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 A B S T R A C T

The anatomical landmarks on the liver (mesh) surface, including the falciform ligament and liver ridge, 
are composed of triangular meshes of varying shapes, sizes, and positions, making them highly complex. 
Extracting and segmenting these landmarks is critical for augmented reality-based intraoperative navigation 
and monitoring. The key to this task lies in comprehensively understanding the overall geometric shape and 
local topological information of the liver mesh. However, due to the liver’s variations in shape and appearance, 
coupled with limited data, deep learning methods often struggle with automatic liver landmark segmentation. 
To address this, we propose a two-stage automatic framework combining mesh-CNN and graph-CNN. In the 
first stage, dynamic graph convolution (DGCNN) is employed on low-resolution meshes to achieve rapid global 
understanding, generating initial landmark proposals at two levels, ‘‘dilation" and ‘‘erosion", and mapping them 
onto the original high-resolution surface. Subsequently, a refinement network based on mesh convolution fuses 
these landmark proposals from edge features along the local topology of the high-resolution mesh surface, 
producing refined segmentation results. Additionally, we incorporate an anatomy-aware Dice loss to address 
resolution imbalance and better handle sparse anatomical regions. Extensive experiments on two liver datasets, 
both in-distribution and out-of-distribution, demonstrate that our method accurately processes liver meshes of 
different resolutions, outperforming state-of-the-art methods. The reconstructed liver mesh dataset and the 
source code are available at https://github.com/xukun-zhang/MeshGraphCNN.
1. Introduction

Augmented Reality (AR)-based navigational guidance for laparo-
scopic hepatectomy introduces a groundbreaking visualization
approach, central to which is the alignment of a preoperative 3D 
liver model (mesh) with intraoperative 2D laparoscopic images (Ali 
et al., 2025; Lopez, 2022; Pfeiffer et al., 2018). This technique en-
ables surgeons to accurately identify internal structures by overlaying 
the liver model onto the laparoscopic view (Fig.  1A). The success 
of this 3D–2D fusion heavily relies on using anatomical landmarks 
as registration constraints (Robu et al., 2018; Mhiri et al., 2024), 
such as the liver’s ridge and the falciform ligament. Currently, these 
anatomical landmarks are manually annotated on liver meshes during 
the preoperative phase (Koo et al., 2017, 2022). Although technically 
feasible, this process is time-consuming – often requiring several hours 
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per case (Plantefeve et al., 2016) – and demands substantial anatomical 
expertise. Furthermore, consistent identification across diverse anatom-
ical shapes remains challenging, especially when subtle landmarks such 
as the falciform ligament are involved. These limitations constrain the 
scalability and standardization of AR-assisted navigation. Therefore, 
automating the extraction (i.e., segmentation) of these anatomical 
features is not only desirable, but also essential for streamlining surgical 
workflows and promoting wider clinical adoption of AR technology.

However, automatically segmenting key anatomical landmarks from 
the liver mesh is challenging, as it requires a comprehensive under-
standing of both the global geometric structure (spatial relationships) 
and the local topological information (mesh unit shape). As illustrated 
in Fig.  1(A), two such landmarks are commonly used for visual naviga-
tion: the falciform ligament and the liver ridge. The falciform ligament 
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Fig. 1. (A) Accurate segmentation of anatomical landmarks on the liver surface is crucial for developing intraoperative AR navigation systems. The magnified 
inset highlights landmark vertices and their shared edges, which define the segmentation regions studied in this work. (B) The liver mesh surface lacks texture 
and exhibits significant variations in shape and appearance, making landmark segmentation particularly challenging, especially for the falciform ligament.
is a thin fibrous structure that connects the anterior surface of the 
liver to the abdominal wall, typically located near the midline-left 
region of the liver surface. It lies in a relatively flat, low-curvature 
area composed of large, evenly distributed triangular faces. However, 
the local surface cues that define this structure – such as directional 
edge alignment or subtle curvature transitions – are often too subtle to 
be reliably recognized by human annotators. This motivates the devel-
opment of automated methods capable of learning these anatomically 
meaningful yet visually ambiguous patterns. In contrast, the liver ridge, 
positioned on the anterior base of the liver and extending laterally 
across both lobes, appears in a high-curvature region characterized by 
small, densely clustered triangles and sharper local topology.

The Preoperative to Intraoperative Laparoscopy Fusion (P2ILF) 
challenge (Ali et al., 2025) marked a pioneering effort in addressing 
this segmentation task within the scope of preoperative to intraop-
erative liver image fusion. This challenge provided a dataset of 11 
liver meshes, sparking various innovative solutions from the global 
research community. The methods proposed by participants included 
point-based approaches like Pointnet++ (Qi et al., 2017b), graph-based 
methods (Kipf and Welling, 2016), and mesh-specific strategies such 
as MeshCNN (Hanocka et al., 2019) (the winning method). Point-
net++ (Qi et al., 2017b) and Graph Convolutional Network (GCN) 
methods (Kipf and Welling, 2016) excel in global understanding by 
aggregating point cloud features but often overlook the rich details 
of the mesh surface. Conversely, MeshCNN-based methods (Hanocka 
et al., 2019) perform feature computation along the mesh surface 
topology through mesh convolutions (MeshConv), offering robust local 
topological learning. However, when processing meshes with high and 
inconsistent resolutions (Fig.  1(B)), MeshCNN (Hanocka et al., 2019) 
suffers from issues in computational efficiency and consistent global 
shape representation due to its sequential pooling and edge-collapse 
strategy. These problems become particularly challenging when learn-
ing anatomical structures across samples with diverse liver shapes and 
mesh complexities (see Section 3.2.1 for details).

In this paper, to address the aforementioned challenges, we propose 
a novel geometric deep learning framework that combines the strengths 
of graph-based and mesh-based methods while mitigating their re-
spective weaknesses. Specifically, our Nested Resolution Mesh-Graph 
2 
CNN framework is designed to accurately extract key liver anatomical 
landmarks, such as the falciform ligament and liver ridge, which are 
represented as combinations of vertices and edges on the 3D liver mesh. 
The task is thus reformulated as a vertex or edge segmentation problem 
on the mesh. Our approach operates on two mesh resolution levels: 
compressed low-resolution meshes and the original high-resolution 
meshes. For low-resolution meshes, we utilize Dynamic Graph Con-
volutional Networks (DGCNN) (Wang et al., 2019b) to quickly learn 
the liver’s overall shape and appearance, generating initial anatom-
ical landmark segmentations. These segmentations are mapped onto 
the high-resolution mesh surface through different propagation meth-
ods, obtaining landmark proposals at ‘‘dilation’’ and ‘‘erosion’’ levels. 
Subsequently, we design an anatomical refining network built on Mesh-
Conv, which integrates these landmark proposals with the detailed 
topology of the original high-resolution mesh. The network employs 
a fine-grained aggregation-based attention mechanism that effectively 
balances and combines the potential correct priors from the differ-
ent proposals, producing refined segmentation results sensitive to the 
complex topological structures of the liver surface. Additionally, we 
introduce an anatomy-aware Dice loss that addresses the mesh surface’s 
unevenness and captures the relative relationships of ligaments and 
ridges, further enhancing the segmentation performance.

In summary, the main contributions of this work are:

• We propose a nested-resolution framework that integrates dy-
namic graph convolution (DGCNN) with MeshConv-based re-
finement to enable accurate liver landmark segmentation across 
meshes with varying resolutions.

• We introduce an anatomical refinement strategy that adaptively 
integrates coarse landmark proposals through attention fusion 
and auxiliary supervision, and is further enhanced by an anatomy-
aware Dice loss that mitigates resolution imbalance and improves 
segmentation quality.

• We provide a manually annotated dataset of 200 liver meshes 
from public CT datasets and validate the method on the clini-
cally relevant P2ILF challenge cases, demonstrating robust gen-
eralizability across imaging modalities and mesh reconstruction 
pipelines.
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The organization of our paper is as follows. In Section 2, we com-
prehensively review related applications and work in this field. In 
Section 3, we describe the data and proposed framework in detail. In 
Section 4, we present our experimental settings and results. Finally, we 
discuss and conclude this work in Section 5.

2. Related work

Our research focuses on the application of augmented reality-
assisted laparoscopic liver resection (AR-LLR), emphasizing 3D mesh 
segmentation techniques, particularly the automated extraction of crit-
ical anatomical landmarks on the liver surface.

2.1. 3D-2D registration-based LLR navigation

Augmented reality technology (AR) addresses the challenge of inter-
nal structure invisibility in LLR by integrating 3D liver models derived 
from CT or MR imaging with laparoscopic images. Existing methods 
register preoperative 3D data with intraoperative 2D images or 3D 
data (Modrzejewski et al., 2019; Adagolodjo et al., 2017; Labrunie 
et al., 2022, 2023; Oya et al., 2024). Accurate extraction and seg-
mentation of common landmarks between laparoscopic images and 
preoperative 3D models are essential for achieving precise 3D-to-2D 
registration. Studies (Koo et al., 2017; Espinel et al., 2021) highlight 
the liver ridge, falciform ligament, and top boundary contours as 
potential 3D–2D registration landmarks. For instance, by combining 
biomechanical models with these landmarks, intraoperative dynamic 
tracking of the liver is achieved (Koo et al., 2017). Other works (Espinel 
et al., 2021) improve navigation accuracy by combining anatomical 
markers in intraoperative images with preoperative 3D models. Similar 
methods (Koo et al., 2022; Labrunie et al., 2022; Pei et al., 2024) using 
CASENet, UNet and SAM (Kirillov et al., 2023) for 2D detection still re-
quire manual annotation of 3D landmarks. These studies underscore the 
importance of automated anatomical landmark extraction algorithms 
to reduce user interaction and enhance the clinical utility of AR-LLR 
navigation.

