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Abstract

The successful integration of Terrestrial and Non-Terrestrial Networks (T/NTNs) in 6G is
poised to revolutionize demanding domains like Earth Observation (EO) and Intelligent
Transportation Systems (ITSs). Still, it requires Distributed Machine Learning (DML)
frameworks that are scalable, private, and efficient. Existing methods, such as Federated
Learning (FL) and Split Learning (SL), face critical limitations in terms of client computation
burden and latency. To address these challenges, this paper proposes a novel hierarchical
DML paradigm. We first introduce Federated Split Transfer Learning (FSTL), a foundational
framework that synergizes FL, SL, and Transfer Learning (TL) to enable efficient, privacy-
preserving learning within a single client group. We then extend this concept to the
Generalized FSTL (GFSTL) framework, a scalable, multi-group architecture designed for
complex and large-scale networks. GFSTL orchestrates parallel training across multiple
client groups managed by intermediate servers (RSUs/HAPs) and aggregates them at a
higher-level central server, significantly enhancing performance. We apply this framework
to a unified T/NTN architecture that seamlessly integrates vehicular, aerial, and satellite
assets, enabling advanced applications in 6G ITS and EO. Comprehensive simulations
using the YOLOv5 model on the Cityscapes dataset validate our approach. The results
show that GFSTL not only achieves faster convergence and higher detection accuracy
but also substantially reduces communication overhead compared to baseline FL, and
critically, both detection accuracy and end-to-end latency remain essentially invariant as
the number of participating users grows, making GFSTL especially well suited for large-
scale heterogeneous 6G ITS deployments. We also provide a formal latency decomposition
and analysis that explains this scaling behavior. This work establishes GFSTL as a robust
and practical solution for enabling the intelligent, connected, and resilient ecosystems
required for next-generation transportation and environmental monitoring.

Keywords: intelligent transportation systems; federated learning; split learning; transfer
learning; integrated terrestrial and non-terrestrial networks

1. Introduction

With the 6G vision set to shape society in the 2030s into a more advanced, digitized,
fully connected, and intelligent world, transportation networks are undergoing a significant
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transformation, converging into Intelligent Transportation Systems (ITSs) [1]. The field of
ITS is rapidly expanding, with the aim of improving the safety, efficiency and sustainability
of traditional transportation systems by using technologies such as Machine Learning (ML),
the Internet of Things (IoT) and advanced communication modes [2]. The presence of IoT
subsystems facilitates the generation of large amounts of data from various components of
the ITS infrastructure over time [3]. These data can be used to provide intelligent solutions,
optimize traffic management, improve user experiences, and improve environmental
outcomes. However, significant challenges arise in the acquisition and analysis of data
from various sources, including vehicles, sensors, and traffic cameras [4].

Recent advances in Distributed Machine Learning (DML) techniques offer promising
solutions to these challenges. Among them, Federated Learning (FL) has emerged as a
particularly effective paradigm for training ML models in a distributed manner, enabling
collaboration while maintaining data privacy [5]. FL facilitates shared model training with-
out requiring the exchange of individual data among multiple devices. Each device trains
a local model on its data and then updates a central server with its progress. The server
aggregates the updates and applies them to a global shared model. However, a signifi-
cant limitation of FL lies in the necessity for each client to independently train the entire
ML model. This process demands substantial computational resources and becomes par-
ticularly challenging for clients with constrained resources, notably within ITS contexts,
where the use of complex models such as Deep Neural Networks (DNNs) is common [6].
Furthermore, iterative transmission of local and global model parameters has raised new
privacy concerns, including the risks of data poisoning and model inversions, highlighting
the need for improved security mechanisms in FL frameworks [7].

To mitigate the limitations of FL, Split Learning (SL) presents an alternative approach.
SL allows complex ML models to be trained by dividing them into two parts, with each
part trained on a client or a server using local data from distributed clients [8]. This method
significantly reduces the computational burden on resource-limited devices, as only a
portion of the model is trained locally and communication is limited to the activation of
the cut layer. Consequently, SL enhances model privacy by preventing direct access to
the entire model on either side. Recent research has demonstrated the potential of SL-
inspired frameworks to enhance the efficiency and scalability of FL approaches, allowing
the training of more sophisticated DNNs while maintaining privacy and reducing costs [9].

In addition to these methods, Transfer Learning (TL) from the meta-learning family
has gained attention for its ability to improve training efficiency by facilitating knowledge
transfer from previous tasks to new related tasks [10]. TL can accelerate convergence rates,
reduce reliance on labeled data, and enhance the robustness of ML models in various
vehicular scenarios. The integration of TL with FL, particularly in resource-constrained
ITS environments, presents a valuable opportunity to leverage previous knowledge and
improve model performance [11]. However, existing works have yet to comprehensively
address how these techniques can be optimally combined to maximize their benefits in
dynamic and heterogeneous environments.

Earth Observation (EO) has emerged as a complementary technology that can signifi-
cantly enhance the capabilities of ITS. EO involves the collection and analysis of satellite
and aerial data, providing critical information on traffic conditions, weather patterns,
and environmental changes [12]. This integration allows ITS to benefit from real-time data
streams, facilitating improved traffic management, hazard detection, and overall situational
awareness [13]. However, integrating EO with ITS presents its own set of challenges, in-
cluding the need for efficient data fusion techniques from heterogeneous sources, real-time
processing capabilities, and advanced ML methodologies to analyze vast amounts of EO
data effectively [14].
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In the context of the 6G vision, Non-Terrestrial Networks (NTNs) play a pivotal role in
providing global coverage and capacity enhancements for traditional terrestrial networks.
Various NTN platforms, including High-Altitude Platforms (HAPs), offer significant advan-
tages to vehicular users (VUs), such as reduced transmission distances, improved coverage,
and flexible deployment options [15]. These characteristics make NTNs particularly well-
suited for supporting intelligent solutions in ITS by facilitating efficient DML methods and
enhancing connectivity in remote or underserved areas [16].

In the space of ITS-oriented DML, several hybrid frameworks have been explored,
each contributing valuable insights, yet leaving important gaps. For example, ref. [17]
introduces a hybrid of FL and SL tailored to ITS, enabling personalized model training
across vehicles while preserving data privacy; however, it lacks TL integration and does not
consider the latency and resource constraints of multilayer network deployments. Another
relevant study, ref. [18], evaluates the security and effectiveness of FL, SL, and TL in
vehicular networks; while it clarifies which techniques are feasible for privacy preservation,
it remains a feasibility study and does not propose a unified framework that combines
these paradigms with scalability in multilayer NTN settings. A third work [19] develops a
variant of Federated Split Learning (FSL) that addresses the challenge of vehicles lacking
labeled data by splitting the model between onboard units and RSUs, preserving both data
and label privacy; however, it does not address dynamic grouping, hierarchical aggregation,
or real-time adaptation in 6G NTN-enhanced ITS.

1.1. Gaps in the Literature and Motivations

Table 1 summarizes representative prior works and highlights the main differences
relative to our approach. Although existing studies have advanced FL, SL, TL and hybrid
schemes for edge and vehicular settings, several important gaps remain that limit their
applicability to multilayer 6G ITS and NTN-enabled Earth Observation. The most salient
gaps are as follows:

1.  Under-utilization of multilayer NTN architectures: Many prior frameworks assume
single-tier or purely terrestrial deployments and therefore do not exploit the potential
benefits of coordinated processing across RSUs, HAPs, and satellites. This omis-
sion reduces opportunities for latency-aware placement, load balancing across tiers,
and resilience in coverage-challenged regions—all critical for large-scale ITS.

2. Limited onboard and in-space data processing: Existing works rarely address ef-
ficient processing of EO data within non-terrestrial platforms or the trade-offs in-
troduced by performing model tasks in space (e.g., at HAPs/LEO nodes). With-
out concrete strategies for in-space inference/aggregation, systems face increased
communication cost or delayed decision-making for time-sensitive ITS applications.

3. Insufficient integration of DML paradigms for resource-constrained, heterogeneous
clients: While FL, SL, and TL have been studied individually (and some combinations
proposed), there is a lack of comprehensive frameworks that jointly leverage model
partitioning, transfer initialization, and hierarchical aggregation to simultaneously
address privacy, compute constraints, and converge quickly in highly heterogeneous
ITS fleets.

The emerging 6G paradigm, characterized by ubiquitous and seamless T/NT con-
nectivity, extreme low-latency links, pervasive edge intelligence, and Al-native network
management, directly addresses the limitations noted above. Native NTN integration
in 6G enables hierarchical, multilayer orchestration (e.g., RSU/UAV/HAP/satellite) that
supports latency-aware placement and multi-tier aggregation. Likewise, 6G’s stronger
edge computing and deterministic service capabilities make practical the notion of in-space
or at-edge model processing for EO and real-time ITS tasks, reducing the need for bulky



Network 2025, 5, 41

4 0f37

raw-data transfers. Finally, the Al-native control plane and advanced resource-slicing fea-
tures foreseen for 6G facilitate dynamic model partitioning and adaptive use of FL/SL/TL
mechanisms across heterogeneous clients. These 6G capabilities therefore motivate and
make feasible the design objectives of this paper: a multilayer joint T/NT, latency-aware
DML framework that unifies Federated, Split, and Transfer Learning and maps model com-
ponents to the most appropriate network tier, improving scalability, privacy, and real-time

performance for ITS and NTN-based EO scenarios.

Table 1. Comparison of the most related works and gaps/differences relative to our work.

Ref. Contributions Differences With Our Work
[6] Multitask FL with hybrid client selection/aggregation Pure FL (no SL/TL); no multilayer hierarchy or NTN
in edge networks. integration; not tailored to ITS.
Evaluates and optimizes DML techniques for IoT; Not ITS-centric; not hierarchical FL/SL over T/NTNs
[5] . <
benchmarking focus. nor real-time ITS latency study.
9] Wireless Distributed Learning: hybrid split+federated No T/NTN tiering, no EO/ITS integration, and no
approach. multilayer ITS latency/accuracy study.
Federated Transfer Learning for cross-domain sensing  No ITS; no SL or multilayer NTN; narrower modality
[11] ; .. . .
with resource efficiency. than our EO/vehicular perception.
[15] 6G-enabled advanced transportation systems; No DML pipeline or a multilayer T/NTN
network capabilities and use cases. latency/accuracy quantification.
[16] Explores the potential of NTNs in next-gen ITS; Lacks concrete DML training/aggregation across
positioning paper. layers and empirical ITS evaluation.
[17] Personalized FSL for ITS-distributed training: No hierarchy, no EO integration, and no unified
single-layer training. FL/SL/TL orchestration across T/NTNs.
[18] Feasibility of SL/TL/FL for security in ITS; SL No ITS; no hierarchical T/NTN training or EO-ITS
outperforms FL/TL baselines; security focus. fusion; no multi-tier aggregation.
[19] FSL with data/label privacy in vehicular networks. No multilayer architecture and no joint FL+SL+TL

orchestration.

