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ARTICLE INFO ABSTRACT

Dataset link: Dataset Link The anatomical landmarks on the liver (mesh) surface, including the falciform ligament and liver ridge,
Keywords: are composed of triangular meshes of varying shapes, sizes, and positions, making them highly complex.
Liver surface Extracting and segmenting these landmarks is critical for augmented reality-based intraoperative navigation
Mesh segmentation and monitoring. The key to this task lies in comprehensively understanding the overall geometric shape and
Anatomical landmarks local topological information of the liver mesh. However, due to the liver’s variations in shape and appearance,
Attention mechanism coupled with limited data, deep learning methods often struggle with automatic liver landmark segmentation.
3D-2D image fusion To address this, we propose a two-stage automatic framework combining mesh-CNN and graph-CNN. In the

first stage, dynamic graph convolution (DGCNN) is employed on low-resolution meshes to achieve rapid global
understanding, generating initial landmark proposals at two levels, “dilation" and “erosion", and mapping them
onto the original high-resolution surface. Subsequently, a refinement network based on mesh convolution fuses
these landmark proposals from edge features along the local topology of the high-resolution mesh surface,
producing refined segmentation results. Additionally, we incorporate an anatomy-aware Dice loss to address
resolution imbalance and better handle sparse anatomical regions. Extensive experiments on two liver datasets,
both in-distribution and out-of-distribution, demonstrate that our method accurately processes liver meshes of
different resolutions, outperforming state-of-the-art methods. The reconstructed liver mesh dataset and the
source code are available at https://github.com/xukun-zhang/MeshGraphCNN.

1. Introduction per case (Plantefeve et al., 2016) — and demands substantial anatomical
expertise. Furthermore, consistent identification across diverse anatom-

Augmented Reality (AR)-based navigational guidance for laparo- ical shapes remains challenging, especially when subtle landmarks such
scopic hepatectomy introduces a groundbreaking visualization as the falciform ligament are involved. These limitations constrain the
approach, central to which is the alignment of a preoperative 3D scalability and standardization of AR-assisted navigation. Therefore,
liver model (mesh) with intraoperative 2D laparoscopic images (Ali automating the extraction (i.e., segmentation) of these anatomical

et al., 2025; Lopez, 2022; Pfeiffer et al., 2018). This technique en-
ables surgeons to accurately identify internal structures by overlaying
the liver model onto the laparoscopic view (Fig. 1A). The success
of this 3D-2D fusion heavily relies on using anatomical landmarks
as registration constraints (Robu et al., 2018; Mhiri et al., 2024),
such as the liver’s ridge and the falciform ligament. Currently, these
anatomical landmarks are manually annotated on liver meshes during
the preoperative phase (Koo et al., 2017, 2022). Although technically in Fig. 1(A), two such landmarks are commonly used for visual naviga-
feasible, this process is time-consuming — often requiring several hours tion: the falciform ligament and the liver ridge. The falciform ligament

features is not only desirable, but also essential for streamlining surgical
workflows and promoting wider clinical adoption of AR technology.
However, automatically segmenting key anatomical landmarks from
the liver mesh is challenging, as it requires a comprehensive under-
standing of both the global geometric structure (spatial relationships)
and the local topological information (mesh unit shape). As illustrated
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Segmentation of Key Anatomical Landmarks

@ The falciform ligament
™ The liver ridge

A

Fig. 1. (A) Accurate segmentation of anatomical landmarks on the liver surface is crucial for developing intraoperative AR navigation systems. The magnified
inset highlights landmark vertices and their shared edges, which define the segmentation regions studied in this work. (B) The liver mesh surface lacks texture
and exhibits significant variations in shape and appearance, making landmark segmentation particularly challenging, especially for the falciform ligament.

is a thin fibrous structure that connects the anterior surface of the
liver to the abdominal wall, typically located near the midline-left
region of the liver surface. It lies in a relatively flat, low-curvature
area composed of large, evenly distributed triangular faces. However,
the local surface cues that define this structure — such as directional
edge alignment or subtle curvature transitions — are often too subtle to
be reliably recognized by human annotators. This motivates the devel-
opment of automated methods capable of learning these anatomically
meaningful yet visually ambiguous patterns. In contrast, the liver ridge,
positioned on the anterior base of the liver and extending laterally
across both lobes, appears in a high-curvature region characterized by
small, densely clustered triangles and sharper local topology.

The Preoperative to Intraoperative Laparoscopy Fusion (P2ILF)
challenge (Ali et al., 2025) marked a pioneering effort in addressing
this segmentation task within the scope of preoperative to intraop-
erative liver image fusion. This challenge provided a dataset of 11
liver meshes, sparking various innovative solutions from the global
research community. The methods proposed by participants included
point-based approaches like Pointnet++ (Qi et al., 2017b), graph-based
methods (Kipf and Welling, 2016), and mesh-specific strategies such
as MeshCNN (Hanocka et al., 2019) (the winning method). Point-
net++ (Qi et al.,, 2017b) and Graph Convolutional Network (GCN)
methods (Kipf and Welling, 2016) excel in global understanding by
aggregating point cloud features but often overlook the rich details
of the mesh surface. Conversely, MeshCNN-based methods (Hanocka
et al,, 2019) perform feature computation along the mesh surface
topology through mesh convolutions (MeshConv), offering robust local
topological learning. However, when processing meshes with high and
inconsistent resolutions (Fig. 1(B)), MeshCNN (Hanocka et al., 2019)
suffers from issues in computational efficiency and consistent global
shape representation due to its sequential pooling and edge-collapse
strategy. These problems become particularly challenging when learn-
ing anatomical structures across samples with diverse liver shapes and
mesh complexities (see Section 3.2.1 for details).

In this paper, to address the aforementioned challenges, we propose
a novel geometric deep learning framework that combines the strengths
of graph-based and mesh-based methods while mitigating their re-
spective weaknesses. Specifically, our Nested Resolution Mesh-Graph

CNN framework is designed to accurately extract key liver anatomical
landmarks, such as the falciform ligament and liver ridge, which are
represented as combinations of vertices and edges on the 3D liver mesh.
The task is thus reformulated as a vertex or edge segmentation problem
on the mesh. Our approach operates on two mesh resolution levels:
compressed low-resolution meshes and the original high-resolution
meshes. For low-resolution meshes, we utilize Dynamic Graph Con-
volutional Networks (DGCNN) (Wang et al., 2019b) to quickly learn
the liver’s overall shape and appearance, generating initial anatom-
ical landmark segmentations. These segmentations are mapped onto
the high-resolution mesh surface through different propagation meth-
ods, obtaining landmark proposals at “dilation” and “erosion” levels.
Subsequently, we design an anatomical refining network built on Mesh-
Conv, which integrates these landmark proposals with the detailed
topology of the original high-resolution mesh. The network employs
a fine-grained aggregation-based attention mechanism that effectively
balances and combines the potential correct priors from the differ-
ent proposals, producing refined segmentation results sensitive to the
complex topological structures of the liver surface. Additionally, we
introduce an anatomy-aware Dice loss that addresses the mesh surface’s
unevenness and captures the relative relationships of ligaments and
ridges, further enhancing the segmentation performance.
In summary, the main contributions of this work are:

» We propose a nested-resolution framework that integrates dy-
namic graph convolution (DGCNN) with MeshConv-based re-
finement to enable accurate liver landmark segmentation across
meshes with varying resolutions.

We introduce an anatomical refinement strategy that adaptively
integrates coarse landmark proposals through attention fusion
and auxiliary supervision, and is further enhanced by an anatomy-
aware Dice loss that mitigates resolution imbalance and improves
segmentation quality.

We provide a manually annotated dataset of 200 liver meshes
from public CT datasets and validate the method on the clini-
cally relevant P2ILF challenge cases, demonstrating robust gen-
eralizability across imaging modalities and mesh reconstruction
pipelines.
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The organization of our paper is as follows. In Section 2, we com-
prehensively review related applications and work in this field. In
Section 3, we describe the data and proposed framework in detail. In
Section 4, we present our experimental settings and results. Finally, we
discuss and conclude this work in Section 5.

2. Related work

Our research focuses on the application of augmented reality-
assisted laparoscopic liver resection (AR-LLR), emphasizing 3D mesh
segmentation techniques, particularly the automated extraction of crit-
ical anatomical landmarks on the liver surface.

