel
concepts of resource augmentation, consistency, robustness, and smoothness within our online algorithms, as discussed in Section 4.1
and Section 4.2.

Next, we introduced three novel online algorithms, namely OTO, IO, and AIO algorithms. In Proposition 1 and Corollary 2,
we proved that the OTO and IO algorithms have the optimality properties from a competitive ratio viewpoint. We then applied
simulation to measure the performance of our algorithms empirically. In our simulations, prediction errors are utilized to generate
scenarios, while the online algorithm relies exclusively on location-specific predictions, oblivious to the accuracy of predictions. This
methodology allowed for a comprehensive analysis of the performance of our algorithms across a range of conditions, revealing the
superior efficacy of the IO algorithm in most scenarios, as detailed in Section 6. We remark that the IO algorithm produces solutions
close to optimal offline problem solutions where predictions are fairly accurate in most of the scenarios. The utilization of the node
exclusion feature and the acceleration technique discussed in Section 5.2.1 and Section 5.2.2 enables the IO algorithm to provide
real-time solutions for its iterative decisions, making it highly suitable for real-world applications.

Notably, whenever the predictions for demand weights and service times are accurate as tested in Section 6.3.1, or the capacity
or time constraints are weakened as investigated in Section 6.4, the OTO algorithm yields results comparable to those of the
IO algorithm. However, the OTO algorithm exhibits the least favorable outcomes among our algorithms when capacity and time
constraints are stringent and prediction accuracy for demand and service time parameters is imperfect. This limitation of the OTO
algorithm further underscores the practical suitability of the IO algorithm.

We designed and developed the AIO algorithm which is a polynomial time online algorithm based on the approximation-based
algorithms introduced in Bock and Sanita (2015). While the ECR of the AIO algorithm falls below that of the IO algorithm on
average, this algorithm consistently produces reasonable solutions compared to the other two algorithms in our empirical analysis.
Specifically, on small-size synthetic instances, when the capacity and time constraints are tightened and the prediction error is high,
the AIO algorithm surpasses the IO algorithm based on our observations in Section 6.2.

In closing, we identify several promising directions for future research. A primary avenue involves the development of an online
algorithm with a theoretical competitive ratio guarantee that matches the computational run time of the IO algorithm, while also
demonstrating superior empirical performance based on the ECR criterion. Notably, the IO algorithm exhibits an ECR decrease
in scenarios with high prediction errors, which underscores the challenge of devising an alternative online algorithm capable of
sustaining strong performance even under such conditions. As a second potential future research direction, we refer to analyzing
a variant of the OCTOP where predictions are not available, emphasizing a lack of prior information about uncertain parameters
until a vehicle visits a specific location.

Lastly, exploring the integration of a prediction mechanism directly into our online optimization framework presents a promising
direction for future research, particularly in scenarios where high-quality datasets are accessible. This can lead to the development
of predictive models that enhance the decision-making process under uncertainty, and accommodating more dynamic and precise
adjustments to real-world uncertainties.
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Fig. A.16. Illustration of the instance used in the proof of Lemma 1 for the case where N = 10 and |K| = 2: In the left figure, the instance inputted to an
arbitrary online algorithm is depicted, where the two vehicles cannot distinguish between nodes based on the available predictions. In the right figure, the
instance inputted to the offline algorithm is depicted, with the vehicles knowing exactly which two nodes have a higher prize.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix A. Proof of Lemmas, Corollaries and Propositions

Proof of Lemma 1. For proving the upper bound, we follow the standard framework that has been conventionally applied in the
literature of the online optimization problems (Ma et al., 2021; Akbari and Shiri, 2021; Ma and Simchi-Levi, 2020; Zhang et al.,
2019; Jaillet and Wagner, 2008, 2006; Ausiello et al., 2001). That is, we first construct a problem instance and then prove the upper
bound by analyzing the performance of online algorithms on the constructed instance. We remark that we design the instance as
a function of prediction accuracy, i.e., the considered instance is parametric and varies based on the prediction errors for different
online parameters.

