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A B S T R A C T

Effective fault detection and diagnosis (FDD) is crucial for proactively identifying irregular states that could
jeopardize operator well-being and process integrity. In the era of Industry 4.0, data-driven FDD techniques
have received particular attention, driven by the proliferation of stored manufacturing sensor data. While these
methods have proven adept at categorizing established process fault scenarios, there remains an imperative to
identify and explain anomalies stemming from uncharted faults or the interplay of consecutive anomalies. To
address this we present a knowledge-enhanced FDD approach that integrates well-defined chemical engineering
knowledge with cutting-edge deep learning techniques. We apply our methodology, named Knowledge-
Enhanced Spatiotemporal Analysis (KESA), to identify abnormal process conditions that may be a precursor
to failure. Furthermore, we utilize the knowledge of the fundamental relationships governing the process to
explain why this fault case has occurred. This type of in-depth fault analysis is only possible through leveraging
domain expertise and marks a step forward in FDD technology in comparison to current literature. Using the
benchmark Tennessee Eastman process dataset, we establish superiority in the accuracy and efficiency of our
KESA model against state-of-the-art FDD algorithms. This work highlights the importance of a knowledge-
enhanced approach to deep learning in complex environments, emphasizing the critical role of timely and
interpretable fault detection. By providing explanations for model results, our KESA framework not only aids
in effective decision-making but also has the potential to significantly reduce the time between fault detection
and the implementation of proactive mitigation actions. This capability is paramount for improving overall
safety, minimizing downtime, and ultimately contributing to substantial cost savings in industrial processes.
1. Introduction

Poorly planned maintenance is detrimental to process manufac-
turers, with poorly maintained equipment leading to increased safety
risks, product quality defects, and significant impacts on overall equip-
ment effectiveness (OEE). Process manufacturing industries typically
embrace a preventative maintenance approach in which a regular main-
tenance period is set for each piece of equipment, based either on time
elapsed or the number of cycles through the process. The equipment is
run between these set intervals without further maintenance, except for
corrective work that occurs following breakdowns. The condition of the
machine is recorded during maintenance, and the maintenance time in-
terval is adjusted according to the deterioration of the equipment when
inspected. While these types of scheduled maintenance systems are a
vast improvement on run-to-failure (RTF) maintenance, they operate
under the assumption that equipment reliability varies linearly with
the operating age, an assumption which is known to be false for many
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complex systems (Nowlan and Heap, 1978). The result is misdirected
maintenance efforts leading to equipment in a comparatively good state
being maintained while equipment close to failure is left to run until
complete breakdown.

Moubray (2001) highlighted this fundamental flaw in schedule-
based maintenance in his seminal work and called for the move to a
fourth evolution of maintenance methodologies. Moubray called for a
greater focus on the causes of equipment failure with a view to failure
elimination rather than prevention. Failure is defined as a permanent
interruption of a system to perform a function under given condi-
tions, i.e. the point at which the process no longer meets a specified
performance standard. A process fault is defined as an unpermitted
deviation of at least one property of the system from normal operating
conditions (Isermann and Ballé, 1997). Nowlan and Heap extend the
definition of a fault to mean a physical condition that indicates a
functional failure is imminent. Finally, we define a process disturbance
vailable online 31 May 2024
166-3615/© 2024 The Author(s). Published by Elsevier B.V. This is an open access
c/4.0/).

https://doi.org/10.1016/j.compind.2024.104111
Received 8 December 2023; Received in revised form 22 April 2024; Accepted 21
article under the CC BY-NC license (http://creativecommons.org/licenses/by-

May 2024

https://www.sciencedirect.com/journal/computers-in-industry
https://www.sciencedirect.com/journal/computers-in-industry
mailto:j.cordiner@sheffield.ac.uk
https://doi.org/10.1016/j.compind.2024.104111
https://doi.org/10.1016/j.compind.2024.104111
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compind.2024.104111&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Computers in Industry 161 (2024) 104111L. Allen et al.
Fig. 1. Overview of the Knowledge-Enhanced Spatiotemporal Analysis for Anomaly Detection (KESA-AD) framework.
as an unknown input acting on the system, whereas a deviation is
any departure from approved processes, procedures or accepted stan-
dards (Munro, 2017). It is vital for the process industries that we
consider the deviation of product quality and process conditions as fault
cases to be identified as well as the typically examined mechanical fault
of equipment.

The process of eliminating failure starts with understanding the root
cause of the problems observed. This root cause analysis (RCA) is a pro-
cess that requires the input of experienced plant personnel, including
maintenance professionals, plant engineers, and operators (Chemweno
et al., 2016). The reliance on experienced staff to perform RCA is a
challenge since this knowledge cannot easily be passed between people
or across to different sites (Lokrantz et al., 2018). Furthermore, with
an aging workforce nearing retirement this vital knowledge and expe-
rience are soon to leave the industry (Schramm and Wessels, 2015).
Methods to capture and preserve this wealth of knowledge should be
considered of vital importance over the coming years, especially as the
industry undergoes its fourth industrial revolution (Vaidya et al., 2018).

Fig. 1 shows the scope of the work presented in this paper —
Knowledge-Enhanced Spatiotemporal Analysis for Anomaly Detection
(KESA-AD). This method utilizes chemical engineering knowledge as a
foundation for applying machine learning, a computational approach
where algorithms improve their performance at tasks by analyzing and
learning from data. (a) The first step involves the combination of this
knowledge with sensor data from the manufacturing process, giving a
spatio-temporal representation of the process that can be read by the
graph ML algorithms. (b (i)) From this, changes in the relationships
between sensors are tracked over time to identify contextual faults (b
(ii)) while long-term trends are analyzed to detect degradation. (c (i))
The knowledge graph representation of the process allows detection of
the faulty timesteps (c (ii)) as well as diagnosis of the origin of the
fault. (d) This information can be used by operational and maintenance
teams to proactively intervene in fault cases to reduce the likelihood of
unplanned downtime events.

2. Background and related work

Fault detection and diagnosis (FDD) is an important field of research
for industrial applications, enabling early intervention in abnormal
process events to ensure safe and efficient operations (Isermann, 1984).
Consequently, FDD is a well-researched topic with methods developed
for a range of industrial applications ranging from semiconductors,
automobiles, and aerospace to name a few. The literature for FDD
can be broadly divided into model-based, data-driven, and knowledge-
based modeling techniques (Park et al., 2020). Model-based techniques
do not generalize well to the process industries due to the often high
levels of noise, auto-correlation, and non-stationarity which lead to
imprecise models (Botre et al., 2017). Therefore, this paper considers
only data-driven and knowledge-based modeling approaches.
2

2.1. Data-driven FDD methods

Data-driven methods require the collection of historical data depict-
ing both normal and abnormal process conditions to build correlation-
based models to detect faults. The most well-studied of these methods
in FDD literature concern the use of principal component analysis
(PCA), partial least squares (PLS), and independent component analysis
(ICA) along with derivatives of these methods. These multivariate
statistical process monitoring (MSPM) techniques allow the extraction
of key information from highly voluminous manufacturing data, reduc-
ing the dimensions to be analyzed and thus simplifying the problem.
The resulting lower dimensional representation can be used to iden-
tify abnormal process operations. Ding et al. explore the use of PCA
techniques on industrial fault detection, concluding that the standard
application of PCA is insufficient for accurately detecting all fault sce-
narios and all conditions, requiring an amended test statistic to be able
to detect off-set faults (Ding et al., 2010). Russell et al. compared the
use of PCA against a variant called dynamic PCA (DPCA) and canonical
variate analysis (CVA) for fault detection in an industrial process and
concluded that CVA lacked robustness while DPCA performed similarly
to PCA in detecting most faults. Lee et al. used PCA to approximate the
variance of independent components (ICs), where ICs the variance of
the IC selected is the same as the PC. Dominant ICs were calculated
using the FastICA algorithm and used to detect faults in a range of in-
dustrial processes from wastewater treatment to the Tennessee Eastman
Process (TEP) (Lee et al., 2006). This approach outperformed both PCA
and traditional ICA for fault detection. While PCA-based algorithms
have been shown successful in detecting faults, they are limited in
their application to process manufacturing systems since they do not
take into account information between classes when creating the lower-
dimensional space representation (Chiang et al., 2000). Therefore,
when it comes to discriminating between different faults they often
cannot correctly identify the root of the disturbance, instead pointing
to response variables (Zhang et al., 1995; Gharahbagheri et al., 2017b).
This is a vital flaw given Venkatasubramanian et al. highlight ‘novelty
identifiability’ and ‘multiple fault identifiability’ as two of ten cru-
cial features for effective process fault detection (Venkatasubramanian
et al., 2003).

