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Introduction. The potential for multicancer early detection (MCED) tests to detect cancer at earlier stages is currently
being evaluated in screening clinical trials. Once trial evidence becomes available, modeling will be necessary to pre-
dict the effects on final outcomes (benefits and harms), account for heterogeneity in determining clinical and cost-
effectiveness, and explore alternative screening program specifications. The natural history of disease (NHD) compo-
nent will use statistical, mathematical, or calibration methods. This work aims to identify, review, and critically
appraise the existing literature for alternative modeling approaches proposed for MCED that include an NHD com-
ponent. Methods. Modeling approaches for MCED screening that include an NHD component were identified from
the literature, reviewed, and critically appraised. Purposively selected (non-MCED) cancer-screening models were
also reviewed. The appraisal focused on the scope, data sources, evaluation approaches, and the structure and para-
meterization of the models. Results. Five different MCED models incorporating an NHD component were identified
and reviewed, alongside 4 additional (non-MCED) models. The critical appraisal highlighted several features of this
literature. In the absence of trial evidence, MCED effects are based on predictions derived from test accuracy. These
predictions rely on simplifying assumptions with unknown impacts, such as the stage-shift assumption used to esti-
mate mortality impacts from predicted stage shifts. None of the MCED models fully characterized uncertainty in the
NHD or examined uncertainty in the stage-shift assumption. Conclusion. There is currently no modeling approach
for MCEDs that can integrate clinical study evidence. In support of policy, it is important that efforts are made to
develop models that make the best use of data from the large and costly clinical studies being designed and imple-
mented across the globe.

Highlights

e In the absence of trial evidence, published estimates of the effects of multicancer early detection (MCED)
tests are based on predictions derived from test accuracy.

e These predictions rely on simplifying assumptions, such as the stage-shift assumption used to estimate
mortality effects from predicted stage shifts. The effects of such simplifying assumptions are mostly
unknown.

e None of the existing MCED models fully characterize uncertainty in the natural history of disease; none
examine uncertainty in the stage-shift assumption.

e Currently, there is no modeling approach that can integrate clinical study evidence.
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Novel technologies have recently emerged that look for
markers of cancer in blood, urine, saliva, or stool and have
the potential to detect signals from multiple cancer types
from a single sample. These are termed multicancer early
detection (MCED) tests. Their use in screening asympto-
matic persons has the potential to detect cancer at an ear-
lier stage, when treatment is likely to be more effective and
perhaps less costly.> However, policy makers have
demanded evidence of mortality effects and a fuller exami-
nation of the potential harms and consequences of the
test’s imperfect accuracy (including of diagnostic resolution
pathways), overdiagnosis, and the effect on existing screen-
ing programs.® The Galleri® test (GRAIL, Inc., Menlo
Park, CA, USA) test is the blood multicancer test that is
most advanced in the stage of clinical research, with a ran-
domized clinical trial currently underway in the United
Kingdom, the NHS-Galleri trial (NCT05611632), aiming
to demonstrate the clinical effectiveness of the test in stage
shifting advanced cancer in a population screening setting.*

To inform policy decisions on screening programs
involving MCED tests, modeling will be required to 1)
link evidence and predict expected effects over final out-
comes (mortality, life expectancy, and quality-adjusted
life-years), 2) appropriately reflect heterogeneity in the
value of stage shifts across different cancer types to allow
estimation of cost-effectiveness, and 3) allow alternative
specifications for a screening program to be evaluated
(e.g., different age and risk groups, alternative screening
intervals, etc.). Modeling is therefore likely to underpin
such policy evaluations of MCED tests. This may include
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statistical, mathematical, or calibration modeling to inte-
grate cancer-screening data and infer the natural history
of disease (NHD). It may also include decision modeling
to predict results with alternative screening regimens and
their longer-term clinical and cost-effectiveness.