To address these gaps, we propose two comprehensive methodologies: Federated
Split Transfer Learning (FSTL) and its generalized version, Generalized Federated Split
Transfer Learning (GFSTL). Both methods are designed for deployment in T/NTNs (or joint
air-ground networks) and will be applied to three specific applications: vehicular scenarios,
EO, and then their combination as an ITS scenario. The FSTL framework integrates the
advantages of FL, SL, and TL, providing a scalable solution to train ML models in resource-
constrained environments [20]. Meanwhile, GFSTL introduces a flexible approach that
allows the independent use of FL and SL servers, catering to diverse user requirements.
This novel architecture not only reduces latency and enhances the number of participants
in the federated training process but also improves overall model accuracy and privacy
protection. We will evaluate the effectiveness of the proposed methodologies through
simulations in typical 6G ITS scenarios using advanced architectures like ResNet and You
Only Look Once (YOLO) [21], demonstrating their superiority over traditional FL methods
in terms of convergence rates, training accuracy, and overall latency.

1.2. Key Contributions
This paper introduces GFSTL and FSTL, two novel DML frameworks designed for
multilayer 6G ITS and NTN-enabled EO. The main contributions are summarized as follows:

1.  New hybrid learning frameworks (FSTL and GFSTL): We propose FSTL and its
generalized version (GFSTL). FSTL integrates FL, SL, and TL into a single pipeline
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tailored for resource-constrained edge nodes. GFSTL extends FSTL by supporting
multiple independent FL/SL server placements and hierarchical aggregation across
Road-Side Units (RSUs) and HAPs, enabling flexible deployment across Terrestrial
and Non-Terrestrial Network layers (see Sections 3 and 4).

2. Exploitation of multilayer T/NTN architectures for scalable DML: We explicitly
design the frameworks to exploit the multilayer structure of NTNs (RSUs, UAVs,
HAPs, Low/Medium Earth Orbit (LEO/MEO) satellites) so that computation and
aggregation are performed at the most appropriate network tier (see the multilayer
architectures in Section 5). This hierarchical design reduces wall-clock training time,
improves scalability, and increases the number of feasible participants in federated
training (see Section 6 and the latency analysis in Section 5.4).

3.  Efficient Data Processing for Real-Time EO/ITS Applications: The paper proposes
novel strategies for real-time data processing in space to optimize the utilization of
EO/ITS data. By leveraging GFSTL's flexible architecture, we address the inefficiencies
in current EO/ITS systems, enabling more effective data transmission and model
updates, even in highly dynamic environments with limited resources (Section 5).

4.  Application to Diverse Use Cases and Comprehensive Evaluation: The proposed
methodologies, system architecture, training process, added benefits, and challenges
are introduced and evaluated across three distinct use cases: vehicular scenarios
(Section 5.1), EO (Section 5.2), and their integration into a unified ITS scenario
(Section 5.3). This work also provides a comprehensive latency analysis for a mul-
tilayer 6G ITS environment (Section 5.4), showcasing the practical benefits of our
approach in large-scale, real-world deployments.

5. Enhanced Latency, Accuracy, and Privacy in DML: Our proposed methods signifi-
cantly reduce latency and enhance training accuracy compared to traditional FL-based
frameworks. The introduction of flexible server configurations in GFSTL further im-
proves the number of participants in the FL process while ensuring robust privacy
protection. These advances are demonstrated through simulations in typical 6G ITS
scenarios, where the proposed methodologies outperform traditional FL techniques in
terms of convergence rates, model accuracy (Sections 6.2 and 6.3), and overall system
latency (Section 6.4).

6. Practical split/transfer parameterization for ITS and EO tasks: We provide
a concrete parameterization (model cut-points, smashed-representation sizing,
and YOLO/ResNet choices) that maps model components to node capabilities
(RSU/HAP/edge) (Section 6.1), balancing accuracy, computation, and communi-
cation. This parameterization is validated empirically in Section 6 and supports
real-time ITS perception tasks using compact intermediate representations.

7. Comprehensive performance and latency study under unified experimental settings:
We evaluate FL, SL, FSL, FSTL, and GFSTL on a representative ITS scenario using
the same hardware/network assumptions to ensure a fair comparison. This study
quantifies trade-offs in accuracy, convergence speed, per-round latency, and commu-
nication volume and demonstrates our proposed frameworks” improvements in these
dimensions (results and discussion in Sections 6 and 7).

The above contributions jointly advance the state of the art by presenting scalable,
privacy-preserving, and latency-aware DML solutions that are directly applicable to multi-
layer 6G ITSs and NTN-based EO systems.

1.3. Organization of the Paper

This paper is organized as follows: Section 2 provides an overview of existing DML
frameworks, including FL, SL, FSL, and TL, discussing their advantages and limitations.
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Section 3 details the proposed FSTL framework, outlining its architecture and training
process and showcasing its application in ITSs. Building upon this, Section 4 introduces the
GFSTL framework, presenting its architecture and training algorithm for scalable, multi-
group network environments. Section 5 demonstrates the versatility of GFSTL through
two distinct use cases: a vehicular Aerial-Ground Integrated Network (AGIN) and an
NTN-based EO system, followed by a comprehensive latency analysis for a unified multi-
layer 6G ITS scenario. Section 6 presents the simulation setup and parameters, evaluation
metrics, and the results validating the proposed methodologies. Finally, Section 7 provides
a discussion of the findings, limitations, and future directions, with Section 8 concluding
the paper.

2. Distributed Machine Learning Frameworks

DML has become an essential approach to enable collaborative model training across
multiple devices without requiring centralized data storage. This method is particularly
valuable in scenarios like ITS, NTNs, and EO, where large volumes of data are distributed
among many devices, and privacy concerns or bandwidth limitations make data central-
ization impractical. By allowing each device to process its data locally and share only
model updates with a central server, DML frameworks ensure that privacy is maintained
while enabling efficient large-scale model training. Some of the most widely adopted DML
techniques include FL and SL, each offering unique benefits to address the challenges of
distributed data environments [22].

2.1. Federated Learning

FL is one of the foundational methods for DML, allowing multiple clients (e.g., VUs
in an ITS) to collaboratively train a shared ML model without sharing their raw data.
FL ensures privacy and reduces the bandwidth needed for communication, making it
well-suited for environments where data privacy is critical, such as ITSs [23]. Each client
performs model training on its local data and only transmits model updates (such as
gradients) to a central server for aggregation.

Consider a system with N distributed users defined through the setf = {uy,...,un},
where each user i has a local dataset D; = {(xk, yx)} containing K; labeled data samples.
The feature vector x; € R” is the k-th sample, while yy is its corresponding label. The task
is to train a global model W” by minimizing a global loss function L? between all clients
without sharing the raw data.

During each round of communication, users update their local models by minimizing
their local loss functions Lf(D,», W), where W/ represents the global model in round t.
The updated local model parameters of each user are sent to the server, which aggregates
them using a weighted averaging scheme, such as Fed Avg [24]:

N
Wi =g Z W}, @

The process continues until the model converges or a stopping criterion is met, such
as a target loss value. The advantages of FL are as follows:

e Data Privacy: FL allows users to keep their raw data local, making it ideal for privacy-
sensitive scenarios.

* Reduced Communication Overhead: Only the model parameters are exchanged, not
the raw data, saving bandwidth.

*  Adaptability: FL can continuously improve models with real-time data from users,
making it responsive to dynamic environments.
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The disadvantages are the following:

¢  Communication Latency: Multiple rounds of communication are required, increasing
the overall latency, especially in bandwidth-constrained networks.

¢  Convergence Speed: Achieving convergence may require many iterations, resulting
in high computational and communication costs for resource-constrained users.

While FL addresses privacy and communication challenges, its iterative nature intro-
duces certain limitations, particularly in environments where latency or computational
resources are limited [25]. To overcome these challenges, more advanced frameworks such
as SL have been introduced. The interested reader could refer to [26] for a comprehensive
analysis of FL algorithms.

2.2. Split Learning

Although FL provides a solid foundation for DML, it can place significant computa-
tional and communication burdens on clients, especially when training deep models [27].
To mitigate these issues, SL divides the learning process between clients and servers. In SL,
each client processes only the lower layers of the model, while the server handles the
remaining computations. This reduces the computational load on clients and improves
privacy by keeping raw data within the client device [28].

In the context of an ITS scenario, consider a model WP that is divided into two
components: (i) the client-side model S(-), which each user or client maintains locally,
and (ii) the server-side model M(-), which is responsible for completing the forward
and backward passes on the server. This split architecture allows resource-constrained
devices, such as VUs, to perform only the initial stages of the computation, reducing their
computational and storage requirements.

The SL process involves the following steps for a single forward-backward round:

1. Each user processes its local data D; using the client-side model S(-), which generates
intermediate activations:
H; = S(Dy) )

These intermediate activations H; represent compressed feature representations and
are transmitted to the server.
2. Upon receiving H;, the server performs the forward pass using its merge model M(-)
to produce predictions ¥;:
yi = M(H;) 3)

This completes the forward pass for the entire model W? using both client- and
server-side components.

3. Next, the server begins the backward pass on the server-side model M(+) to compute
the gradients of its model parameters based on the loss function, typically using a
method such as stochastic gradient descent. The server then calculates the gradient of
the intermediate activations H;, denoted as V H;, and transmits this gradient back to
the user.

4. Finally, the user completes the backward pass locally on its split model S(-) using
V H;. This enables each client to update their local model parameters for S(-) based
on its unique data, thus maintaining data privacy and security.

This split process enables each user to perform forward and backward propagation
collaboratively with the server, forming a full round of training over the model W¥. By struc-
turing the model in this manner, SL allows resource-constrained client devices to participate
in training without handling the full computational load. The server’s ability to process
intermediate activations reduces client-server communication overhead while preserving
data privacy by ensuring that raw data remains local to each client.
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The advantages of SL are as follows:

* Reduced Client-Side Load: Clients only need to compute part of the model, reducing
their computational overhead.

*  Privacy Preservation: Only smashed data (intermediate activations) is transmitted,
protecting the privacy of raw data.

* Lower Communication Cost: Fewer data need to be exchanged between clients and
the server, as only intermediate activations are shared.

The disadvantages are the following:

*  Sequential Processing: The split model introduces latency because clients and the
server must alternate between steps.

¢  Reduced Model Expressiveness: Splitting the model might reduce its capacity, poten-
tially leading to performance degradation.

Although SL reduces computational load and improves privacy, it can still suffer
latency issues due to its sequential nature [29]. The interested reader could refer to [30] for
a comprehensive analysis of SL algorithms.

2.3. Federated Split Learning

To overcome earlier limitations, a novel framework named FSL merges the benefits
of FL and SL. FSL brings together the privacy safeguards characteristic of FL with the
computational efficiency found in SL. This framework allows clients to execute a segment
of the model processing locally, as per SL, followed by employing the federated averaging
technique from FL to consolidate intermediate client outputs. Consequently, this synthesis
taps into the strengths of both systems while mitigating their weaknesses [31].

In FSL, each user computes intermediate activations H; = S(D;) locally, which are
sent to the server for aggregation. The server merges these activations using a federated
averaging scheme:

1 N
Hmerged = N Z H; 4
i=1

The merged activations are then used to update the global model, and the updated
parameters are distributed back to the users. By combining the FL distributed training
process with the SL efficient model split approach, FSL can achieve better scalability and
improved privacy. The advantages of FSL are as follows:

e  Hybrid Approach: FSL benefits from both FL and SL, enabling DML with lower
communication costs and enhanced privacy.

®  Scalability: The federated averaging mechanism allows the framework to scale effec-
tively across many clients without increasing the communication burden.