The parametric error-dependent instance. We consider an instance where |K| < N vehicles are initially positioned at the
depot node 0. We set W; = C, S; =t,and P, = 1, for all i € V. We let 1, ; = 0 be the travel time between any two nodes in ¥}, and
we set C, = C and T, =t for k € K. Note that, for any i € V, W}, S;, P,, WE,;, SE;, and PE, are online parameters and hence are
unknown to the online algorithm. We let ¥, C V' be a subset of exactly |K| demand nodes such that, for each j € V,: W; =C, S; =1,

1 .

— ifPE<I1

and P, = { 1-PE , where M is a sufficiently large number. For each node I € V\ V,: W, = C + ¢y, S; =t + €5, and
M otherwise

P = Hﬁ, where ¢, eg > 0. A schematic representation of this instance has been depicted in Fig. A.16 for the case when N = 10

and |K| =2.

The analysis. Observe that since 7, = t, each vehicle can service at most one demand node in an arbitrary deterministic online
algorithm, denoted by ALG,. Therefore, ALG, corresponds to a selection of exactly |K| demand nodes from the N demand nodes,
i.e., there are (IIIZI) alternatives for ALG . We represent this selection by OPT,;, . Note that, in the offline optimum, denoted by
OPT, all the information is known a priori, hence all the |K| nodes in V, are serviced in OPT, i.e., the prize collected by OPT is
either Y eV, ﬁ = |K| - (ﬁ) if PE < 1 or at least M if PE > 1. Before we proceed with the proof, we propose the following
fact. Where OPT; ¢, corresponds to servicing the nodes in V' \ V, and ey, = ¢5 =0 (i.e,, when WE,; = SE; =0for / € V\ V), the
prize collected by OPT, ;, equals |K|- Hﬁ. Also, when ey, > 0 and/or ¢g > 0 (i.e., when W E,; and/or SE, are nonzero) the prize
collected by OPT ¢, equals 0. We now complete the proof by analyzing deterministic and randomized algorithms separately.

* Proof for deterministic algorithms. For ALGp, we consider the instance where OPT,,, corresponds to servicing the nodes
inV\V,.
+ Proof for randomized algorithms. We let the |K| demand nodes in V, be uniformly distributed among the N demand nodes
in V. We consider ALG/, against the instance and uniform probability distribution described above. With probability of
l'.f(l)_l % all the |K| nodes serviced in OPT, ¢, belong to V' \ V,. With probability of at most 1 — H}f(l)_l %ﬁ'_' the
prize of OPT,;, would be greater than |K]| - Hﬁ. The lemma follows by Yao’s principle (Yao, 1977) when N is sufficiently
larger than |K|. [
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Proof of Lemma 2. We extend the proof of Lemma 1 by applying the effect of resource augmentation on the same instance. Note
that when ey, < (f—1)-C and 5 < (a — 1) -1, the online algorithm will collect an (expected) prize of at most |K]| - Hlp = The Lemma
follows since the offline optimum objective function value is |K| - ﬁ when PE < 1 and it is M otherwise, i.e., M is a sufficiently

large number. [J

Proof of Proposition 1. Note that when W E < %, SE < ”‘T’l and PE > 1, the upper bound on the competitive ratio fixes at zero.

Therefore, we propose the proof for the case where WE < 221 SE < % and PE; < 1 for all i € V, i.e., we analyze the case where
the solutions outputted by the OTO algorithm are always feasible, but their actual collected prize may deviate from their predicted
collectable prize. Let V, denote the set of nodes serviced by the OTO algorithm. The prize collected by the OTO algorithm would

be at least ¥, H;PE, - P, whereas the prize collected by the offline optimum would be at most ﬁ e, P; (see Definition 1
(-PE)Y,ey, P _ 1_pE

in Section 4). Since -
) Siev, A+PE)-P; = 1+PE’

hence, the proposition. []

Proof of Proposition 2. Based on the same reason discussed in the proof of Proposition 1, we propose the proof for the case where
WE < %, SE < "a;l and PE; < 1foralli € V. Let V2T° and V/© denote the set of nodes that are serviced by the vehicles in the