Cancer-screening models typically include an NHD
component that describes the prevalence of preclinical
cancer (undiagnosed but detectable) and allows for
examining the effect of important policy options, such as
alternative specifications for the screening program. The
NHD model component describes cancer progression
through its preclinical stages over time (in the absence of
the proposed screening test) and may also consider can-
cer onset and the competing risks of clinical detection
(both incidental findings and symptomatic presentation)
and mortality. The challenge in evaluating these NHD
models arises from the fact that preclinical progression is
unobserved. Empirical data, however, can still provide
relevant information on preclinical cancer prevalence and
progression supporting inference, where the data are used
to infer the NHD model and help gain an understanding
of the likely values of the NHD model parameters in the
underlying population, using statistical and mathematical
approaches’ or calibration.®” Besides alternative evalua-
tion approaches, models in the general cancer screening
literature® also use a variety of data sources and analyti-
cal methodologies, vary the core elements of the NHD
that are modeled (they may or may not model cancer
onset, the likelihood of clinical detection, and/or mortal-
ity), and vary whether and how within-tumor heterogene-
ity and overdiagnosis are modeled.

The objective of this article is to identify, review, and
critically appraise the existing literature for alternative
modeling approaches proposed for MCED that include
an NHD component. As the literature and approaches in
this area continue to develop and evolve, it is important
to critically examine the range of modeling approaches
that have been proposed for MCEDs and to assess the
extent to which specific features of model structure and
model evaluation can accommodate the complexity of
multicancer modeling. While there has been extensive dis-
cussion and consideration of the appropriate study design
to inform clinical utility,'” we are not aware of any publi-
cations that have attempted to systematically identify and
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Box 1 Glossary

Stage shift: change in the stage distribution attributed to screening

Sojourn time, time to transition, and dwell time: Sojourn time refers to the time spent in preclinical cancer, that is, the total time
from cancer onset to clinical diagnosis or death without diagnosis. Cancer onset is defined as the time when cancer is potentially
detectable by any medical test. This ensures that, for any particular analysis, sojourn time is independent of the individual
screening tests. Sojourn time for a particular cancer stage is the time spent in that preclinical stage of cancer; specifically, it is the
time until progression to the next stage, clinical detection, or death (whichever first).

Natural history of disease (NHD) models may be parameterized by using distributions that describe the times to each individual
transition allowed in the model, for example, time for early cancer in the preclinical stage to progress to advanced preclinical
cancer or time for preclinical cancer to be clinically detected.

Dwell time has been used in the literature to reflect time to stage progression, given the cancer does not get clinically detected at
that stage or the individual does not die from other causes at that stage. Note that, because GRAIL models model only
individuals who would be clinically diagnosed with cancers under current care, the term dwell time can be used interchangeably
to represent sojourn time.

Inference: Inference (statistical) is the process of forming judgments about the parameters of a population on the basis of data
obtained from (usually random) sampling. For NHD modeling, inference is often sought on multiple (populational) parameters
describing the NHD. Inference uses data to gain an understanding of the likely values of the NHD model parameters in the
underlying population.

Model identifiability: 1dentifiability is achieved when the number of observed quantities (the number of screen-detected and
interval cancers across different screens) is larger than the number of model parameters.

Correlation in progression parameters: Uncorrelated (or independent) parameters describing the progression between stages
assume that the time it takes for a cancer to progress between stage 1 and 2 is independent of the time it takes for the same
cancer to progress between stages 2 and 3. These quantities may also be assumed correlated, meaning that a cancer with a lower
time to progression between stage 1 and stage 2 would be expected to also present a lower time to progression in subsequent
transitions. Correlation or independence can also apply to sojourn time.

Length time bias: Length bias occurs when tumors with a longer sojourn time (slow growing), and more likely to be screen
detected, present a better prognosis. This implies that faster-progressing cancers (shorter sojourn time), and more likely to be
missed, present worse prognosis. In this case, screen-detected cases may appear to present a survival benefit that is due only to
the heterogeneity in detected cases.

Stage-shift assumption: This means that cases shifted to an earlier stage via screening are assumed to have the same survival as
cases detected in an earlier stage without screening.

Lead-time assumption: Lead time is defined as the time between when a cancer is detected by screening and when it would have
been detected without screening. The term lead-time assumption means mortality is not considered during lead time, and
therefore, bringing forward diagnosis through screening does not bring forward harms such as those from more aggressive
treatment.