2.1. 3D-2D registration-based LLR navigation

Augmented reality technology (AR) addresses the challenge of inter-
nal structure invisibility in LLR by integrating 3D liver models derived
from CT or MR imaging with laparoscopic images. Existing methods
register preoperative 3D data with intraoperative 2D images or 3D
data (Modrzejewski et al., 2019; Adagolodjo et al., 2017; Labrunie
et al.,, 2022, 2023; Oya et al.,, 2024). Accurate extraction and seg-
mentation of common landmarks between laparoscopic images and
preoperative 3D models are essential for achieving precise 3D-to-2D
registration. Studies (Koo et al., 2017; Espinel et al., 2021) highlight
the liver ridge, falciform ligament, and top boundary contours as
potential 3D-2D registration landmarks. For instance, by combining
biomechanical models with these landmarks, intraoperative dynamic
tracking of the liver is achieved (Koo et al., 2017). Other works (Espinel
et al.,, 2021) improve navigation accuracy by combining anatomical
markers in intraoperative images with preoperative 3D models. Similar
methods (Koo et al., 2022; Labrunie et al., 2022; Pei et al., 2024) using
CASENet, UNet and SAM (Kirillov et al., 2023) for 2D detection still re-
quire manual annotation of 3D landmarks. These studies underscore the
importance of automated anatomical landmark extraction algorithms
to reduce user interaction and enhance the clinical utility of AR-LLR
navigation.

2.2. Mesh segmentation

The segmentation of liver surface landmarks falls under the broader
category of mesh segmentation in 3D shape processing. Current mesh
segmentation methods can be broadly categorized as follows:

» 2D Projections: Early approaches (Chen et al.,, 2017; Dai and
Nielner, 2018; Le et al., 2017; Pang and Neumann, 2016) typ-
ically project 3D geometric data onto 2D images from predefined
viewpoints and process the projections using 2D CNNs. However,
2D projections inevitably lose spatial information, limiting their
performance in fine-grained segmentation tasks.

Volumetric Methods: Voxel-based methods (Graham et al., 2018;
Le and Duan, 2018; Riegler et al., 2017, Wang and Lu, 2019)
discretize 3D space into regular volumetric grids and segment
using 3D CNNs. These methods suffer from high memory and
computational costs, with the resolution scaling exponentially
with each dimension (Liu et al., 2019).

Point Cloud Methods: Point-based methods directly process 3D
geometric data using deep learning architectures. Pointnet (Qi
et al., 2017a) achieves permutation invariance of point clouds
by using symmetric max-pooling operations to aggregate features.
Pointnet++ (Qi et al., 2017b) enhances local spatial relationship
learning by hierarchically applying Pointnet. Subsequent works
integrate attention modules (Wu et al., 2019), geometric sharing
modules (Xu et al., 2020), and edge branches (Jiang et al., 2019)
to extend Pointnet++ for finer local detail learning.
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» Graph Convolutional Networks (GCNs): Given the inherent spa-
tial relationships in 3D meshes, GCN-based methods have been
proposed for 3D mesh recognition and segmentation tasks (Liang
et al., 2020; Wang et al., 2019a). These methods (Wang et al.,
2018; Xie et al., 2020) represent 3D mesh data as graph struc-
tures and use spectral or spatial graph convolutions to aggre-
gate local information for each node. For instance, Wang et al.
(2019b) combines multi-scale strategies and introduce dynamic
graph convolutional networks (DGCNN) to handle dynamic graph
structures, significantly expanding the application range of graph
convolution methods to more complex and variable real-world
problems.

MeshCNN: Traditional methods struggle with the non-uniform
and irregular topography of 3D mesh surfaces. Hanocka et al.
(2019) proposed MeshCNN, a neural network architecture specif-
ically designed for meshes. MeshCNN operates directly on ir-
regular triangular meshes, performing tailored convolution and
pooling operations. In this framework, mesh edges are analogous
to pixels in images, forming a fixed-size convolution neighbor-
hood containing four edges. Additionally, MeshCNN’s pooling
operation compresses edges in a task-driven manner, achieving
downsampling similar to size reduction in CNNs. Recent stud-
ies (Schneider et al., 2021; Chen et al., 2023) have adopted the
MeshCNN architecture for medical applications, such as vascu-
lar mesh and dental surface segmentation tasks, demonstrating
performance comparable to state-of-the-art models.

2.3. Landmark extraction on mesh surfaces

Unlike typical mesh segmentation tasks, landmark extraction (or
segmentation) on mesh data is highly class-imbalanced. For example,
anatomical landmark segmentation on the liver surface involves irregu-
lar curves like ligaments and ridges that occupy a small mesh area. The
P2ILF challenge at MICCAI'’2022 (Ali et al., 2025) marked a milestone
in liver mesh segmentation, collecting and annotating data from 11
patients and attracting six international teams. Four teams employed
Pointnet++, GCN, and MeshCNN technologies, with the MeshCNN-
based team emerging as the winner. Similar to this task, Chen et al.
(2023) designed an improved MeshCNN with residual learning and
multi-scale attention mechanisms for gingiva line detection/segmenta-
tion on 3D dental surfaces. Zhao et al. (2021) developed a dual-stream
graph convolutional network tailored for the segmentation of 3D tooth
meshes derived from oral scans, demonstrating state-of-the-art perfor-
mance in the field. However, unlike the rigid dental landmark detection
task (Wu et al., 2019), liver data exhibits significant deformation,
making direct application of these methods ineffective. The P2ILF
challenge results further confirmed this, showing that GCN-based liver
mesh segmentation was less effective than Pointnet++ and MeshCNN.
Additionally, in contrast to the well-studied dental models, the liver
domain lacks a larger-scale publicly available dataset, which is crucial
for advancing research and development in this field.

By comprehensively reviewing related applications and work in
the field, we aim to demonstrate the significant advancements and
remaining challenges in AR-assisted LLR and 3D mesh segmentation,
particularly for liver surface landmark extraction.

3. Materials and methods
3.1. Datasets

In this study, we manually annotated 200 liver meshes to evaluate
the proposed method and to promote further research in this field.
These meshes were derived from three publicly available liver datasets:
3Dircadb (Soler et al., 2010), LiTS (Bilic et al., 2023), and Amos (Ji
et al., 2022). The surface models were first extracted from ground truth
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Fig. 2. The overall framework of our proposed nested resolution Mesh-Graph CNN for segmenting key anatomical landmarks on the surface of the liver, i.e. the
falciform ligament (in blue) and liver ridge (in red). Here, both sparse representation (denoted as LR for low resolution) and dense representation (denoted as
HR for high resolution) of the point cloud are used. N represents the number of edges in the original mesh.

segmentations using the Marching Cubes algorithm in 3D Slicer (Fe-
dorov et al.,, 2012), and further processed using MeshLab (Cignoni
et al., 2008) to ensure manifold simplification, compression, and wa-
tertightness. The falciform ligament and liver ridge were manually
annotated as vertex-level regions on the liver mesh using Blender
software. Their annotation extents were defined with reference to
anatomical landmarks: the falciform ligament extended upward from
the midline fissure toward the superior surface, terminating approxi-
mately 1-1.5 cm below the highest point of the liver. The liver ridge
extended bilaterally from the fissure toward the lateral boundaries,
ending approximately 3-5 cm inward from the endpoints of the liver’s
longest transverse diameter. While the liver meshes underwent nearly
identical processing steps, the resolution of the resulting meshes, mea-
sured in edge counts, varied significantly from 3000 to 20000 edges.
This variation was not intentionally introduced but rather arose from
the inherent differences in liver shapes and sizes across the datasets.
These natural variations in liver morphology present a primary chal-
lenge in this task, highlighting the need for a robust segmentation
approach.

All annotations were meticulously reviewed by clinical experts to
ensure accuracy and fairness in evaluation. Additionally, to further
assess the generalizability of our proposed method, we included 9
training cases from the P2ILF challenge (Ali et al., 2025) as an external
evaluation cohort. These meshes were generated through heteroge-
neous reconstruction pipelines (including CT and MRI modalities) with
unknown meshing strategies, often resulting in distinct local surface
characteristics compared to our internal dataset.

3.2. Nested resolution mesh-graph architecture for anatomical segmentation

Our proposed framework for anatomical segmentation of the liver
surface employs a nested resolution mesh-graph architecture. The sim-
plified process is illustrated in Fig. 2. The compressed resolution liver
mesh is processed by a dynamic graph network (DGCNN) to capture the
global structural features of the liver, obtaining preliminary segmen-
tation results. These initial results are then mapped onto the original
high-resolution mesh surface through two levels of propagation, “di-
lation” and “erosion”. Subsequently, combining the topological details
present in the high-resolution mesh, we propose an anatomical refining
network based on MeshConv, which effectively balances and integrates
different levels of priors to produce accurate landmark segmentation.

3.2.1. Theoretical preliminaries in MeshCNN

In this section, we provide the foundational background of MeshCNN.