To overcome these limitations, authors have explored combining
statistical FDD methods. One noteworthy method explores the combi-
nation of Kernel PCA (KPCA) with causal discovery algorithms (Gharah-
bagheri et al., 2017a). Here, Gharahbagheri et al. use KCPA to detect
and identify faults, overcoming the limitations of PCA for non-linear
processes. The authors used both Granger Causality and Transfer En-
tropy to identify fault propagation pathways amongst affected vari-
ables. While this method proved effective for detecting random distur-
bance faults, the stationarity assumption of the causal discovery meth-
ods limits the application to slow drift and step disturbances. Nonethe-
less, combination methods such as this show promise for accurate FDD
in the process industries.
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Fig. 2. Training KESA-AD framework.
There have been multiple attempts to detect and diagnose faults
in manufacturing processes using deep learning methods based on
artificial neural networks (ANNs) (Shin et al., 2005; Onel et al., 2019).
These methods have been shown to accurately handle complex non-
linearities and highly variable data characteristic of manufacturing
environments, however, they are classified as black-box methods and
cannot accurately diagnose fault origins (Xie and Bai, 2016). Identify-
ing this, Becraft et al. integrated neural networks with expert systems to
aid in fault diagnosis (Becraft et al., 1991). The integration of domain
knowledge with analytical tools for FDD is a promising area of research,
yielding high detection rates with enhanced diagnostic ability (Park
et al., 2020). There are, however, problems when combining domain
knowledge with FDD methodologies, specifically with what constitutes
the best domain knowledge to use. One could argue that using expert
systems is a safe approach, however, most expert systems are rule-based
and so struggle to diagnose new fault conditions for which there are
no rules (Becraft et al., 1991). Integrating knowledge directly from
plant engineers or operators introduces bias based on the experience
of the personnel (He et al., 2014). Some thought must be given to how
knowledge can be integrated to best serve the purpose of detecting and
diagnosing faults in process manufacturing.

2.2. Knowledge-based FDD

Knowledge-based FDD can be thought of as an aspect of data-driven
FDD in which ‘knowledge’ can be defined from historical data, or as
qualitative input from process experts. Authors such as Hong et al. who
introduce knowledge from historical plant data only overlook a wealth
of operational knowledge to the potential detriment of fault diagnosis
since only historical faults can be diagnosed (Hong et al., 2009). Don
and Khan (2019) extend this approach by using a hidden Markov model
(HMM) to extract process information from the historical data taken
at normal operating conditions (NOC). This is augmented with process
knowledge. A log-likelihood value is monitored and used to detect
fault which is diagnosed using a BN. While this method can learn
information from the process to detect a fault, it requires historical
data for the occurrence of each of the fault cases, which is difficult
to achieve for a real-world manufacturing facility. Other authors have
had success in combining MSPM techniques with BNs or fault detection,
where the network is built from some version of domain knowledge
outside of historical data. Yu et al. propose a two-step approach where
modified ICA is integrated with BNs for FDD. This has an advantage in
large-scale processes where it is not economical to monitor and analyze
3

all variables. Gharahbagheri et al. propose a combination of KPCA
with BNs, leveraging the fault detection of KPCA with diagnosis ability
of BN to provide information on root causes. The authors discovered
a limitation in modeling cyclic processes using BNs since they are
inherently acyclic graphs, but were able to overcome this using pseudo-
nodes (Gharahbagheri et al., 2017b). This cyclic constraint is a problem
in using BNs to represent manufacturing systems since processes con-
taining recycle streams will be cyclic by nature. Furthermore, with this
type of method, it is not clear how these methods would deal with
unobserved faults.

Some authors have addressed this issue by using graphical deep
learning in place of BNs. Wu and Zhao define a process topology
convolutional network (PTCN) to detect fault using graph convolutional
networks built on a process topology of the TEP. Using deep learning
in place of BN removes the acyclicity constraint since the PTCN is not
a probabilistic graphical model, thus enabling a more general process
topology to be adopted without use if pseudo-nodes (Wu and Zhao,
2021). However, while the authors showed this method was adept
at detecting and classifying fault, they did not consider the potential
of topology to explain a detected fault. This is crucial since process
manufacturing faults occur along a delineated pathway where a failure
may manifest in a particular unit despite originating from another
separate downstream unit. The ability to not only detect a fault but also
explain its origin is crucial to prevent repeated downtime occurrences
by treating the root of the fault, not the symptom.

The objective of this research is to bridge the gap between the
flexibility and fault detection ability of graphical deep learning-based
methods, and the diagnostic ability of probabilistic graph methods such
as BNs. Moreover, we aim to explore the ability of these models to
detect and diagnose unobserved fault i.e. faults which the model has not
been trained to detect. This has been highlighted by multiple authors
as essential future learning for the research area (Gharahbagheri et al.,
2017b; Venkatasubramanian et al., 2003). The novel contributions of
this work are threefold:

• Development of a knowledge-enhanced spatiotemporal analysis
(KESA) framework to perform accurate fault detection in a multi-
component process manufacturing system even without prior fa-
miliarity with existing fault conditions.

• Harnessing domain expertise in chemical engineering to explain
identified faults and suggest underlying root causes.

• Evaluating the performance of the KESA framework model, and
benchmarking its effectiveness against relevant literature using
the Tennessee Eastman Process dataset.
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The paper is structured as follows. Section 3 introduces the KESA
framework and describes how it can be used for anomaly detection.
Section 3.4 proposes how this method can be used for fault diagnosis
in the process industries. Section 4 introduces the TEP and applies the
KESA framework to the benchmark dataset. Section 5 presents results
from the case study and discusses the effectiveness of the method.
Section 6 provides a conclusion to this paper and comments on future
work.

3. Methods

3.1. Problem definition

The problem of fault detection and diagnosis in complex multi-
component processes is difficult owing to the complex and volatile
relationships that exist between variables. The state of a system variable
at a given time will be correlated with other elements of the same
system in the spatial and temporal dimensions (Zhang et al., 2022).
Since manufacturing equipment is interconnected, a fault in one sensor
or piece of equipment will change the conditions of the neighboring
equipment. It is therefore important to consider the proximity of con-
nected equipment when detecting faults. Knowledge of how faulting
equipment impacts its neighborhood is also important for explaining
fault propagation pathways. Moreover, a fault exhibited at a given
timestep will be reflected in the adjacent timesteps. This is especially
the case in manufacturing processes which have a residence time for
material processing since disturbances may be carried forward and
impact later stages of the process. Assessment across short and long-
term windows in the temporal domain is important to capture multiple
fault dynamics, including point faults, cyclical faults, and long-term
degradation (Paolanti et al., 2018). The inclusion of the spatial domain
will allow for the identification of contextual faults (Yang et al., 2023).