2.2. Mesh segmentation

The segmentation of liver surface landmarks falls under the broader 
category of mesh segmentation in 3D shape processing. Current mesh 
segmentation methods can be broadly categorized as follows:

• 2D Projections: Early approaches (Chen et al., 2017; Dai and 
Nießner, 2018; Le et al., 2017; Pang and Neumann, 2016) typ-
ically project 3D geometric data onto 2D images from predefined 
viewpoints and process the projections using 2D CNNs. However, 
2D projections inevitably lose spatial information, limiting their 
performance in fine-grained segmentation tasks.

• Volumetric Methods: Voxel-based methods (Graham et al., 2018; 
Le and Duan, 2018; Riegler et al., 2017; Wang and Lu, 2019) 
discretize 3D space into regular volumetric grids and segment 
using 3D CNNs. These methods suffer from high memory and 
computational costs, with the resolution scaling exponentially 
with each dimension (Liu et al., 2019).

• Point Cloud Methods: Point-based methods directly process 3D 
geometric data using deep learning architectures. Pointnet (Qi 
et al., 2017a) achieves permutation invariance of point clouds 
by using symmetric max-pooling operations to aggregate features. 
Pointnet++ (Qi et al., 2017b) enhances local spatial relationship 
learning by hierarchically applying Pointnet. Subsequent works 
integrate attention modules (Wu et al., 2019), geometric sharing 
modules (Xu et al., 2020), and edge branches (Jiang et al., 2019) 
to extend Pointnet++ for finer local detail learning.
3 
• Graph Convolutional Networks (GCNs): Given the inherent spa-
tial relationships in 3D meshes, GCN-based methods have been 
proposed for 3D mesh recognition and segmentation tasks (Liang 
et al., 2020; Wang et al., 2019a). These methods (Wang et al., 
2018; Xie et al., 2020) represent 3D mesh data as graph struc-
tures and use spectral or spatial graph convolutions to aggre-
gate local information for each node. For instance, Wang et al. 
(2019b) combines multi-scale strategies and introduce dynamic 
graph convolutional networks (DGCNN) to handle dynamic graph 
structures, significantly expanding the application range of graph 
convolution methods to more complex and variable real-world 
problems.

• MeshCNN: Traditional methods struggle with the non-uniform 
and irregular topography of 3D mesh surfaces. Hanocka et al. 
(2019) proposed MeshCNN, a neural network architecture specif-
ically designed for meshes. MeshCNN operates directly on ir-
regular triangular meshes, performing tailored convolution and 
pooling operations. In this framework, mesh edges are analogous 
to pixels in images, forming a fixed-size convolution neighbor-
hood containing four edges. Additionally, MeshCNN’s pooling 
operation compresses edges in a task-driven manner, achieving 
downsampling similar to size reduction in CNNs. Recent stud-
ies (Schneider et al., 2021; Chen et al., 2023) have adopted the 
MeshCNN architecture for medical applications, such as vascu-
lar mesh and dental surface segmentation tasks, demonstrating 
performance comparable to state-of-the-art models.

2.3. Landmark extraction on mesh surfaces

Unlike typical mesh segmentation tasks, landmark extraction (or 
segmentation) on mesh data is highly class-imbalanced. For example, 
anatomical landmark segmentation on the liver surface involves irregu-
lar curves like ligaments and ridges that occupy a small mesh area. The 
P2ILF challenge at MICCAI’2022 (Ali et al., 2025) marked a milestone 
in liver mesh segmentation, collecting and annotating data from 11 
patients and attracting six international teams. Four teams employed 
Pointnet++, GCN, and MeshCNN technologies, with the MeshCNN-
based team emerging as the winner. Similar to this task, Chen et al. 
(2023) designed an improved MeshCNN with residual learning and 
multi-scale attention mechanisms for gingiva line detection/segmenta-
tion on 3D dental surfaces. Zhao et al. (2021) developed a dual-stream 
graph convolutional network tailored for the segmentation of 3D tooth 
meshes derived from oral scans, demonstrating state-of-the-art perfor-
mance in the field. However, unlike the rigid dental landmark detection 
task (Wu et al., 2019), liver data exhibits significant deformation, 
making direct application of these methods ineffective. The P2ILF 
challenge results further confirmed this, showing that GCN-based liver 
mesh segmentation was less effective than Pointnet++ and MeshCNN. 
Additionally, in contrast to the well-studied dental models, the liver 
domain lacks a larger-scale publicly available dataset, which is crucial 
for advancing research and development in this field.

By comprehensively reviewing related applications and work in 
the field, we aim to demonstrate the significant advancements and 
remaining challenges in AR-assisted LLR and 3D mesh segmentation, 
particularly for liver surface landmark extraction.

3. Materials and methods

3.1. Datasets

In this study, we manually annotated 200 liver meshes to evaluate 
the proposed method and to promote further research in this field. 
These meshes were derived from three publicly available liver datasets: 
3Dircadb (Soler et al., 2010), LiTS (Bilic et al., 2023), and Amos (Ji 
et al., 2022). The surface models were first extracted from ground truth 
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Fig. 2. The overall framework of our proposed nested resolution Mesh-Graph CNN for segmenting key anatomical landmarks on the surface of the liver, i.e. the 
falciform ligament (in blue) and liver ridge (in red). Here, both sparse representation (denoted as LR for low resolution) and dense representation (denoted as 
HR for high resolution) of the point cloud are used. 𝑁 represents the number of edges in the original mesh.
. 
segmentations using the Marching Cubes algorithm in 3D Slicer (Fe-
dorov et al., 2012), and further processed using MeshLab (Cignoni 
et al., 2008) to ensure manifold simplification, compression, and wa-
tertightness. The falciform ligament and liver ridge were manually 
annotated as vertex-level regions on the liver mesh using Blender 
software. Their annotation extents were defined with reference to 
anatomical landmarks: the falciform ligament extended upward from 
the midline fissure toward the superior surface, terminating approxi-
mately 1–1.5 cm below the highest point of the liver. The liver ridge 
extended bilaterally from the fissure toward the lateral boundaries, 
ending approximately 3–5 cm inward from the endpoints of the liver’s 
longest transverse diameter. While the liver meshes underwent nearly 
identical processing steps, the resolution of the resulting meshes, mea-
sured in edge counts, varied significantly from 3000 to 20000 edges. 
This variation was not intentionally introduced but rather arose from 
the inherent differences in liver shapes and sizes across the datasets. 
These natural variations in liver morphology present a primary chal-
lenge in this task, highlighting the need for a robust segmentation 
approach.

All annotations were meticulously reviewed by clinical experts to 
ensure accuracy and fairness in evaluation. Additionally, to further 
assess the generalizability of our proposed method, we included 9 
training cases from the P2ILF challenge (Ali et al., 2025) as an external 
evaluation cohort. These meshes were generated through heteroge-
neous reconstruction pipelines (including CT and MRI modalities) with 
unknown meshing strategies, often resulting in distinct local surface 
characteristics compared to our internal dataset.

3.2. Nested resolution mesh-graph architecture for anatomical segmentation

Our proposed framework for anatomical segmentation of the liver 
surface employs a nested resolution mesh-graph architecture. The sim-
plified process is illustrated in Fig.  2. The compressed resolution liver 
mesh is processed by a dynamic graph network (DGCNN) to capture the 
global structural features of the liver, obtaining preliminary segmen-
tation results. These initial results are then mapped onto the original 
high-resolution mesh surface through two levels of propagation, ‘‘di-
lation’’ and ‘‘erosion’’. Subsequently, combining the topological details 
present in the high-resolution mesh, we propose an anatomical refining 
network based on MeshConv, which effectively balances and integrates 
different levels of priors to produce accurate landmark segmentation.

3.2.1. Theoretical preliminaries in MeshCNN
In this section, we provide the foundational background of MeshCNN

Understanding the key components of MeshCNN — mesh convolution 
(MeshConv), mesh pooling, and unpooling is crucial for grasping the 
innovative aspects of our method.
4 
Mesh Convolution (MeshConv).  As illustrated in Fig.  3(A), taking 
the liver mesh as an example, any randomly selected edge (marked 
in red) on the liver surface lies within a ‘‘one-ring’’ structure, where 
this edge and its four neighboring edges constitute two faces. This 
local structure is invariant on the liver surface, providing a robust 
basis for performing convolution on edges. We show a close-up view 
of the one-ring structure in Fig.  3(B) and denote the target edge and 
its neighboring edges as (𝑒) and (𝑎, 𝑏, 𝑐, 𝑑), respectively. For each edge, 
MeshCNN defines its input feature as a 5-dimensional vector consisting 
of the dihedral angle, two inner angles, and two edge-length ratios for 
each adjacent face. Convolution is the dot product between a kernel 𝑘
and a neighborhood. Thus, the convolution for an edge feature 𝑒 and 
its four adjacent edges is: 

𝑓 ′(𝑒) = 𝑓 (𝑒) ⋅ 𝑘0 +
4
∑

𝑗=1
𝑘𝑗 ⋅ 𝑓 (𝑒𝑗 )

= 𝑘0 ⋅ 𝑓 (𝑒) + 𝑘1 ⋅ 𝑓 (𝑎) + 𝑘2 ⋅ 𝑓 (𝑏) + 𝑘3 ⋅ 𝑓 (𝑐) + 𝑘4 ⋅ 𝑓 (𝑑),

(1)

where 𝑓 (𝑎), 𝑓 (𝑏), 𝑓 (𝑐), 𝑓 (𝑑) are the features of the neighboring edges 
and {𝑘𝑗 ∣ 𝑗 = 0, 1,… , 4