*  Reduced Client-Side Load: Like SL, FSL reduces the computational burden on clients
by only requiring them to compute the lower layers of the model.

The disadvantages are the following:

¢  Slow Convergence: The nature of SL can result in slower convergence, particularly in
large-scale networks.

* High Local Training Requirements: Clients still need sufficient local computational
resources to handle their portion of the model, which may not always be feasible in
resource-constrained environments.

Although FSL improves the benefits offered by both FL and SL, its implementation can
suffer from delayed convergence rates, particularly in extensive deployment scenarios [32].
To further optimize the efficiency of the learning procedure, TL can be integrated with FSL,
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giving rise to the FSTL methodology proposed later. Before analyzing FSTL, we introduce
TL, focusing on its advantages.

2.4. Transfer Learning

TL is a powerful technique that improves model performance by leveraging knowl-
edge gained from previous tasks, enabling efficient training on new but related tasks. TL is
especially useful in scenarios with limited data or heterogeneous data distributions among
clients, as it reduces the training required for convergence and enhances overall model
accuracy [33]. By initializing clients with pre-trained models developed on large datasets,
TL allows each client to start training from a more informed state, rather than from random
initialization [34].

Formally, let Dsource = {(x, yi)}f\ﬁl represent the source domain with N; samples and
associated labels y;. The objective is to learn a model W' that minimizes the loss function
L5947C in this domain, i.e.,

1 X

N L Ll f i wr')) 5)

i=1

LSOLH’CE —

where L is a chosen loss function (e.g., cross-entropy) and f(x;; Wp,) is the model prediction
for input x;.

Once trained on the source domain, the model is fine-tuned on the target domain
Dhtarget = {(x;, y]-)}]Nz’l with N; samples to minimize the loss function L/8¢*:

1 N

N, o L f W) 6)

j=1

Ltarget _

TL offers the following advantages:

*  Accelerated Training: TL reduces the training time required for model convergence,
which is particularly advantageous in real-time or resource-constrained applications.

¢ Improved Model Accuracy: Leveraging learned knowledge from a related domain
improves model performance, especially when training data is limited or heterogeneous.

¢  Enhanced Generalization: Pre-trained models offer better adaptability across diverse
client datasets, as they can transfer features to new tasks effectively.

3. Federated Split Transfer Learning

In the realm of FSL, TL offers significant advantages. The allocation of a pre-trained
model W¥' to each client expedites the learning process and enhances the model’s capacity
to generalize across the diverse datasets of clients. This synergistic approach is especially
beneficial when there are disparities in client data distributions, as the pre-trained features
and patterns provide a solid foundation for adaptation. As FSL progresses to FSTL, TL
further strengthens the learning architecture. The fusion of TL with FSL optimizes both
efficiency and scalability while maintaining the privacy and computational benefits inher-
ent to FSL. This collaboration facilitates quicker and more adaptable model training in
distributed settings, which is particularly advantageous for a range of applications that
feature distinct data properties.

In FSTL, the goal is to enhance DML capabilities by combining the benefits of FL, SL,
and TL. The FSTL framework is particularly advantageous in scenarios where resource-
constrained devices, such as VUs or unmanned aerial vehicles (UAVs), participate in collab-
orative learning while maintaining data privacy and minimizing communication overhead.
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3.1. FSTL Architecture

The architecture of FSTL begins with a pre-trained neural network model WP, which
consists of L layers. This model is divided into a specific cut layer k (where 1 < k < L) with
two parts:

1. WZ/ is the portion up to layer k, which is deployed on each user for local process-
ing, and

2. Wg l represents the remaining layers, which are managed by the server in the SL
paradigm.

During training, the generic i-th VU processes its local dataset D; using the client-
/
side split model W},,;, generating intermediate representations H;. These representations

are then transmitted to the SL server-side model Wg /, which processes the intermediate
data and updates the global model parameters. The split structure allows users to handle
computationally lighter tasks while offloading the most demanding parts to the server,
thereby reducing local resource consumption.

By integrating TL into the FSL paradigm, the FSTL framework leverages the ad-
vantages of pre-trained models on the client side. The pre-trained layers up to the cut
layer k capture generalizable features and patterns that are useful across different tasks.
Meanwhile, the remaining layers on the server allow further refinement and collaborative
learning among distributed users. As a result, FSTL benefits from more efficient knowledge
transfer, improved model performance, and faster convergence compared to traditional SL
or FL methods.

A key improvement in the FSTL framework over traditional SL is its capacity to
enable parallel processing by allowing all clients to communicate simultaneously with both
the SL and FL servers. This architecture, as illustrated in Figure 1, offers several distinct
advantages over sequential methods:

¢ Higher Convergence Rate: By enabling parallel, simultaneous updates from all clients,
the model can learn from a diverse set of data within each training round. This avoids
the slow, one-by-one sequential processing inherent in standard SL, leading to a more
efficient path to model convergence.

¢ Reduced Communication Bottlenecks: In a sequential learning setup, the server can
only communicate with one client at a time, creating a significant bottleneck that scales
with the number of users. The FSTL structure removes this limitation by allowing
the central server to handle communications with all participating clients in parallel,
thereby improving network efficiency.

¢ Balanced Computational Loads: The framework design inherently distributes the
workload. While each client handles the initial, less intensive part of the model,
the server manages the more computationally demanding tasks and the aggregation
of updates from all clients. This parallel structure ensures a more balanced and efficient
use of computational resources throughout the network.
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Figure 1. Overall structure of FSTL.

3.2. FSTL Training Process

The FSTL training procedure is an iterative, distributed process that allows multiple

users to collaboratively train a model while managing data privacy and distributing compu-

tational load. The model is divided into two components: (i) the client-side model, which

is hosted locally by each user, and (ii) the server-side model, which is hosted centrally.

/
To formalize the training process, let Wf[ = {6;} denote the parameters of the client-

side model and Wg = {6} denote the parameters of the server-side model. The procedure

follows the following steps:

1. Initialization:

(@)

(b)

The global model parameters 6 are initialized using pre-trained weights from
a TL model.

A specific layer index k is chosen, determining the split between the client and
server computations. The layers before k are hosted on the client side, while
the remaining layers are hosted on the server.

2. Iterative Training: For each training iteration t = 1,2,..., T, the following steps occur:

(a)
(b)

(©
(d)

The initial global model parameters 0 are distributed to all participating users.

/
Each user i processes its local data D; through its client-side split model Wfl to
generate intermediate representations:

H; = W}, (Dj) @)

The user sends these intermediate representations H; to the central server.
The central server aggregates the intermediate representations from all users
by applying the following merge function Merge(-):

Hmerged = Merge(Hy, Hp, ..., Hy) 8)
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(e) Using Hierged, the server performs a forward-backward pass to compute an

updated version of the global model parameters:
0 =06- n- VQL(Hmergedle) )

Here, L denotes the loss function, while 7 is the learning rate. This forward—
backward process, which leverages federated averaging, is conducted in a way
that preserves privacy, since only aggregated updates are calculated.

63) The central server updates 6 by setting

o=0 (10)

(g)  Each user i then receives the updated global model parameters 6 from the
server and uses them to update their own server-side model parameters as fol-
lows:

6, = WL (H,,0) (11)

(h)  Finally, each user i updates its client-side model parameters as follows:
;=0 (12)

This iterative process repeats until the model reaches a stopping criterion, such as
convergence of the loss function or a predetermined number of training rounds. In each
iteration, users independently process their local data through the client-side model to pro-
duce intermediate representations that they then share with the central server. The server
merges these representations and performs federated updates to enhance the global model,
subsequently sending the updated parameters back to users. This cycle of local data pro-
cessing, secure sharing, and federated aggregation enables DML while preserving data
privacy and distributing computational demands across the network.

3.3. FSTL Advantages

FSTL provides a comprehensive and powerful framework for DML, integrating the
advantages of FL, SL, and TL. This approach allows individuals to handle data locally while
taking advantage of the global collaborative capabilities offered by TL-enhanced learning.
This integration significantly improves model performance, accelerates convergence rates,
and mitigates resource limitations, making it particularly suitable for dynamic and privacy-
sensitive environments such as ITSs [35]. The benefits of FSTL can be elaborated upon
as follows:

1.  Data Privacy and Security: With the retention of raw data on the user’s side, FSTL
guarantees that sensitive personal information is not exposed or communicated
outward. This addresses the fundamental privacy issues associated with collaborative
learning frameworks.

2. Efficient Communication: The transmission involves only the intermediate data
representations between clients and the central server, thus significantly reducing
communication overhead in the process.

3. Accelerated Convergence: By employing models that have been pre-trained, conver-
gence is more rapidly achieved since these models utilize existing knowledge instead
of starting the learning process from the beginning.

4.  Improved Performance: The server’s collaborative learning approach fosters im-
provements in the global model across all users, facilitating the adaptability of the
framework to ever-changing environments and diverse ITS scenarios.
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3.4. FSTL in ITS Scenarios

In the context of a 6G-enabled ITS, achieving accurate and adaptive model learning
requires various sources of data input to reflect the real-world conditions vehicles face on
the roads. In ITS scenarios, FSTL is expanded to encompass not only VUs but also UAVs
and strategically located cameras on streets and intersections. This variety of data sources
provides more comprehensive environmental information, which is crucial for creating
high-efficiency and responsive ITS applications.

VUs provide ground-based data, including real-time information on vehicle location,
speed, and road conditions, factors crucial for direct traffic management and road safety.
UAUVs, on the other hand, contribute an aerial perspective, capturing broad-area observa-
tions that can help monitor larger traffic patterns, assess road congestion, and even support
emergency responses through quick area scans. Cameras placed on streets and intersections
provide fixed high-frequency snapshots of specific intersections or traffic points, enabling
an accurate assessment of local traffic density, pedestrian movements, and potential haz-
ards. Together, these users form a comprehensive multiperspective network that aligns
with the 6G ITS goals by connecting each component of the ITS infrastructure.

In this ITS FSTL scenario, as illustrated in Figure 2, the Road-Side Unit (RSU) serves
as the FSL server. Here, each type of user (i.e., VUs, UAVs, and cameras) retains its raw
data locally, thus preserving privacy, and sends only intermediate representations, known
as smashed data, to the RSU for further processing and model training. This approach signif-
icantly reduces communication overhead by limiting exchanged data to model updates,
supporting low-latency interaction, and reducing bandwidth demands, actions important
for real-time ITS applications.

‘Server’s split model  SLServer RSU FL Server

1]

Full FSTL model

[111]

Users’ split model

Figure 2. FSTL structure for ITSs with the RSU as the FSL Server.

3.5. Benefits of FSTL in ITSs

The RSU serves as the main FSL server, which allows collaborative training between
VUs, UAVs, and cameras by integrating data from multiple perspectives, promoting a
model that can adapt to varying road conditions. Positioned near traffic points, RSUs
are strategically located to provide reliable connection points for each type of user device.
They facilitate low-latency communication and rapid data processing, allowing the ITS
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framework to respond promptly to traffic changes, weather impacts, and other dynamic
factors. By aggregating insights from these diverse data sources, the FSTL framework in
the ITS supports real-time adaptability and robust decision-making, which are critical for
modern transportation systems.