Understanding the key components of MeshCNN — mesh convolution
(MeshConv), mesh pooling, and unpooling is crucial for grasping the
innovative aspects of our method.

Mesh Convolution (MeshConv). As illustrated in Fig. 3(A), taking
the liver mesh as an example, any randomly selected edge (marked
in red) on the liver surface lies within a “one-ring” structure, where
this edge and its four neighboring edges constitute two faces. This
local structure is invariant on the liver surface, providing a robust
basis for performing convolution on edges. We show a close-up view
of the one-ring structure in Fig. 3(B) and denote the target edge and
its neighboring edges as (e) and (a, b, ¢, d), respectively. For each edge,
MeshCNN defines its input feature as a 5-dimensional vector consisting
of the dihedral angle, two inner angles, and two edge-length ratios for
each adjacent face. Convolution is the dot product between a kernel k
and a neighborhood. Thus, the convolution for an edge feature e and
its four adjacent edges is:

4
F@= 1@ ko+ Y k- fle)
j=1

j
=ko-fle)+ky-f(@+ky - f(b)+k;- f(e)+ky- f(d),

where f(a), f(b), f(c), f(d) are the features of the neighboring edges
and {k ;i 1J=0,1,... ,4} are the learnable weights. To ensure convolu-
tion invariance to the ordering of the input data, MeshCNN applies a
set of symmetric functions before convolution, thus:

(€8]

(2)

This guarantees that the convolution operation is invariant to the initial
ordering of the mesh elements. MeshConv always operates on five edges
(including the target edge and its four neighbors), maintaining a fixed
feature dimension of N X C x 5, where N is the number of edges, C
is the feature dimension, and 5 includes the edge and its neighbors.
This convolution can be efficiently implemented using general matrix
multiplication (GEMM), with the convolution kernel size set to (1,5).
Thus, MeshConv directly learns fine-grained information along the
mesh surface topology, which is crucial for understanding the local
details of the mesh. However, due to its strict reliance on local 1-ring
neighborhoods, MeshConv captures only limited context within each
layer. This limitation becomes more pronounced on high-resolution or
resolution-varying meshes, where shallow MeshConv stacks struggle to
aggregate stable global features. To mitigate this, traditional MeshCNN
pipelines typically introduce mesh pooling to unify resolution and
progressively enlarge the receptive field for global context learning.

Mesh Pooling. Unlike pooling operations in 2D vision, mesh pool-
ing in MeshCNN is based on an edge collapse framework, where edges
with less important features are collapsed or removed. The pooled
mesh retains the significant features while reducing the total number
of edges. As shown in Fig. 3(B), the edge collapse operation removes
the target edge (e) and converts five original edges (e, a, b, ¢, d) into two
new edges (p, q). The features of (p, q) are defined as:

{ej,er,e3.e4) ={la—cl,a+c,|b—d|,b+d}.

p=avg(a,b,e) and q=avg(c,d,e). 3
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Fig. 3. (A) A close-up view of the single-ring structure of the liver surface and the input edge features, where a, b, c,d, e represent the edges in the single-ring
structure. (B) Mesh convolution and the process of pooling and unpooling, resulting in new edges a’,b’,c¢’,d’,e’. (C) The feature propagation process during
unpooling in MeshCNN. Here, F € R¥*C represents the feature matrix of the low-resolution mesh (with H edges). Using the Unroll matrix M € R#*V these
features are propagated to the high-resolution mesh level, yielding the corresponding features F’ € R¥*C (with N edges, where N > H).
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Fig. 4. Dynamic Graph Convolutional Neural Network (DGCNN) architecture used for the initial segmentation of anatomical landmarks on compressed low-
resolution meshes. The network includes a spatial transform module for normalizing input edge features, followed by dynamic graph convolution (DGConv)
layers that extract multi-level features. Finally, Multi-Layer Perceptron (MLP) layers aggregate these features to produce initial segmentation scores. k-Nearest

Neighborhood (k-NN) is used in both spatial and DGConv layers.

However, mesh pooling in MeshCNN is a sequential process that col-
lapses edges one at a time based on feature ranking, making it com-
putationally inefficient for high-resolution inputs. Moreover, due to
the anatomical variability and resolution differences of liver meshes,
pooling often collapses structurally dissimilar edges, resulting in in-
consistent appearances of the pooled meshes and compromising the
stability of global representation learning.

Mesh Unpooling. Unpooling is implemented as the inverse process
of pooling. Specifically, MeshCNN dynamically memorizes a 0 or 1-
encoded unroll matrix M (size H x N) during pooling. As shown in
Fig. 3(Q), if the value of M [h,n] is 1, it means that the feature of the
nth edge in the original mesh participated in the feature calculation
of edge-h in the low-resolution mesh. During unpooling, the feature of
each high-resolution edge is reconstructed by averaging the features
of all low-resolution edges that contributed to its pooling path. While
this enables coarse predictions to be propagated back to the original
mesh, large resolution gaps may dilute the resulting feature responses.
This property is later leveraged to construct soft landmark priors on
high-resolution surfaces in our refinement framework.

3.2.2. Low-resolution stage: Global structure modeling with DGCNN

In clinical practice, the appearance and shape of the liver vary
significantly, which is also reflected in the liver meshes with different
levels of resolution, i.e., the number of edges in the mesh. To address
this issue, neural network methods for 2D image tasks typically adjust
the input size when handling inputs of varying resolutions to minimize
performance degradation. Similarly, for anatomical segmentation tasks
of the liver surface, we propose first introducing a modified Dynamic
Graph Convolutional Neural Network (DGCNN) to perform rapid global
understanding on a unified low-resolution network, producing initial
landmark segmentations.

Network Structure. Fig. 4 details our DGCNN network struc-
ture, designed to grasp the liver’s global structure and generate initial
anatomical landmark segmentation. The input to DGCNN consists of the
edge features (size Hx3, H = 3000) of the low-resolution mesh (also see
Fig. 2), where H represents the number of edges at the low-resolution
level, and 3 corresponds to the spatial coordinates (x, y, z) of the edge
midpoints. These coordinates intuitively reflect spatial relationships,
capturing global information.

First, the input mesh features pass through a spatial transform mod-
ule for normalization and alignment, applying local perturbations. This
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on the original high-resolution mesh referred as “label”.

module constructs a k-nearest neighbor (k-NN) graph to extract features
of adjacent points and generates a 3 x 3 transformation matrix to ensure
data alignment. Following normalization, the data is processed through
multiple Dynamic Graph Convolution (DGConv) layers.

DGConv layers capture local geometric features, dynamically up-
date adjacency relationships, and perform multi-level feature extrac-
tion, enriching feature representations. These layers iteratively extract
higher-level graph feature representations using Multi-Layer Perceptron
(MLP) layers, further enhancing feature representations. The output of
each layer undergoes max pooling to ensure the invariance of feature
arrangement.

Ultimately, the features are aggregated through max pooling, result-
ing in a 1024-dimensional feature vector, which is then concatenated
with the original feature matrix to form an H x 1220 matrix. This
concatenated matrix is passed through a sequential MLP with layers
of (256,256,128,3), producing an H X 3 matrix where each vertex
is assigned a score corresponding to one of three classes: falciform
ligament, hepatic ridge, or other regions.

This design effectively extracts global information from low-
resolution liver meshes, generating initial anatomical landmark seg-
mentations and laying a foundation for refinement on high-resolution
meshes.

3.2.3. High-resolution stage: Anatomical landmark refinement

The liver surface is represented by complex triangular units of vary-
ing shapes, sizes, and positions. High-resolution meshes capture more
local details, which are crucial for accurate landmark segmentation. A
straightforward strategy is to map the initial landmark segmentation
from the low-resolution mesh onto the high-resolution surface to pro-
vide priors, but this approach faces two challenges: (a) mapping from a
compressed mesh to the original high-resolution mesh is a reverse oper-
ation, making it difficult to achieve high-precision segmentation priors;
(b) the number of edges in the original high-resolution mesh varies
significantly (as shown in Fig. 5), complicating the neural network’s
ability to effectively integrate local topology with the segmentation
priors, which can lead to suboptimal segmentation performance on
the high-resolution mesh. To address these issues, inspired by the
unpooling operation in MeshCNN, we propose two levels of mapping
strategies: “dilation” and “erosion”, to propagate the initial landmark
segmentations onto the high-resolution mesh surface. Following this,
we design an anatomical refining network based on MeshConv, with
the aim of effectively integrating and adjusting multi-level priors on
high-resolution meshes, so as to better capture fine-grained anatomical
boundaries under varying topological conditions.