In this section, we first introduce the mathematical background for
each of the elements of the framework depicted in Fig. 2. Then, we de-
scribe the training and evaluation of the fault detection model and how
this can be used for diagnosing the root cause. Unless stated otherwise,
we use bold uppercase letters for matrices (e.g., 𝐀), bold lower case
etters for vectors (e.g., 𝐱), upper case letters for sets (e.g., 𝐺), and lower
ase letters to represent scalar values (e.g., 𝑘). We use superscript ⊺ for
atrix transpose and −1 for matrix inversion. We use 𝐀𝑖,𝑗 to represent

he value of matrix 𝐀 at the 𝑖th row and the 𝑗th column.

.2. Mathematical background

This work looks to diagnose faults in multi-component manufac-
uring systems by capturing the spatiotemporal relationships present
n data collected from process sensors. We express a manufacturing
rocess as a graph of plant sensors 𝐺 = (𝑉 ,𝐸,𝐖) where 𝑉 is a finite
et of nodes where 𝑛 = |𝑉 | is the number of sensors in the available

data. The focus here is on detecting process faults, so we use process
sensors such as temperature, pressures, and flows of each stream in a
manufacturing process. 𝐸 is a set of edges such that 𝑒𝑖,𝑗 ∈ 𝐸 denotes an
edge between nodes 𝑣𝑖 and 𝑣𝑗 . In this work, an edge between nodes
exists where there are mechanistic relationships between the sensor
variables (Chen et al., 2020). For example, a temperature and pressure
sensor may have an edge connecting them since we know the two
properties are linked by the ideal gas law. 𝐖 represents the weighted
adjacency matrix of graph 𝐺, showing the spatial correlations between
the graph nodes. The weights assigned to each edge are calculated using
a thresholded Gaussian kernel for the edge weight between nodes 𝑣𝑖 and
𝑗 (Shuman et al., 2013):

𝑖,𝑗 =

⎧

⎪

⎨

⎪

exp
(

− dist(𝑣𝑖 ,𝑣𝑗 )2

2𝜎2

)

, if 𝑖 ≠ 𝑗 and 𝑒𝑖,𝑗 = 1

0, otherwise,
(1)
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⎩

where 𝐖𝑖,𝑗 represents the weight of the edge between nodes 𝑣𝑖 and
𝑣𝑗 . The term dist(𝑣𝑖, 𝑣𝑗 ) represents the distance between nodes 𝑣𝑖 and
𝑣𝑗 , and 𝜎 is the standard deviation of the distances. Calculating the
weighting via Eq. (1) assigns a larger weighting to edges where nodes
have greater proximity to one another, since the closer they are the
more information they are likely to have about one another.

The problem can therefore be phrased simply: given (a) a graph,
𝐺, of a process and (b) a sequence of sensor data 𝐗 ∈ R𝑛×𝑚 where 𝑚
represents the total number of timesteps the data is collected across, can
the spatiotemporal relationships be learned such that we can predict the
future state of the system and detect anomaly?

3.2.1. Graph convolutions
Graphs are important to this work since they allow us to capture the

spatial layout of the process, and can help provide detail to the model
about the underlying mechanics defining the system. However, they
can be difficult to learn from directly. This is because graphs are a non-
Euclidean data structure — i.e. they do not follow the rules of Euclidean
geometry (Kipf and Welling, 2017). Therefore, we require an operation
to be able to process graph data in the KESA framework called graph
convolution. This differs from a regular convolution, which can be
applied to images or regular grid structures since they are Euclidean
structures (Yu et al., 2017). To perform a convolution on a graph struc-
ture, Kipf and Welling propose the spectral graph convolution, which
generalizes the convolution operator for graph structures, leading to the
definition of the graph convolutional operator, denoted by ∗𝐺 (Bruna
et al., 2014). In this formulation, spectral convolution is considered
as the multiplication of a graph signal with a filter 𝑔𝜃 = diag(𝜃)
parameterized by 𝜃 ∈ R𝑛 in the Fourier domain (Kipf and Welling,
2017):

𝑔𝜃 ∗𝐺 𝐗 = 𝑔𝜃(𝐋)𝐗 = 𝑔𝜃(𝐔𝛬𝐔⊺)𝐗, (2)

where 𝐔 ∈ R𝑛×𝑛 is the matrix of eigenvectors and Λ ∈ R𝑛×𝑛 is
the diagonal matrix of eigenvalues of the normalized graph Laplacian
𝐋 = 𝐈𝑛 − 𝐃−1∕2𝐖𝐃−1∕2 = 𝐔Λ𝐔⊺ ∈ R𝑛×𝑛, 𝐈𝑛 is the identity matrix and
𝐃 is the diagonal degree matrix 𝐃𝑖𝑖 =

∑

𝑗 𝐖𝑖,𝑗 . Therefore, utilizing
the graph convolutional approach enables us to leverage the structural
information contained in the graph data structure when constructing
machine learning models. One example of this type of machine learning
model used in this work is a graph convolutional gated recurrent unit
(GCGRU).

3.2.2. GCGRU
Gated recurrent units (GRUs) are recurrent neural network (RNN)

architectures common in time series forecasting problems (Torres et al.,
2021). GRUs work by using a gating mechanism to control the flow
of information through the network (Chung et al., 2014). This gat-
ing mechanism allows GRUs to learn which information is important
to retain and which information can be discarded. This is particu-
larly important for time series forecasting problems, where the data
can be noisy and irrelevant information can obscure the underlying
patterns (Zheng and Chen, 2021). To make the GRU architecture ap-
plicable to graph data, we must employ the above graph convolutions
to create a GCGRU. To do so the matrix multiplications in the reset
and update gates of the GRU are replaced with the graph convolutional
operator (Cho et al., 2014):

𝐫(𝑡) = 𝜎𝑟(𝑔𝜃,𝑟 ∗𝐺 [𝐗(𝑡),𝐇𝑡−1] + 𝐛𝑟), (3)

𝐮(𝑡) = 𝜎𝑢(𝑔𝜃,𝑢 ∗𝐺 [𝐗(𝑡),𝐇𝑡−1] + 𝐛𝑢), (4)

𝐂(𝑡) = tanh(𝑔𝜃,𝐶 ∗𝐺 [𝐗(𝑡), (𝐫(𝑡) ⊙𝐇𝑡−1)] + 𝐛𝐶 ), (5)

𝐇(𝑡) = 𝐮(𝑡)𝐇(𝑡−1) + (1 − 𝐮(𝑡))⊙ 𝐂(𝑡), (6)

where 𝐗(𝑡) is the input and 𝐇(𝑡) is the output at a timestep 𝑡, 𝐫(𝑡),𝐮(𝑡) are
the reset and update gates at time 𝑡, 𝜎𝑟, 𝜎𝑢 are sigmoid activation func-
tions and 𝑔 , 𝑔 , 𝑔 are filters with the corresponding parameters (Li
𝜃,𝑟 𝜃,𝑢 𝜃,𝐶
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et al., 2018). Throughout this work, GCGRUs have been employed
to capture spatial dynamics of the manufacturing system by applying
forecasts using the graph defined by the mechanistic equations of the
system. This spatial analysis forms one element of the spatiotemporal
fault detection defined in the wider framework.

3.3. KESA framework

The proposed method is based on the concept of a generative
adversarial network with graph convolution (Jia et al., 2023). The
KESA framework consists of two major components, a generator and a
discriminator. The generator attempts to produce an accurate forecast
of the sensor time series data based on relationships learned during
the training phase such that the generated forecast is indistinguishable
from the real data. The discriminator attempts to differentiate the
real data from the generated forecasts. Over the training process, the
generator learns to produce very accurate forecasts as it tries to fool
the discriminator. As the discriminator becomes better at distinguishing
real data from synthetic data, the generator is forced to become better
and better, in the end generating very realistic time series based on
learned relationships (Goodfellow et al., 2014). It is important for fault
detection that we can accurately capture system dynamics to produce
accurate forecasts, using a GAN helps us achieve this.