3.6. FSTL Training Process

Each user, in coordination with the RSU, participates in iterative model updates that
allow the server to refine the model collaboratively. The following iterative algorithm
(Algorithm 1) outlines this training process. The algorithm begins by initializing the cen-
tral server’s (RSU) model parameters, denoted as 65, with an initial state 65(0) (Line 1).
Simultaneously, each of the N individual users initializes their local model parameters, 6;,
with their respective initial states 6;(0) (Lines 2-3). This sets up the initial state for both
the global and local models before training commences. Each user then independently
performs a forward propagation step on their local model using their private local data
(Line 4). Instead of sending their raw data or full model, each user computes and trans-
mits an intermediate representation (H;) to the RSU (Line 5). This H; likely encapsulates
features or activations derived from the local data, without revealing the data itself, thus
contributing to data privacy. Upon receiving the intermediate representations (H;) from all
active users, the RSU performs a forward propagation step on its own server model with
these aggregated representations (Line 6). Subsequently, the RSU computes the gradients
with respect to its server model parameters, Vs, by backpropagating through its model
(Line 7). These computed server gradients are then transmitted back to the correspond-
ing users (Line 8). This signifies a collaborative gradient computation where the server
contributes to the overall gradient direction. Once users receive the server’s gradients
(V6s), they backpropagate these gradients through their local models (Line 9). This allows
them to compute their own local gradients (V;). Finally, each user updates their local
model parameters (6;) using an optimizer, such as Stochastic Gradient Descent (SGD),
with a learning rate # (Line 10). The update rule 6; < 6; — y - V§; indicates a standard
gradient descent step to minimize a local loss function. After all users have performed
their local updates, the RSU aggregates the gradients received from all users. Line 12
describes this aggregation as federated averaging, where a weighted average of gradients
(Gavg = % -Y(w; - Gj)) is computed. It is important to note that the algorithm describes the
server receiving Vs back from users in Line 8, and then aggregating gradients from all
users in Line 12. This implies that either G; refers to V6, that was sent to users and now is
being considered as a contribution or users are sending back their local gradients G; for
aggregation. Assuming G; here refers to some form of local gradient or update contribution
from each user. The RSU then updates its own model parameters (8;) using this aggregated
gradient, again using a learning rate 7 (Line 13: 65 < 05 — 17 - Gyyg). This step is crucial for
integrating the collective learning from all users into the global model. In the final step of
each iteration, the RSU sends its updated server model parameters (6;) back to all users
(Line 14). Each user then synchronizes their local model (0;) with the updated server model
using a weighted average, where 6; < a - 05 + (1 — &) - 04,,;. Here, a is a hyperparameter
that controls the influence of the global server model on the local model, while 8, ; likely
refers to the user’s previously updated local model or perhaps an average of their own
previous model and their received 6;. This synchronization step ensures that the local
models align with the collective knowledge gained by the server, enabling a more robust
and generalized model across the distributed system.
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Algorithm 1 FSTL iterative algorithm for ITSs
Input: N, 6;(0),65(0),a,7
Output: Updated local and server model parameters 6; and 6
1: Initialize RSU (server) model parameters: 6; = 65(0)
2: for1 <i < Ndo > Initialize each user (VUs, UAVs, Cameras)

3. Initialize user i with model parameters 6; = 6;(0)

Perform forward propagation on user model with local data
Send intermediate representations H; from user i to RSU

RSU performs forward propagation on its server model with H;
Compute gradients V85 by backpropagating on the RSU model
Transmit gradients Vs back to user i

Backpropagate on user model using received V6

10:  Update user local model using an optimizer (e.g., SGD):

O X2 NG

91'(—91'—17'V9i

11: end for
12: RSU aggregates gradients from all users using federated averaging:

Gavg = 3 - L(w; - G;)
13: Update RSU model parameters using aggregated gradients:
05 < 05 — 17 - Gayg
14: Send updated server model parameters 6 back to all users for local model synchronization:
0; < a-0s+ (1 —w) - Oung,i

15: return Updated parameters 6; for all users and 6s for RSU

This FSTL setup enables real-time, collaborative model improvement across VUs,
UAVs, and cameras, strengthening the ITSs” adaptability and performance. The DML
approach, anchored by the RSU, balances data privacy and computational efficiency, en-
suring that data remain local while intermediate updates support a cohesive, up-to-date
model. Federated averaging at the RSU uses user-specific weights w; to adjust each client’s
contributions to the global model, enhancing the generalization of the model for varying
traffic patterns, weather conditions, and environmental factors unique to each type of user.
Using the combined data perspectives of VUs, UAVs, and cameras, FSTL in ITSs addresses
real-world challenges such as traffic flow management, safety monitoring, and emergency
response optimization, ensuring robust, privacy-preserving DML that meets the demands
of 6G ITS environments.

4. Generalized Federated Split Transfer Learning

The GFSTL framework extends the FSTL methodology, facilitating scalability across
numerous client groups, with each group comprising several users. In contrast to the
conventional FSTL configuration, which involves training a singular global model for
the entire user base, GFSTL segregates the users into discrete groups. This segmentation
allows for more adaptable and parallelized model training. This architecture is uniquely
suited for complex environments such as NTNs, where users are scattered in various
geographical regions and often encounter varying connectivity conditions [36]. In this
section, we describe the architecture of GFSTL and the benefits it brings to DML over NTNs,
particularly in scenarios such as vehicular networks or EO systems.
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4.1. GFSTL Architecture

The GFSTL architecture begins by partitioning users into m distinct groups. Each
group operates independently with its own subset of users, but all groups work toward
training a single global model. Initially, each client (user) is assigned an identical local
model, while the server initializes the global model. The server maintains and orchestrates
model updates across the groups in parallel, ensuring that the computational load is
evenly distributed.

In Figure 3, the architecture of the GFSTL approach is depicted, where each rounded
number identifies the corresponding phase of the process.At the beginning of the training
process (D), all clients receive a copy of the same initial model. These users perform
forward propagation on their local datasets in parallel, generating smashed data, which is
the intermediate output from the split neural network layers. These smashed data are sent
to the SL server associated with each group (@). The server randomly assigns smashed
data from each client to one of the predefined groups (Q). In each group, forward and
backward propagation are performed sequentially within the group, while the groups
themselves operate in parallel (@), ensuring efficient use of computational resources. Each
SL server (group) produces an updated submodel, which is returned to the corresponding
clients for further local backpropagation. This procedure ensures privacy and efficient use
of resources. Privacy is maintained by transmitting only smashed data, which contains
no raw information about the local datasets, while computational efficiency is achieved
through parallelization at the group level. Gradients from the SL server are applied to
the local models, allowing each client to update its parameters based on the feedback
received from the server. Once each group completes its round of FSTL, client-side FL
servers aggregate submodels at the group level (§—()). Subsequently, the main FL server,
which could be a central server at a higher-level node, aggregates all the submodels from
different groups into a unified global model (®-10), completing the learning round.

This architecture can accommodate various data configurations, including scenarios
with non-iid (non-independent and identically distributed) data, vertically partitioned data,
or extended splits across layers. Moreover, the architecture supports different privacy-
preserving techniques, as the main server never accesses raw data from the clients, ensuring
data confidentiality.
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Figure 3. GFSTL architecture.
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4.2. GFSTL Training Process

The GFSTL framework, as outlined in Algorithm 2, leverages SL within FL groups.
This architecture involves multiple SL servers, each managing a distinct group of users
(clients), with a main FL server coordinating across these SL servers for hierarchical ag-
gregation and global model updates. This design aims to enhance privacy, scalability,
and efficiency by distributing computational burdens and localizing data. The training
process begins with the specified input parameters, namely N (total number of clients),
initial client model parameters 6;(0), initial server model parameters 65(0), « (synchroniza-
tion weight), and 7 (learning rate), and ultimately produces the output of the updated
client and server model parameters 6; and 6;. The training proceeds in an iterative fashion,
encompassing nested loops. The outer loop iterates through each of the m SL server groups
and is indexed by j (Line 1). Within this loop, each SL server j is initialized with its server-
side model parameters, 6;;, set to their initial state GS]-(O) (Line 2). Following this, an inner
loop commences for each client i belonging to group j, where N; is the number of clients
in group j (Line 3). Each client i initializes its local model parameters, 8;, with pre-trained
values 6;(0) (Line 4). The client then performs a forward propagation step on its local
model using its private local data (Line 5). Instead of transmitting raw data, the client
computes and sends intermediate smashed data (H;) to its corresponding SL server j
(Line 6). Upon receiving H; from its clients, the SL server j performs forward propagation
on its server-side model using the received smashed data (Line 7). Subsequently, the SL
server computes and performs backpropagation to determine the gradients with respect
to its server model parameters, V6;; (Line 8). These computed server gradients, V;;, are
then sent back from the SL server to the respective client i (Line 9). Upon receiving V6, s
the client i completes the backpropagation on its own local model using these received
gradients (Line 10). After completing backpropagation, the client updates its local model
parameters, 0;, using an optimizer, typically Stochastic Gradient Descent (SGD), according
to the rule 0; < 0; — 1 - V;, where 7 is the learning rate and V#; represents the local
gradients (Line 11). After all clients in a group have performed their local updates (Line 15
marks the end of the inner loop), the SL server j aggregates the gradients (or updates) from
all clients in its group using federated averaging (Line 12). This produces an aggregated
gradient Gy that is calculated as Ggog = % - Y(w; - G;), where n is the number of participat-
ing clients in the current aggregation round and w; are weights. The SL server then updates
its own model parameters, 5, using an optimizer (e.g., SGD) with the learning rate 1 and
the aggregated gradient Gayg, with 65 < 65 — 77 - Ggog (Line 13). Following the SL server
model update, each client’s local model parameters, ;, are synchronized with the updated
server model using a weighted average, with 6; <— a - 65 + (1 — ) - Oa0g,i» where a controls
the influence of the global server model and 6, ; likely refers to the client’s previous
local model (Line 14). This concludes the operations within each group’s inner client loop
(Line 15) and the outer group loop (Line 16). After all SL servers have completed their
group-level training iterations, they send their updated model parameters to the main FL
server (Line 17). The main FL server then aggregates these parameters from all SL servers
to form a single, unified global model (Line 18). Finally, this newly formed global model
is sent back to all the groups (SL servers and subsequently clients) for synchronization
or subsequent training rounds (Line 19). The algorithm then returns the updated local
client model parameters 6; for all users and the updated server model parameters 6; for the
RSU /main FL server (Line 20).
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Algorithm 2 GFSTL iterative algorithm

Input: N, 6;(0),65(0),a,7
Output: 0;,6;

1:
2
3
4:
5:
6
7
8
9:
10:

11:

12:

13:

14:

16:
17:
18:
19:
20:

forl <j<mdo

Initialize SL server j: 65; = 6,;(0)

for1 <i< Nj do
Initialize clients: 6; = 6,(0)
Forward propagate on the client model using local data
Send intermediate smashed data (H;) to SL server j
Forward propagate on the server model (SL-side model) using H;
Back propagate V6;; on SL server
Send back V#;; from SL server to client;
Back propagate on the client model using V6;;
Update local model using an optimizer (e.g., SGD):

0; < 0; —n - V0,
Aggregate (federated average) on SL server:
Gavg = 3 - L(w; - Gi)
Update SL server model using an optimizer (e.g., SGD):
05 <= 0s — 17 Gang
Update client local model parameters:
0; < a-0s+ (1—n) - Oung,i

end for
end for
Send model parameters from SL servers to the main FL server
Aggregate the parameters to form a global model
Send back the global model to the groups
return 6;, 0,

4.3. GFSTL Advantages

The GFSTL architecture provides several key advantages in DML systems, especially

when applied to NTNss:

1.