Dilation and Erosion Landmark Proposals. Building on the
earlier descriptions, the unpooling operation in MeshCNN allows for
the lossless restoration of high-resolution meshes while propagating
edge features onto the high-resolution surface. We propose to map the
landmark segmentations from the low-resolution mesh as edge features
onto the original high-resolution mesh surface, generating segmenta-
tion priors. Specifically, the low-resolution segmentation results are
one-hot encoded into H x 3 matrices (H = 3000). Through unpool-
ing, these encoded features are propagated to the original resolution,
resulting in score maps on the high-resolution mesh. Fig. 5 displays
these propagated score maps for two samples (third column). In the first
row, for the original mesh with a significantly higher number of edges
(N = 18775), the difference in edge counts compared to the compressed
mesh (H = 3000) leads to feature “dilution” during propagation due to
averaging (see Fig. 3(C) for details). In contrast, for the original mesh
with an edge count closer to that of the low-resolution mesh (second
row), the landmarks are less diluted during propagation, resulting in
scores closer to the ground truth.

When comparing these propagation score maps with the corre-
sponding labels, an interesting observation emerges: for higher-
resolution original meshes, using a lower confidence threshold on the
propagation score map produces landmark proposals closer to the
true labels (see Fig. 5, columns 4 and 6). Conversely, for original
meshes with resolutions close to the compressed mesh, setting a higher
confidence threshold yields more accurate landmark proposals (see
Fig. 5, columns 5 and 6). This observation suggests that no single
threshold is universally optimal across mesh resolutions. To achieve
complementary coverage and boundary sensitivity, we introduce two
landmark mapping strategies: “dilation” using a lower threshold (7))
for broader recall, and “erosion” using a higher threshold (7,) for
confident boundary cues. Specifically, based on the initial landmark
segmentation obtained from the DGCNN model, we apply two confi-
dence thresholds to obtain two levels of landmark proposals on the
original mesh surface:

o 1 if PSM > T,
Dilation = @
0 ifPSM<T,,
1 if PSM > T-
Erosion = ! =72 )
0 if PSM< T,

where PSM represents the propagation score map. The thresholds T} =
0.1 and T, = 0.5 were empirically selected (T} < T,) based on grid
search experiments to balance recall and precision across mesh resolu-
tions. Fig. 5 shows the “dilation” and “erosion” landmark proposals for
two different resolution original meshes. It can be seen that “erosion”
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Fig. 6. (A) Architecture of the anatomical refining network based on MeshConv. Auxiliary segmentation heads (ASH) promote reliable prior extraction, while
the attention fusion module (AFM) integrates these priors into refined landmark predictions. The first MeshConv (in red) omits symmetric functions (i.e., Eq. (2))
due to resolution-encoded inputs. (B) Attention fusion module (AFM) based on fine-grained aggregation (FGA), where superscripts (1) and (2) indicate separate
instances used to enhance cross-branch communication. (C) Edge weights incorporated in our anatomy-aware Dice (AAD) losses.

proposals represent higher segmentation confidence but result in under-
segmentation for higher-resolution meshes with more edges (see Fig.
5, row 1, column 5). Although “dilation” proposals are closer to the
ground truth in high-resolution meshes, they may contain more errors
for original meshes with fewer edges (see Fig. 5, row 2, column 4).
Therefore, effectively incorporating the topological characteristics of
the original mesh surface and selectively extracting reliable priors
from the dilation and erosion proposals are key to refining anatomical
landmark segmentation on liver surfaces with varying morphologies.

Refinement Network Architecture for Anatomical Segmenta-
tion. As previously described, MeshConv in MeshCNN performs edge
feature calculations along the mesh surface topology, effectively cap-
turing the topological details of high-resolution meshes. Building on
this, we propose an anatomical refining network based on MeshConv.
This network is designed to selectively incorporate the dilation and
erosion proposals, with the goal of capturing reliable anatomical cues
across meshes with varying shapes, appearances, and resolutions. The
architecture of the refinement network is illustrated in Fig. 6, and the
inputs include: (1) the edge features (size N x 5) edge features, which
directly represent the topology of the mesh units; (2) the number of
edges (N), corresponding to the resolution of the original mesh; and
(3) the “dilation” and (4) “erosion” landmark proposals, both encoded
as the one-hot vectors of size N x 3.

First, the edge features (size N x 5) and mesh resolution (N) pass
through an MLP, extracting new feature vectors of size N x 16 and
N x 3, respectively, which are then combined. The combined features
(size N x 19) are further concatenated with the different levels of land-
mark proposals, integrating the topological details of the original mesh
with the landmark priors from the low-resolution mesh. Our method
generates two sets of fused features, each with size N x 22, which are
processed by independent branches based on MeshConv. The resolution
encoding is introduced to guide each branch in learning plausible
priors from the corresponding landmark proposals. Specifically, when
the original mesh has a relatively high resolution, the branch fused

with the dilation proposal benefits from broader coverage, whereas
for meshes closer in resolution to the compressed input, the erosion-
guided branch is more effective in preserving segmentation precision.
This design enables each branch to specialize in extracting reliable
cues under different mesh configurations. Each branch in our network
consists of three consecutive MeshConv layers, which gradually extract
higher-level features. The multi-scale features extracted by each branch
are then concatenated and passed through an attention fusion module
(AFM), which is designed to adaptively integrate the features from
different branches and enhance the representation of anatomical cues.

These comprehensive features are subsequently passed through se-
quential MLP layers to output the final refined landmark segmentation.
It is also important to note that to facilitate the effective extraction
of reliable priors from different proposals, each branch in our model
is connected to an auxiliary segmentation head (ASH), providing di-
rect supervision to encourage branch-specific learning before feature
fusion. To train the refinement network, we adopt a combination of
cross-entropy loss and anatomy-aware Dice (AAD) loss.

Attention Fusion Module (AFM). In our anatomical refining
network, the attention fusion module (AFM) is introduced to adap-
tively balance and integrate informative cues from different branches,
aiming to enhance landmark prediction across meshes with varying
morphologies. As illustrated in Fig. 6(B), the module begins by using a
1 x 1 convolution to compress the multi-scale features (Fj, and Fj)
from each branch, generating feature vectors of size N x 40, which
are then concatenated. This combined feature vector is subsequently
processed by a Fine-Grained Aggregation (FGA) module. The FGA
module computes two types of response maps, W, (size N x 160) and
Wy (size N x 160), to modulate and integrate Fj, and F, respectively.
The formula for the cross-branch feature aggregation is as follows:

Fpeer =Wp ® Fp+ Wi ® Fp, (6)

where F,,,. (size N X 160) represents the aggregated features, and ®
denotes element-wise multiplication.
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The FGA module excels at generating response maps that cap-
ture cross-branch relationships at two granularity levels: points (or
edges) and triangular elements. To handle this complex task, we deploy
two instances of the FGA, namely FGA) and FGA®, to model these
cross-branch correspondences. Specifically, both FGAs leverage dual
MeshConv layers with different kernel sizes. The process begins with a
(1 x 1) convolution layer for primary feature distillation, followed by a
(1 x 5) convolution layer that further processes the features, generating
the outputs for FGA®) and FGA® to form the response maps W), and
Wp. These response maps are obtained through a series of concatena-
tion, convolution, Softmax layers, and weighted summation operations.
Together, these components define the attention-based fusion process
within our anatomical refinement framework.

Anatomy-Aware Dice (AAD) Loss. In vertex- or edge-based land-
mark segmentation tasks on meshes, traditional Dice loss often under-
performs due to the uneven distribution of edge lengths. This issue is
particularly prominent in regions like the falciform ligament, where
sparse and elongated triangles can lead to underrepresented gradient
signals during optimization.

To address this problem, we propose an anatomy-aware Dice loss
with two enhancements tailored to the liver surface mesh:

» Joint Modeling of Anatomical Regions: The falciform ligament
and hepatic ridge exhibit consistent spatial correlations and often
form a continuous anatomical boundary. To leverage this, we
treat them as a unified region and compute a joint Dice loss,
encouraging the model to learn their shared topological structure
more effectively.

Incorporation of Edge Weights: To mitigate edge length im-
balance, we apply a weighting factor to each edge based on
its relative geometric length. Specifically, the edge weights w;
(denoted as Edge Weight in Fig. 6(C)) are used to compute a
weighted Dice loss:

_ 2%, wipig;

Xiwip +8)
where p; and g; are the predicted and ground truth scores for edge
i, and w; is its edge weight.

)

l:weighted-Dice =

3.3. Two-stage training and inference for nested learning

As described in the previous sections, our nested-resolution architec-
ture consists of two stages: a low-resolution stage for global landmark
localization, and a high-resolution stage for refining anatomical details
based on mesh topology. In this section, we detail the training pipeline
and inference strategy that underpin this design.