3.3.1. Graph subgraphs
The KESA-AD framework leverages the concept of subgraphs to

capture the relationships between sensor nodes. A subgraph is defined
below (Deng et al., 2022):

𝐺𝑣 = (𝑉𝑣, 𝐸𝑣,𝐖𝑣), (7)

where 𝑉𝑣 is a list of nodes comprising node 𝑣 and the closest 𝑘 − 1
odes where 𝑘 is a tunable hyperparameter representing the number of
odes in a subgraph. The parameter 𝑘 controls the scope of the spatial
nfluence considered for a particular node. Nodes within a subgraph are
ikely to be highly correlated due to their proximity within the process.

.3.2. Generator
The generator section of the generative adversarial network (GAN)

s responsible for generating forecasts of sensor time series data. It is
ivided into two distinct modules — a spatial module and a temporal
odule. The spatial module captures the spatial relationships between
ifferent sensors, while the temporal module captures the temporal
elationships between different timesteps. The spatial module looks to
apture the spatial arrangements of the system, by processing time
eries for the subgraph of each node. As noted, the state of a node is
trongly correlated with nodes in its surrounding neighborhood. The
patial module aims at capturing the spatial correlations of the data
cross a shortened period and consists of a GCGRU. The graph convo-
ution is based on the spectral approach discussed in Section 3.2.1. This
patial module captures a shortened period, 𝑠, from each subgraph:

spatial,𝑣 = (𝐗𝑣,𝑡−𝑠,𝐗𝑣,𝑡−𝑠+1,… ,𝐗𝑣,𝑡−1) ∈ R𝑠×𝑘, (8)

𝑣,𝑡 ∈ R𝑘 denotes the dynamics of a subgraph of node 𝑣 at time 𝑡.
A second module is defined within the generator to capture the

emporal dynamics of each node in the system and forecast the long-
erm trend of each node. Here a long short-term memory (LSTM)
rchitecture is used to help identify cyclical anomaly or degradation.
STM architectures in particular have a strong ability to capture and
redict accurately different degradation patterns linked to manufactur-
ng equipment (Ahmed et al., 2022). Since the spatial correlations are
aptured by the spatial module we focus only on capturing temporal
ynamics across a longer time:

temporal,𝑣 = (𝑥𝑣,𝑡−𝑙 , 𝑥𝑣,𝑡−𝑙+1,… , 𝑥𝑣,𝑡−1) ∈ R𝑙 , (9)

here 𝑙 denotes the length of the period across which we assess the
emporal dynamics of each node. The output from both the spatial and
5

emporal generators are concatenated in a graph convolutional layer
o give the final prediction for the process dynamics of the subgraph of
he nodes, 𝐗𝑣:

̂
𝑣 = tanh(𝑔𝜃 ∗𝐺 [𝐗spatial,𝑣, 𝐱temporal,𝑣]), (10)

here ∗𝐺 is the graph convolutional operator. To enable the generator
o create accurate forecasts, we must define a suitable adversary to train
gainst. This is the discriminator.

.3.3. Discriminator
The purpose of the discriminator is to determine whether a given

ignal is a real signal from the process or a fake signal from the
enerator. During training, this helps to improve the accuracy of the
rediction from the generator. During detection, the discriminator can
e used alongside the generator to create a combined abnormality
core to improve the detection performance (Lee et al., 2018). This is
escribed in the following section.

.3.4. Training KESA-AD
To effectively train the KESA-AD framework, an appropriate loss

unction must be selected for both the generator and discriminator. A
orecasting error and a realism loss are defined for the generator. Min-
mizing the forecasting error in the loss function ensures the generated
eries resembles the true state of the system. By minimizing the realism
oss, the generator can encourage the discriminator to fail to classify a
ake sequence as fake. The forecasting loss (𝓁𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡) and realism loss
𝓁𝑟𝑒𝑎𝑙) are combined to give an overall generator loss 𝐿𝐺:

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 = ‖𝐺𝜽(𝐗𝑡−𝑠,… ,𝐗𝑡) − 𝐗𝑡‖2, (11)

𝓁𝑟𝑒𝑎𝑙 = − log(𝐷𝝓(𝑆̂𝑡)), (12)

𝐿𝐺(𝜽) =
∑

𝑡∈𝑏𝑎𝑡𝑐ℎ
𝓁𝑟𝑒𝑎𝑙 + 𝜆𝐺𝓁𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡, (13)

where 𝐺𝜽 is the generator function with parameter 𝜽, 𝐷𝝓 is the dis-
criminator with parameter 𝝓, and 𝜆𝐺 is a hyperparameter to balance
the forecasting loss with the realism loss. 𝑆̂𝑡 = {𝐗𝑡−𝑠,𝐗𝑡−𝑠+1,… , 𝐗̂𝑡} is
the fake sequence including the generated value 𝐗̂𝑡.

As well as the generator loss, we also define an adversarial loss
for the discriminator. Minimizing the adversarial loss ensures the dis-
criminator can accurately differentiate the real sequence from the fake
sequence from the generator:

𝐿𝐷(𝝓) =
∑

𝑡∈𝑏𝑎𝑡𝑐ℎ
𝓁𝑟𝑒𝑎𝑙 − log(𝐷𝝓(𝑆𝑡)), (14)

where 𝑆𝑡 = {𝐗𝑡−𝑠,𝐗𝑡−𝑠+1,… ,𝐗𝑡} is the real sequence taken from the
training data. Once trained, the framework can be used to detect
anomalies based on incoming data.

3.4. Score-based fault detection and diagnosis

3.4.1. Anomaly detection score
Fault detection can, in theory, be achieved using either the fore-

casting error from the generator, 𝑠𝐺 or by using the adversarial loss
from the discriminator, 𝑠𝐷. Lee et al. (2018) showed that the robustness
of the anomaly detection is increased by using both the generator and
discriminator in a combined anomaly score:

𝑠𝐺 = ‖𝐺𝜽(𝐗𝑡−𝑠,… ,𝐗𝑡) − 𝐗𝑡‖2 (15)

𝑠𝐷 = 𝐷𝝓(𝑆𝑡) −𝐷𝝓(𝑆̂𝑡) (16)

anom(𝑣, 𝑡) = 𝑠𝐺 −
𝑠𝐷
𝜆𝑠

(17)

where 𝜆𝑠 is a tunable parameter to balance the generator and discrim-
inator loss.

An anomaly score is calculated for each node at each timestep based
on Eq. (17). These are summed to give an overall anomaly score for

each timestep. A threshold value, 𝜏 is defined based on the prediction
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Fig. 3. A process graph undergoing a disturbance both before (𝐭 −1) and after (𝐭). The deepness of the color represents the magnitude of the anomaly score quantified in Table 1.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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of anomaly scores for a standardized set of non-faulty data and is
set three standard deviations above the mean anomaly score for the
dataset. When testing, if the anomaly score per predicted timestep is
greater than or equal to 𝜏, that timestep is assigned a 1 to show fault
is detected. If the anomaly score is less than 𝜏 value the timestep is
assigned a 0 to show there is no fault:

anom(𝑡) =
𝑛
∑

𝑣=1
anom(𝑣, 𝑡) (18)

Fault =
{

0, anom(𝑡) < 𝜏
1, anom(𝑡) ≥ 𝜏

(19)

Once a fault has been detected, it is important to identify the root
ause of the fault. This is because the root cause analysis can help us
o take corrective action to prevent the fault from happening again.