Cancer overdiagnosis: We define overdiagnosis as the diagnosis, from screening, of a cancer that would not have been diagnosed
under current care.

critique existing modeling approaches and specifically the
extent to which they will be able appropriately integrate
the findings of these clinical utility studies. The article is
structured in the following way: the existing models are
identified and described in the “Review of Models” sec-
tion and critically appraised in the “Critical Appraisal”
section, and the overall findings are discussed in the “Dis-
cussion” section. Box 1 provides a glossary of definitions
that will be used throughout.

Review of Models
Methods

Literature search for MCED models. A scoping litera-
ture review was developed and undertaken to identify
published models of MCEDs in relation to a compara-
tor. The review included models of NHD that incorpo-
rate both detection rates and predicted stage distribution
(stage shift) and that may also have extended these
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models to quantify effects on mortality. The search
methodology is reported in full in the online appendix.

Additional selected models. To further support the criti-
cal appraisal, additional selected models were added pur-
posively. We included 2 multidisease (but non-MCED)
models that were contemporary examples developed by
elements of our research team (and were therefore under-
stood in depth). We also included 2 single-disease models
that were cited by relevant authors to support existing
MCED models. For these additional models, the focus of
the review was on the modeling mechanisms and related
assumptions. These models provide background and con-
text for the modeling assumptions made in MCED mod-
els and for any changes/extensions made.

Extraction. The review extracted information on the fol-
lowing aspects: 1) model structure, including the number
and types of cancer, NHD parameterization, and model-
ing of screening impact; 2) how data were used within
the models, including key NHD assumptions and data
requirements; and 3) uncertainties related to NHD and
how these were considered. From the extracted informa-
tion, we identified the following features of the models
reviewed:

e Scope: The population modeled (whether only indi-
viduals with clinically diagnosed cancer were modeled
or the entire population eligible for screening, which
would have allowed quantifications of overdiagnosis)
and whether mortality effects were considered.

e Key data sources: Whether evidence on detection
with screening was considered (e.g., clinical trial) or
only evidence on cancer incidence under current care,
and whether external evidence on preclinical progres-
sion parameters (elicited or from the literature) was
used.

¢ Evaluation: Whether the model evaluation was based
on prediction or on inference and whether it is evalu-
ated at the cohort or individual level.

A predictive approach uses input evidence to directly
describe model parameters and calculates expected can-
cer detection algebraically, with and without screening.
NHD model parameters are prespecified using values or
distributions (using external sources such as other eva-
luations or expert opinion) before running the model,
which then outputs predictions. In contrast, inferential
approaches use cancer diagnosis data from samples of
individuals (for example, repeat screening data) to learn
about NHD model parameters. Because sojourn time is

not directly observable, the methods used differ from
standard regressions and employ mathematical tech-
niques such as deconvolution'' or calibration.®”:!?

e Structure and parameterization: whether a common
structure across cancer types is used; what level of dis-
aggregation of cancer stages was used (i.e., whether
individual stages were considered or whether they
were aggregated, e.g., early v. late cancer); whether
the impact of screening is predicted from test accu-
racy; whether mortality effect is predicted by applying
mortality in clinically detected cancer to the screening
stage distribution predicted by the model; what para-
meterization, distributional assumptions, and assump-
tions about the correlation between progression
parameters were used; whether overdiagnosis (defini-
tion in Box 1) is quantified within the NHD model.

Results

The review identified 5 different MCED models with an
NHD component: 4 funded by GRAIL (hereafter termed
GRAIL models) and specifically related to the Galleri
test'> 1% and 1 based on a hypothetical MCED (although
using some inputs derived from the Galleri test).!” Four
additional models (non-MCED) were also reviewed: 2
multicancer models by Thomas'® and Mandrik et al.'’
and 2 single-cancer models by Pinsky'! and Skates and
Singer.” The 9 models were reviewed; these are described
in Table 1.

MCED models. Table 2 describes the key features of the
models reviewed. These models are referred to by the
name of the first author in the publication.

There are 4 GRAIL models: Hubbell, Sasieni, Tafaz-
zoli, and Dai.”>'® These use a common approach,
referred to as the interception model, to determine the
NHD and stage shift with the Galleri test, with the core
methodology rooted in the Hubbell model. These also
use a common set of evidence, including national cancer
incidence statistics (by type, stage, age, and gender),
expert or literature-derived sojourn time evidence,'>!
and test sensitivity from diagnostic studies.