Stage 1: Training the low-resolution DGCNN. To learn global
geometric structures efficiently, we train the DGCNN model using ran-
domly sampled edge midpoints from the original high-resolution mesh.
In each training epoch, a set of H = 3000 edge midpoints is sampled
to form a point cloud, which serves as input to the DGCNN for initial
landmark segmentation. The model is supervised with a combined loss
function:

£low—res = CCE + £Dice' (8)

This stage is designed to facilitate the learning of coarse but glob-
ally consistent anatomical priors across meshes of varying shapes and
scales.

Stage 2: Training the high-resolution refinement network. In
the second stage, the pretrained DGCNN is fixed. Given an original
high-resolution liver mesh, we apply mesh pooling to compress it
to a resolution of H = 3000. The resulting mesh is then processed
by the DGCNN to produce initial landmark predictions, which are
mapped back onto the original high-resolution surface using unpool-
ing and confidence-based thresholding, generating both “dilation” and
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“erosion” proposals. These proposals, along with the mesh’s edge fea-
tures and resolution encoding, are fed into the anatomical refinement
network. Although only the refinement network is updated during
this stage, the input generation depends on the full nested-resolution
pipeline. Therefore, we refer to this approach as nested-resolution
training.

The loss function for this stage aggregates supervision from three
outputs, including the two branch-specific auxiliary segmentation heads
(ASH) and the final fused prediction. The overall loss is formulated as:

£high7res = £Dilmion + l:Erosion + L:Fusion! (9)

where each term combines cross-entropy loss and the anatomy-aware
Dice loss defined in Section 3.2.3.

Inference. During testing, our model operates in a fully automatic
and end-to-end manner. Starting from an input high-resolution liver
mesh, we first apply mesh pooling to obtain a compressed version,
which is passed through the DGCNN to produce initial landmark pre-
dictions. These predictions are propagated back to the original surface
to construct the ‘“dilation” and “erosion” proposals, which — along
with other topological features — are used by the refinement network
to generate the final anatomical segmentation. The entire process is
completed within a single forward pass, without requiring any manual
post-processing.

4. Experiments and results
4.1. Competing methods and experimental setup

To thoroughly validate our method, we randomly divided the manu-
ally annotated liver mesh data into training, validation, and test sets in
a 10:3:7 ratio, reporting the average performance on the test set across
multiple experiments.

Currently, no publicly available algorithms specifically address the
segmentation of liver surface landmarks. Therefore, we selected four
state-of-the-art (SOTA) deep learning methods for mesh data process-
ing: Pointnet++ (point-based), DGCNN (graph-based), MeshCNN (edge-
based), and TSGCN (designed for dental meshes). Pointnet++ and
MeshCNN were employed by multiple teams in the P2ILF challenge (Ali
et al., 2025), demonstrating their capability on liver meshes. DGCNN,
known for its strong local and global learning abilities, was also chosen
for processing the compressed low-resolution meshes in our study.
Additionally, the original MeshCNN, which takes five initial edge fea-
tures as input, excels in local understanding but struggles with global
information. To mitigate this limitation, we computed the center point
coordinates of the edges as an additional input, enhancing MeshCNN
and designating this variant as MeshCNN-1 for comparison. Further-
more, TSGCN, which incorporates dual parallel graph networks and
leverages attention mechanisms for feature fusion, is specialized for
dental mesh segmentation tasks, offering an additional perspective in
our comparative analysis.

All methods, including ours, were implemented in PyTorch and
executed on an RTX 8000 GPU. For Pointnet++ and DGCNN, the train-
ing involved random sampling of spatial coordinates (size 3000 x 3)
while testing inputs on all edges to obtain segmentation results on
the original resolution mesh. MeshCNN and MeshCNN-1 employed a
UNet-like architecture with three levels of down-sampling, processing
fixed-size input data of edges (size 20000 x 5). We also used the official
implementation of TSGCN for training and evaluation, modifying the
number of input edges to 3000, matching the DGCNN setting. Finally,
in our method, we first obtained different levels of landmark proposals
using a trained DGCNN model, followed by training the anatomical
refining network with original meshes at varying resolutions. All ex-
periments were optimized using the Adam optimizer with a learning
rate of 0.01, and models with a minimum loss of over 600 epochs were
selected for testing.
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Quantitative comparison with different segmentation methods. “Overall” refers to the combined evaluation of both anatomical landmarks — falciform ligament

and liver ridge - as a single class, serving as a complementary summary metric.

Ligament Ridge Overall

Dice(%) CD(mm) HD(mm) Dice(%) CD(mm) HD(mm) Dice(%) CD(mm) HD(mm)
Pointnet++ 0.0 + 0.0 60.3 + 18.2% 47.8 + 11.4* 20.7 + 16.5 33.4 + 24.2 54.8 + 29.4 19.1 + 15.2 37.1 £ 22,5 61.9 + 24.1
DGCNN 21.2 + 235 22.1 + 18.7 25.8 + 14.4 57.2 + 12.8 5.6 + 6.0 21.0 + 15.3 50.3 + 15.1 8.0 + 6.8 25.8 + 15.1
MeshCNN 0.0 £ 0.1 165.1 + 55.6" 118.8 + 27.1* 0.6 + 2.0 85.0 + 51.4 81.3 + 37.1 0.8 + 23 86.1 + 49.8 82.7 + 35.9
MeshCNN-1 16.2 + 13.8 33.6 + 19.5 56.3 + 36.4 49.7 + 16.9 12.2 + 12.1 34.3 £ 23.5 42.5 + 14.2 15.0 + 9.2 43.3 + 22.4
TSGCN 1.8 +7.2 34.8 + 25.8° 34.2 + 13.17 35.9 + 19.0 22.7 + 23.0 49.6 + 31.6 33.3 £ 17.7 27.1 + 24.9 55.6 + 28.6
Ours 32.6 + 17.9 149 + 12.3 22.2 + 14.0 59.6 + 13.8 5.5 + 4.8 16.4 + 9.5 54.9 + 13.5 6.9 + 4.8 18.4 + 8.5

2 Indicates that the predicted landmark region is empty (i.e., |v| = 0 in Eq. (11)), and thus the distance metrics (CD and HD95) are calculated only on the subset of test cases

with non-empty predictions. The corresponding prediction rates are reported in Table A.1.

4.2. Metrics for comparison

The performance of our method was rigorously evaluated using
three standard metrics: Dice similarity coefficient (Dice), 3D Chamfer
Distance (CD) (Wu et al., 2021), and Hausdorff Distance (HD). These
metrics respectively capture segmentation accuracy, average spatial
deviation, and worst-case boundary errors, offering a comprehensive
assessment of anatomical landmark prediction quality.

Given the high class imbalance in this task — where landmarks
occupy only a small fraction of the liver mesh — we adopt the Dice co-
efficient to evaluate the model’s ability to detect foreground (i.e., land-
mark) regions:

2-TP
2-TP+FP+FN’
where TP, FP, and FN denote the numbers of true positives, false
positives, and false negatives, respectively.

To assess geometric alignment in 3D space, we also employed the
Chamfer Distance (CD, mm), which measures the average bidirectional
distance between predicted and ground truth landmark surfaces:

(10)

Dice =

CDV, W) = ZveV minweW ”V - w||2 + ZweW mil’lveV ||W - V“z .
Vi W
where V' and W denote the sets of vertex coordinates from the pre-
dicted and ground truth landmark regions, and | - | denotes set cardi-
nality.
To further capture local outlier deviations, we additionally intro-
duce the Hausdorff Distance (HD, mm), defined as:

(1)

HDV,W) = max { sup inf ||[v—w]||, sup inf ||w—v]|| } . (12)
vey WEW wew VEV

Here, sup and inf denote the supremum (maximum) and infimum (min-
imum) over the respective point sets. In practice, we report the 95th-
percentile Hausdorff Distance (HD95) to reduce sensitivity to extreme
outliers. Unlike CD, which captures average proximity, HD95 reflects
the worst-case deviation between surfaces, offering a complementary
perspective on boundary quality in challenging regions.

All metrics were averaged across the test set. For methods with
empty predictions on the falciform ligament, CD and HD95 were calcu-
lated only on non-empty cases, and the corresponding prediction rates
are reported in Appendix (Tables A.1-A.2). Higher Dice scores indicate
better segmentation accuracy, while lower CD and HD values reflect
closer geometric alignment with ground truth.