.4.2. Root cause analysis
The KESA-AD framework can assist with fault diagnosis and expla-

ation by identifying the nodes and timesteps most associated with the
aults. To achieve this, we note that the interconnected dynamics of
manufacturing process create a network wherein faults in a specific

ode manifest not only in that node but also in its surrounding node
ubgraph. This complexity can make explaining a fault’s root cause
hallenging, as the anomaly scores of adjacent nodes are also likely to
ise. To address this, we analyze anomaly scores for entire subgraphs
f each node before and after a fault. By summing anomaly scores
cross subgraphs, we identify the most significant changes in system
elationships. This approach aids in process fault investigation, helping
o explain the fault by narrowing down potential root causes.

Consider a simple anonymous process shown in Fig. 3 that un-
ergoes a disturbance. The figure depicts the process as a knowledge
raph at two points, both before the disturbance at time 𝑡 − 1 and
fter at time 𝑡. The color of the node represents the anomaly score
alculated via Eq. (17), between the actual value and the KESA-AD
odel prediction which is shown numerically in Table 1. Five nodes
𝐚–𝐞) exhibit anomalies due to the disturbance.

At first glance, node 𝐚 seems the most problematic with an anomaly
core of 0.8. However, a more nuanced picture emerges when we exam-
ne the subgraph anomaly impact of each of the affected nodes, defined
s the sum of the anomaly scores of each of the nodes subgraphs,
hown in Table 1. Here, node 𝐜’s subgraph experiences a larger anomaly
1.94) compared to node 𝐚’s subgraph (1.49). This suggests node 𝐜
s more likely to be the root cause of the fault. Therefore, focusing
nvestigation starting with node 𝐜 is more likely to lead to fast and
ffective intervention.

. Case study — Tennessee Eastman process

.1. Overview

To demonstrate the KESA-AD framework, we utilize the benchmark
6

ennessee Eastman Process (TEP) simulation (Downs and Vogel, 1993). u
Table 1
Anomaly score and subgraph anomaly score of affected nodes in Fig. 3.

Node Anomaly score Node subgraph ∑Anomaly Score

𝐚 0.80 {𝐚, 𝐜,𝐛} 1.49
𝐛 0.15 {𝐛, 𝐜,𝐝} 0.92
𝐜 0.54 {𝐜, 𝐞, 𝐚} 𝟏.𝟗𝟒
𝐝 0.23 {𝐝, 𝐜, 𝐞} 1.37
𝐞 0.60 {𝐞, 𝐜,𝐝} 1.37

This simulation was first introduced for testing process control tech-
nologies and is based on the actual process of the Eastman Chemical
Company in Tennessee, USA. It has since been widely to compare the
efficacy of fault detection and diagnosis algorithms. Using simulation
data for model testing is important since it allows us to know exactly
which faults are propagating through the system at a given time,
when they were induced, and what the original cause of the fault is.
This would not be possible to the same extent using data from a real
manufacturing facility since this information is not as readily available.
Furthermore, simulations do not suffer from the influence of external
factors (e.g., weather conditions, operator changes) as a real process
would. Therefore, by using simulation data we gain visibility of all
factors influencing potential faults, which allows us to test for the
true root cause with the knowledge that there are no external factors
contributing. The process produces two products from four reactants
via the reactions shown below:

𝐴(𝑔) + 𝐶(𝑔) +𝐷(𝑔) → 𝐺(𝑙𝑖𝑞), (Product 1)

(𝑔) + 𝐶(𝑔) + 𝐸(𝑔) → 𝐻(𝑙𝑖𝑞), (Product 2)
𝐴(𝑔) + 𝐸(𝑔) → 𝐹(𝑙𝑖𝑞), (Byproduct)

3𝐷(𝑔) → 2𝐹(𝑙𝑖𝑞), (Byproduct)

here all the reactions are both irreversible and exothermic. The pro-
ess briefly comprises five major unit operations: a reactor, a product
tripper, a vapor–liquid separator, and a recycle condenser. The process
nd instrumentation diagram (P&ID) for the revised TEP is shown in
ig. 4 (Bathelt et al., 2015).

.2. Data description

The process shown above concerning five major units is monitored
hrough 41 measurement variables, shown in Table 2 where XMEAS
1)–(22) are continuous process variables and XMEAS (23)–(41) relate
o composition measurements. There are 12 additional manipulated
ariables, shown in Table 3. Each measured and manipulated variable is
onitored throughout the simulation, with samples taken every 3 min.
he modern TEP simulation allows the introduction of 20 process
isturbances, where faults 1–15 are known faults and faults 15–20 are

nknown (Downs and Vogel, 1993).
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Fig. 4. A process and instrumentation diagram (P&ID) of the revised TEP model (Bathelt et al., 2015).
Table 2
Measured variables in the TEP dataset including process variables XMEAS (1)–(22) and
composition variables XMEAS (23)–(41).

Measured variable Description Units

XMEAS (1) A feed (stream 1) kscmh
XMEAS (2) D feed (stream 2) kg h−1

XMEAS (3) E feed (stream 3) kg h−1

XMEAS (4) A & C feed (stream 4) kscmh
XMEAS (5) Recycle flow (stream 5) kscmh
XMEAS (6) Reactor feed rate (stream 6) kscmh
XMEAS (7) Reactor pressure kPa gauge
XMEAS (8) Reactor level %
XMEAS (9) Reactor temperature ◦C
XMEAS (10) Purge rate (stream 9) kscmh
XMEAS (11) Product separator temperature ◦C
XMEAS (12) Product separator level %
XMEAS (13) Product separator pressure kPa gauge
XMEAS (14) Product separator underflow (stream 10) m3 h−1

XMEAS (15) Stripper level %
XMEAS (16) Stripper pressure kPa gauge
XMEAS (17) Stripper underflow (stream 11) m3 h−1

XMEAS (18) Stripper temperature ◦C
XMEAS (19) Stripper steam flow kg h−1

XMEAS (20) Compressor work kW
XMEAS (21) Reactor cooling water outlet temperature ◦C
XMEAS (22) Separator cooling water outlet temperature ◦C

Reactor feed analysis (stream 6)

XMEAS (23–28) Component A–F conc mol %

Pure gas analysis (stream 9)

XMEAS (29–36) Component A–H conc mol %

Product analysis (stream 11)

XMEAS (37–41) Component D–H conc mol %

4.3. Process graph from TEP dataset

The framework proposed in Fig. 2 requires a process graph to learn
the spatial relationships. Since in this case study we are interested in
detecting fault from the sensor data, we can construct a graph 𝐺𝑇𝐸𝑃 =
(𝑉 ,𝐸,𝐖) where |𝑉 | = 𝑛 is the number of sensors available. 52 sensors
from the TEP dataset are used; 41 measured variables and 11 ma-
nipulated variables. XMV12 is not considered since the agitator speed
7

Table 3
Manipulated variables in the TEP dataset.

Manipulated Variable Description Units

XMV (1) D feed flow (stream 2) kg h−1

XMV (2) E feed flow (stream 3) kg h−1

XMV (3) A feed flow (stream 1) kscmh
XMV (4) A & C feed flow (stream 4) kscmh
XMV (5) Compressor recycle valve %
XMV (6) Purge valve (stream 9) %
XMV (7) Separator pot liquid flow (stream 10) m3 h−1

XMV (8) Stripper liquid product flow (stream 11) m3 h−1

XMV (9) Stripper steam valve %
XMV (10) Reactor cooling water flow m3 h−1

XMV (11) Condenser cooling water flow m3 h−1

XMV (12) Agitator speed rpm

remains constant throughout all simulations and therefore provides no
information for fault diagnosis.