The NHD component of the GRAIL models focuses
on individuals clinically diagnosed with cancer under
standard care. The GRAIL models use a common NHD
structure, assuming (Table 3) 1) disease progression
across 4 stages (stages 1, 2, 3, and 4) without regression;
2) progression is sequential, with cancers moving through
each stage until clinically detected; 3) sojourn times are
exponentially distributed; 4) sojourn times are
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Table 1 List of Models Reviewed
Model Technology N Cancers Modeled Outcomes
GRAIL models
Hubbell 2021 Galleri test 19 Clinical
Sasieni 2023"° Galleri test 24 Clinical
Tafazzoli 2022'¢ Galleri test 23 Clinical and cost-effectiveness
Dai 2024 Galleri test 25 Clinical
Other MCED
Lange 2024'7 Hypothetical MCED (based on Galleri test) 12 Clinical
Other multicancer
Mandrik 2025 Dipstick test for bladder and kidney cancer 2 Clinical and cost-effectiveness
Thomas 20258 Imaging test for abdominal cancers 10 Clinical and cost-effectiveness
Other single-cancer
Skates 1991%° Blood test (CA 125) for ovarian cancer 1 Clinical
Pinsky 2004'! CT screening for lung cancer 1 Clinical

CT, computed tomography; MCED, multicancer early detection.

independent between stages; 5) mean sojourn times may
differ across cancer types (models consider groups of
cancers with distinct mean sojourn times); and 6) there is
no heterogeneity in sojourn times within tumor types
beyond that expected by chance (i.c., the expected value
of the sojourn time is equal for all individuals in the
model). The NHD does not include the probability of
cancer onset nor of clinical detection, and therefore, the
main NHD parameters are the stage-specific sojourn, or
dwell, times (see Box 1 for definitions).

All 4 GRAIL models consider stage shift as the main
clinical benefit of screening. Stage shift is evaluated pre-
dictively, using test sensitivity to determine the likelihood
of carlier detection. Mortality effects are also predicted
under the stage-shift assumption and the lead-time
assumption (Box 1), except in a scenario of the Tafazzoli
model, which considers mortality during lead time.

None of the GRAIL models reviewed evaluated
uncertainty probabilistically. In the context of predictive
modeling, this would have entailed describing uncer-
tainty in the input parameters and running probabilistic
analysis to evaluate uncertainty over models’ outputs.
Also, models incorporate within-tumor heterogeneity
only from the distribution of cancer diagnosis by age and
sex. Further consideration of these aspects is provided in
the “Critical Appraisal” and “Discussion” sections.

Although the GRAIL models are underpinned by the
same core methodology proposed in Hubbell, there are a
number of specific differences in terms of their parame-
terization and structural assumptions. The Sasieni
model'>?? applies the Hubbell model to UK cancer inci-
dence and mortality data and examines structural exten-
sions allowing consideration of differential survival of
cfDNA-detectable cancers, alternative cohorts and

screening regimens, and the possibility of nonsequential
progression from stage I to IV only. Tafazzoli’s model'®
integrates Hubbell’s stage-shift matrices (i.e., the likeli-
hood of a cancer clinically detected in a particular stage
being detected by Galleri at each earlier cancer stage)
within a cohort model of 50-y-old individuals tested annu-
ally with Galleri until the age of 79 y. In Tafazzoli’s
model, stage-shifted individuals in each model cycle are
time shifted (shifted back in time to earlier cycles to
account for an earlier time of diagnosis), based on cancer-
specific sojourn times. Tafazzoli is the only Galleri model
that incorporates overdiagnosis (but not explicitly in the
NHD model) by increasing detection by a proportion that
is applied as an input to the model and extends the eva-
luation to cost-effectiveness. Dai’s model'® uses the core
assumptions of Hubbell’s model but evaluates the model
using individual patient simulation. It also describes
sojourn times from empirically derived estimates sourced
from other screening studies, rather than elicitation.