} are the learnable weights. To ensure convolu-
tion invariance to the ordering of the input data, MeshCNN applies a 
set of symmetric functions before convolution, thus: 
{𝑒1, 𝑒2, 𝑒3, 𝑒4} = {|𝑎 − 𝑐|, 𝑎 + 𝑐, |𝑏 − 𝑑|, 𝑏 + 𝑑}. (2)

This guarantees that the convolution operation is invariant to the initial 
ordering of the mesh elements. MeshConv always operates on five edges 
(including the target edge and its four neighbors), maintaining a fixed 
feature dimension of 𝑁 × 𝐶 × 5, where 𝑁 is the number of edges, 𝐶
is the feature dimension, and 5 includes the edge and its neighbors. 
This convolution can be efficiently implemented using general matrix 
multiplication (GEMM), with the convolution kernel size set to (1, 5). 
Thus, MeshConv directly learns fine-grained information along the 
mesh surface topology, which is crucial for understanding the local 
details of the mesh. However, due to its strict reliance on local 1-ring 
neighborhoods, MeshConv captures only limited context within each 
layer. This limitation becomes more pronounced on high-resolution or 
resolution-varying meshes, where shallow MeshConv stacks struggle to 
aggregate stable global features. To mitigate this, traditional MeshCNN 
pipelines typically introduce mesh pooling to unify resolution and 
progressively enlarge the receptive field for global context learning.

Mesh Pooling.  Unlike pooling operations in 2D vision, mesh pool-
ing in MeshCNN is based on an edge collapse framework, where edges 
with less important features are collapsed or removed. The pooled 
mesh retains the significant features while reducing the total number 
of edges. As shown in Fig.  3(B), the edge collapse operation removes 
the target edge (𝑒) and converts five original edges (𝑒, 𝑎, 𝑏, 𝑐, 𝑑) into two 
new edges (𝑝, 𝑞). The features of (𝑝, 𝑞) are defined as: 
𝑝 = avg(𝑎, 𝑏, 𝑒)  and 𝑞 = avg(𝑐, 𝑑, 𝑒). (3)



X. Zhang et al. Medical Image Analysis 107 (2026) 103825 
Fig. 3. (A) A close-up view of the single-ring structure of the liver surface and the input edge features, where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 represent the edges in the single-ring 
structure. (B) Mesh convolution and the process of pooling and unpooling, resulting in new edges 𝑎′, 𝑏′, 𝑐′, 𝑑′, 𝑒′. (C) The feature propagation process during 
unpooling in MeshCNN. Here, 𝐹 ∈ R𝐻×𝐶 represents the feature matrix of the low-resolution mesh (with 𝐻 edges). Using the Unroll matrix 𝑀 ∈ R𝐻×𝑁 , these 
features are propagated to the high-resolution mesh level, yielding the corresponding features 𝐹 ′ ∈ R𝑁×𝐶 (with 𝑁 edges, where 𝑁 > 𝐻).
Fig. 4. Dynamic Graph Convolutional Neural Network (DGCNN) architecture used for the initial segmentation of anatomical landmarks on compressed low-
resolution meshes. The network includes a spatial transform module for normalizing input edge features, followed by dynamic graph convolution (DGConv) 
layers that extract multi-level features. Finally, Multi-Layer Perceptron (MLP) layers aggregate these features to produce initial segmentation scores. 𝑘-Nearest 
Neighborhood (𝑘-NN) is used in both spatial and DGConv layers.
However, mesh pooling in MeshCNN is a sequential process that col-
lapses edges one at a time based on feature ranking, making it com-
putationally inefficient for high-resolution inputs. Moreover, due to 
the anatomical variability and resolution differences of liver meshes, 
pooling often collapses structurally dissimilar edges, resulting in in-
consistent appearances of the pooled meshes and compromising the 
stability of global representation learning.

Mesh Unpooling.  Unpooling is implemented as the inverse process 
of pooling. Specifically, MeshCNN dynamically memorizes a 0 or 1-
encoded unroll matrix 𝑀 (size 𝐻 × 𝑁) during pooling. As shown in 
Fig.  3(C), if the value of 𝑀 [ℎ, 𝑛] is 1, it means that the feature of the 
𝑛th edge in the original mesh participated in the feature calculation 
of edge-ℎ in the low-resolution mesh. During unpooling, the feature of 
each high-resolution edge is reconstructed by averaging the features 
of all low-resolution edges that contributed to its pooling path. While 
this enables coarse predictions to be propagated back to the original 
mesh, large resolution gaps may dilute the resulting feature responses. 
This property is later leveraged to construct soft landmark priors on 
high-resolution surfaces in our refinement framework.
5 
3.2.2. Low-resolution stage: Global structure modeling with DGCNN
In clinical practice, the appearance and shape of the liver vary 

significantly, which is also reflected in the liver meshes with different 
levels of resolution, i.e., the number of edges in the mesh. To address 
this issue, neural network methods for 2D image tasks typically adjust 
the input size when handling inputs of varying resolutions to minimize 
performance degradation. Similarly, for anatomical segmentation tasks 
of the liver surface, we propose first introducing a modified Dynamic 
Graph Convolutional Neural Network (DGCNN) to perform rapid global 
understanding on a unified low-resolution network, producing initial 
landmark segmentations.

Network Structure. Fig.  4 details our DGCNN network struc-
ture, designed to grasp the liver’s global structure and generate initial 
anatomical landmark segmentation. The input to DGCNN consists of the 
edge features (size 𝐻×3, 𝐻 = 3000) of the low-resolution mesh (also see 
Fig.  2), where 𝐻 represents the number of edges at the low-resolution 
level, and 3 corresponds to the spatial coordinates (𝑥, 𝑦, 𝑧) of the edge 
midpoints. These coordinates intuitively reflect spatial relationships, 
capturing global information.

First, the input mesh features pass through a spatial transform mod-
ule for normalization and alignment, applying local perturbations. This 
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Fig. 5. Comparison with two original meshes with different resolutions (from left to right): the appearance of the (original) high-resolution mesh (HR), the 
appearance of the compressed low-resolution (LR) mesh, the propagation score map (PSM) mapping the initial segmentation onto the surface of the original high-
resolution mesh, the ‘‘dilation’’ landmark proposal based on threshold 𝑇1, the ‘‘erosion’’ landmark proposal based on threshold 𝑇2, and the landmark annotation 
on the original high-resolution mesh referred as ‘‘label’’.
module constructs a k-nearest neighbor (k-NN) graph to extract features 
of adjacent points and generates a 3 × 3 transformation matrix to ensure 
data alignment. Following normalization, the data is processed through 
multiple Dynamic Graph Convolution (DGConv) layers.

DGConv layers capture local geometric features, dynamically up-
date adjacency relationships, and perform multi-level feature extrac-
tion, enriching feature representations. These layers iteratively extract 
higher-level graph feature representations using Multi-Layer Perceptron 
(MLP) layers, further enhancing feature representations. The output of 
each layer undergoes max pooling to ensure the invariance of feature 
arrangement.

Ultimately, the features are aggregated through max pooling, result-
ing in a 1024-dimensional feature vector, which is then concatenated 
with the original feature matrix to form an 𝐻 × 1220 matrix. This 
concatenated matrix is passed through a sequential MLP with layers 
of (256, 256, 128, 3), producing an 𝐻 × 3 matrix where each vertex 
is assigned a score corresponding to one of three classes: falciform 
ligament, hepatic ridge, or other regions.

This design effectively extracts global information from low-
resolution liver meshes, generating initial anatomical landmark seg-
mentations and laying a foundation for refinement on high-resolution 
meshes.

3.2.3. High-resolution stage: Anatomical landmark refinement
The liver surface is represented by complex triangular units of vary-

ing shapes, sizes, and positions. High-resolution meshes capture more 
local details, which are crucial for accurate landmark segmentation. A 
straightforward strategy is to map the initial landmark segmentation 
from the low-resolution mesh onto the high-resolution surface to pro-
vide priors, but this approach faces two challenges: (a) mapping from a 
compressed mesh to the original high-resolution mesh is a reverse oper-
ation, making it difficult to achieve high-precision segmentation priors; 
(b) the number of edges in the original high-resolution mesh varies 
significantly (as shown in Fig.  5), complicating the neural network’s 
ability to effectively integrate local topology with the segmentation 
priors, which can lead to suboptimal segmentation performance on 
the high-resolution mesh. To address these issues, inspired by the 
unpooling operation in MeshCNN, we propose two levels of mapping 
strategies: ‘‘dilation’’ and ‘‘erosion’’, to propagate the initial landmark 
segmentations onto the high-resolution mesh surface. Following this, 
we design an anatomical refining network based on MeshConv, with 
the aim of effectively integrating and adjusting multi-level priors on 
high-resolution meshes, so as to better capture fine-grained anatomical 
boundaries under varying topological conditions.
6 
Dilation and Erosion Landmark Proposals.  Building on the 
earlier descriptions, the unpooling operation in MeshCNN allows for 
the lossless restoration of high-resolution meshes while propagating 
edge features onto the high-resolution surface. We propose to map the 
landmark segmentations from the low-resolution mesh as edge features 
onto the original high-resolution mesh surface, generating segmenta-
tion priors. Specifically, the low-resolution segmentation results are 
one-hot encoded into 𝐻 × 3 matrices (𝐻 = 3000). Through unpool-
ing, these encoded features are propagated to the original resolution, 
resulting in score maps on the high-resolution mesh. Fig.  5 displays 
these propagated score maps for two samples (third column). In the first 
row, for the original mesh with a significantly higher number of edges 
(𝑁 = 18775), the difference in edge counts compared to the compressed 
mesh (𝐻 = 3000) leads to feature ‘‘dilution’’ during propagation due to 
averaging (see Fig.  3(C) for details). In contrast, for the original mesh 
with an edge count closer to that of the low-resolution mesh (second 
row), the landmarks are less diluted during propagation, resulting in 
scores closer to the ground truth.