Edges are drawn between nodes according to the causal structure
of the system under the constraints of mechanical knowledge as deter-
mined by Chen et al. (2021). The original structure proposed contains
only process variables XMEAS (1)–(22) and the 11 manipulated vari-
ables XMV (1)–(11), excluding agitator speed. For this paper, the causal
structure is revised to include composition variables XMEAS (23)–(41).
The final process representation is shown in Fig. 5.

4.3.1. Training data
The purpose of the KESA framework is to detect and diagnose faults

for which there is insufficient labeled data to use supervised learning
approaches. The training data for the model, therefore, does not include
any fault data. Instead, the training data is taken from the process in
normal operating conditions (NOC) so that the model can learn the
relationships between sensor variables and what they should look like
when no fault is present. The training dataset comprises 1000 h of
sensor data taken from the TEP simulation. This equates to 20 000
sampled timesteps taken every 3 min across approximately 41 days.

4.3.2. Testing data
Testing data is created for each fault from IDV (1)–(15). IDV (15)–

(20) are not assessed since there is no information about the fault type
or root cause. For each assessed fault, the process was simulated 10
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Table 4
Process faults for the TEP dataset including the fault number, a description of the fault, the nature of the fault, and the original root cause of
the fault as identified by Gharahbagheri et al. (2017b).

Fault Description Type Root cause

IDV (1) A/C feed ratio, B composition constant (stream 4) Step XMEAS (4)
IDV (2) B composition, A/C ratio constant (stream 4) Step
IDV (3) D feed temperature (stream 2) Step
IDV (4) Reactor cooling water inlet temperature Step XMEAS (9)
IDV (5) Condenser cooling water inlet temperature Step XMEAS (11)
IDV (6) A feed loss (stream 1) Step XMEAS (1)
IDV (7) C header pressure loss - reduced availability (stream 4) Step
IDV (8) A, B, C feed composition Random variation
IDV (9) D feed temperature (stream 2) Random variation
IDV (10) C feed temperature (stream 4) Random variation XMEAS (18)
IDV (11) Reactor cooling water inlet temperature Random variation XMEAS (9)
IDV (12) Condenser cooling water inlet temperature Random variation XMEAS (11)
IDV (13) Reaction kinetics Slow drift
IDV (14) Reactor cooling water valve Sticking XMEAS (9)
IDV (15) Condenser cooling water valve Sticking
IDV (16) Unknown – –
IDV (17) Unknown – –
IDV (18) Unknown – –
IDV (19) Unknown – –
IDV (20) Unknown – –
Fig. 5. Knowledge graph of the TEP based on causal structure proposed by Chen et al. (2021) and updated to include composition variables.
times. Each of the 10 runs generated approximately 25 h of data, total-
ing around 250 h of fault data generated for each fault case sampled
every 3 min, equating to 5000 samples per fault. A test containing
data under normal operating conditions was generated to validate the
model’s performance against a simulation with no fault. This test case
comprised around 200 h of normal operating data.

To assess the fault detection delay, an additional testing data set
is generated. This test contains a sequence of randomly selected fault
cases in a single data set separated by normal operating conditions
(NOC) data. The goal is to see how quickly the model can go from
identifying NOC to detecting fault, and back again since latency is an
important factor. This data set contains 178 840 samples (approx 372
days). Each fault occurs 3 times in a random series and is separated by
NOC data in each case.

4.4. Preprocessing

Since data is produced using a simulation there is no missing data to
deal with in the TEP data. The different sensor readings differ in scale,
so the data is normalized before processing as:

𝐗norm =
𝐗 − 𝐗min , (20)
8

𝐗max − 𝐗min
4.5. Evaluation criteria

It is essential to choose evaluation metrics that reflect the applica-
tion of the model. Precision is considered an essential metric for fault
detection in an industrial case since the penalty for misdiagnosing NOC
as a fault is severe — unnecessary maintenance that costs production
and puts personnel at risk. Therefore precision is considered in the
evaluation of each model. Fault detection rate (FDR) is an important
metric also defined and used to assess the model (Wu and Zhao, 2021).
The FDR concerns the ability of the model to classify each faulting
sample as a fault and is sometimes referred to as the true positive rate
(TPR) in literature:

FDR = TP
TP + FN , (21)

where TP and FN refer to the count of true positives, and false nega-
tives respectively. Fault detection delay will also be measured. This is a
vital metric representing how quickly the model can detect an induced
fault. The detection delay is of vital importance for the real-world
adoption of FDD algorithms.

Finally, we define an F1 score as a standard metric in the field of
anomaly detection to allow easy comparison to other work in this field:

Precision = TP
TP + FP , (22)

Recall = TP , (23)
TP + FN
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Fig. 6. MAPE per node for each predicted sensor (from 1–53 corresponding to XMEAS (1)–(41) and XMV (1)–(11)) under normal operating conditions.
F1 = 2 × Precision × Recall
Precision + Recall , (24)

where FP refers to the count of false positive predictions of anomalous
data.

5. Results and discussion

The KESA model was trained over 5 epochs, in which the data was
divided into mini-batches of 128 samples. The Adam optimizer was
used to tune the hyperparameters with a learning rate of 0.001 (Kingma
and Ba, 2014). The value of 𝑘 is set to 5 for this work.

5.1. Model prediction accuracy

We first look at the model’s ability to reproduce data at NOC since
this ability forms the baseline for fault detection. Since there are no
faults to detect here, mean absolute percentage error (MAPE) is used
to assess the ability of the model to accurately reproduce the dynamics
of the system. Fig. 6 shows the MAPE per node for the prediction under
normal conditions. The first thing to note is the low error for each node,
with an average MAPE of 0.17% across all nodes. The accuracy of the
generator in forecasting the system dynamics shows the ability of the
framework to capture and replicate the complex nonlinear relationships
that link the process sensors in the system under normal conditions.
This is important for fault detection as it will allow identification by
comparison of times when these relationships are disturbed, which can
be classed as faults.

Four particular nodes relating to XMEAS (10), XMEAS (20), XMEAS
(21), and XMV (7) exhibit a high MAPE compared to other nodes.
From Fig. 5 it can be seen that these poor-performing nodes all exhibit
either an in-degree of 1 and an out-degree of 0, or conversely, an
in-degree of 0 and an out-degree of 1. Therefore, the higher error
on these nodes in particular could point towards a case for a more
connected graph being used to increase the accuracy of performance. When
applying these methodologies to other processes, consideration should
be given to how the graph is constructed such that less connected nodes
are avoided since these may result in reduced model performance. In
particular, future research could look at supplementing the mechanistic
relationships used to build the graph with physical layout or topology
information. An alternative approach could be found through the use of
pseudo-nodes to increase the connectivity of all nodes. Conversely, this
method could be used in the future to identify areas of a process that
require greater visibility for effective FDD, highlighting where sensor
installation might be most effective to allow for influential conclusions
from process analysis.
9

5.2. Fault detection ability

To show the efficacy of the framework proposed, we compared our
model against top-performing unsupervised anomaly detection mod-
els (Hartung et al., 2023). In each case, the models were trained using
the same training data with no existing faults, and given the same
10 simulations for each of the 15 faults tested. The models were all
trained on the same system equipped with an AMD Ryzen 7 5800H
with Radeon Graphics, 3201 MHz, 8 Cores, 16 Logical Processors,
32 GB RAM, with access to an NVIDIA GeForce RTX 3080 16GBGDDR6
GPU. Models were evaluated using the code provided in the TimeSeAD
library1 (Wagner et al., 2023). A threshold value for determining
anomaly was calculated by taking three standard deviations above the
mean anomaly score from the NOC data. This was set at 𝜏 = 0.043.
Fig. 7 shows a comparison of the performance of each tested algorithm
against each test case IDV (1)–(15) with Fig. 7(a) showing the fault
detection rate scores and Fig. 7(b) showing the F1 scores. These results
have been averaged and summarized in Table 5 for easy comparison.