Our review identified only 1 MCED model that was
not funded by GRAIL: this is Lange’s model.'” This
model examines the impact of a hypothetical MCED
(using the estimates for test sensitivity that are relevant to
Galleri) on 12 cancer types. The model does not evaluate
overdiagnosis or mortality (extensions to mortality have
been further considered since publication, see https://ce-
darmodelingframework.shinyapps.io/mcedmodel/). It is
based on the same type of evidence as the GRAIL models
(age- and stage-specific clinical incidence data under cur-
rent care) but applies an alternative NHD model that is
more comprehensive in that it, in addition to preclinical
progression (for which it uses the more aggregate classifi-
cation of early v. late disease), also characterizes the
probability of cancer onset, the age of cancer onset, and
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Table 2 Key Features of the Natural History of Disease (NHD) Models Reviewed

Evidence for

Structural NHD Model Evaluation NHD Uncertainty
Clinically Diagnosed
Common Cancer Mortality Approach, Uncertainty Evaluated
Population Structure Disease Used on Cohort Comparative (above Individual
Modeled Mortality Effects across Cancer Stages Screen-Detected Model Approach, Screening Detection Data External Preclinical Variability, Where
Model in the NHD Included? Types? in NHD? Cases? (v. IPL) NHD Outcomes on Screening? Progression Evidence? Relevant)?
GRAIL models
Hubbell 2020'*  Incident Yes Yes 1,2,3,and 4 Yes Cohort Prediction Prediction No Yes No
Sasieni 2023'5  Incident Yes Yes 1,2,3,and 4 Yes Cohort Prediction  Prediction No Yes No
Tafazzoli 2022'® Incident Yes Yes 1,2,3,and 4 Yes Cohort Prediction  Prediction No Yes No
Dai 2024"3 Incident Yes Yes 1,2,3,and 4 Yes IPL Prediction Prediction No Yes No
Other MCED
Lange 2024'7 All No Yes Early v. late NA Cohort Inference, Prediction No Yes Yes
ML
Other multidisease
Mandrik 2025 All Yes No 1,2,3,and 4 Yes IPL Inference, Prediction No Yes (within priors) Yes
Bayesian
calibration
Thomas 2025'®  Screen Yes Yes 1,2,3,and 4 Yes Cohort, Inference, Prediction  Yes, cases Yes No
detected multiple  calibration of cancer
detected with
screening; no
data in the absence
of screening
Other single disease
Skates 1991%°  Incident Yes NA Early v. late Yes IPL Prediction  Prediction No Yes No
Pinsky 2004'"  All No NA Early v. late NA Cohort Inference, Yes, cases of No Yes
ML screen-detected

and interval cancers
by screening round

IPL, coefficient of variation; individual patient level; ML, maximum likelihood estimation; NA, not applicable; NHD, natural history of disease.
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Table 3 Assumptions over the Natural History of Disease (NHD) Model

Cancer Onset Preclinical Progression Parameter Probability of Overdiagnosis
Clinical Mortality Included  Included in NHD
NHD Model Element Distribution Heterogeneity Parameterization Distributions Correlation? Identification in NHD Model Model Other
GRAIL models Not modeled Individual parameters for Exponential No Not modeled Yes, predictive No NA
progression between stages
Other MCED: Hypoexponential (fixed No Fixed values for time in overall Exponential No Exponential No No Clinical detection
Lange parameter m) and late-stage preclinical rates described by
disease Poisson
distribution as
part of inference
Other multidisease: ~ Annual probability as a Yes Individual parameters for Weibull (IPL Yes Annual probability Yes Yes Bayesian
Mandrik function of age and progression between stages, model component) (cohort model calibration with
other risk factors using assumptions, component) multiple targets
(cohort model informative priors, and
component) constraints to ensure
identification
Other multidisease: ~ Not modeled Individual parameters for Triangular No Yes, for Yes, predictive Yes, by considering NA
Thomas progression between stages comparator arm; competing
triangular mortality
distribution
Other single disease: Not modeled Four-variate normal Four-variate normal Yes Not modeled Yes, predictive No NA
Skates distribution; ratio of time in distribution
early v. late stage and
constant CV for each stage
were assumed constant
Other single disease: Cubic polynomial No Single parameter for Weibull (exponential No Weibull Yes, predictive and  Yes, predicted NA
Pinsky function of age progression between early as special case) (exponential as not used in NHD  using NHD