When comparing these propagation score maps with the corre-
sponding labels, an interesting observation emerges: for higher-
resolution original meshes, using a lower confidence threshold on the 
propagation score map produces landmark proposals closer to the 
true labels (see Fig.  5, columns 4 and 6). Conversely, for original 
meshes with resolutions close to the compressed mesh, setting a higher 
confidence threshold yields more accurate landmark proposals (see 
Fig.  5, columns 5 and 6). This observation suggests that no single 
threshold is universally optimal across mesh resolutions. To achieve 
complementary coverage and boundary sensitivity, we introduce two 
landmark mapping strategies: ‘‘dilation’’ using a lower threshold (𝑇1)
for broader recall, and ‘‘erosion’’ using a higher threshold (𝑇2) for 
confident boundary cues. Specifically, based on the initial landmark 
segmentation obtained from the DGCNN model, we apply two confi-
dence thresholds to obtain two levels of landmark proposals on the 
original mesh surface: 

𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛 =

{

1 if 𝐏𝐒𝐌 ≥ 𝑇1
0 if 𝐏𝐒𝐌 < 𝑇1,

(4)

𝐸𝑟𝑜𝑠𝑖𝑜𝑛 =

{

1 if 𝐏𝐒𝐌 ≥ 𝑇2
0 if 𝐏𝐒𝐌 < 𝑇2,

(5)

where PSM represents the propagation score map. The thresholds 𝑇1 =
0.1 and 𝑇2 = 0.5 were empirically selected (𝑇1 < 𝑇2) based on grid 
search experiments to balance recall and precision across mesh resolu-
tions. Fig.  5 shows the ‘‘dilation’’ and ‘‘erosion’’ landmark proposals for 
two different resolution original meshes. It can be seen that ‘‘erosion’’ 
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Fig. 6. (A) Architecture of the anatomical refining network based on MeshConv. Auxiliary segmentation heads (ASH) promote reliable prior extraction, while 
the attention fusion module (AFM) integrates these priors into refined landmark predictions. The first MeshConv (in red) omits symmetric functions (i.e., Eq.  (2)) 
due to resolution-encoded inputs. (B) Attention fusion module (AFM) based on fine-grained aggregation (FGA), where superscripts (1) and (2) indicate separate 
instances used to enhance cross-branch communication. (C) Edge weights incorporated in our anatomy-aware Dice (AAD) losses.
proposals represent higher segmentation confidence but result in under-
segmentation for higher-resolution meshes with more edges (see Fig. 
5, row 1, column 5). Although ‘‘dilation’’ proposals are closer to the 
ground truth in high-resolution meshes, they may contain more errors 
for original meshes with fewer edges (see Fig.  5, row 2, column 4). 
Therefore, effectively incorporating the topological characteristics of 
the original mesh surface and selectively extracting reliable priors 
from the dilation and erosion proposals are key to refining anatomical 
landmark segmentation on liver surfaces with varying morphologies.

Refinement Network Architecture for Anatomical Segmenta-
tion.  As previously described, MeshConv in MeshCNN performs edge 
feature calculations along the mesh surface topology, effectively cap-
turing the topological details of high-resolution meshes. Building on 
this, we propose an anatomical refining network based on MeshConv. 
This network is designed to selectively incorporate the dilation and 
erosion proposals, with the goal of capturing reliable anatomical cues 
across meshes with varying shapes, appearances, and resolutions. The 
architecture of the refinement network is illustrated in Fig.  6, and the 
inputs include: (1) the edge features (size 𝑁 × 5) edge features, which 
directly represent the topology of the mesh units; (2) the number of 
edges (𝑁), corresponding to the resolution of the original mesh; and 
(3) the ‘‘dilation’’ and (4) ‘‘erosion’’ landmark proposals, both encoded 
as the one-hot vectors of size 𝑁 × 3.

First, the edge features (size 𝑁 × 5) and mesh resolution (𝑁) pass 
through an MLP, extracting new feature vectors of size 𝑁 × 16 and 
𝑁 × 3, respectively, which are then combined. The combined features 
(size 𝑁 ×19) are further concatenated with the different levels of land-
mark proposals, integrating the topological details of the original mesh 
with the landmark priors from the low-resolution mesh. Our method 
generates two sets of fused features, each with size 𝑁 × 22, which are 
processed by independent branches based on MeshConv. The resolution 
encoding is introduced to guide each branch in learning plausible 
priors from the corresponding landmark proposals. Specifically, when 
the original mesh has a relatively high resolution, the branch fused 
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with the dilation proposal benefits from broader coverage, whereas 
for meshes closer in resolution to the compressed input, the erosion-
guided branch is more effective in preserving segmentation precision. 
This design enables each branch to specialize in extracting reliable 
cues under different mesh configurations. Each branch in our network 
consists of three consecutive MeshConv layers, which gradually extract 
higher-level features. The multi-scale features extracted by each branch 
are then concatenated and passed through an attention fusion module 
(AFM), which is designed to adaptively integrate the features from 
different branches and enhance the representation of anatomical cues.

These comprehensive features are subsequently passed through se-
quential MLP layers to output the final refined landmark segmentation. 
It is also important to note that to facilitate the effective extraction 
of reliable priors from different proposals, each branch in our model 
is connected to an auxiliary segmentation head (ASH), providing di-
rect supervision to encourage branch-specific learning before feature 
fusion. To train the refinement network, we adopt a combination of 
cross-entropy loss and anatomy-aware Dice (AAD) loss.

Attention Fusion Module (AFM).  In our anatomical refining 
network, the attention fusion module (AFM) is introduced to adap-
tively balance and integrate informative cues from different branches, 
aiming to enhance landmark prediction across meshes with varying 
morphologies. As illustrated in Fig.  6(B), the module begins by using a 
1 × 1 convolution to compress the multi-scale features (𝐹𝐷 and 𝐹𝐸) 
from each branch, generating feature vectors of size 𝑁 × 40, which 
are then concatenated. This combined feature vector is subsequently 
processed by a Fine-Grained Aggregation (FGA) module. The FGA 
module computes two types of response maps, 𝑊𝐷 (size 𝑁 × 160) and 
𝑊𝐸 (size 𝑁 × 160), to modulate and integrate 𝐹𝐷 and 𝐹𝐸 , respectively. 
The formula for the cross-branch feature aggregation is as follows: 
𝐹𝐴𝑔𝑔𝑟 = 𝑊𝐷 ⊗ 𝐹𝐷 +𝑊𝐸 ⊗ 𝐹𝐸 , (6)

where 𝐹𝐴𝑔𝑔𝑟 (size 𝑁 × 160) represents the aggregated features, and ⊗
denotes element-wise multiplication.
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The FGA module excels at generating response maps that cap-
ture cross-branch relationships at two granularity levels: points (or 
edges) and triangular elements. To handle this complex task, we deploy 
two instances of the FGA, namely FGA(1) and FGA(2), to model these 
cross-branch correspondences. Specifically, both FGAs leverage dual 
MeshConv layers with different kernel sizes. The process begins with a 
(1 × 1) convolution layer for primary feature distillation, followed by a 
(1 × 5) convolution layer that further processes the features, generating 
the outputs for FGA(1) and FGA(2) to form the response maps 𝑊𝐷 and 
𝑊𝐸 . These response maps are obtained through a series of concatena-
tion, convolution, Softmax layers, and weighted summation operations. 
Together, these components define the attention-based fusion process 
within our anatomical refinement framework.

Anatomy-Aware Dice (AAD) Loss.  In vertex- or edge-based land-
mark segmentation tasks on meshes, traditional Dice loss often under-
performs due to the uneven distribution of edge lengths. This issue is 
particularly prominent in regions like the falciform ligament, where 
sparse and elongated triangles can lead to underrepresented gradient 
signals during optimization.

To address this problem, we propose an anatomy-aware Dice loss 
with two enhancements tailored to the liver surface mesh:

• Joint Modeling of Anatomical Regions: The falciform ligament 
and hepatic ridge exhibit consistent spatial correlations and often 
form a continuous anatomical boundary. To leverage this, we 
treat them as a unified region and compute a joint Dice loss, 
encouraging the model to learn their shared topological structure 
more effectively.

• Incorporation of Edge Weights: To mitigate edge length im-
balance, we apply a weighting factor to each edge based on 
its relative geometric length. Specifically, the edge weights 𝑤𝑖
(denoted as Edge Weight in Fig.  6(C)) are used to compute a 
weighted Dice loss: 

weighted-Dice = 1 −
2
∑

𝑖 𝑤𝑖𝑝𝑖𝑔𝑖
∑

𝑖 𝑤𝑖(𝑝𝑖 + 𝑔𝑖)
, (7)

where 𝑝𝑖 and 𝑔𝑖 are the predicted and ground truth scores for edge 
𝑖, and 𝑤𝑖 is its edge weight.