Scalability: By distributing clients into multiple groups, the architecture significantly
reduces the computational load on any single server. This group-based structure
enables scalable training across large numbers of users, each contributing to the
global model.

Privacy Preservation: GFSTL ensures that raw data never leave the local client devices.
Only smashed data, which contain no identifiable information, are transmitted to the
SL server, thus preserving the privacy of sensitive user data.

Efficient Resource Utilization: The parallelization of groups allows efficient use of
computational resources. The training process within each group is sequential, but the
groups themselves operate in parallel, which reduces the overall training time and
improves performance in large-scale systems.

Improved Model Accuracy: By enabling the use of TL with pre-trained models,
GFSTL accelerates the convergence of the global model. Moreover, the aggregation of
submodels across groups ensures that the global model is more robust, with improved
accuracy due to contributions from diverse groups of users.

Low Communication Overhead: Since only model parameters are exchanged be-
tween users and SL servers, the communication overhead is minimal. This is par-
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ticularly advantageous in NTNs, where communication links can be intermittent
or costly.

Taking advantage of these benefits, GFSTL emerges as a highly efficient, scalable,
and privacy-enhancing approach suitable for executing DML within intricate settings
like NTNs.

4.4. Summary of Advantages and Disadvantages of DML Approaches

This section synthesizes the strengths and limitations of the principal DML paradigms
considered in this work, i.e., FL, SL, FSL, and TL, and contrasts them with our proposed
FSTL and its generalized, multilayer form (GFSTL). Sections 2—4 present the detailed
mechanics of each approach and motivate the design choices behind FSTL/GFSTL; here
we summarize the practical trade-offs most relevant to ITS deployments. In brief, FL scales
well and preserves local data but incurs large per-round communication and high client
compute costs [37]; SL reduces client computation and communication volume yet suffers
from serial processing and server-side bottlenecks [28]; FSL attempts to combine the two
but still inherits limitations in single-tier deployments [38]; and TL accelerates convergence
and reduces training effort at the cost of possible domain mismatch [39]. FSTL unifies these
techniques to reduce client load and communication while leveraging pre-trained models
for faster convergence, and GFSTL further adds hierarchical, multi-server orchestration
to bound aggregation latency and improve robustness in multilayer T/NTN settings (see
Sections 3 and 4 and the latency analysis in Section 5.4). Table 2 collects these trade-offs
in a compact form to facilitate a direct comparison and to clarify the specific performance
dimensions addressed by our proposals.

Table 2. Comparison of Distributed Machine Learning techniques: advantages and disadvantages.

Technique Scalability Privacy Computational Efficiency Communication Overhead
+ High scalablhty'dge to + Data remains on local
parallel model training - . . . . -
. devices (enhances privacy). — High computation — High communication
across clients. A .
FL e — Vulnerable to model requirements due to full overhead with full model
— Limited by full model . . Lo .. .
. inversion and poisoning model training on each client. ~ parameter exchange.
update aggregation on the
attacks.
server.
+ Suitable for scenarios with + Raw data remains private + Reduced computational + Lower communication
. SR overhead (only smashed data
fewer clients. (smashed data shared only). burden on the client’s side. .
SL . .- . . is sent).
— Limited scalability due to — Some data leakage can — Server-side computation . .
1 . . . - . — High latency due to serial
serialized client training. occur via smashed data. burden remains high.
model updates.
+ More scalable than SL with + Enhanced privacy through + Reduced client-side + Lower communication
. ) ) . overhead compared to FL
parallelized FL elements. combined FL and SL benefits. = computational load.
FSL L .. . . . (smashed data only).
— Limited scalability — Privacy concerns due to — Server-side computational )
: . A S — Higher latency than FL due
compared to pure FL. server—client split. load remains significant. AR
to split training.
+ Reduces computational load
+ Applicable for diverse by leveraging pre-trained i
L s . + Lower communication
domains; increases scalability + Pre-trained models can mask  models. X
TL . e . L . overhead due to pre-trained
in heterogeneous data some sensitive information. — Limited by domain
. s model usage.
settings. compatibility of source and
target tasks.
+ Lower communication
+ More scalable than FSL due High data privacy Wlt.h + Enhanced efficiency by overhead .due to smaller
Transfer Learning masking - - model splits.
FSTL to faster model convergence . utilizing pre-trained model
using TL and combined FL-SL splits + Improved latency by
' protections. ’ combining parallel FL updates
and TL.
iy selale due 0 ighdoaprivacy Bt model g 0o ey by parld
GFSTL preservation via group with pre-trained models and P group

structure with multiple client
groups.

separation and SL protection.

reduced client computation.

lower bandwidth
requirements per user.
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5. Application of GFSTL in 6G

Having established the theoretical foundations of the FSTL and GFSTL frameworks,
this section transitions to their practical application within the complex, multilayered 6G
ecosystem. The GFSTL framework is designed to leverage the advanced capabilities of
6G networks, which integrate various layers of T/NTNs for enhanced scalability and
robustness. Specifically, the use of HAPs as central FL servers, alongside ground-based
RSUs as local FSL servers, allows for efficient model aggregation and training across diverse
geographical regions. The architecture supports seamless communication across satellite,
aerial, and terrestrial domains, ensuring high coverage and minimal latency in dynamic
ITS environments. This multi-tier architecture facilitates real-time data processing and
decision-making, which are crucial for applications like vehicular networks and EO.

The true potential of a scalable, hierarchical framework like GFSTL is realized when
it is deployed across integrated T/NTNs to solve real-world problems. To demonstrate
this versatility, we will first explore two distinct, high-impact use cases: a GFSTL-based
architecture for vehicular AGIN and a configuration for NTN-based EO. We will then
present a unified architecture that synthesizes these scenarios, providing a comprehensive
solution for the next-generation ITS, and conclude with a formal latency analysis of this
integrated system.

5.1. Use Case 1: GFSTL in Vehicular Aerial-Ground Integrated Network

Aerial networks have gained significant attention as a viable solution to extend con-
nectivity and support advanced applications in complex and challenging environments.
These networks are particularly beneficial for vehicular scenarios, which are characterized
by high mobility, inconsistent connectivity, and dynamic data distribution, factors that
pose substantial challenges to traditional ML methods [40]. In our previous work [20],
the concept of FSTL was introduced to address these challenges in vehicular scenarios.
Based on this, the current study expands the applicability of FSTL by integrating it with
aerial networks to establish a unified AGIN for vehicular scenarios. This framework allows
for full exploitation of the GFSTL paradigm.

Using HAPs and the existing capabilities of FSTL, we introduce GFSTL to harness
the advantages of aerial networks, enabling efficient, scalable, and secure training and
inference processes for VUs. The proposed AGIN architecture is designed to overcome the
limitations of ground-based networks by integrating aerial nodes, enhancing connectivity,
reducing latency, and maintaining data privacy.

5.1.1. System Architecture and Methodology

In the proposed scenario shown in Figure 4, the RSUs operate as both SL and FL
servers for VUs, facilitating the execution of FSTL. Meanwhile, HAPs serve as the main
FL servers, overseeing the aggregation of models across multiple RSUs. This architecture
enables SL to operate locally on the VUs, ensuring that raw data remain on the devices,
thus safeguarding privacy. At the same time, more computationally intensive tasks, such
as model training, are offloaded to HAPs. This distributed approach significantly reduces
communication overhead, as only model updates, rather than raw data, are transmitted
between VUs and HAPs.

The FL paradigm in this setup enables collaborative training across multiple VUs,
promoting knowledge sharing and allowing the models to adapt to diverse vehicular
environments. Each RSU is responsible for aggregating the updates of its local group of
VUs, while the HAP performs higher-level aggregation, merging model updates from all
RSUs into a unified global model.
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Figure 4. GFSTL structure for vehicular AGIN.

5.1.2. Advantages of Integrating GFSTL with Aerial Networks

The integration of FSTL with HAPs unlocks several new possibilities for vehicular
scenarios. First, high-altitude placement of HAPs ensures extensive coverage, reduces the
likelihood of interference, and maintains seamless connectivity for VUs, even in remote
or underserved areas where terrestrial infrastructure may be limited or unavailable. Sec-
ond, the FL architecture improves collective intelligence across VUs by enabling them to
collaboratively train models that are better adapted to dynamic conditions and the varying
vehicular scenarios encountered on the ground. Through the AGIN framework, the combi-
nation of RSUs and HAPs offers enhanced connectivity, greater data privacy, and improved
decision-making capabilities. Using both ground and aerial elements, our proposed ap-
proach overcomes the connectivity limitations inherent in traditional vehicular networks,
providing reliable and scalable solutions to support intelligent vehicular networks.

5.1.3. GFSTL Workflow in Vehicular Scenarios

In the vehicular AGIN scenario, GFSTL is employed to enable collaborative learning
across multiple vehicles while ensuring data privacy throughout the process. Each RSU
acts as the FSL server for its designated group of VUs, handling model updates and
exchanging gradients with the VUs. Once each group completes the FSTL training process,
the aggregated FSTL models are sent to the HAP, which serves as the main FL server,
to perform a final aggregation across all groups.

Specifically, the workflow can be described as follows:

1. The RSUs first act as local FSTL servers, managing the training and model aggregation
for their respective groups of VUs.

2. Each VU performs a local computation and forwards its model updates to its corre-
sponding RSU, which aggregates these updates.

3. Once the FSTL process is completed for all groups of VUs managed by the RSUs,
the fully trained FSTL models are transmitted from the RSUs to the HAP.

4. The HAP, which functions as the main FL server, aggregates the complete set of model
parameters from all RSUs, thereby finalizing the global model.

This architecture not only optimizes the training process by distributing the computa-
tion and aggregation tasks between RSUs and HAPs but also preserves privacy by ensuring
that raw data never leaves the local VUs. Figure 5 illustrates the structure of the proposed
GFSTL setup on an aerial network, and the numbers within the figure correspond to the
steps outlined in Algorithm 2.
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Figure 5. GFSTL structure for Earth Observation using Non-Terrestrial layers.

5.2. Use Case 2: GFSTL in NTN-Based EO

In this section, we introduce the proposed GFSTL process for EO applications, along
with its key advantages and the challenges it seeks to address. This generalized architecture,
illustrated in Figure 5, is suited for multilayer EO applications. This framework integrates
NTNs, including low-altitude platforms (LAPs), HAPs, and Low Earth Orbit (LEO) satel-
lites, into the GFSTL architecture, leveraging their distinct advantages to enhance EO data
collection, processing, and analysis.

