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Evidence of palaeo-cirque glaciers in the Ewes Valley, 
southern Scotland
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ABSTRACT  
While glaciation in the English Lake District and the Scottish 
Highlands was extensive after the retreat of the last British-Irish Ice 
Sheet, glaciers are thought to have been restricted to the highest 
uplands of southern Scotland. However, geomorphological features 
in the Ewes Valley indicate glacial activity in three amphitheater- 
shaped hollows after the retreat of the last British-Irish Ice Sheet. 
The geomorphological evidence of former glaciation is used to 
reconstruct the dimensions of three very small glaciers (totally 
∼0.3 km2) with equilibrium line altitudes (ELA) between 329 and 
401 m asl. An assessment of the glacier dimensions and potential 
snowblow contribution area indicates that redistribution of snow 
via wind was essential for the development of these glaciers.
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Introduction

At present, there is general agreement that cirque and plateau icefield glaciation in 
southern Scotland during the Last Glacial-Interglacial Transition (LGIT; c. 20–10 ka) 
was restricted to the highest upland surfaces of The Cheviot, the Moffat and Tweedsmuir 
Hills, and the Galloway Hills (Bickerdike et al., 2018; Golledge, 2010). It is also widely 
regarded that southern Scotland was a climatically dry and cold landscape that was 
unable to support widespread local glaciations and was instead subject to intense perigla
cial and paraglacial processes (Ballantyne, 1984; Bickerdike et al., 2018; Galloway, 1961; 
Golledge, 2010). However, previously undocumented glacial landforms in the Ewes 
Valley, southern Scotland (Figure 1), may demonstrate the last presence of former 
glacial ice outwith the normally considered locations of southern Scotland. This is impor
tant because evidence of more extensive palaeo-cirque glaciation across southern Scot
land has significant implications for palaeo-climate reconstruction during the LGIT. 
For example, identification of small palaeo-ice masses shows that these features may 
have been more extensive during the LGIT than was previously thought. This is 
crucial for understanding landscape formation processes in marginal glacierised terrains 
(Barr & Spagnolo, 2015; Evans et al., 2012; Harrison et al., 1998, 2001, 2015). In addition, 
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because of its high climatic sensitivity, the regional trend of the equilibrium line altitude 
(ELA) of palaeo-ice masses has been widely used as a climatic proxy for temperature and 
precipitation gradients (Barr et al., 2017; Barr & Spagnolo, 2015; Coleman et al., 2009). 
Thus, the addition of ELA data from newly reconstructed palaeo-ice masses will allow the 

Figure 1. Location of the Ewes Valley study area, southern Scotland.
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refinement of boundary conditions for numerical ice sheet models in areas previously 
considered extra-glacial.

Methods

The Ewes Valley is an approximately north-south aligned U-shaped valley located 
between the towns of Hawick and Langholm in southern Scotland (Figure 1). The 
valley has few visible outcrops of bedrock but is largely dominated by greywacke and 
interbedded silty mudstone (British Geological Survey, 2016). This study focuses on 
four hollowed depressions on the slopes of Frodaw Height, Dan’s Hags, and Stibbiegill 
Head, which are located at the head of the Ewes Valley (Figure 1).

The glacial geomorphology in the Ewes Valley was established by detailed mapping of 
landforms in the four hollows and surrounding slopes, totalling an area of approximately 
3 km2 (Figure 1), following methods outlined by Chandler et al. (2018). Field mapping 
was carried out using enlarged base maps reproduced from the 1: 25,000 Ordnance 
Survey map. Landforms mapped include hollow headwalls, morainic deposits and 
ridges, relict channels, alluvial deposits, and rock slope failures.

The reconstruction of the surface area of former glaciers is based on the evidence of the 
geomorphological field mapping, following the procedures outlined by several authors to 
reconstruct palaeo-cirque glaciers in the British uplands (Cornish, 1981; Evans et al., 2012; 
Harrison et al., 1998, 2006; Johnson et al., 1990). The down-valley limit of glaciations is 
established from the outermost moraine deposits and ridges, and the upslope extent of 
the glaciers are extrapolated up to 30 m below the hollow headwalls. Where possible, 
the lateral margins of the glaciers are delineated by valley side moraines and meltwater 
channels. The 3-dimensional palaeo-glacier surface topographies are subsequently 
created from the reconstructed glacier outlines using GlaRe ArcGIS toolbox, a semi-auto
mated method of glacier reconstruction (Pellitero et al., 2016), and automated ArcGIS tool
boxes (Pellitero et al., 2015; Spagnolo et al., 2017) were used to analyse the glacier surfaces 
and topography. In these analyses, Ordnance Survey Terrain 5 Digital Terrain Model 
(DTM) data are used; these DTM data are not used in the geomorphological mapping 
stage as the landforms are more apparent in the field (OS Terrain 5 [XYZ geospatial data]).