4.3. Comparison of results by different methods

Table 1 reports the Dice similarity coefficient (Dice), 3D Chamfer
Distance (CD), and Hausdorff Distance (HD) values for each anatomical
landmark. Consistently higher scores on the ridge suggest that the
ligament is more challenging to segment, likely due to its less distinc-
tive surface geometry. Among the baselines, MeshCNN and Pointnet++
both performed poorly on the ligament, with Dice scores near zero.
While Pointnet++ lacks topological modeling, MeshCNN focuses on

local edge structures without positional encoding. Notably, Pointnet++
slightly outperformed MeshCNN on the ridge, indicating that topology
alone may not suffice. By incorporating spatial coordinates, MeshCNN-
1 yielded substantial improvements—for instance, ligament Dice rose
from 0.0 to 16.2-underscoring the benefit of geometric cues. TSGCN,
tailored for rigid dental meshes, showed moderate performance but
struggled on the ligament (Dice: 1.8), likely due to the liver’s de-
formable anatomy and irregular mesh topology. DGCNN delivered
more balanced results, particularly on the ridge, with a Dice of 57.2 and
relatively low CD and HD values (5.6 mm and 21.0 mm, respectively),
benefiting from its ability to capture both local and global geometry
via graph-based learning. Building on DGCNN, our method introduces
a nested-resolution architecture with anatomical prior refinement. It
consistently outperformed all baselines across metrics, achieving Dice
scores of 32.6 and 59.6 for the ligament and ridge, respectively, and
further reducing CD on the ligament from 22.1 mm to 14.9 mm—
highlighting its improved performance, especially in anatomically com-
plex regions such as the falciform ligament. Notably, the reduced
Chamfer Distance approaches the clinically acceptable margin for in-
traoperative registration (Zhong et al., 2017), supporting its potential
utility in surgical navigation.

To further assess model performance, Fig. 7 presents a qualitative
comparison across liver meshes of varying resolutions (edge count
N). Pointnet++, which operates solely on spatial coordinates with-
out topological context, failed to detect the falciform ligament and
produced notable false positives along the ridge. MeshCNN, despite
leveraging edge-based topology, performed worst overall, often missing
both landmarks-a result consistent with its near-zero Dice and high HD
in Table 1. By incorporating spatial coordinates, MeshCNN-1 showed
noticeable improvements, particularly in ridge localization, though
frequent over- and under-segmentation persisted. TSGCN, originally
designed for dental meshes, achieved modest results: it successfully
captured the ridge in certain cases but introduced large segmenta-
tion errors under higher-resolution conditions, likely due to the liver’s
non-rigid morphology and irregular surface patterns. DGCNN offered
more stable outputs and consistently identified the approximate lo-
cations of both landmarks, especially the ridge, demonstrating strong
global representation capabilities. However, its predictions for the lig-
ament remained coarse, likely due to resolution variance and the
sparsity of the target region. Our method extends DGCNN by intro-
ducing anatomical prior refinement and nested-resolution processing,
aimed at improving landmark localization through enhanced structural
awareness. As shown in the final column, the resulting segmentations
appear more consistent with ground truth, particularly in regions with
high surface complexity or lower landmark visibility, aligning with the
improvements observed in quantitative metrics.

4.4. Ablation and component analysis

We conducted a comprehensive and thorough ablation study using
the DGCNN model architecture as a baseline to evaluate the effec-
tiveness of the key components in the proposed nested resolution
Mesh-Graph CNN. The following eight ablation settings were included:
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N=13556

Fig. 7.

Ground Truth Pointnet++ DGCNN

MeshCNN

MeshCNN-1 TSGCN Ours

Comparison of segmentation results of different segmentation methods. The falciform ligament on the surface of the liver is shown in blue, and the liver
ridge is shown in red. In addition, the dotted boxes in the figure indicate areas to focus on.

Table 2

Ablation study on different key components. Wilcoxon signed-rank test and effect size () were applied to the last four variants to evaluate statistical significance
and effect magnitude.

Ligament Ridge Overall
Dice(%) CD(mm) HD(mm) Dice(%) CD(mm) HD(mm) Dice(%) CD(mm) HD(mm)
DGCNN 21.2 + 235 22.1 + 18.7 25.8 + 14.4 57.2 + 12.8 5.6 + 6.0 21.0 + 15.3 50.3 + 15.1 8.0 + 6.8 25.8 + 15.1
DGCNN-D 25.3 + 20.6 17.1 + 13.8 22.8 + 11.8 54.2 + 14.8 5.5+ 5.0 16.0 + 10.8 49.9 + 14.3 7.1+ 49 19.2 + 10.3
DGCNN-E 18.3 + 16.4 18.5 + 13.8 23.0 + 11.0 41.8 + 14.5 6.3 £ 5.0 15.8 + 10.4 38.3 = 14.0 7.8 +4.9 19.0 + 10.1
DGCNN-M  27.7 + 19.0 29.6 + 39.3 41.3 + 37.6 53.2 + 13.3 8.5 + 88 31.7 = 49.7 + 12.2 9.8 + 85 32.0 + 26.5
Ours-ADD 31.0 + 20.4%*8 30.0 + 27.7%*8 58.3 + 14.2+*3 5.6 + 4.8 27.1 54.0 + 7.2 + 4.7%%% 26,6 + 19.8**8
Ours-AFM 31.1 + 20.3" 25.9 + 26.6%*¢ 58.8 + 14.0%* 5.9 + 5.0 20.0 54.4 + 13. 7.1 £ 4.7 22.0 + 14.3**8
Ours-ASH 31.7 ; 24.4 + 2211 59.0 + 14.4° 5.6 + 5.0° 18.2 54.7 + 13.5° 7.0 + 4.7 21.3 + 12.7
Ours-AAD 32.6 14.9 + 12.3%* 22.2 + 14.0**%  59.6 + 13.8**' 5.5 + 4.8 16.4 + 9.5%*% 54.9 + 13.5 6.9 + 4.8 18.4 + 8.5%*¢
* p <0l
** p < 0.05.
T Small effect (r > 0.1).
¥ Medium effect (r > 0.3).
§ Large effect (r > 0.5).
(1) The landmark segmentation result of the baseline DGCNN is (6) The proposed anatomical refining network with attention fusion

(2

@3

(4

(@

)

(7

)

=

shown in Table 1 (denoted as “DGCNN”).

Baseline DGCNN'’s “dilation” proposals on the original high-
resolution mesh (denoted as “DGCNN-D”).

Baseline DGCNN’s “erosion” proposals on the original high-
resolution mesh (denoted as “DGCNN-E”).

Combining the edge features of the high-resolution mesh with
the results from settings (1) to (3), the segmentation results on
the original resolution mesh were generated using a two-layer
MeshConv (denoted as “DGCNN-M”).

Replacing the two-layer MeshConv in setting (4) with the pro-
posed anatomical refining network, but substituting the atten-
tion fusion module with simple feature addition (denoted as
“Ours-ADD”).

10

)

®

module was used to achieve landmark segmentation on the
original mesh (denoted as “Ours-AFM”).

Based on setting (6), an auxiliary segmentation head was added
to each MeshConv-based branch of the anatomical refining net-
work (denoted as “Ours-ASH”).

The full Mesh-Graph CNN, where the refinement network is
trained using a combination of CE loss and anatomy-aware Dice
loss (denoted as “Ours-AAD”). Note that settings (2) to (7) used
only CE loss for training.

Table 2 presents the quantitative results of our ablation study.
The first three configurations — baseline DGCNN and its propagated

propos

als (DGCNN-D and DGCNN-E) - show that relying solely on
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Dice value comparison of different loss function setups for Falciform Ligament and Liver Ridge, considering edge length
distributions. The threshold 7 is defined as a multiple of the mean edge length (M ean), where edges longer than t are considered
“Long Edges” (which are sparse and important on the liver surface), and edges shorter than r are “Short Edges” (which are denser
and more frequent). The last three rows (using Anatomy-Aware Dice) were further evaluated using Wilcoxon signed-rank tests

and effect size (r) to assess significance and effect strength.

Ligament

Ridge

Long edges (>1)

Short edges (<1) Long edges (>1) Short edges (<r)

t=2.0x Mean 27.1 + 37.0 31.9 + 19.1 77.7 + 36.3 95.0 + 12.8
CE t=15% Mean 28.7 + 28.4 322 £ 19.8 94.1 + 15.6 94.6 + 13.3
t=1.0x Mean 38.0 + 22.4 28.5 + 19.4 98.2 + 9.2 90.8 + 17.3
t=2.0x Mean 30.1 + 39.8 30.9 + 19.0 78.9 + 34.1 94.6 + 13.7
CE + Basic Dice t=1.5X Mean 28.1 + 27.0 31.0 + 19.7 95.5 + 14.9 94.3 + 13.9
t=1.0x Mean 37.7 + 22.8 27.3 + 18.9 97.9 + 9.6 90.5 + 17.0
t=2.0X Mean 33.3 + 38.0%*¢ 32.7 + 79.4 + 33.1% 94.9 + 12.9%
CE + Anatomy-Aware Dice t=15% Mean 30.0 + 26. 329 + 96.0 + 13.6" 94.8 + 12.9'
t=1.0x Mean 41.2 + 21.8%*¢ 289 + 98.5 + 8.0%" 91.4 + 16.5
* p <01
** p < 0.05.