and late

special case) model inference model estimates
and external
mortality

estimates

CV, coefficient of variation; IPL, individual patient level; MCED, multicancer early detection; ML, maximum likelihood estimation; NA, not applicable; NHD, natural history disease
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the likelihood of clinical detection. Lange evaluates the
underlying NHD model parameters using an inferential
approach to describe clinical incidence rate data using a
Poisson distribution; however, not all parameters of the
model are identifiable based on age- and stage-specific
incidence data. Therefore, given these data, the authors
assumed fixed values for overall and late-stage sojourn
times (user defined) allowing estimating all unknown
parameters. It is unclear how inference over the early-
stage sojourn times is, however, reached.

Selected non-M CED models

Selected multicancer screening models. Mandrik’s
model'® examines the clinical and cost-effectiveness of a
urine dipstick test in screening for bladder and kidney
cancers. The NHD model structure includes cancer onset,
preclinical cancer progression through cancer stages (1 to
4), cancer detection, and mortality. Heterogeneity is
included by considering cancer onset to depend on age
and smoking status and by considering a separate cancer
pathway for nonfatal low-risk bladder cancers. Man-
drik’s model uses detection data for current care only
(due to the absence of data for the screening test under
evaluation) and summary evidence from the literature on
the impact of risk factors, test sensitivity, and other ele-
ments. The model is Markovian for all transitions except
for progression of preclinical cancers, which uses an indi-
vidual patient time-to-event formulation. The NHD
model was evaluated using Bayesian calibration (Metro-
polis—Hastings algorithm), an inferential calibration pro-
cedure that allows for uncertainty to be appropriately
integrated. Due to the absence of screening data, and to
ensure model identification, strong priors, assumptions,
and constraints over the NHD parameters were used. A
predictive approach anchored on test accuracy was used
to project screening outcomes from test accuracy, over-
diagnosis, and mortality impacts (from stage shifts)

Thomas’ model'® evaluates upper abdominal CT ima-
ging for the screening of 10 cancers (alongside other
abdominal diseases). It adopts a common structure
across all cancers, with progression across stages 1 to 4.
The model uses clinical incidence data with screening,
combined with elicited estimates of test sensitivity.
Despite not considering the probability of cancer onset,
the model considers the age of onset in those who were
screen detected. For the comparator arm, the model
simulates what would have happened to the screen-
detected individuals had they not been screened. In doing
so, it considers the competing events of stage progression,
clinical detection, and mortality in its structure. The
model is a multicohort Markov model, considering

various age and sex cohorts. The model conducts infer-
ence using a simplified non-Bayesian calibration (or fit-
ting process), which does not consider uncertainty over
the NHD, to evaluate outcomes for a cohort of
unscreened individuals from elicited values describing
stage-specific preclinical progression. Mortality impacts
were predicted from stage shifts. By considering that
those who would have been screen detected were at risk
of death if unscreened, the comparator arm considers
individuals dying with undiagnosed cancer and predicts a
lower number of cancer cases than in the screening arm.

Single-cancer models cited by authors of existing
MCED models. Skates’ model® is cited in the GRAIL
models in support of the proposed interception model.
Skates examines the impact of screening for ovarian can-
cer with a blood biomarker using a predictive approach
combining ovarian cancer incidence with preclinical pro-
gression times across 4 cancer stages. The key difference
between this NHD model and the GRAIL NHD models
are that Skates uses patient-level simulation (all GRAIL
models except for Dai), a different parameterization of
time to stage progression using log-normal distributions
with fixed mean ratios between stages and a coefficient
of variation, and accounts for correlation between stages.
The impact of screening is predicted from biomarker lev-
els, and the mortality impact is predicted using the stage-
shift assumption and the lead time assumption while also
assuming a proportion of patients are cured.

Pinsky’s model'' is the key reference cited by Lange.
It uses the same structure as Lange but considers a range
of distributions for the NHD parameters and imposes
age dependency on time to cancer onset. Pinsky’s model,
however, uses screening trial data to achieve inference on
the NHD via maximum likelihood estimation. In doing
so, it carefully considers parameter identifiability from
the data.