3.3. Two-stage training and inference for nested learning

As described in the previous sections, our nested-resolution architec-
ture consists of two stages: a low-resolution stage for global landmark 
localization, and a high-resolution stage for refining anatomical details 
based on mesh topology. In this section, we detail the training pipeline 
and inference strategy that underpin this design.

Stage 1: Training the low-resolution DGCNN.  To learn global 
geometric structures efficiently, we train the DGCNN model using ran-
domly sampled edge midpoints from the original high-resolution mesh. 
In each training epoch, a set of 𝐻 = 3000 edge midpoints is sampled 
to form a point cloud, which serves as input to the DGCNN for initial 
landmark segmentation. The model is supervised with a combined loss 
function: 
𝑙𝑜𝑤−𝑟𝑒𝑠 = 𝐶𝐸 + 𝐷𝑖𝑐𝑒. (8)

This stage is designed to facilitate the learning of coarse but glob-
ally consistent anatomical priors across meshes of varying shapes and 
scales.

Stage 2: Training the high-resolution refinement network.  In 
the second stage, the pretrained DGCNN is fixed. Given an original 
high-resolution liver mesh, we apply mesh pooling to compress it 
to a resolution of 𝐻 = 3000. The resulting mesh is then processed 
by the DGCNN to produce initial landmark predictions, which are 
mapped back onto the original high-resolution surface using unpool-
ing and confidence-based thresholding, generating both ‘‘dilation’’ and 
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‘‘erosion’’ proposals. These proposals, along with the mesh’s edge fea-
tures and resolution encoding, are fed into the anatomical refinement 
network. Although only the refinement network is updated during 
this stage, the input generation depends on the full nested-resolution 
pipeline. Therefore, we refer to this approach as nested-resolution 
training.

The loss function for this stage aggregates supervision from three 
outputs, including the two branch-specific auxiliary segmentation heads
(ASH) and the final fused prediction. The overall loss is formulated as: 

ℎ𝑖𝑔ℎ−𝑟𝑒𝑠 = 𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛 + 𝐸𝑟𝑜𝑠𝑖𝑜𝑛 + 𝐹𝑢𝑠𝑖𝑜𝑛, (9)

where each term combines cross-entropy loss and the anatomy-aware 
Dice loss defined in Section 3.2.3.

Inference.  During testing, our model operates in a fully automatic 
and end-to-end manner. Starting from an input high-resolution liver 
mesh, we first apply mesh pooling to obtain a compressed version, 
which is passed through the DGCNN to produce initial landmark pre-
dictions. These predictions are propagated back to the original surface 
to construct the ‘‘dilation’’ and ‘‘erosion’’ proposals, which – along 
with other topological features – are used by the refinement network 
to generate the final anatomical segmentation. The entire process is 
completed within a single forward pass, without requiring any manual 
post-processing.

4. Experiments and results

4.1. Competing methods and experimental setup

To thoroughly validate our method, we randomly divided the manu-
ally annotated liver mesh data into training, validation, and test sets in 
a 10:3:7 ratio, reporting the average performance on the test set across 
multiple experiments.

Currently, no publicly available algorithms specifically address the 
segmentation of liver surface landmarks. Therefore, we selected four 
state-of-the-art (SOTA) deep learning methods for mesh data process-
ing: Pointnet++ (point-based), DGCNN (graph-based), MeshCNN (edge-
based), and TSGCN (designed for dental meshes). Pointnet++ and 
MeshCNN were employed by multiple teams in the P2ILF challenge (Ali 
et al., 2025), demonstrating their capability on liver meshes. DGCNN, 
known for its strong local and global learning abilities, was also chosen 
for processing the compressed low-resolution meshes in our study. 
Additionally, the original MeshCNN, which takes five initial edge fea-
tures as input, excels in local understanding but struggles with global 
information. To mitigate this limitation, we computed the center point 
coordinates of the edges as an additional input, enhancing MeshCNN 
and designating this variant as MeshCNN-1 for comparison. Further-
more, TSGCN, which incorporates dual parallel graph networks and 
leverages attention mechanisms for feature fusion, is specialized for 
dental mesh segmentation tasks, offering an additional perspective in 
our comparative analysis.

All methods, including ours, were implemented in PyTorch and 
executed on an RTX 8000 GPU. For Pointnet++ and DGCNN, the train-
ing involved random sampling of spatial coordinates (size 3000 × 3) 
while testing inputs on all edges to obtain segmentation results on 
the original resolution mesh. MeshCNN and MeshCNN-1 employed a 
UNet-like architecture with three levels of down-sampling, processing 
fixed-size input data of edges (size 20000 × 5). We also used the official 
implementation of TSGCN for training and evaluation, modifying the 
number of input edges to 3000, matching the DGCNN setting. Finally, 
in our method, we first obtained different levels of landmark proposals 
using a trained DGCNN model, followed by training the anatomical 
refining network with original meshes at varying resolutions. All ex-
periments were optimized using the Adam optimizer with a learning 
rate of 0.01, and models with a minimum loss of over 600 epochs were 
selected for testing.
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Table 1
Quantitative comparison with different segmentation methods. ‘‘Overall’’ refers to the combined evaluation of both anatomical landmarks – falciform ligament 
and liver ridge – as a single class, serving as a complementary summary metric.
 Ligament Ridge Overall

 Dice(%) CD(mm) HD(mm) Dice(%) CD(mm) HD(mm) Dice(%) CD(mm) HD(mm)

 Pointnet++ 0.0 ± 0.0 60.3 ± 18.2a 47.8 ± 11.4a 20.7 ± 16.5 33.4 ± 24.2 54.8 ± 29.4 19.1 ± 15.2 37.1 ± 22.5 61.9 ± 24.1 
 DGCNN 21.2 ± 23.5 22.1 ± 18.7 25.8 ± 14.4 57.2 ± 12.8 5.6 ± 6.0 21.0 ± 15.3 50.3 ± 15.1 8.0 ± 6.8 25.8 ± 15.1 
 MeshCNN 0.0 ± 0.1 165.1 ± 55.6a 118.8 ± 27.1a 0.6 ± 2.0 85.0 ± 51.4 81.3 ± 37.1 0.8 ± 2.3 86.1 ± 49.8 82.7 ± 35.9 
 MeshCNN-1 16.2 ± 13.8 33.6 ± 19.5 56.3 ± 36.4 49.7 ± 16.9 12.2 ± 12.1 34.3 ± 23.5 42.5 ± 14.2 15.0 ± 9.2 43.3 ± 22.4 
 TSGCN 1.8 ± 7.2 34.8 ± 25.8a 34.2 ± 13.1a 35.9 ± 19.0 22.7 ± 23.0 49.6 ± 31.6 33.3 ± 17.7 27.1 ± 24.9 55.6 ± 28.6 
 Ours 32.6 ± 17.9 14.9 ± 12.3 22.2 ± 14.0 59.6 ± 13.8 5.5 ± 4.8 16.4 ± 9.5 54.9 ± 13.5 6.9 ± 4.8 18.4 ± 8.5  
a Indicates that the predicted landmark region is empty (i.e., |𝐯| = 0 in Eq.  (11)), and thus the distance metrics (CD and HD95) are calculated only on the subset of test cases 
with non-empty predictions. The corresponding prediction rates are reported in Table  A.1.
4.2. Metrics for comparison

The performance of our method was rigorously evaluated using 
three standard metrics: Dice similarity coefficient (Dice), 3D Chamfer 
Distance (CD) (Wu et al., 2021), and Hausdorff Distance (HD). These 
metrics respectively capture segmentation accuracy, average spatial 
deviation, and worst-case boundary errors, offering a comprehensive 
assessment of anatomical landmark prediction quality.

Given the high class imbalance in this task – where landmarks 
occupy only a small fraction of the liver mesh – we adopt the Dice co-
efficient to evaluate the model’s ability to detect foreground (i.e., land-
mark) regions: 

𝐷𝑖𝑐𝑒 = 2 ⋅ 𝑇𝑃
2 ⋅ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

, (10)

where TP, FP, and FN denote the numbers of true positives, false 
positives, and false negatives, respectively.

To assess geometric alignment in 3D space, we also employed the 
Chamfer Distance (CD, mm), which measures the average bidirectional 
distance between predicted and ground truth landmark surfaces: 

𝐶𝐷(𝑉 ,𝑊 ) =
∑

𝐯∈𝑉 min𝐰∈𝑊 ‖𝐯 − 𝐰‖2

|𝑉 |

+
∑

𝐰∈𝑊 min𝐯∈𝑉 ‖𝐰 − 𝐯‖2

|𝑊 |

, (11)

where 𝑉  and 𝑊  denote the sets of vertex coordinates from the pre-
dicted and ground truth landmark regions, and | ⋅ | denotes set cardi-
nality.

To further capture local outlier deviations, we additionally intro-
duce the Hausdorff Distance (HD, mm), defined as: 

𝐻𝐷(𝑉 ,𝑊 ) = max
{

sup
𝐯∈𝑉

inf
𝐰∈𝑊

‖𝐯 − 𝐰‖, sup
𝐰∈𝑊

inf
𝐯∈𝑉

‖𝐰 − 𝐯‖
}

. (12)

Here, sup and inf denote the supremum (maximum) and infimum (min-
imum) over the respective point sets. In practice, we report the 95th-
percentile Hausdorff Distance (HD95) to reduce sensitivity to extreme 
outliers. Unlike CD, which captures average proximity, HD95 reflects 
the worst-case deviation between surfaces, offering a complementary 
perspective on boundary quality in challenging regions.