KESA-AD performs well, outperforming the state-of-the-art unsuper-
vised detection algorithms with a high average FDR of 0.962 (±0.063)
across all 15 fault cases. The lowest FDR shown is by IDV (3) with
the lowest average and highest deviation (FDR = 0.921 ± 0.086). This
fault relates to the temperature of the D feed in stream 2 from Fig. 4.
This is because there is no explicit measurement of temperature for this
stream, with the closest temperature data being from the reactor stage
(XMEAS (9)). Therefore, there is a difference between the induction of
the fault in stream 2 and the position where that fault is first recorded
in the reactor. This lag results in multiple timesteps where the fault has
occurred undetected. In a real-world scenario, this would suggest that
greater visibility of the inlet streams to the reactor is needed to be able
to detect such a fault.

Our model outperforms other FDD models with a high F1 score
of 0.979 ± 0.035. Importantly, KESA-AD is the only one to maintain
high performance over ‘challenging’ fault cases IDV (3), (9) and (15).
The performance of all non-knowledge-enhanced models drops signifi-
cantly when presented with hard-to-detect faults, shown by a drop in
both F1 score and FDR. For instance, the BeatGAN model manages
to detect IDV (3) well but struggles with IDV (9) and (15). This
distinction highlights the impact of integrating domain knowledge into
fault detection, fostering robustness across a broad spectrum of fault
cases. In a manufacturing context, characterized by the complexity and
multifaceted nature of process failures, this demonstrated enhancement

1 https://github.com/wagner-d/TimeSeAD.

https://github.com/wagner-d/TimeSeAD
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s of paramount significance. It empowers manufacturers with a tool
apable of effectively identifying and addressing faults that would otherwise
emain elusive and challenging to pinpoint. It is important to note that,
hen applying this methodology to other FDD problems, given the
odel has no constraints on stationarity or linearity, KESA-AD can
etect a wide range of fault types from random disturbances to step
hanges and slow drift faults without visible effect on performance.
his highlights the importance of generative AI methods in this space
o alleviate the research problems faced by authors using MSPM or
robabilistic methods in this space.

The F1 scores and FDR results have been averaged across each
ault and tabulated in Table 5 for ease of comparison. We see that
ur model outperforms the state-of-the-art unsupervised fault detection
lgorithms when compared using the benchmark TEP dataset. This
erformance increase shows the potential of the model to tackle more
omplex and dynamic datasets. Not only did our model outperform
thers in the average value of both the F1 score and FDR, but it did
o while maintaining a lower variability in the prediction than other
odels shown by the lower standard deviation except STORN. This is

mportant since a model with lower variability in the prediction is less
ikely to trigger false alarms, so when the model detects a fault it is
ore likely to be real.

As all tested models consistently achieved a precision score of
.00 for simulated faults, this metric has been excluded from the
10
omparative analysis. Nevertheless, it is important to acknowledge
he operational significance of maintaining such high precision in the
odel. This is vital because erroneously identifying a non-existent

ault can incur unnecessary production costs and elevate the risk to
ersonnel safety.

.3. Root cause analysis

The most important advancement shown by our work compared
o the other anomaly detection algorithms is the ability to diagnose
he root cause. The graph-based approach allows the identification of
here the fault exists in the process by analyzing the anomaly scores of
ach node. Other models that do not leverage the graph structure lack
his capability. Moreover, because we construct a graph using chemical
ngineering knowledge and mechanistic relationships, we can utilize
he underlying structure of the node sub-graphs to begin to identify
he reason why the faulting nodes might be exhibiting such behavior.
his is a clear distinction between KESA-AD and the other unsupervised
ault detection algorithms that offer a wealth of operational benefits.
t allows maintenance teams to promptly understand the underlying
ause of the issue, facilitating improved maintenance planning and
esource management. The above demonstrates the ability of the KESA-
D framework to identify when a fault condition occurs in a process
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Table 5
Comparison of F1 scores and FDR for unsupervised anomaly detection models tested on the Tennessee Eastman Process Simulation data. Bold
values show the best results.

Model name F1 score (±) FDR (±) Explain cause of fault? Source

BeatGAN 0.959 (±0.053) 0.927 (±0.095) ✗ Zhou et al. (2019)
USAD 0.950 (±0.041) 0.908 (±0.070) ✗ Audibert et al. (2020)
GenAD 0.960 (±0.043) 0.927 (±0.075) ✗ Hua et al. (2023)
Donut 0.964 (±0.049) 0.934 (±0.085) ✗ Xu et al. (2018)
STORN 0.971 (±0.034) 0.948 (±0.062) ✗ Sölch et al. (2016)

KESA-AD 0.979 (±0.035) 0.962 (±0.063) ✓ –
manufacturing system. Here, we go beyond fault detection by leverag-
ing the inbuilt process knowledge from the construction of the graph
shown in Fig. 5 to explain individual fault cases by suggesting the
root cause. This is a crucial function for process manufacturing. Within
complex multi-component systems, it is often difficult to pinpoint the
exact reason for a given failure since connected units may all exhibit a
single fault at the same time. Because of this, root cause investigation
can be a time-consuming process and often may struggle to uncover
the true cause of a given fault or failure. Therefore, this work can
aid users by reducing investigation time through the explanation of
detected faults using the dynamics of the subgraphs of each of the nodes
to focus the investigation on the largest contributors to a given fault.

We can review the efficacy of this by reviewing the faults from the
TEP case study. To analyze the performance of the framework in this
case, we will focus specifically on faults IDV (1), (4)–(6), (11)–(12),
(14)–(15) since these are faults with a known root cause as shown in
Table 4. No comparison can be drawn to other unsupervised anomaly
detection algorithms shown in Table 5 since they do not provide a
similar breakdown of potential fault causes. Fig. 8 shows the top 5
identified causes for the fault cases tested. Given the high variability of
the data and the complex nature of the system, the model is considered
successful if it can identify the true cause (from Table 4) within the top
5 causes based on the root cause analysis.

Fig. 8 shows the breakdown of the change in subgraph anomaly
scores before and after each fault was induced. It can be seen that
KESA-AD correctly identifies the root cause in the top 5 for 75% of
fault cases (red bars), and in 62.5% of cases, this is identified with
the highest absolute change in anomaly score. Furthermore, in cases
where the overall root cause is not identified, the model was still able to
identify nodes that lie on the fault propagation pathway (orange bars).
This shows a clear ability for the model to identify and extract nodes
that are having a profound impact on the system and generating fault.
It should be noted that these nodes are identified based on the change
in the dynamic of their subgraphs — not explicitly on their behavior.
This is important since fault-generating nodes can often appear within
allowable or normal limits, it is only when their context concerning
surrounding nodes is observed that it becomes clear where the problem
lies.

The challenge in pinpointing the overall root cause becomes evident
when examining the cases of IDV (1) and IDV (6). This challenge is
closely linked to the configuration of the initial graph, as depicted
in Fig. 5, where the two root cause nodes for the faults, XMEAS (4)
and XMEAS (1) respectively, occupy the uppermost positions in the
graph. It is noteworthy that both these nodes exhibit limited connec-
tivity, characterized by low out-degrees (two and five, respectively)
and a complete absence of in-degrees. Such deficient connections might
reduce the model’s ability to detect changes within the surrounding
subgraph of these nodes, thereby impeding its ability to identify the
root cause of the fault. In contrast, nodes with robust connectivity,
like XMEAS (9) and XMEAS (11), emerge as readily recognizable root
causes for faults IDV (4), IDV (11), IDV (12), and IDV (14). Hence,
it becomes imperative for future research to delve into the influence of
graph construction on the model’s fault detection and diagnostic capabilities.
This analysis underscores the significant impact of node degrees on the
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model’s aptitude to identify potential root causes.
Table 6
Fault propagation pathways for IDV (1) and IDV (6) showing in bold the nodes detected
as a cause of the fault by KESA-AD (Ji et al., 2021; Gharahbagheri et al., 2017b).