© Small effect (r > 0.1).
# Medium effect (r > 0.3).
§ Large effect (r > 0.5).

low-resolution predictions results in suboptimal performance on high-
resolution meshes, with modest Dice scores and CD values, and rela-
tively stable HD, likely due to the absence of any refinement process.
In contrast, directly applying a two-layer MeshConv for refinement in
DGCNN-M introduced notable noise, leading to worse HD scores-for
instance, on the ligament, HD increased from 25.8 mm (DGCNN) to
41.3 mm—without improvement in Dice. To address this, Ours-ADD
introduces a dual-branch design that processes “dilation” and ‘“‘ero-
sion” proposals separately before feature fusion via simple addition.
Compared to DGCNN-M, this approach improved ligament Dice by 3.3
points and reduced HD by over 11 mm, with statistically significant
improvements (p < 0.05) and large effect sizes (r > 0.5), supporting
the benefit of preserving distinct proposal pathways. Replacing feature
addition with an attention fusion module (AFM), which adaptively
weighs branch-specific features, yielded further gains—for example,
ridge HD dropped from 27.1 mm to 20.0 mm in Ours-AFM. Adding
auxiliary segmentation heads (ASH) in Ours-ASH provided branch-level
supervision, resulting in small yet consistent improvements, such as
reducing ligament HD from 25.9 mm to 24.4 mm. Finally, applying
anatomy-aware Dice loss (AAD) across all segmentation heads led to the
most stable results overall; compared to Ours-ASH, it achieved higher
Dice on the ligament (32.6 vs. 31.7), reduced CD and HD, and notably
lowered standard deviations across all metrics.

Effectiveness of the Attention Fusion Module. To assess the
impact of the attention fusion module (AFM), we visualize the at-
tention weights W, and W from Eq. (6), averaged across channels,
on three representative liver meshes with varying resolutions (Fig. 8,
AFM columns). In the first mesh (N = 5613), although both proposals
capture the general landmark regions, AFM successfully suppresses
false positives along the ridge caused by the dilation branch, lead-
ing to sharper boundaries. In the second, higher-resolution mesh, the
dilation proposal broadly covers the ligament, while the erosion pro-
posal offers tighter segmentation but introduces uncertainty in the
ligament region. Here, AFM assigns greater weights to the dilation
branch around the ligament and to the erosion branch around the ridge,
adaptively combining their strengths. On the third mesh, the erosion
proposal undersegments the landmark, while the dilation branch in-
troduces extensive false positives. AFM selectively enhances confident
regions while down-weighting unreliable predictions, resulting in more
complete and precise outputs. These visual patterns illustrate how
AFM enables the model to dynamically integrate complementary priors
under varying anatomical and resolution conditions.

Role of Auxiliary Segmentation Heads (ASH). To improve the
reliability of each proposal branch, auxiliary segmentation heads (ASH)
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are added to the ends of the dilation and erosion paths, providing
branch-specific supervision. As illustrated in Fig. 8 (ASH columns),
these outputs partially correct errors in the initial proposals — such
as over-segmentation or missed regions — and yield more structured
predictions. Though not final outputs, they help each branch preserve
complementary anatomical cues during feature learning, supporting
effective AFM fusion in final landmark refinement.

Comprehensive Analysis of Anatomy-Aware Dice Loss. To fur-
ther examine the impact of the anatomy-aware Dice loss (AAD), we
evaluated three loss configurations-CE only, CE + basic Dice, and CE +
AAD-across different edge-length thresholds (r = 1.0, 1.5, 2.0x mean).
Table 3 reports the Dice scores for short and long edges, separately
for the falciform ligament and liver ridge. Long edges, though sparse,
are critical for anatomical completeness yet more difficult to segment
accurately. As ¢ increases, segmentation performance on long edges
declines notably with CE loss alone—for instance, Dice for ligament
long edges drops from 38.0 at r = 1.0 to 27.1 at = 2.0. Adding a stan-
dard Dice term yields limited and inconsistent improvement, and may
compromise short-edge accuracy, likely due to its uniform weighting
across spatial structures. In contrast, incorporating the anatomy-aware
Dice loss leads to consistent gains across all thresholds. At ¢+ = 2.0,
Dice scores for long edges improve to 33.3 (ligament) and 79.4 (ridge),
with concurrent improvements on short edges. Many of these gains
are statistically significant (p < 0.05), with medium to large effect
sizes (r > 0.3), as indicated in Table 3. These results suggest that the
anatomy-aware Dice loss helps achieve more balanced segmentation
across heterogeneous edge types.

4.5. Generalizability validation on external dataset

To validate generalizability, our method was applied to 9 external
liver mesh datasets from the P2ILF challenge at MICCAI’2022, with
mesh resolutions ranging from 3000 to 13000 edges. It is important
to note that the 3D mesh annotations in the P2ILF dataset are based on
actual intraoperative observations, which are limited by the camera’s
field of view, making it impossible to observe the complete ligament
and hepatic ridge areas. As a result, compared to the 200 liver meshes
annotated in our study, the 9 liver meshes provided by the P2ILF
challenge - generated using heterogeneous reconstruction pipelines
— can be considered partially annotated and topologically distinct.
Furthermore, due to the real clinical scenario of preoperative 3D scans
of patients in the P2ILF dataset, there are significant differences in
appearance, shape, and spatial position of the liver meshes, presenting
a greater challenge for liver mesh landmark extraction methods.
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Fig. 8. Visual analysis of the attention fusion module (AFM) and auxiliary segmentation heads (ASH). Three representative liver meshes with varying resolutions
are shown in the first column, overlaid with ground truth landmarks. The next two columns show coarse landmark proposals obtained by applying different
confidence thresholds (T} < T,) to the propagated score maps. AFM columns visualize attention weights from both branches, while ASH outputs illustrate how
auxiliary supervision improves proposal quality. The final column shows refined predictions after integration.

Ground Truth Pointnet++ DGCNN

MeshCNN

MeshCNN-1 TSGCN Ours

Fig. 9. Generalizability analysis on external dataset — visual results from P2ILF challenge dataset. In addition, the dotted boxes in the figure indicate areas to

focus on.

Table 4 presents the quantitative results of the compared methods
on the P2ILF data for external testing. Given the characteristics of the
P2ILF data, especially the partial annotations, we primarily present
the 3D Chamfer Distance, a key official metric of the P2ILF challenge.
The results in Table 4 indicate that the basic Pointnet++, DGCNN,
and MeshCNN experienced varying degrees of performance decline,
highlighting the challenges of applying existing methods to meshes
with significant differences in appearance and shape—a common issue
in clinical practice. Similarly, TSGCN, which is designed for dental
surfaces, failed to achieve effective segmentation in the generalization
test on liver meshes. It is noteworthy that although these methods
did not perform satisfactorily, DGCNN achieved a relatively low 3D
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Chamfer Distance of 27.1 mm overall. This may suggest that DGCNN’s
results contain errors but can still roughly identify the position and
orientation of landmarks, producing a coarse segmentation result in
external testing. The visual results of DGCNN in Fig. 9 confirm this
hypothesis.

Satisfactorily, our method effectively combines the strengths of
DGCNN and MeshCNN across different resolution levels, achieving
initial segmentation on compressed meshes and refining it through
the anatomical refining network, resulting in superior generalization
performance. Fig. 9 shows the visual results for two samples from
the P2ILF challenge, demonstrating our method’s generalizability and
adaptability in liver surface landmark extraction.
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Table 4
External test results on P2ILF dataset — 3D Chamfer Distance (CD).
Ligament Ridge Overall

Pointnet++ - 60.5 + 41.8 65.7 + 43.2
DGCNN 60.2 + 36.4 24.3 + 13.3 27.1 + 12.3
MeshCNN - 88.5 + 53.7 80.7 + 429
MeshCNN-1 67.8 + 46.1 38.3 + 19.4 429 + 14.3
TSGCN 45.8+0.0* 70.5 + 46.7 74.5 + 46.3
Ours 36.3 + 22.7 19.0 + 12,5 18.8 + 8.6

“_»

indicates that the predicted landmark region is empty, so CD cannot be calculated.
a2 CD is computed only on cases with non-empty predictions; the corresponding
prediction rates are given in Table A.2.

Table 5
Efficiency comparison of segmentation methods in terms of Pa-
rameters and Inference Time per sample.