All metrics were averaged across the test set. For methods with 
empty predictions on the falciform ligament, CD and HD95 were calcu-
lated only on non-empty cases, and the corresponding prediction rates 
are reported in Appendix (Tables  A.1–A.2). Higher Dice scores indicate 
better segmentation accuracy, while lower CD and HD values reflect 
closer geometric alignment with ground truth.

4.3. Comparison of results by different methods

Table  1 reports the Dice similarity coefficient (Dice), 3D Chamfer 
Distance (CD), and Hausdorff Distance (HD) values for each anatomical 
landmark. Consistently higher scores on the ridge suggest that the 
ligament is more challenging to segment, likely due to its less distinc-
tive surface geometry. Among the baselines, MeshCNN and Pointnet++ 
both performed poorly on the ligament, with Dice scores near zero. 
While Pointnet++ lacks topological modeling, MeshCNN focuses on 
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local edge structures without positional encoding. Notably, Pointnet++ 
slightly outperformed MeshCNN on the ridge, indicating that topology 
alone may not suffice. By incorporating spatial coordinates, MeshCNN-
1 yielded substantial improvements—for instance, ligament Dice rose 
from 0.0 to 16.2-underscoring the benefit of geometric cues. TSGCN, 
tailored for rigid dental meshes, showed moderate performance but 
struggled on the ligament (Dice: 1.8), likely due to the liver’s de-
formable anatomy and irregular mesh topology. DGCNN delivered 
more balanced results, particularly on the ridge, with a Dice of 57.2 and 
relatively low CD and HD values (5.6 mm and 21.0 mm, respectively), 
benefiting from its ability to capture both local and global geometry 
via graph-based learning. Building on DGCNN, our method introduces 
a nested-resolution architecture with anatomical prior refinement. It 
consistently outperformed all baselines across metrics, achieving Dice 
scores of 32.6 and 59.6 for the ligament and ridge, respectively, and 
further reducing CD on the ligament from 22.1 mm to 14.9 mm—
highlighting its improved performance, especially in anatomically com-
plex regions such as the falciform ligament. Notably, the reduced 
Chamfer Distance approaches the clinically acceptable margin for in-
traoperative registration (Zhong et al., 2017), supporting its potential 
utility in surgical navigation.

To further assess model performance, Fig.  7 presents a qualitative 
comparison across liver meshes of varying resolutions (edge count
N). Pointnet++, which operates solely on spatial coordinates with-
out topological context, failed to detect the falciform ligament and 
produced notable false positives along the ridge. MeshCNN, despite 
leveraging edge-based topology, performed worst overall, often missing 
both landmarks-a result consistent with its near-zero Dice and high HD 
in Table  1. By incorporating spatial coordinates, MeshCNN-1 showed 
noticeable improvements, particularly in ridge localization, though 
frequent over- and under-segmentation persisted. TSGCN, originally 
designed for dental meshes, achieved modest results: it successfully 
captured the ridge in certain cases but introduced large segmenta-
tion errors under higher-resolution conditions, likely due to the liver’s 
non-rigid morphology and irregular surface patterns. DGCNN offered 
more stable outputs and consistently identified the approximate lo-
cations of both landmarks, especially the ridge, demonstrating strong 
global representation capabilities. However, its predictions for the lig-
ament remained coarse, likely due to resolution variance and the 
sparsity of the target region. Our method extends DGCNN by intro-
ducing anatomical prior refinement and nested-resolution processing, 
aimed at improving landmark localization through enhanced structural 
awareness. As shown in the final column, the resulting segmentations 
appear more consistent with ground truth, particularly in regions with 
high surface complexity or lower landmark visibility, aligning with the 
improvements observed in quantitative metrics.

4.4. Ablation and component analysis

We conducted a comprehensive and thorough ablation study using 
the DGCNN model architecture as a baseline to evaluate the effec-
tiveness of the key components in the proposed nested resolution 
Mesh-Graph CNN. The following eight ablation settings were included:
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Fig. 7. Comparison of segmentation results of different segmentation methods. The falciform ligament on the surface of the liver is shown in blue, and the liver 
ridge is shown in red. In addition, the dotted boxes in the figure indicate areas to focus on.
Table 2
Ablation study on different key components. Wilcoxon signed-rank test and effect size (𝑟) were applied to the last four variants to evaluate statistical significance 
and effect magnitude.
 Ligament Ridge Overall

 Dice(%) CD(mm) HD(mm) Dice(%) CD(mm) HD(mm) Dice(%) CD(mm) HD(mm)

 DGCNN 21.2 ± 23.5 22.1 ± 18.7 25.8 ± 14.4 57.2 ± 12.8 5.6 ± 6.0 21.0 ± 15.3 50.3 ± 15.1 8.0 ± 6.8 25.8 ± 15.1  
 DGCNN-D 25.3 ± 20.6 17.1 ± 13.8 22.8 ± 11.8 54.2 ± 14.8 5.5 ± 5.0 16.0 ± 10.8 49.9 ± 14.3 7.1 ± 4.9 19.2 ± 10.3  
 DGCNN-E 18.3 ± 16.4 18.5 ± 13.8 23.0 ± 11.0 41.8 ± 14.5 6.3 ± 5.0 15.8 ± 10.4 38.3 ± 14.0 7.8 ± 4.9 19.0 ± 10.1  
 DGCNN-M 27.7 ± 19.0 29.6 ± 39.3 41.3 ± 37.6 53.2 ± 13.3 8.5 ± 8.8 31.7 ± 32.4 49.7 ± 12.2 9.8 ± 8.5 32.0 ± 26.5  
 Ours-ADD 31.0 ± 20.4**§ 17.6 ± 14.5**§ 30.0 ± 27.7**§ 58.3 ± 14.2**§ 5.6 ± 4.8**§ 27.1 ± 25.9**§ 54.0 ± 13.7**§ 7.2 ± 4.7**§ 26.6 ± 19.8**§ 
 Ours-AFM 31.1 ± 20.3† 16.9 ± 13.8*‡ 25.9 ± 26.6**§ 58.8 ± 14.0**‡ 5.9 ± 5.0 20.0 ± 17.0**§ 54.4 ± 13.4*‡ 7.1 ± 4.7† 22.0 ± 14.3**§ 
 Ours-ASH 31.7 ± 19.0*§ 15.8 ± 13.4*‡ 24.4 ± 22.1**‡ 59.0 ± 14.4† 5.6 ± 5.0† 18.2 ± 13.0**§ 54.7 ± 13.5*‡ 7.0 ± 4.7 21.3 ± 12.7†  
 Ours-AAD 32.6 ± 17.9**§ 14.9 ± 12.3**‡ 22.2 ± 14.0**§ 59.6 ± 13.8**§ 5.5 ± 4.8† 16.4 ± 9.5**§ 54.9 ± 13.5† 6.9 ± 4.8 18.4 ± 8.5**§  
* p < 0.1.
** p < 0.05.
† Small effect (𝑟 ≥ 0.1).
‡ Medium effect (𝑟 ≥ 0.3).
§ Large effect (𝑟 ≥ 0.5).
(1) The landmark segmentation result of the baseline DGCNN is 
shown in Table  1 (denoted as ‘‘DGCNN’’).

(2) Baseline DGCNN’s ‘‘dilation’’ proposals on the original high-
resolution mesh (denoted as ‘‘DGCNN-D’’).

(3) Baseline DGCNN’s ‘‘erosion’’ proposals on the original high-
resolution mesh (denoted as ‘‘DGCNN-E’’).

(4) Combining the edge features of the high-resolution mesh with 
the results from settings (1) to (3), the segmentation results on 
the original resolution mesh were generated using a two-layer 
MeshConv (denoted as ‘‘DGCNN-M’’).

(5) Replacing the two-layer MeshConv in setting (4) with the pro-
posed anatomical refining network, but substituting the atten-
tion fusion module with simple feature addition (denoted as 
‘‘Ours-ADD’’).
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(6) The proposed anatomical refining network with attention fusion 
module was used to achieve landmark segmentation on the 
original mesh (denoted as ‘‘Ours-AFM’’).

(7) Based on setting (6), an auxiliary segmentation head was added 
to each MeshConv-based branch of the anatomical refining net-
work (denoted as ‘‘Ours-ASH’’).

(8) The full Mesh-Graph CNN, where the refinement network is 
trained using a combination of CE loss and anatomy-aware Dice 
loss (denoted as ‘‘Ours-AAD’’). Note that settings (2) to (7) used 
only CE loss for training.