Fault Fault Pathway

IDV (1) (4, 16, 20) → (7,13) → 1
IDV (6) 1 → 6 → 7 → 9 → 21

It is important to examine the cases of IDV (1) and IDV (6) more
closely to understand why the model may have underperformed. While
the primary root cause is not detected, the model does manage to
identify nodes situated along the fault propagation pathway for both of
these faults. The propagation pathway delineates the sequential impact
of nodes in the system, commencing from the root node (identified in
Table 4) and culminating at the affected node where the fault manifests.
Table 6 outlines the fault pathways for IDV (1) and (6) (Ji et al., 2021;
Gharahbagheri et al., 2017b). IDV (6) concerns the loss of Feed A to
the reactor. We can see from the propagation pathway that when the
immediate impacts of this are a reduction in the reactor feed rate,
XMEAS (6), leading to a subsequent drop in pressure of the reactor
(XMEAS (7)). Since pressure and temperature are inherently linked, the
reactor temperature XMEAS (9) is also affected which causes a change
in the reactor cooling water outlet temperature, XMEAS (21). KESA-
AD was able to successfully detect the fault, however misdiagnosed
the root cause. The model did, however, detect that XMEAS (9), the
reactor temperature was one of the main affected nodes that lie along
the propagation pathway and therefore KESA-AD is still able to aid in
reducing investigation time.

IDV (1) concerns a fault in the A/C feed ratio which is not directly
measured but is carried to the stripper via stream 4 (XMEAS (4)).
The stripper pressure (XMEAS (16)) is the first measured change to
the system, which affects the compressor work (XMEAS (20)). This
results in a change of the reactor pressure through a change in the
flow of stream A, as well as a change in product separator pressure
(XMEAS (13)). Once the fault occurs with the stripper pressure and
the compressor work, it propagates through the system and causes
the reactor pressure (XMEAS (7)) and the product separator pressure.
Lastly, the fault is propagated to the A feed flow (XMEAS (1)). The
root cause of IDV (1), a step change in the A/C ratio of stream 4,
is not directly measurable through the dataset which explains the
misdiagnosis of the root cause by the KESA-AD model.

The key learnings from root cause diagnosis with KESA-AD are
two-fold. Firstly, we observe that the extent of connectivity of the
knowledge graph used impacts the diagnostic ability of the model.
Where nodes have few connections, there is little information that can
be gained about the node from its subgraph which makes accurate
diagnosis challenging. Consideration should be given to the knowledge
graph construction methods for future work to allow more comprehen-
sive diagnosis. Secondly, we learn that the model struggles to identify
the effect of external influences on the system. This can be addressed
by exploring methods to deal with latent confounders. This factor also
impacts the fault detection delay, as evidenced by Fig. 9.

5.4. Fault detection delay

Rapid fault detection is imperative for the use of FDD algorithms in

real industrial settings. Fig. 9 shows the average fault detection delay
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Fig. 8. Contribution plots showcasing the top five probable factors influencing the manifested fault. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
for each of the 15 tested fault cases representing the time between
the induction of the fault, and the detection by the model. The model
responds rapidly to detect faults, on average detecting the fault within
11.3 timesteps, providing a significant improvement over comparable
deep learning FDD algorithms (Lomov et al., 2021). A large number of
the faults are detected within a timestep, meaning a fault detection time
of less than 3 min. IDV (6) is rapidly detected, despite the misdiagnosis
of the root cause mentioned above. IDV (1), however, shows a high
fault detection delay of 121 timesteps, which could be problematic for
real-world applications. The root cause of IDV (1) is a step change
in the A/C feed ratio, which is not a measured variable within the
dataset. Therefore, there is a lag between the step change in the ratio
and a subsequent change in stripper pressure. This lag is reflected in
the detection delay.

Overall, we see that our model exhibits rapid fault detection for
all cases, improving upon the detection delay of other deep-learning
FDD models. We note that the fault detection delay is increased when
the fault originates from a cause external to the dataset. This finding
highlights the importance of incorporating external influences into
future research, as it reflects the broader spectrum of faults encountered
in real-world manufacturing environments.

6. Conclusion

This work explores the use of knowledge-enhanced machine learn-
ing methods for FDD in the process industries. Specifically, we propose
12
Knowledge-Enhanced Spatiotemporal Analysis for Anomaly Detection
(KESA-AD), applied here to industrial anomaly detection. The impor-
tance of this method is in the ability to accurately detect process
faults based on a combination of plant sensor data and specific domain
knowledge and to highlight key root causes behind the existence of the
fault. By providing this information to maintenance and operational
teams we can reduce the time to effective intervention which ultimately
reduces the likelihood of process failure and therefore promotes cost
savings and improved process safety.

The proposed methodology was compared against state-of-the-art
unsupervised fault detection models using the benchmark Tennessee
Eastman process dataset. The results show the ability of KESA-AD
to detect a range of complex manufacturing faults, including step
changes and slow drift faults as well as random disturbances. The model
demonstrates a high F1 score and fault detection rate in comparison
to other models. Furthermore, in challenging fault detection cases
where the performance of other models suffered, KESA-AD maintained
high scores. These results underscore the significance of incorporating
domain-specific knowledge as the key to achieving robust fault detec-
tion for the complex fault scenarios inherent to process manufacturing.
By leveraging domain knowledge through the graph structure, we also
demonstrate the ability to identify the root cause of detected faults by
analyzing the dynamics of the subgraphs of each of the nodes.

This work highlights the importance of knowledge-enhanced AI
frameworks as a future avenue for researchers applying FDD to process
manufacturing. The flexibility of the graph convolutional approach
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Fig. 9. The average fault detection delay between an induced fault and detection.
means process knowledge from a wide range of sources can be included
without acyclicity requirements. It can therefore be easily applied
equally to processes where cycles are inherent, such as processes with
recycle streams. This factor, along with the inherent ability of deep
neural networks to deal with non-linear data makes this solution a good
fit for FDD in the process industries.

Future avenues for research should concern the construction of the
process knowledge graph used to diagnose faults. In this work, we have
used mechanistic profiles of the process to build knowledge graphs.
This approach removes the bias of using operator input knowledge
and circumvents the use of rule-based expert systems which could
lead to misdiagnosis. However, it was shown that in cases where the
mechanistic profiles are not as well defined leading to nodes with fewer
connections, fault diagnosis suffers. This could be solved with pseudo-
nodes to increase connectivity, or with additional inference techniques
to augment the process knowledge. Furthermore, for applications in
wider processes where mechanistic profiles for each unit are not avail-
able due to process complexity, for example, wastewater treatment,
our approach would be difficult. However, our study demonstrates a
methodology that is broadly applicable across process manufacturing
and could aid in advancing FDD technology. This method could be fur-
ther enhanced by applying causal discovery to affected nodes upon fault
detection to aid in understanding the direction of fault propagation
pathways to further aid in root cause diagnosis.

Overall, this paper has developed a framework aimed at support-
ing and assisting day-to-day maintenance operations by accurately
identifying faults, and by providing insights to help determine and
eliminate the root cause of the fault. This allows for timely and effective
maintenance and operational intervention to prevent the fault case
from propagating to failure. In turn, this increases both the profitability
and safety of the process.
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