From the 3-dimensional reconstructions, the equilibrium line altitude (ELA) for each 
glacier was estimated using the Area Altitude Balance Ratio (AABR) method (Furbish & 
Andrews, 1984; Oien et al., 2020; Pellitero et al., 2015; Rea, 2009) and a global median 
AABR value of 1.56 (Oien et al., 2022) is employed for palaeo-ELA calculation. To 
account for the contribution of snowblow and avalanching from the upland plateau in 
the Ewes Valley, a corrected snow contribution area ELA (scaELA) was also calculated 
(Benn et al., 2005; Kłapyta et al., 2022; Mitchell, 1996). The snow-blowing area for 
each glacier was defined as the terrain lying above the AABR 1.56 ELAs laterally continu
ous to the reconstructed glacier and sloping toward its surface (Coleman et al., 2009; 
Sissons & Sutherland, 1976). To include uphill snowblow toward the glaciers, a 
maximum slope angle of 10° away from the glacier was assumed as a boundary threshold 
for snowblow (Coleman et al., 2009). Potential avalanche areas were identified as the 
slopes surrounding the glaciers greater than 25° (McClung, 2013; Sissons & Sutherland, 
1976). To further understand the influence of snowblow and avalanche contributions to 
palaeo-glacier mass balance, the avalanche factor (AF) and the snowblow factor (SBF) 
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were calculated. The AF was calculated as the ratio of the glacier area to the avalanche 
area (Coleman et al., 2009; Sissons & Sutherland, 1976) and the SBF was expressed as 
the glacier area to the square root of the snowblowing area (Mitchell, 1996).

Geomorphological results

Four amphitheater-shaped hollows with steep, arcuate headwalls are identified on the 
western side of Ewes Valley (Figure 2). Hollow 1 is a northeast facing (mean aspect 

Figure 2. Glacial geomorphology of the study area. Four amphitheater-shaped hollows are identified, 
but glacial landforms are only identified in Hollows 1, 2, and 3.
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57°) depression with a minimum altitude of 322 m asl and is characterised by a steep 
concave slope across the length of the hollow with an absence of lateral spurs. In contrast, 
the other hollows identified in the study area have an obvious change in slope angles 
down valley and distinct lateral spurs. Hollow 2 is east facing (mean aspect 77°) with a 
minimum altitude of 301 m asl, and Hollow 3 has an east-northeast aspect (mean 
aspect 62°) and a 239 m asl minimum altitude. Hollow 4 contrasts with the other 
amphitheater-shaped depressions in size, aspect, and elevation, and is characterised by 
a low minimum altitude (190 m asl) and southeast aspect (mean aspect 128°).

Morainic deposits and ridges are found in and around the valley floors and lower slopes 
of Hollows 1, 2, and 3, between 320 and 460 m downslope from the headwalls (Figures 2–4). 
Moraines are sporadic and range in morphology, including very subtle (∼1 m in height) to 
large (<10 m in height) ridges that possess rounded crestlines and subdued hummocky 
deposits 20–50 m across. Field observations show that the moraines are arranged as 
oblique down-valley chains, often curving arcuately towards the valley centre line.

Numerous meltwater channels are identified across the study area. In Hollows 1, 2, and 
3, relict channels with oblique down-slope profiles and often interspersed among moraines 
(Figure 2) are interpreted as lateral meltwater channels. Deep gullies on hollow headwalls 
are not mapped as they likely represent contemporary drainage networks; this is supported 
by an alluvial fan deposit in Hollow 1 (Figure 4(a)). However, deep (∼7 m deep) relict 
channels aligned perpendicular to slope profiles on the spurs between Hollows 1–2 and 
Hollows 3–4 are unlikely to represent contemporary drainage networks (Figures 2 and 

Figure 3. Glacial signatures of Hollow 2. (a) View southwest into Hollow 2, showing the amphitheater- 
shaped hollow, arcuate headwall, and frontal moraine rides (broken lines). A landslide scar and 
deposit on the southern lateral spur is indicated. (b) Prominent, <10 m high moraine ridge (broken 
line marking the crest) on the northern edge of Hollow 2. A person indicated by the red arrow 
stands in front of the moraine ridge for scale. (c) View northeast from the backwall of Hollow 
2. Moraine ridges and hummocks indicated by broken lines and relict channels indicated by blue lines.
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4). These two relict channels are therefore likely to be meltwater channels, but their mor
phostratigraphic position beside the valley headwalls suggests the relict channels are prob
ably associated with ice sheet-scale glaciation rather than cirque glaciation.