Table  2 presents the quantitative results of our ablation study. 
The first three configurations – baseline DGCNN and its propagated 
proposals (DGCNN-D and DGCNN-E) – show that relying solely on 
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Table 3
Dice value comparison of different loss function setups for Falciform Ligament and Liver Ridge, considering edge length 
distributions. The threshold 𝑡 is defined as a multiple of the mean edge length (𝑀𝑒𝑎𝑛), where edges longer than 𝑡 are considered 
‘‘Long Edges’’ (which are sparse and important on the liver surface), and edges shorter than 𝑡 are ‘‘Short Edges’’ (which are denser 
and more frequent). The last three rows (using Anatomy-Aware Dice) were further evaluated using Wilcoxon signed-rank tests 
and effect size (𝑟) to assess significance and effect strength.
 Ligament Ridge

 Long edges (>𝑡) Short edges (<𝑡) Long edges (>𝑡) Short edges (<𝑡) 
 
CE

𝑡 = 2.0 ×𝑀𝑒𝑎𝑛 27.1 ± 37.0 31.9 ± 19.1 77.7 ± 36.3 95.0 ± 12.8  
 𝑡 = 1.5 ×𝑀𝑒𝑎𝑛 28.7 ± 28.4 32.2 ± 19.8 94.1 ± 15.6 94.6 ± 13.3  
 𝑡 = 1.0 ×𝑀𝑒𝑎𝑛 38.0 ± 22.4 28.5 ± 19.4 98.2 ± 9.2 90.8 ± 17.3  
 
CE + Basic Dice

𝑡 = 2.0 ×𝑀𝑒𝑎𝑛 30.1 ± 39.8 30.9 ± 19.0 78.9 ± 34.1 94.6 ± 13.7  
 𝑡 = 1.5 ×𝑀𝑒𝑎𝑛 28.1 ± 27.0 31.0 ± 19.7 95.5 ± 14.9 94.3 ± 13.9  
 𝑡 = 1.0 ×𝑀𝑒𝑎𝑛 37.7 ± 22.8 27.3 ± 18.9 97.9 ± 9.6 90.5 ± 17.0  
 
CE + Anatomy-Aware Dice

𝑡 = 2.0 ×𝑀𝑒𝑎𝑛 33.3 ± 38.0**§ 32.7 ± 18.1*‡ 79.4 ± 33.1*† 94.9 ± 12.9*†  
 𝑡 = 1.5 ×𝑀𝑒𝑎𝑛 30.0 ± 26.7*‡ 32.9 ± 18.6**§ 96.0 ± 13.6*† 94.8 ± 12.9†  
 𝑡 = 1.0 ×𝑀𝑒𝑎𝑛 41.2 ± 21.8**§ 28.9 ± 17.9**‡ 98.5 ± 8.0*† 91.4 ± 16.5†  
* p < 0.1.
** p < 0.05.
† Small effect (𝑟 ≥ 0.1).
‡ Medium effect (𝑟 ≥ 0.3).
§ Large effect (𝑟 ≥ 0.5).
low-resolution predictions results in suboptimal performance on high-
resolution meshes, with modest Dice scores and CD values, and rela-
tively stable HD, likely due to the absence of any refinement process. 
In contrast, directly applying a two-layer MeshConv for refinement in 
DGCNN-M introduced notable noise, leading to worse HD scores-for 
instance, on the ligament, HD increased from 25.8 mm (DGCNN) to 
41.3 mm—without improvement in Dice. To address this, Ours-ADD 
introduces a dual-branch design that processes ‘‘dilation’’ and ‘‘ero-
sion’’ proposals separately before feature fusion via simple addition. 
Compared to DGCNN-M, this approach improved ligament Dice by 3.3 
points and reduced HD by over 11 mm, with statistically significant 
improvements (𝑝 < 0.05) and large effect sizes (𝑟 ≥ 0.5), supporting 
the benefit of preserving distinct proposal pathways. Replacing feature 
addition with an attention fusion module (AFM), which adaptively 
weighs branch-specific features, yielded further gains—for example, 
ridge HD dropped from 27.1 mm to 20.0 mm in Ours-AFM. Adding 
auxiliary segmentation heads (ASH) in Ours-ASH provided branch-level 
supervision, resulting in small yet consistent improvements, such as 
reducing ligament HD from 25.9 mm to 24.4 mm. Finally, applying 
anatomy-aware Dice loss (AAD) across all segmentation heads led to the 
most stable results overall; compared to Ours-ASH, it achieved higher 
Dice on the ligament (32.6 vs. 31.7), reduced CD and HD, and notably 
lowered standard deviations across all metrics.

Effectiveness of the Attention Fusion Module.  To assess the 
impact of the attention fusion module (AFM), we visualize the at-
tention weights 𝑊𝐷 and 𝑊𝐸 from Eq. (6), averaged across channels, 
on three representative liver meshes with varying resolutions (Fig.  8, 
AFM columns). In the first mesh (N = 5613), although both proposals 
capture the general landmark regions, AFM successfully suppresses 
false positives along the ridge caused by the dilation branch, lead-
ing to sharper boundaries. In the second, higher-resolution mesh, the 
dilation proposal broadly covers the ligament, while the erosion pro-
posal offers tighter segmentation but introduces uncertainty in the 
ligament region. Here, AFM assigns greater weights to the dilation 
branch around the ligament and to the erosion branch around the ridge, 
adaptively combining their strengths. On the third mesh, the erosion 
proposal undersegments the landmark, while the dilation branch in-
troduces extensive false positives. AFM selectively enhances confident 
regions while down-weighting unreliable predictions, resulting in more 
complete and precise outputs. These visual patterns illustrate how 
AFM enables the model to dynamically integrate complementary priors 
under varying anatomical and resolution conditions.

Role of Auxiliary Segmentation Heads (ASH).  To improve the 
reliability of each proposal branch, auxiliary segmentation heads (ASH) 
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are added to the ends of the dilation and erosion paths, providing 
branch-specific supervision. As illustrated in Fig.  8 (ASH columns), 
these outputs partially correct errors in the initial proposals – such 
as over-segmentation or missed regions – and yield more structured 
predictions. Though not final outputs, they help each branch preserve 
complementary anatomical cues during feature learning, supporting 
effective AFM fusion in final landmark refinement.

Comprehensive Analysis of Anatomy-Aware Dice Loss.  To fur-
ther examine the impact of the anatomy-aware Dice loss (AAD), we 
evaluated three loss configurations-CE only, CE + basic Dice, and CE + 
AAD-across different edge-length thresholds (𝑡 = 1.0, 1.5, 2.0× mean). 
Table  3 reports the Dice scores for short and long edges, separately 
for the falciform ligament and liver ridge. Long edges, though sparse, 
are critical for anatomical completeness yet more difficult to segment 
accurately. As 𝑡 increases, segmentation performance on long edges 
declines notably with CE loss alone—for instance, Dice for ligament 
long edges drops from 38.0 at 𝑡 = 1.0 to 27.1 at 𝑡 = 2.0. Adding a stan-
dard Dice term yields limited and inconsistent improvement, and may 
compromise short-edge accuracy, likely due to its uniform weighting 
across spatial structures. In contrast, incorporating the anatomy-aware 
Dice loss leads to consistent gains across all thresholds. At 𝑡 = 2.0, 
Dice scores for long edges improve to 33.3 (ligament) and 79.4 (ridge), 
with concurrent improvements on short edges. Many of these gains 
are statistically significant (p < 0.05), with medium to large effect 
sizes (𝑟 ≥ 0.3), as indicated in Table  3. These results suggest that the 
anatomy-aware Dice loss helps achieve more balanced segmentation 
across heterogeneous edge types.

4.5. Generalizability validation on external dataset

To validate generalizability, our method was applied to 9 external 
liver mesh datasets from the P2ILF challenge at MICCAI’2022, with 
mesh resolutions ranging from 3000 to 13000 edges. It is important 
to note that the 3D mesh annotations in the P2ILF dataset are based on 
actual intraoperative observations, which are limited by the camera’s 
field of view, making it impossible to observe the complete ligament 
and hepatic ridge areas. As a result, compared to the 200 liver meshes 
annotated in our study, the 9 liver meshes provided by the P2ILF 
challenge – generated using heterogeneous reconstruction pipelines 
– can be considered partially annotated and topologically distinct. 
Furthermore, due to the real clinical scenario of preoperative 3D scans 
of patients in the P2ILF dataset, there are significant differences in 
appearance, shape, and spatial position of the liver meshes, presenting 
a greater challenge for liver mesh landmark extraction methods.
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Fig. 8. Visual analysis of the attention fusion module (AFM) and auxiliary segmentation heads (ASH). Three representative liver meshes with varying resolutions 
are shown in the first column, overlaid with ground truth landmarks. The next two columns show coarse landmark proposals obtained by applying different 
confidence thresholds (𝑇1 < 𝑇2) to the propagated score maps. AFM columns visualize attention weights from both branches, while ASH outputs illustrate how 
auxiliary supervision improves proposal quality. The final column shows refined predictions after integration.
Fig. 9. Generalizability analysis on external dataset — visual results from P2ILF challenge dataset. In addition, the dotted boxes in the figure indicate areas to 
focus on.
Table  4 presents the quantitative results of the compared methods 
on the P2ILF data for external testing. Given the characteristics of the 
P2ILF data, especially the partial annotations, we primarily present 
the 3D Chamfer Distance, a key official metric of the P2ILF challenge. 
The results in Table  4 indicate that the basic Pointnet++, DGCNN, 
and MeshCNN experienced varying degrees of performance decline, 
highlighting the challenges of applying existing methods to meshes 
with significant differences in appearance and shape—a common issue 
in clinical practice. Similarly, TSGCN, which is designed for dental 
surfaces, failed to achieve effective segmentation in the generalization 
test on liver meshes. It is noteworthy that although these methods 
did not perform satisfactorily, DGCNN achieved a relatively low 3D 
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Chamfer Distance of 27.1 mm overall. This may suggest that DGCNN’s 
results contain errors but can still roughly identify the position and 
orientation of landmarks, producing a coarse segmentation result in 
external testing. The visual results of DGCNN in Fig.  9 confirm this 
hypothesis.

Satisfactorily, our method effectively combines the strengths of 
DGCNN and MeshCNN across different resolution levels, achieving 
initial segmentation on compressed meshes and refining it through 
the anatomical refining network, resulting in superior generalization 
performance. Fig.  9 shows the visual results for two samples from 
the P2ILF challenge, demonstrating our method’s generalizability and 
adaptability in liver surface landmark extraction.
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Table 4
External test results on P2ILF dataset — 3D Chamfer Distance (CD).
 Ligament Ridge Overall  
 Pointnet++ – 60.5 ± 41.8 65.7 ± 43.2 
 DGCNN 60.2 ± 36.4 24.3 ± 13.3 27.1 ± 12.3 
 MeshCNN – 88.5 ± 53.7 80.7 ± 42.9 
 MeshCNN-1 67.8 ± 46.1 38.3 ± 19.4 42.9 ± 14.3 
 TSGCN 45.8±0.0a 70.5 ± 46.7 74.5 ± 46.3 
 Ours 36.3 ± 22.7 19.0 ± 12.5 18.8 ± 8.6  
‘‘–’’ indicates that the predicted landmark region is empty, so CD cannot be calculated.
a CD is computed only on cases with non-empty predictions; the corresponding 
prediction rates are given in Table  A.2.