. . . ~ 1 ~ . -
solutions of the OTO and ALG algorithms, respectively. Note that }; eV, 0o P < ZIEV*’O ARl due to Line 5:i of Procedure

1
I+PE
2. The proof is complete since the objective function value of the offline optimum is not more than ¥}, oro

1
AR
Proof of Corollary 1. The proof follows based on Lemmas 1 and 2. []

Proof of Corollary 2. We note that incorporating the node exclusion feature will reduce the size of set V' in Procedure 2. Therefore,
the total collected reward of the version of the IO algorithm with node exclusion feature would be greater than or equal to the total
collected reward of the OTO algorithm. The proof follows similar to the proof of Proposition 2. []

Proof of Corollary 3. In the first stage of IO algorithm, instead of solving the exact formulation of the CTOP, we apply the
3.53-approximation algorithm. In the second stage, when solving iterations that involve a single-vehicle scenario, with different
starting and ending points, we introduce a strategic adjustment to use the 3.53-approximation algorithm. Rather than tackling the
sub-problem with varying depots, we standardize the starting and ending points at the actual depot. To navigate from the actual
depot to various nodes, we assign a high travel time value, effectively deterring their selection, except for the current vehicle node,
which is assigned a minimal travel time to facilitate its preference. Therefore, the AIO algorithm achieves a competitive ratio of at
least 31? times the competitive ratio of the IO algorithm. The proof is complete. []

Appendix B. A 3.53-approximation algorithm for CTOP

The approximation algorithm for the CTOP presented in Bock and Sanita (2015) uses a solution framework for the simpler
Orienteering Problem (OP) in its routine, where the goal is to find the most profitable route between nodes in a network without
exceeding a specific distance. This approximation algorithm reduces the OP to the k-stroll problem, where the objective is to find a
path from a source to a destination by visiting at least k nodes with minimal path length. The procedure in the wrapper algorithm
including k-stroll iterates through different values for k and the maximum allowed path length, marking paths that exceed this
length as infeasible. In our implementation, we begin by assigning nodes to vehicles through a relaxed optimization that minimizes
the weighted sum of the prize to service time and weight ratios, ensuring each node is allocated to exactly one vehicle. The longest
round-trip path to the depot from this initial allocation sets the maximum path length, used as an upper bound for the optimal
path length for each vehicle. The key to this approach is its reduction to a k-stroll problem, leveraging existing solutions and
approximations to address the OP. The algorithm employs a bi-criteria approximation strategy that balances the number of nodes
visited against the path length. It integrates proven approximation results for the k-stroll problem, specifically a 2+ ¢-approximation,
which helps ensure that the path length does not exceed more than twice the optimal plus a small fraction determined by e. By
iteratively going through different sets of nodes, and checking the path length constraint, the algorithm refines the incumbent
solution. For a more detailed procedure on the approximation algorithm on the OP see Chekuri et al. (2012).

The algorithm presented in Bock and Sanita (2015) expands the OP approximation algorithm by adding a capacity constraint
to the vehicle, ensuring the overall collected demand from different nodes does not exceed the vehicle’s capacity. This forms the
Capacitated Orienteering Problem (COP), where the challenge is to maximize the profit while adhering to both distance and capacity
constraints. The algorithm used for COP is then adapted to handle multiple vehicles in CTOP. Here, it applies a greedy approach,
sequentially assigning routes to vehicles. It solves the COP for one vehicle at a time, removes the nodes this vehicle will visit from the
problem, and repeats the process for the next vehicle. This continues until all vehicles are assigned routes or there are no remaining
profitable nodes.

Appendix C. A heuristic algorithm for the offline CTOP

As we outlined in Section 5, the solution to the offline version of the CTOP is a key contributor to our online algorithms and an
important input used in various stages of our solution methodology. Recall from Section 3.1 that in the offline version, we assume
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Offline Algorithm for the capacitated Team Orienteering Problem.

Input: Network including customers and vehicles
Output: Assignment of customers to vehicles

(i) Greedily partition nodes into K groups
according to prizes, service/travel times and
weight of donations.

(i) Assign each node to a unique vehicle }

Stage 0: Generate an initial
assignment of nodes to vehicles

using the partition from (i).