5.2.1. Motivation and Proposed Framework

The growing need for accurate and high-resolution EO data in applications such as
environmental monitoring, climate change analysis, and disaster response presents several
challenges, particularly in terms of data collection, processing, and transmission. Tradi-
tional EO systems, which are highly dependent on satellite networks, often suffer from
latency, data security concerns, and limited accuracy in capturing information in dense
or remote environments (e.g., forests and urban areas) [41]. Our proposed framework
addresses these limitations by optimally combining the precision and task-specific capabili-
ties of UAVs with the extended coverage and computational power of HAPs. UAVs are
ideal for collecting high-precision data in specific areas, especially in challenging environ-
ments, while HAPs provide broader coverage and handle computationally intensive tasks.
By integrating these NTNs into the GFSTL architecture, our framework ensures efficient
and secure DML across multiple EO platforms. This framework addresses the first major
gap in the literature by enabling optimal integration of UAVs, HAPs, and LEO satellites
to enhance accuracy, coverage, and resource efficiency in EO applications. Furthermore,
our framework introduces an efficient DML method through GFSTL, which combines the
strengths of FL for secure model training, TL to expedite the training process, and SL to
ensure that resource-constrained UAVs can participate effectively in the learning process.

5.2.2. Framework Components and Advantages

In the proposed framework, HAPs function as FSL servers, which integrate both the
SL and FL server functionalities. This allows UAVs to retain raw, high-quality data locally
while offloading computationally intensive tasks to HAPs. This setup ensures privacy
preservation and reduces the bandwidth required for transmitting large volumes of data
since only intermediate outputs (smashed data) are transmitted. LEO satellites serve as
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the central main FL servers, orchestrating collaborative model training across multiple
HAP-UAV groups. This architecture fosters collective intelligence capable of adapting to
various EO scenarios. Using the hierarchical structure of NTNs, the framework optimizes
resource utilization while ensuring scalability and adaptability to different EO tasks, such
as image analysis, clustering, and object recognition.

The proposed framework brings numerous advantages:

1. Increased Accuracy: UAVs can focus on capturing precise data in specific regions,
especially in areas where satellite imagery might be less effective (e.g., dense forests).
This localized data collection ensures higher accuracy and relevance of the EO data.

2. Resource Efficiency: HAPs serve as intermediaries between UAVs and LEO satellites,
efficiently distributing computational tasks and enabling seamless data processing
across layers.

3. Privacy and Security: The FSL approach ensures that raw data remains on local de-
vices (UAVs), preserving privacy while transmitting only intermediate data (smashed
data) to HAP servers. This minimizes the risk of data breaches and ensures compliance
with privacy regulations.

4. Reduced Latency: By using TL to initialize the training process with pre-trained
models, the framework reduces the total training time, allowing faster convergence of
the global model.

5.2.3. GFSTL Training Process for EO over NTNs

The GFSTL process over NTNs for EO applications follows the process outlined in
Algorithm 2, where the role of the FL server is taken by the LEO satellite, the role of the
FSL server is taken by the HAPs, and the role of clients is taken by the UAVs. The process
begins by initializing the UAV models and server models (parameters 0; and 6;), which are
pre-trained on a DNN (such as ResNet). Each UAV performs forward propagation using
its local data, sending the intermediate output (i.e., smashed data) to the HAP server for
further processing. The HAP server computes gradients for the server model parameters
and sends them back to the UAVs, allowing backpropagation and local model updates. For
a better understanding, the number in Figure 5 refers to the step individualized by the lines
in Algorithm 2.

5.2.4. Added Benefits and Challenges

The GFSTL framework brings significant improvements to EO applications by ad-
dressing key gaps in data collection, processing, and learning efficiency. The use of UAVs
for precision data capture improves the quality of the images and data collected, especially
in challenging terrains. The integration of HAPs and TL accelerates the training process,
optimizing computational resources and improving model convergence.

However, several challenges need to be addressed for the successful deployment of
GFSTL in EO systems. One major challenge is task compatibility; choosing a pre-trained
model that aligns well with the target domain is critical to avoid domain shift and model
drift. Additionally, scalability remains a concern, especially as more UAV-HAP groups are
added. These challenges must be carefully considered to ensure optimal performance.

5.3. Unified Multilayer 6G ITS Architecture

The 6G era envisions a fully connected world where all elements of the ITS infrastruc-
ture are seamlessly integrated, from vehicles to aerial systems and ground-based sensors.
This hyper-connectivity provides the foundation for real-time data processing and intelli-
gent decision-making, which are essential to modern transportation systems. A hierarchical
multilayer architecture, such as AGIN or NTNs, is ideally suited to support the demands
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of 6G ITSs, where the massive scale, low latency, and need for privacy-preserving DML
are critical factors. This section introduces the concept of multilayer GFSTL in the context
of 6G ITSs, providing a flexible, scalable, and efficient solution to the challenges posed by
high data volumes and complex model training scenarios.

5.3.1. Architecture and Components

In the 6G ITS ecosystem, all components of the ITS infrastructure—including VUs,
UAVs, and ground-based cameras (strategically placed at intersections, cross-roads, and
high-traffic areas)—are interconnected to improve safety, efficiency, and overall traffic
management. This requires a hierarchical multilayer system where computational tasks
are distributed across different network layers, improving both resource management and
real-time decision making. The architecture consists of three main components:

1.  Users (VUs, UAVs, and Cameras): VUs are vehicles equipped with various sen-
sors and communication modules that gather real-time traffic and environmental
data. UAVs provide additional data, particularly in areas that are difficult to moni-
tor or reach from the ground, providing support in vehicle navigation, surveillance,
and emergency responses. Street cameras positioned at critical points such as inter-
sections and crossroads monitor traffic flow, detect accidents, and feed real-time data
into the network.

2. FSL Servers (RSUs and Base Stations (BSs)): RSUs and BSs act as FSL servers.
They aggregate and process data received from nearby VUs, UAVs, and cameras,
performing preliminary computations.

3. Main FL Server (HAP): The HAP serves as the main FL server. It receives and
aggregates the models trained by the FSL servers (RSUs/BSs), conducting the final
stage of training, which is aggregation to a global model that integrates data from all
layers of the ITS.

The hierarchical structure, as depicted in Figure 6, enables efficient model training
through GFSTL, where the learning tasks are split across multiple layers: ground-based
(VUs, RSUs, and BS) and aerial (UAVs and HAPs) layers. This ensures both real-time
data analysis and long-term predictive modeling, addressing the dynamic requirements of
6G ITSs.
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Figure 6. Multilayer GFSTL architecture for 6G ITSs.
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5.3.2. Training Process and Iterative Algorithm

In the multilayer GFSTL framework for 6G ITS, the training is carried out iteratively
as defined in Algorithm 2. Here, the HAP functions as the FL server; RSUs serve as FSL
servers; and VUs and cameras operate as clients. Each layer aggregates its knowledge into
the global model using a blend of SL, FL, and TL methodologies. The process is as follows:

1. Initialization: Each client (VUs, UAVs, and cameras) is initialized with a pre-trained
model that is specific to its task, with parameters denoted as 6; for the client model
and 0, for the server model.

2. Local Model Update: Clients perform forward propagation on their local models
using the collected data, producing intermediate results (smashed data) that are sent
to the nearest FSL server (RSU or BS).

3. FSL Server Aggregation: RSUs and BSs aggregate the intermediate results, perform
forward and backward propagation on their server models, and send the correspond-
ing gradients back to the clients to update their local models.

4. Main FL Server Aggregation: Once all FSL servers complete their local training, they
send the updated models to the main FL server (HAP), aggregating these models into
a unified global model.

5. Global Model Update: The global model is redistributed to the clients through the
FSL servers for the next training iteration.

The iterative process described above ensures that all 6G ITS infrastructure compo-
nents collaborate to build a unified, intelligent model. This model adapts to dynamic traffic
conditions and learns from various data sources.

5.3.3. Added Benefits and Challenges

In the following, we delve into the core aspects of the proposed GFSTL framework,
outlining its significant advantages and the inherent complexities that need to be addressed.
The unique architecture of GFSTL offers a robust solution for ITSs while also presenting
several considerations for its optimal implementation.

Benefits: The GFSTL framework is designed to deliver a multitude of advantages
that enhance the efficiency, privacy, and reliability of ITSs. These benefits stem from
its innovative, multilayered, and distributed approach that addresses key limitations of
traditional centralized systems.

*  Scalability: The multilayer GFSTL is inherently scalable, allowing it to accommodate
the increasing number of VUs, UAVs, and cameras as the ITS infrastructure grows.
Its distributed nature ensures that the computational load is balanced throughout
the system.

e  Privacy Preservation: Since raw data remain on the client side (VUs, UAVs, and
cameras), the model leverages FSL to ensure privacy-preserving model training, which
is crucial for sensitive traffic data and user privacy.

*  Reduced Latency: By distributing computational tasks across FSL servers (RSUs/BSs)
and the main FL server (HAP), GFSTL minimizes communication overhead and
reduces the time needed to update the global model.

¢  Resilience: The integration of multiple hierarchical layers ensures redundancy, mak-
ing the system more resilient to failures in individual components, such as RSUs
or UAVs.

Challenges: Despite its promising benefits, the deployment of a sophisticated system
like GFSTL in a 6G ITS environment comes with its own set of challenges. These complexi-
ties arise from the distributed nature of the system, the diversity of data sources, and the
need for careful resource orchestration to ensure optimal performance and model accuracy.
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*  Resource Management: Efficiently managing network and computational resources
across VUs, UAVs, cameras, RSUs, and the HAP is critical. Bandwidth allocation,
processing power, and memory management are areas that need careful optimization.

*  Data Heterogeneity: Data collected from various components (VUs, UAVs, and cam-
eras) may differ in format and quality. Ensuring that the global model can generalize
across heterogeneous data sources is a challenging task.

*  Model Convergence: Although TL and SL help to accelerate the training process,
achieving convergence in a system as complex as the 6G ITS requires fine-tuning of
hyperparameters, especially with regard to the learning rate and aggregation intervals.

5.4. Latency Analysis for a Multilayer 6G ITS Scenario

Here we present a simplified analysis of latency across various DML methodologies
used in distributed 6G ITSs, specifically FL, SL, FSL, FSTL, and GFSTL. In distributed
frameworks, the overall latency is influenced by both computation and communication
times. For our analysis, we assume that all users, comprising VUs, UAVs, and street
cameras, have uniform data distributions. Including all these client types creates a more
realistic ITS scenario, aligning with the 6G vision of interconnected ITS infrastructure.

In the ITS scenario under consideration, latency is analyzed by defining several key
parameters. Let d denote the total data size that is processed, while & represents the size
of the intermediate (smashed) layer’s output during SL or FSL. The data transmission
rate, R, is a variable that depends on the communication medium. For training times, T
signifies the time required to train a complete DNN from scratch, while T" and T” represent
training times in FSTL and GFSTL, respectively, using a pre-trained TL model. Additional
factors further impact latency in these frameworks. For example, Treqavg denotes the time
required for performing the full aggregation of the model in FL, while Tyjerge represents
the merging time of the smashed parameters in SL and FSL. Aggregation times are also
split into Typr, for handling aggregation on each user group side and TyjainFr, for managing
aggregation on the main FL server side. Furthermore, the complete model contains g

parameters, with r as the ratio of the size of the submodel on the user side to the size of

submodel size
full model size *

computation and communication times. Communication latency is particularly significant

the complete model, calculated as r = total latency is the sum of both the
in DML due to bidirectional transmission requirements. For example, in expressions such
as 2pr and %, factor 2 reflects the need to upload model updates from users to the server
and to download updated parameters back from the server to clients.