Critical appraisal. In this section, we critically appraise
the existing MCED models for their key features, includ-
ing how these accommodate the multicancer context, and
highlight key uncertainties.

MCED effects are based on predictions rather than
direct evidence. A critical feature of this evaluation prob-
lem is the current absence of data on cancer detection
and mortality from screening with Galleri or other
MCED. The NHD models therefore use similar data,
namely, on cancer incidence data under current care and
expected sojourn times, to back-calculate or infer undiag-
nosed cancer prevalence. The lack of screening data
means that the accuracy of predictions and inferences in
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MCED models will rely on the use of an appropriate
NHD model and on the quality of the evidence underly-
ing/supporting the NHD parameters.

MCED models apply simplifying assumptions. It is unclear
where adding complexity may be most important. Existing
MCED models, despite the similarity in the data included,
have proposed a wide variety of modeling approaches for
the NHD—from predictive to inferential models, cohort to
individual-level simulation, more complex (or simpler)
assumptions over the NHD. MCED models apply the most
assumptions (see Table 3) despite many being shared with
other models. This may be motivated by the multicancer
context and the need to reduce parameterization and
employ simpler evaluation approaches. There has been lim-
ited exploration of the impact of these simplifications, and
it is unclear where additional complexity may add value.

Some of the simplifying assumptions allow the NHD
to be evaluated algebraically as with the GRAIL models
(i.e., exponentially distributed preclinical progression
times with a common mean and independent across
stages). However, models run as individual patient-level
simulation, such as Skates and Mandrik, allow relaxing
these assumptions and varying the level of variation (het-
erogeneity) in sojourn time, that is, the proportion of
cases with extreme sojourn times. Existing explorations
are insufficient to identify the likely sources and key
impacts of heterogeneity but suggest important impacts
(see, for example, Sasieni’s scenario considering a pro-
portion of very-fast-progressing cancers).

Overdiagnosis is not explicitly modeled in MCED mod-
els, and adding this may add complexity to modeling. One
important potential harm of screening is overdiagnosis.
Overdiagnosis has the potential to be explicitly estimated/
predicted within an NHD model with a fuller structure
that characterizes heterogeneity and includes cancer onset
and mortality alongside preclinical progression and clini-
cal detection. None of the MCED models have estimated/
predicted overdiagnosis within the NHD model, presum-
ably because of the reliance on a restricted structure and
scope to allow evaluation from cancer incidence data; for
example, Hubbell characterized only cancer progression
and Lange also included cancer onset but not mortality.
Of the broader models reviewed, those including a full
NHD structure, such as Mandrik, included overdiagnosis,
but none explicitly examined whether and how heteroge-
neity may affect overdiagnosis estimates.

Current MCED models do not appropriately character-
ize uncertainty in the NHD. Decisions in health are often
made under uncertainty, and explicit descriptions of
uncertainty help determine appropriate funding and

research decisions. Uncertainty in model inputs can be
described and propagated in prediction modeling; how-
ever, none of the predictive MCED models reviewed have
done so. Since our review was conducted, GRAIL pub-
lished an extension of the Tafazzoli model that includes
probabilistic analysis,> although, in this analysis, none of
the NHD parameters were assumed uncertain (e.g.,
sojourn times, mortality). Of the MCED models, only
Lange considers uncertainty in the NHD by implementing
an inferential procedure describing the cancer incidence
data as uncertain. However, other important sources of
uncertainty were not formally included in Lange’s model,
such as uncertainty over sojourn times, but can be exam-
ined by varying the choice of sojourn time inputs.

All models predict mortality effects using the stage-shift
assumption. The stage-shift assumption is plausible only
if cancers detected by a screening test do not differ sys-
tematically in their characteristics from clinically detected
cancers. For example, if the higher ctDNA shedding
expected in cancers detected by Galleri is associated with
worse prognosis, the capacity of stage-shifted cancers to
benefit may be smaller than expected. The Sasieni model
examined hypothetical reductions in the capacity to bene-
fit of stage-shifted cancers and showed that the effect can
be significant. A number of publications have explored
the accumulation of evidence, across screening trials, in
support of the stage-shift assumption.'**** However,
the validity of this assumption for particular multicancer
tests is unknown until well-designed clinical research
reports on the mortality effects. The NHS Galleri trial, at
the time its primary endpoint reports, may not provide
sufficient mortality evidence, and this is therefore likely
to remain a key uncertainty for decision making.