Parameters (M) Inference time (s/sample)

Pointnet++ 1.735 0.107
DGCNN 1.454 0.007
MeshCNN 0.982 0.493
MeshCNN-1 0.982 0.574
TSGCN 4.128 0.083
Ours 1.454 + 0.224 0.267

5. Discussion and conclusion

This study addresses the critical need for effective 3D landmark
extraction algorithms for AR-assisted laparoscopic navigation by de-
veloping a deep learning-based segmentation algorithm for two critical
anatomical landmarks on the liver surface: the falciform ligament and
the liver ridge. Our proposed algorithm employs a nested resolution
network architecture that combines a Dynamic Graph CNN (DGCNN)
and a MeshConv-based anatomical refining network to tackle the chal-
lenges posed by the significant variability in shape and appearance
of the liver surface. Initially, the liver mesh at its original resolu-
tion is pooled into a low-resolution mesh with a fixed number of
edges through a random edge collapse strategy, and the first-stage
landmark segmentation is generated by the DGCNN model. The land-
mark segmentation results at low resolution are then propagated to
the high-resolution mesh surface using the unpooling operation in
MeshCNN, resulting in “dilation” and “erosion” landmark proposals.
Subsequently, we design an anatomical refining network that inte-
grates the landmark proposals, edge features from the high-resolution
mesh, and resolution encoding. This network, leveraging MeshConv-
based specialized branches and an attention fusion module, extracts
the correct priors from the previous stage, ultimately achieving accu-
rate landmark segmentation on original meshes of varying resolutions.
Empirical evaluations on two liver mesh datasets demonstrate that our
framework consistently outperforms existing methods in terms of both
accuracy and robustness.

As hepatobiliary surgeries increasingly move toward minimally in-
vasive and precision approaches, the design and development of AR
navigation systems for laparoscopic procedures have garnered signif-
icant attention. The 3D-2D registration (Sun, 2023) constrained by
anatomical landmarks is foundational to realizing this groundbreaking
visualization technique. However, most related studies still rely on
manual annotation of key anatomical landmarks on 3D liver meshes by
surgeons, largely due to the considerable variability in liver appearance
and shape, as well as the lack of mesh data annotated with land-
marks. This has presented significant challenges for the development
of deep learning-based automated landmark segmentation methods.
In response, we reconstructed and annotated 200 watertight meshes
of varying shapes, appearances, and resolutions from three publicly
available liver CT datasets to develop and validate our liver landmark
segmentation algorithm. Additionally, we applied the proposed method
to the external P2ILF dataset collected from real patients for further
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validation. The experimental results in Table 4 affirm the superiority of
our approach, particularly in the extraction of the falciform ligament,
where it reduced the 3D Chamfer distance by approximately 24 mm
compared to DGCNN.

Significance of the Falciform Ligament in Surgical Naviga-
tion. Accurately identifying surface anatomical landmarks on the
liver mesh presents a unique challenge due to the absence of true
color and texture information and the subtlety of local geometric
cues. In particular, failure to detect key landmarks or predicting frag-
mented, disconnected regions can directly undermine the reliability of
downstream tasks such as 3D-2D registration. To simulate real-world
registration performance, we adopted the differentiable PyTorch3D
framework (Ravi et al., 2020) following the protocol established by
the NCT team - the P2ILF challenge winner (Ali et al., 2025) - to
visualize rigid alignment results using our predicted landmarks. Fig. 10
illustrates two representative cases from the P2ILF dataset, comparing
three segmentation settings: (i) our method, (ii) a setting with missing
ligament prediction, and (iii) a setting with large fragmented ligament
segments. In both examples, our model produced continuous and
anatomically coherent landmark predictions on high-resolution liver
meshes, enabling robust alignment to laparoscopic keyframes—even
when minor discontinuities were present in the liver ridge. This is
because our predictions consistently contain a dominant, spatially con-
nected region that overlaps reliably with visible anatomy. In contrast,
omitting the falciform ligament — a failure mode occasionally observed
in local-feature-based models such as MeshCNN - prevents meaningful
registration due to the deformation-prone nature of the liver ridge
alone. Likewise, predictions containing multiple disconnected landmark
segments introduce ambiguity in geometric correspondence, which
interferes with the registration optimization and may lead to visibly
incorrect alignment—such as spatial distortions or flipped liver meshes.
These outcomes are shown in the supplementary videos accompanying
Fig. 10. Overall, the falciform ligament offers a more stable surface
anchor for intraoperative registration, given its anatomical position and
resistance to surgical deformation. Our method’s ability to consistently
produce contiguous and anatomically valid ligament predictions — even
under varying mesh topologies — makes it better suited for real-world
AR navigation and clinical integration.

Method Efficiency: Parameters and Inference Time. Compared
to the previous labor intensive manual annotation of liver mesh land-
marks, the deep learning-based automated segmentation algorithm
offers a more efficient solution for handling meshes of varying reso-
lutions. In this study, the proposed nested resolution Mesh-Graph CNN
includes a foundational DGCNN and an anatomical refining network
composed of MeshConv layers. With convolution channels set to 32,
64, and 64 in the anatomical refining network, the overall parameter
count is comparable to that of DGCNN (1 0.25M, in Table 5). In
terms of inference time, the original MeshCNN'’s reliance on multiple
pooling operations to achieve a global receptive field posed a signifi-
cant efficiency bottleneck. In contrast, our proposed Mesh-Graph CNN
achieves high inference efficiency (0.493s — 0.267s, in Table 5) by
combining global understanding from DGCNN with local refinement
via MeshConv, requiring only one pooling and unpooling operation to
complete the forward pass. Unlike MeshCNN’s iterative edge-collapse
strategy, our method adopts random pooling, which may enable faster
computation through matrix-based operations. This leads to inference
speeds close to DGCNN (0.007 s), while avoiding the sequential bottle-
necks of MeshCNN (Table 5). Although efficiency is not the primary
focus of this work, we plan to further optimize the design toward
real-time intraoperative segmentation in future studies.

Resource Sharing, Limitations, and Future Work. To support
future research, we have publicly released a dataset of 200 manually
annotated liver surface meshes, along with the training and inference
code, at GithubLink. This curated dataset provides a valuable resource
for developing and evaluating liver landmark segmentation algorithms,
particularly for teams with limited access to clinical mesh data. While


https://github.com/xukun-zhang/MeshGraphCNN

X. Zhang et al.

Medical Image Analysis 107 (2026) 103825

3D-2D Registration

Key Frame

2D Landmarks

Fragmented Prediction

3D-2D Registration

Key Frame

2D Landmarks

Fragmented Prediction

Fig. 10. Visual comparison of 3D-2D registration outcomes across three types of landmark segmentations on two P2ILF cases. Our method yields more complete
and spatially coherent predictions for both ligament and ridge, enabling successful overlay, while the other two settings — with missing or fragmented landmark
regions — lead to failed or unstable alignment. The green curve indicates the extracted liver silhouette from the laparoscopic key frame. Registration was performed
using our PyTorch3D-basedpipeline. Supplementary videos demonstrate the dynamic rigid alignment process.

our framework has shown robust performance across heterogeneous
mesh resolutions and reconstruction pipelines, several limitations re-
main. First, each liver mesh was annotated by a single rater, precluding
direct interobserver variability analysis. Given the labor-intensive na-
ture of this task, future work will focus on multi-annotator labeling
of representative cases to assess annotation consistency and compare
it with automated outputs. Second, although our current formulation
relies solely on surface geometry, future extensions may explore in-
corporating image-derived features (e.g., from CT or MRI) to enrich
landmark detection with cross-modal cues. Finally, to further bridge
the gap between preoperative modeling and intraoperative deployment,
we plan to curate paired datasets combining volumetric scans and
laparoscopic views with anatomical landmarks and silhouettes. This
will enable refinement of our algorithm’s performance in clinically
realistic AR navigation scenarios.
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Table A.1

Prediction rates (%) for the falciform ligament
landmark on the internal test set (Number of test
cases = 70). Prediction rate is defined as the per-
centage of test cases with non-empty predictions.

Method Prediction rate (%)
Pointnet++ 11.4
MeshCNN 18.6
TSGCN 22.9
Table A.2

Prediction rates (%) for the falciform ligament
landmark on the P2ILF data (9 cases used for
external evaluation). Prediction rate is defined
as the percentage of test cases with non-empty

predictions.
Method Prediction rate (%)
Pointnet++ 0.0
MeshCNN 0.0
TSGCN 111

Appendix. Prediction rates
See Tables A.1 and A.2
Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.media.2025.103825.

Data availability

The 200 manually annotated liver meshes used in this study, along
with a concise annotation instruction document, are available at:
DatasetLink.
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