Table 3 and the numerical results in Section 6 demonstrate how latency scales with
the number of users # across these methods. In particular, as n increases, SL becomes less
efficient because its training time is directly proportional to n due to the serial process.
In contrast, FL, FSL, and FSTL methods benefit from parallel training between clients, thus
reducing total time even with a larger user base. In terms of latency ordering,

FSTL < FSL < FL < SL.

This ordering of latency reflects specific advantages within each framework. FSTL,
for instance, achieves lower latency than FSL by integrating TL, which leverages pre-trained
models to expedite convergence. This allows FSTL to start from a more informed state,
represented by T < T’ < T, and ultimately accelerates the training process. FSL also
demonstrates greater efficiency over FL because it requires aggregation of fewer parameters,
which makes it less computationally demanding; here, Tyerge < TFedavg indicates that
merging the smaller model segments in FSL is faster than aggregation of the entire model
in FL. In contrast, SL exhibits the highest latency of these methods due to its reliance on
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serial processing steps, which prolongs training time and makes it comparatively slower
in performance.

In GFSTL, latency is influenced by both the number of users and the distribution
between various groups. Let 1; denote the number of users in the j-th group. GFSTL
latency depends on the slowest group in the system, where communication time is dictated
by the group with the greatest delay. To account for this, we employ the max(-) operator,
which represents the overall latency in GFSTL as

2dh
Tarstr = T" + Tuserrr. + TMainFL + max{ nR} +
j

2qr

R (13)

Table 3 presents the results of the combined latency analysis for all methods, FL,
SL, FSL, FSTL, and GFSTL, illustrating the influence of client numbers 7, data size d,
and communication rate R on total latency.

Table 3. Latency analysis of five DML methods per round.

- - . Total
. Training + Communications per Total Communica- c .
Learning Method Aggregation Time User/Server tions/Server %(::;mumcatlon Total Latency
FL T+ TFedAvg 2g9 2nq % T+ TFedAvg + %1
SL T 2h 4 gy 2dh + 2nqr udh . 2gr T+ 20
T + Titerge + 2 +
FSL T+ TMerge % + 2gr 2dh + 2ngr % + % 2 erge T uR
R
T' + Tferge + 22 +
FSTL T' + Tiferge 2h 1 2gr 2dh + 2ngr 2y 2 e ER
R
T + TU L+ T + TUserFL +
GFSTL ser Uh 4o 2dh + 2nqr 2dn | 2o ThainFL +
TMainFL m tAAr 7 max{ R } tx i

2
max{ﬁ%}Jr%

In conclusion, this analysis suggests that both FSTL and GFSTL provide substantial
latency improvements, especially when scaling to larger user groups within 6G ITS scenar-
ios. These gains stem from pre-trained model usage and efficient parameter aggregation,
outperforming conventional FL and SL approaches in latency-sensitive applications.

6. Simulations and Performance Evaluations

The proposed GFSTL method for 6G ITSs is evaluated through simulations performed
on a Python-based platform, using libraries such as Pandas, NumPy, and Matplotlib for
data processing and visualization. To accelerate training and handle high-dimensional data
typical of ITS applications, we employ NVIDIA® Tesla® T4 GPU accelerators.

Given the requirements for real-time object detection and situational awareness in ITSs,
we employ one of the latest versions of YOLOV5 as our base model [42]. YOLOvVS5, which is
optimized for both accuracy and speed in object detection, is designed to rapidly process
complex urban scenes, enabling it to detect multiple objects such as vehicles, pedestrians,
traffic lights, and signs within a single frame. This makes it well-suited for ITS applications
where rapid detection and categorization of diverse objects are essential for tasks such as
traffic monitoring, congestion management, and accident prevention.

Furthermore, we utilize the Cityscapes dataset [43] for training and testing. This
dataset, which contains more than 5000 high-resolution images from urban street environ-
ments, provides dense pixel-level annotations across multiple object classes pertinent to
ITSs, including vehicles, road markings, pedestrians, and environmental elements. Unlike
simpler datasets such as MNIST, Cityscapes represents real-world complexities in urban
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environments with variable lighting, weather, and dynamic backgrounds, making it more
suitable for evaluating model robustness in ITS applications.

To comprehensively evaluate GFSTL, we analyze its performance using key metrics
such as model accuracy, latency, communication efficiency, and scalability. Simulations are
carried out in a multilayer ITS setup, where each RSU serves as an FSL server connected to
a batch of five VUs, two UAVs, and three stationary cameras positioned at intersections or
crossroads to provide diverse data inputs. Three RSUs act as distributed FSL servers, while
a HAP functions as the main FL server responsible for aggregating models received from
each RSU. This multilayer configuration reflects a hierarchical AGIN structure suitable for
6G ITSs, where every component of the infrastructure is interconnected to optimize data
processing and model performance.

6.1. Simulation, Hardware, and Network Parameters

Table 4 reports the exact experimental configuration used throughout this section, in-
cluding the dataset splits, hardware, network assumptions, and split-learning choices.
For object detection, we employ the YOLOv5-m variant (Ultralytics): approximately
21.2 x 10° parameters and ~ 49 GFLOPs at an input resolution of 640 x 640 [44]. This
model was selected as a practical trade-off between detection accuracy and inference cost
for ITS use cases, where RSU/HAP servers operate with Tesla T4 accelerators (16 GB
GDDR6) and edge clients have limited memory/compute budgets [45].

The main training and per-client hyperparameters used in all experiments are as follows:
input size = 640 x 640, per-client local batch size = 8, optimizer = Adam, initial learning
rate = 1 x 1074, weight decay = 1 x 10~*%, and local epochs per round = 1. The Cityscapes
dataset splits follow standard practice (Train = 2975; Val = 500; Test = 1525) [43]. The per-batch
composition in our ITS scenarios is five VUs, two UAVs, and three street cameras (one
batch), and experiments sweep from 1 to 10 batches per RSU.

To support Split/ Transfer Learning, we cut the network at the last neck layer (just
before the detection head) and transmit a compact “smashed” feature vector per image.
The smashed representation used in our experiments is 256 floats (single-precision), i.e.,

smashed size per image = 256 x 4 bytes = 1024 bytes ~ 1.0 KB.
With batch size = 8, the per-client smashed payload per local update is
8 x 1.0KB = 8192 bytes = 65,536 bits.

Under the baseline link rate of 100 Mbps (that is, 100 x 10° bits/s), the raw transmission
time for this payload (neglecting protocol overhead and RTT) is

65,536 bits

T — 6. 107%s ~ 0. '
00 0P bitge = 65836107 s & 066 ms

By contrast, uploading the full YOLOv5-m model as in standard FL would transfer approximately
21.2 x 10° params x 4 bytes/param = 84,800,000 bytes ~ 84.8 MB,

which is impractical for per-round edge uploads on the considered link rates. These arith-
metic examples motivate why GFSTL transmits compact smashed representations (KB-scale
per image) rather than full models (tens of MB), reducing the per-round communication
burden by orders of magnitude.

Table 4 lists all the values of hardware and network parameters used as a baseline
for the latency and communication calculations presented in Section 5.4 and the method
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comparisons later in this section. Using the same physical configuration for FL, SL, FSL,
FSTL, and GFSTL ensures that the differences reported later in Table 5 of Section 6.5 (final
mAP, rounds to converge, end-to-end latency, and per-round communication volume)
arise from the learning paradigms themselves rather than from hardware or network
discrepancies, enabling a fair and reproducible comparison.

Table 4. Simulation, hardware, and network parameters.

Parameter Value/Type
YOLOVS5 variant YOLOv5-m (21.2 M params, 49 GFLOPs @ 640 x 640).
Input image size 640 x 640 px.

Pre-trained weights

YOLOV5 (Ultralytics) pre-trained then fine-tuned on Cityscapes.

Cityscapes images (fine annotations) ~ Train: 2975; Val: 500; Test: 1525.

Per-batch composition

5 VUs, 2 UAVs, and 3 static cameras (per batch).

Max batches per RSU 1-10 (experiments sweep).

GPU NVIDIA Tesla T4, with 16 GB of GDDR6.

RSU compute 1 x Tesla T4 (per RSU experiment).

HAP compute (main FL server) 2 x Tesla T4 (simulated higher-tier server).

CPU (host) Intel Xeon 8 cores @ 2.3 GHz (typical server host).
Per-client memory (simulated) 4 GB (typical VU/UAV/camera edge device budget).

Batch size (per client) 8 images.

Optimizer Adam, initial LR =1 x 1074, and weight decay =1 x 107,
Training epochs per local update 1 (local)/global rounds up to 200 (early stopping).
Communications link rate (R) 100 Mbps uplink/downlink.

Smashed representation (cut layer) 256-dim float vector per image (256 x 4 bytes = 1.0 KB).

Estimated smashed payload per batch 1.0 KB x batch size (8) x number of clients per batch (10).

Table 5. Summary of results.

Method Final Accuracy Rounds to Converge  Latency per Round  Comm. vol. per Round
FL 94.2% 5 420 ms 4.5 MB
SL 97.6% 10 1500 ms 0.9 MB
FSL 94.5% 8 380 ms 0.8 MB
FSTL 94.9% 3 220 ms 0.8 MB
GFSTL 99.8% 2 160 ms 0.6 MB

6.2. Model Convergence and Accuracy Versus Rounds

To assess the convergence behavior of the proposed frameworks, we evaluated model
accuracy across training rounds and compared it with three baseline DML paradigms: FL,
SL and FSL. All methods use the same dataset (Cityscapes), with YOLOVS5 as the base
model [21], and clients are initialized with Transfer Learning from a pre-trained YOLOv5
checkpoint. The results are shown in Figure 7.

As seen in the figure, the GFSTL method achieves the highest initial accuracy (~0.956
at round 1) and converges rapidly toward near-optimal performance (~0.998 by round 8).
In contrast, FSTL starts at ~0.935 and stabilizes around 0.958 after 10 rounds, while FL and
FSL show slower and less stable growth, plateauing near 0.951 and 0.940, respectively. SL
performs the weakest overall, starting near 0.920 and reaching only ~0.933 at round 10.
These numerical results confirm the clear ordering of GFSTL > FSTL > FL > FSL > SL in
terms of both convergence speed and final accuracy.
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Figure 7. Accuracy of different DML methods versus the number of training rounds.

The superior performance of GFSTL can be explained by three factors. First, accel-
erated knowledge transfer provides all clients with pre-trained feature representations,
allowing GFSTL to start from a higher baseline accuracy than the other methods. Second,
hierarchical synchronization between the FL and SL servers allows more frequent and
efficient updates, which reduces drift between heterogeneous clients and shortens the
number of rounds needed for convergence. Third, flexible aggregation across RSUs and
HAPs in GFSTL leverages the multilayer T/NTN architecture, which improves scalability
and robustness when handling diverse vehicular, UAV, and roadside camera data sources.

It should also be noted that the accuracy of GFSTL quickly saturates after round 6,
indicating efficient utilization of the available data and suggesting that relatively few
communication rounds are needed to achieve near-optimal performance. This has direct
implications for latency and bandwidth usage in ITS scenarios, where minimizing the
number of communication rounds is crucial. In contrast, FL, SL, and FSL require many
more rounds to approach their respective plateaus, which implies higher communication
costs and less efficient use of network resources.