Discussion

We identified, summarized, and critically appraised the
NHD components of models of the clinical and/or eco-
nomic impact of using MCED tests in a screening pro-
gram and found that these models are characterized by
the absence of screening data, by the limited use of infer-
ence, and by the limited characterization of uncertainty,
heterogeneity, and overdiagnosis within the NHD. Our
critical appraisal identified limitations of current MCED
models and highlighted the limited exploration of the
impact of modeling assumptions.

While recognizing the value of predictive models in
anticipating future effects and making data-informed
research and development decisions, our findings have
important implications for the development of future
models of the clinical and cost-effectiveness of MCED
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screening programs used to inform clinical and policy
decisions, which will need to incorporate clinical utility
study evidence in support of these decisions. This requires
an inferential approach, but, to date, no such approach
has been developed to include screening data in the multi-
cancer context. There is an extensive literature on inferen-
tial approaches used in the single-disease context, which
includes 1) mathematical/statistical models that typically
using a single main source of evidence and a clear specifi-
cation of the model (NHD) with lower dimensionality
(e.g., typically aggregating cancer stages for example) and
2) calibration models, typically using multiple sources of
evidence (as calibration targets) and, perhaps for this rea-
son, a higher dimensionality. In this article, we did not
review this broader literature, but the future development
of an inferential approach for MCEDs should draw on it.

MCED trials, like the NHS-Galleri trial, are likely to
be powered on stage-shift outcomes aggregated over mul-
tiple cancer types, and estimates for each cancer type will
need to be strengthened using modeling alongside addi-
tional external evidence. Model identifiability will need
to carefully consider higher parameterizations (e.g., more
detailed descriptions of between- and within-tumor het-
erogeneity) and the support of the evidence for structural
simplifications in such descriptions and in the potential
aggregation across cancer stages. GRAIL models disag-
gregate across the 4 cancer stages, but most mathematical
approaches aggregate stages into early and advanced
cancer or simply distinguish preclinical from clinical can-
cers. Uncertainty over the stage-shift assumption needs
to be examined in further work in support of decision
making. This should have appropriate consideration for
the fact that screen-detected cancers may differ (in prog-
nosis) from non-screen-detected cancers.

Computational burden is also of concern, as more com-
plex models may compromise transparency and accessibil-
ity, particularly for calibration approaches, typically using
individual-level simulation, applied in the multicancer con-
text. Alternatives to individual-level simulation can be
considered, such as the multicohort model structure exem-
plified in Thomas. It partitions the cohort into subcohorts
based on relevant baseline characteristics, such as risk or
demographic groups.

Other key considerations for future MCED model
development relate to overdiagnosis and within-tumor
heterogeneity. In what concerns overdiagnosis, there are
important challenges in obtaining valid empirical esti-
mates,”® and therefore, decision making may initially need
to consider estimates from modeling that require exten-
sions to existing MCED modeling approaches (see the
“Critical Appraisal” section). With regard to within-tumor
heterogeneity, this is known to exist across several cancer

types. Heterogeneity has been considered in the broader
screening modeling literature structurally, for example, by
adding states for indolent or slow-growing cancers®’ and
in its contribution to overdiagnosis.>® While describing
heterogeneity depends on model specification,” it can lead
to more accurate estimates but also increased uncer-
tainty.>*3! The NHS-Galleri trial will not provide charac-
terization of within-tumor heterogeneity, so it is important
to better understand its potential effects (on detection,
overdiagnosis, and mortality), to support further evidence
gathering in support of further model development.

Multicancer technologies are developing rapidly, and
large and costly clinical studies are being designed and
implemented across the globe. Recognizing the need to
produce clinical and economic evidence suitable for con-
sideration by committees deciding whether to introduce
MCED-screening programs, it is important that similar
efforts are made in the development of MCED models
that make the best use of the available data and that the
data required to fit those models from clinical studies are
made widely available.
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