4

Stage 1 (S1): Check and restore Remove nodes from vehicles as necessary,
e feasibili making sure the remaining assignment is
easibility feasible for the original problem. Move to S2

Stage 2 (S2): Check unassigned Pass through the list of vehicles and check if|
d swapping for an unassigned node is
nodes profitable. Move to S3
For each pair of vehicles, find the most
. profitable node swap between the two.
Stage 3 (S3): Perform node swaps Proceed with the swap only if the resulting
profit is positive.

Go to S2.

Report the last feasible solution
from S3 as the output.

Fig. C.17. Different stages of our proposed algorithm for solving the offline version of CTOP.

all the decisions (i.e., assignment of customers to the vehicles and specific routes) are taken simultaneously and we have either an
exact or point estimate value of all the parameters. The mathematical formulation of the offline CTOP is given in (4)-(16).

It is well-established in the literature that the offline CTOP is an NP-hard problem; see Laporte and Martello (1990) for a proof.
Therefore, in solving the offline CTOP (or any of the variants of the OP for that matter), there is always a tradeoff between the
degree of difficulty of the solution methodology and the quality of the solution. Taking into account this tradeoff for solving the
offline problem, as part of our online algorithms, we propose an improvement-type heuristic algorithm which we believe it is the best
compromise for the case at hand, in that, it produces descent quality offline solutions while using a reasonable amount of time and
memory.

Fig. C.17 illustrates different stages of our proposed offline algorithm. At the beginning of the process, we solve a multiple knapsack
problem with a simple two-phase greedy approach to assign each customer to a distinct vehicle. This initial step (i.e., Stage 0 as
denoted in Fig. C.17) provides us with an initial solution, which may or may not be feasible due to the capacity constraints. In
stage 1, we carefully pass through different combinations of member customers for each vehicle and we remove customers from
each vehicle as necessary to restore feasibility. In stage 2, we pass through the list of unassigned (i.e., removed from their original
vehicle in stage 1) customers, and we swap any unassigned customer with one of the assigned customers, only if the swap results
in a positive overall profit gain. In stage 3 and the main part of the algorithm, we check every pair of vehicles, (’;) in total, and we
look for potentially profitable customer swaps between those vehicles. We pass through all pairs at least once. At the end of stage
3, we check for the stopping criteria (i.e., either the optimality gap been less than a certain amount or the number of iterations of
the algorithm between stages 2 and 3 exceeding a certain number) and proceed as depicted in Fig. C.17.

Once the stopping criteria are met, we calculate and report the final route within each vehicle as our final solution.

Appendix D. Revisiting Lemma 1 and Proposition 1 and Corollary 2 on the CTOP instances

Figs. D.18 and D.19 illustrate similar experiments on the CTOP instances. In these cases, IO does not exhibit superior performance
to OTO when both weight and service time uncertainties are eliminated (W E = SE = 0). In the BRE instances, AIO achieves the
worst-case performance in all the error cases across both BRE and FE scenarios. Similar to the synthetic instances, I0 and OTO
demonstrate comparable performances across various error scenarios for both BRE and FE cases.
Appendix E. Resource augmentation: Detailed results

In this section, we present summary of the results of testing the IO algorithm over synthetic instances and FE scenarios. Fig. E.20

depicts the impact of augmenting time (), Fig. E.21 presents the summary of the results when augmenting capacity (#) and finally,
Fig. E.22 illustrates the increase in ECR when augmenting both time and capacity.
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Fig. D.18. ECR with BRE and only online prizes.
1.0
0.8
0.6
o
@)
L
0.4
OoTO
02| g 10
AIO
0.0 TUB
10% 20% %50 %100
Error
Fig. D.19. ECR with FE and only online prizes.
1.6
10% Error
20% Error
1.4 + 50% Error
=@= 100% Error
1.2
o
Q
[N}
1.0
0.8
0.6 1 1.25 1.50 1.75 2
a

Fig. E.20. Impact of augmenting time on Synthetic Instances over FE scenarios.
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Fig. E.22. Impact of augmenting capacity and time on Synthetic Instances over FE scenarios.
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