Table 5
Efficiency comparison of segmentation methods in terms of Pa-
rameters and Inference Time per sample.
 Parameters (M) Inference time (s/sample) 
 Pointnet++ 1.735 0.107  
 DGCNN 1.454 0.007  
 MeshCNN 0.982 0.493  
 MeshCNN-1 0.982 0.574  
 TSGCN 4.128 0.083  
 Ours 1.454 + 0.224 0.267  

5. Discussion and conclusion

This study addresses the critical need for effective 3D landmark 
extraction algorithms for AR-assisted laparoscopic navigation by de-
veloping a deep learning-based segmentation algorithm for two critical 
anatomical landmarks on the liver surface: the falciform ligament and 
the liver ridge. Our proposed algorithm employs a nested resolution 
network architecture that combines a Dynamic Graph CNN (DGCNN) 
and a MeshConv-based anatomical refining network to tackle the chal-
lenges posed by the significant variability in shape and appearance 
of the liver surface. Initially, the liver mesh at its original resolu-
tion is pooled into a low-resolution mesh with a fixed number of 
edges through a random edge collapse strategy, and the first-stage 
landmark segmentation is generated by the DGCNN model. The land-
mark segmentation results at low resolution are then propagated to 
the high-resolution mesh surface using the unpooling operation in 
MeshCNN, resulting in ‘‘dilation’’ and ‘‘erosion’’ landmark proposals. 
Subsequently, we design an anatomical refining network that inte-
grates the landmark proposals, edge features from the high-resolution 
mesh, and resolution encoding. This network, leveraging MeshConv-
based specialized branches and an attention fusion module, extracts 
the correct priors from the previous stage, ultimately achieving accu-
rate landmark segmentation on original meshes of varying resolutions. 
Empirical evaluations on two liver mesh datasets demonstrate that our 
framework consistently outperforms existing methods in terms of both 
accuracy and robustness.

As hepatobiliary surgeries increasingly move toward minimally in-
vasive and precision approaches, the design and development of AR 
navigation systems for laparoscopic procedures have garnered signif-
icant attention. The 3D–2D registration (Sun, 2023) constrained by 
anatomical landmarks is foundational to realizing this groundbreaking 
visualization technique. However, most related studies still rely on 
manual annotation of key anatomical landmarks on 3D liver meshes by 
surgeons, largely due to the considerable variability in liver appearance 
and shape, as well as the lack of mesh data annotated with land-
marks. This has presented significant challenges for the development 
of deep learning-based automated landmark segmentation methods. 
In response, we reconstructed and annotated 200 watertight meshes 
of varying shapes, appearances, and resolutions from three publicly 
available liver CT datasets to develop and validate our liver landmark 
segmentation algorithm. Additionally, we applied the proposed method 
to the external P2ILF dataset collected from real patients for further 
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validation. The experimental results in Table  4 affirm the superiority of 
our approach, particularly in the extraction of the falciform ligament, 
where it reduced the 3D Chamfer distance by approximately 24 mm 
compared to DGCNN.

Significance of the Falciform Ligament in Surgical Naviga-
tion.  Accurately identifying surface anatomical landmarks on the 
liver mesh presents a unique challenge due to the absence of true 
color and texture information and the subtlety of local geometric 
cues. In particular, failure to detect key landmarks or predicting frag-
mented, disconnected regions can directly undermine the reliability of 
downstream tasks such as 3D–2D registration. To simulate real-world 
registration performance, we adopted the differentiable PyTorch3D 
framework (Ravi et al., 2020) following the protocol established by 
the NCT team – the P2ILF challenge winner (Ali et al., 2025) – to 
visualize rigid alignment results using our predicted landmarks. Fig.  10 
illustrates two representative cases from the P2ILF dataset, comparing 
three segmentation settings: (i) our method, (ii) a setting with missing 
ligament prediction, and (iii) a setting with large fragmented ligament 
segments. In both examples, our model produced continuous and 
anatomically coherent landmark predictions on high-resolution liver 
meshes, enabling robust alignment to laparoscopic keyframes—even 
when minor discontinuities were present in the liver ridge. This is 
because our predictions consistently contain a dominant, spatially con-
nected region that overlaps reliably with visible anatomy. In contrast, 
omitting the falciform ligament – a failure mode occasionally observed 
in local-feature-based models such as MeshCNN – prevents meaningful 
registration due to the deformation-prone nature of the liver ridge 
alone. Likewise, predictions containing multiple disconnected landmark 
segments introduce ambiguity in geometric correspondence, which 
interferes with the registration optimization and may lead to visibly 
incorrect alignment—such as spatial distortions or flipped liver meshes. 
These outcomes are shown in the supplementary videos accompanying 
Fig.  10. Overall, the falciform ligament offers a more stable surface 
anchor for intraoperative registration, given its anatomical position and 
resistance to surgical deformation. Our method’s ability to consistently 
produce contiguous and anatomically valid ligament predictions – even 
under varying mesh topologies – makes it better suited for real-world 
AR navigation and clinical integration.

Method Efficiency: Parameters and Inference Time.  Compared 
to the previous labor intensive manual annotation of liver mesh land-
marks, the deep learning-based automated segmentation algorithm 
offers a more efficient solution for handling meshes of varying reso-
lutions. In this study, the proposed nested resolution Mesh-Graph CNN 
includes a foundational DGCNN and an anatomical refining network 
composed of MeshConv layers. With convolution channels set to 32, 
64, and 64 in the anatomical refining network, the overall parameter 
count is comparable to that of DGCNN (↑ 0.25𝑀 , in Table  5). In 
terms of inference time, the original MeshCNN’s reliance on multiple 
pooling operations to achieve a global receptive field posed a signifi-
cant efficiency bottleneck. In contrast, our proposed Mesh-Graph CNN 
achieves high inference efficiency (0.493𝑠 → 0.267𝑠, in Table  5) by 
combining global understanding from DGCNN with local refinement 
via MeshConv, requiring only one pooling and unpooling operation to 
complete the forward pass. Unlike MeshCNN’s iterative edge-collapse 
strategy, our method adopts random pooling, which may enable faster 
computation through matrix-based operations. This leads to inference 
speeds close to DGCNN (0.007 s), while avoiding the sequential bottle-
necks of MeshCNN (Table  5). Although efficiency is not the primary 
focus of this work, we plan to further optimize the design toward 
real-time intraoperative segmentation in future studies.

Resource Sharing, Limitations, and Future Work.  To support 
future research, we have publicly released a dataset of 200 manually 
annotated liver surface meshes, along with the training and inference 
code, at GithubLink. This curated dataset provides a valuable resource 
for developing and evaluating liver landmark segmentation algorithms, 
particularly for teams with limited access to clinical mesh data. While 

https://github.com/xukun-zhang/MeshGraphCNN
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Fig. 10. Visual comparison of 3D–2D registration outcomes across three types of landmark segmentations on two P2ILF cases. Our method yields more complete 
and spatially coherent predictions for both ligament and ridge, enabling successful overlay, while the other two settings – with missing or fragmented landmark 
regions – lead to failed or unstable alignment. The green curve indicates the extracted liver silhouette from the laparoscopic key frame. Registration was performed 
using our PyTorch3D-basedpipeline. Supplementary videos demonstrate the dynamic rigid alignment process.
our framework has shown robust performance across heterogeneous 
mesh resolutions and reconstruction pipelines, several limitations re-
main. First, each liver mesh was annotated by a single rater, precluding 
direct interobserver variability analysis. Given the labor-intensive na-
ture of this task, future work will focus on multi-annotator labeling 
of representative cases to assess annotation consistency and compare 
it with automated outputs. Second, although our current formulation 
relies solely on surface geometry, future extensions may explore in-
corporating image-derived features (e.g., from CT or MRI) to enrich 
landmark detection with cross-modal cues. Finally, to further bridge 
the gap between preoperative modeling and intraoperative deployment, 
we plan to curate paired datasets combining volumetric scans and 
laparoscopic views with anatomical landmarks and silhouettes. This 
will enable refinement of our algorithm’s performance in clinically 
realistic AR navigation scenarios.
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Table A.1
Prediction rates (%) for the falciform ligament 
landmark on the internal test set (Number of test 
cases = 70). Prediction rate is defined as the per-
centage of test cases with non-empty predictions.
 Method Prediction rate (%) 
 Pointnet++ 11.4  
 MeshCNN 18.6  
 TSGCN 22.9  

Table A.2
Prediction rates (%) for the falciform ligament 
landmark on the P2ILF data (9 cases used for 
external evaluation). Prediction rate is defined 
as the percentage of test cases with non-empty 
predictions.
 Method Prediction rate (%) 
 Pointnet++ 0.0  
 MeshCNN 0.0  
 TSGCN 11.1  

Appendix. Prediction rates

See Tables  A.1 and A.2

Appendix B. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.media.2025.103825.

Data availability

The 200 manually annotated liver meshes used in this study, along 
with a concise annotation instruction document, are available at: 
DatasetLink.
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