6.3. User Diversity and Model Accuracy

To evaluate the robustness of the proposed frameworks under varying levels of user
diversity, we simulate scenarios in which the number of user batches per RSU is increased
from 2 to 10. Each batch contains five VUs, two UAVs, and three cameras, thus capturing
a wide range of perspectives and sensing modalities. All approaches utilize YOLOV5,
which is initialized with a pre-trained Cityscapes model, to ensure a fair baseline. Figure 8
presents the resulting accuracies for GFSTL, FSTL, FSL, FL, and SL.

The results show a clear separation in performance. GFSTL consistently maintains near-
constant high accuracy (~0.992-0.997) across all batch sizes, demonstrating its scalability
and resilience to the challenges posed by heterogeneous data sources. FSTL achieves stable
accuracy around 0.949 but does not improve with additional user batches, suggesting that
while its hybrid structure reduces variance, it lacks the flexibility of the hierarchical server
placement and transfer initialization of GFSTL. In contrast, FL and FSL exhibit a marked
degradation in accuracy as the number of batches increases: from ~0.944 at 2 batches
to below 0.916 at 10 batches. This drop highlights the difficulty of handling statistical
heterogeneity and non-i.i.d. data distributions when only parameter averaging or basic
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split mechanisms are applied. SL performs better than FL and FSL, stabilizing around 0.976,
but it falls short of GFSTL because it lacks federated aggregation and thus struggles to fully
generalize across diverse users.
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Figure 8. Accuracy of different DML methods versus the number of user batches per RSU.

Two insights emerge from these observations. First, GFSTL’s knowledge transfer
via pre-trained initialization enables each client to begin with strong representations of
urban scene features, ensuring that even highly diverse client data can be quickly adapted
without degrading the quality of the global model. Second, GFSTL’s flexible FL+SL
aggregation across RSUs and HAPs reduces the negative impact of user diversity by
aligning intermediate representations before global averaging, thus maintaining robustness
as user batches scale.

From an ITS perspective, these findings imply that GFSTL is particularly well-suited
for large-scale deployments where thousands of heterogeneous edge devices (cars, UAVs,
and roadside cameras) contribute data. Unlike FL, SL, or FSL, which deteriorate as the
system scales, GFSTL achieves both scalability and accuracy preservation, a property critical
for real-time safety and perception tasks in 6G-enabled ITS environments.

6.4. Latency and Communication Efficiency

Figure 9 reports the total end-to-end latency (per training round) as the number of user
batches per RSU increases from 2 to 10. The total latency plotted in the figure corresponds to
the wall-clock time required to complete a single global update and is computed according
to the decomposition introduced in Section 5.4. In that model, the per-round latency can be
expressed as the sum of three main components:

Tround = Tcomp,clients + Tcomm,clientsHRSU + Tagg ’
—_——— —_— ~—~
local inference/forward /backward upload/download RSU- and HAP-level aggregation

where T,gg itself depends on whether aggregation is performed serially or in parallel across
groups and whether an additional HAP-level global aggregation step is required (see
Section 5.4 for the full derivation).

Several important trends are visible in Figure 9:
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¢  GFSTL (purple curve) is effectively flat and lowest at scale. GFSTL exhibits a nearly
constant latency (~14-22 s across the sweep) and shows only a minor increase even at
10 batches. This behavior follows directly from the hierarchical, parallel aggregation
used by GFSTL: RSUs aggregate their connected clients locally in parallel, and only
compressed intermediate representations (the smashed tensors) are exchanged up-
ward. In the latency equation, this reduces T.omm,clientssRsU Per client and keeps Tagg
dominated by the slowest RSU rather than the sum of all clients, therefore avoiding
the explosive growth seen in serial schemes.

*  FSTL (red curve) shows moderate growth but remains substantially lower than
FL/FSL/SL at high loads. FSTL starts around 21 s and rises to ~31 s at 10 batches.
Compared to GFSTL, FSTL lacks the same level of hierarchical parallelism or dynamic
placement of FL./SL servers, so its Tagg and Teomm terms increase more with the user
count. However, because FSTL still transmits compact representations rather than
entire models, it avoids the large spikes observed for full-FL-style approaches.

* FL and FSL (blue and green curves) remain low on a small scale but spike dra-
matically at 10 batches. Both FL and FSL are roughly in the 12-22 s range for small-
to-moderate batch counts, then jump to ~61 s (FL) and ~71 s (FSL) at 10 batches.
This non-linear escalation is explained by two mechanisms in the latency model:
(i) the upload/download of full model parameters or large gradient vectors causes
Tcomm clientssRSU to grow with the number of clients, and (ii) global aggregation in
FL requires communication with a centralized server (HAP or cloud) that becomes a
bottleneck when many clients simultaneously upload large models. In FSL, the extra
split/label-handling complexity can further amplify communication and aggregation
overhead, hence the higher spike compared to plain FL.

e  SL (orange curve) is highest overall and grows rapidly at large scale. SL demonstrates
high latency even at small batch counts (=33 s) and reaches ~80 s at 10 batches. This is
expected because classic Split Learning operates in a sequential (or partly sequential)
manner where server-side processing often waits for client-by-client smashed uploads
and sequential forward /backward passes. In terms of latency decomposition, SL’s
Tagg effectively becomes a sum of per-client server processing times, causing linear (or
worse) scaling with the number of clients.

Putting these observations in the context of Section 5.4, the figure confirms two key
messages: (i) reducing the size of exchanged payloads (smashed tensors) drastically lowers
Teomm and thereby amortizes network cost as the user count grows; and (ii) organizing
aggregation in parallel groups (RSU-level) and then performing a higher-tier aggregation
(HAP-level) bounds the T,gg term by the slowest group rather than the sum of all client
delays, thus achieving much better scalability in wall-clock time.

For latency-sensitive ITS tasks (real-time perception and collision avoidance), the re-
sults show that GFSTL and, to a lesser extent, FSTL are preferable because they maintain
low per-round latency even as many edge devices participate. Pure FL and SL become
impractical at high client density unless additional network capacity or aggressive com-
pression is employed. In summary, Figure 9 empirically validates the latency analysis in
Section 5.4, demonstrating that compact smashed payloads combined with hierarchical
parallel aggregation (the core of GFSTL) deliver superior latency scaling for large-scale
multilayer 6G ITS deployments.
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Figure 9. Latency of different DML methods versus the number of user batches per RSU.

6.5. Summary of Key Results

Table 5 presents a compact quantitative comparison of the methods evaluated us-
ing the metrics described in previous sections: final detection performance (mAP @ IoU
0.5), rounds required to reach 95% of the final accuracy, end-to-end per-round latency
(computation + communication), and per-round communication volume. All methods
were executed using the physical and hyperparameter settings in Table 4 so that differences
stem from the learning paradigm itself rather than from hardware or network variation.
The entries in the table illustrate the trade-offs we discuss in the text: SL achieves low
communication but suffers from very high latency due to its serial server—client opera-
tion; FL transmits large model updates and therefore incurs the largest communication
volume and moderate latency; FSTL and GFSTL reduce both communication and latency
by transmitting compact smashed representations and leveraging hierarchical aggrega-
tion, with GFSTL delivering the best balance of accuracy (99.8% mAP), fast convergence
(two rounds to 95% of the final accuracy), and low per-round latency (160 ms) under the
baseline configuration.

In summary, our evaluation demonstrates that GFSTL, leveraging the YOLOv5 model
pre-trained on the Cityscapes dataset, excels in overcoming the challenges posed by the het-
erogeneous and dynamic nature of ITS environments. GFSTL consistently achieves higher
accuracy and significantly lower latency across various user configurations, affirming its
suitability for ITS applications where real-time decision-making and high accuracy are
crucial. The GFSTL framework’s capacity to handle large-scale, diverse data sources with
minimal communication overhead makes it a powerful solution for intelligent, connected
infrastructure within 6G networks.

7. Discussion, Limitations, and Future Directions

This paper presents a unified GFSTL framework designed for 6G ITSs, demonstrating
how a hierarchical, multilayer network architecture can enhance the scalability, accuracy,
and privacy of DML. The proposed architecture effectively combines RSUs and HAPs as
FSL and central FL servers, respectively, enabling optimized model aggregation across a
diverse set of clients, including VUs, UAVs, and street cameras. This approach directly
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addresses the need for a cohesive system that can manage the massive scale and data
complexity envisioned for 6G ITSs.

Our simulation results, which leverage the advanced YOLOv5 model and the realistic
Cityscapes dataset, provide strong validation for the proposed framework. The superior
performance of GFSTL in terms of faster convergence, higher accuracy, and significantly
lower latency compared to traditional DML methods highlights the powerful synergy of
combining Federated, Split, and Transfer Learning. The framework’s ability to maintain
high performance even as the number of users increases underscores its scalability, a critical
requirement for real-world ITS deployments. By distributing computational tasks across
various network layers and minimizing communication overhead through model splitting,
GFSTL is well-suited to the demands of real-time data processing and decision-making in
high-mobility environments.

However, it is important to acknowledge the limitations of this study, which can
inform future work. Our simulations, while comprehensive, were conducted under cer-
tain idealizations, such as uniform data distributions among clients and stable network
conditions. Real-world ITS environments will undoubtedly feature significant data hetero-
geneity from different sensors and perspectives, as well as dynamic network challenges like
intermittent connectivity and bandwidth fluctuations. Furthermore, our latency analysis
provides a theoretical foundation, but practical deployments will require accounting for
additional overheads related to processing and network management.

Future research should focus on extending the GFSTL framework to address these real-
world complexities. A crucial next step would be the development and evaluation of GFSTL
in a hardware testbed or a more sophisticated network simulator that models dynamic and
unpredictable conditions. Further investigation into advanced aggregation strategies that
can effectively handle non-IID data from heterogeneous clients to prevent model drift and
ensure fairness is also needed. Finally, exploring dynamic resource management algorithms
that can optimize the allocation of computation and communication resources across the
multilayer architecture in real time would be a valuable contribution. Building on the
foundation provided in this work, future research can further advance the development of
an intelligent, interconnected, and resilient transportation ecosystem for the 6G era.

8. Conclusions

This paper introduced a unified and intelligent DML framework, GFSTL, designed
to meet the complex demands of 6G-enabled ITS operating over multilayer integrated
T/NTNs. Our core contribution is a novel architecture that synergistically combines FL,
SL, and TL to address the critical challenges of scalability, data privacy, and resource
efficiency inherent in large-scale, heterogeneous environments. The proposed GFSTL
framework leverages a hierarchical structure, utilizing network elements such as RSUs,
HAPs, and LEO satellites as distributed servers to manage and aggregate model training
across a diverse range of clients, including VUs, UAVs, and ground-based cameras. This
multilayer approach not only enhances network coverage and resilience but also optimizes
computational and communication loads by partitioning model training and minimizing
data exchange. Through comprehensive simulations using the advanced YOLOv5 model
on the Cityscapes dataset, we have demonstrated the superior performance of GFSTL. Our
results validate that the framework achieves significantly faster convergence, higher model
accuracy, and lower end-to-end latency compared to traditional DML methods like FL
and SL, particularly as the number of users and data complexity increase. By successfully
integrating advanced learning paradigms within a scalable T/NTN architecture, this work
provides a robust and privacy-preserving solution for next-generation ITSs. The GFSTL
framework lays a foundational stone for the development of truly intelligent, connected,



Network 2025, 5, 41 35 of 37

and resilient transportation ecosystems, paving the way for the ambitious vision of 6G to
become a reality.
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