Paraglacial features are also identified in the study area. A small rock slope failure com
plete with upslope scarring and a down-valley accumulation of loose angular clasts is evident 
on the subtle spur between Hollows 2 and 3. Extensive peat accumulations are present on the 
hill summits in the study area (Figure 2; British Geological Survey, 2016). However, field 
observations suggest that the peat accumulations do not obscure any geomorphology.

Glacial interpretations and reconstruction

From the geomorphological evidence identified in the study area, Hollows 1, 2, and 3 are 
interpreted as cirques (Table 1), with Hollow 2 being the most evident cirque the Ewes 
Valley. The morphology of Hollow 2 and the accompanying moraines and meltwater 
channels (Figures 2 and 3) qualifies it as a grade 3–4 cirque (Evans & Cox, 1995), and 
its aspect is conducive to cirque development. Although the aspect of Hollows 1 and 3 

Figure 4. Glacial geomorphology of Hollows 1 and 3. (a) View northwest into Hollow 1, showing the 
arcuate headwall, moraine deposit, and alluvial deposit. (b) View east from the backwall of Hollow 
3. Moraine ridges <2 m high indicated are broken lines and relict channels indicated by blue 
arrows. White arrows indicate the large, ∼7 m deep relict channel located on the lateral spur 
between Hollows 3 and 4, which is interpreted as a meltwater channel associated with ice sheet- 
scale glaciation.
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are also conducive to cirque development, less obvious glacial landforms and basin mor
phologies (Figures 2 and 4) only qualify Hollows 1 and 3 as marginal grade 4–5 cirques 
(Evans & Cox, 1995). Nevertheless, Hollows 1, 2, and 3 are indicative of the early stages of 
erosion by glaciers where wind-blown snow preferentially accumulates in pre-existing 
bedrock hollows or scarp slopes, especially on north or northeast facing hillsides in 
the northern hemisphere (Coleman et al., 2009; Evans, 1977; Evans & Cox, 1995; Harri
son et al., 1998). Moreover, the distance of morainic deposits and ridges from the head
walls in Hollows 2 and 3 exceeds the c. 30–70 m limiting value for protalus rampart 
development (Ballantyne & Benn, 1994), indicating that the morainic sediments have 
been transported to their current position through ice movement. In Hollow 1, the 
downslope morainic deposit is located at the base of a steep concave slope that could 
be the remnants of a talus slope; thus, it is possible that this could represent the remnants 
of a protalus rampart. However, a lateral morainic ridge and relict channels in Hollow 1 
suggest that glacial ice movement may have occurred in this hollow.

Three palaeo-cirque glaciers are therefore reconstructed in the study area (Figure 5; Table 
2). All glaciers were similar in size (area of 0.09–0.11 km2), exceeding the minimum size 
threshold for differentiating snowpatches and glaciers, which is often defined as between 
0.05 and 0.01 km2 (Leigh et al., 2019; Lindh, 1984). This suggests that very small cirque gla
ciers glaciated Hollows 1–3 in the Ewes Valley. The AABR 1.56 ELAs for individual recon
structed glaciers in the Ewes Valley range between 329 and 401 m asl. However, Hollow 3 is 
an obvious outlier with an ELA >70 m lower than the other two hollows.

The total snow contribution area in the study area was between 2.4 and 6.1 times greater 
than the glacier surface area. For all reconstructed glaciers, the snowblow factor (SBF) was 
higher than 1.0 and the southwest vector represents at least 45% of the total snowblow area 
for each hollow, rising to 80% for Hollow 2. The inclusion of the snowblow contribution 
area in the ELA calculation gives a scaELA range between 419 and 461 m asl, which is at 
least 90 m higher than the AABR 1.56 ELA. This suggests that in the study area additional 
snowblow delivery had an important effect on glacier mass balance. In contrast, the ava
lanche factor (AF) for each of the hollows is <0.64 and the avalanche area represents 
from 9% to 24% of the total snow contribution area. This indicates that in the study 
area avalanching had a limited effect on glacier mass balance.

Age of glaciation and palaeo-glaciological significance

At present, the precise ages of the moraines in Hollows 1, 2, and 3 are unknown. 
However, the Ewes Valley is known to have been glaciated by the last British-Irish Ice 
Sheet, which is thought to have undergone deglaciation c. 17–15 ka (Clark et al., 
2022). The moraines in Hollows 1, 2, and 3 could represent recessional moraines 

Table 1. Landform signatures identified in the Ewes Valley compared with cirque diagnostic criteria 
(after Barr et al., 2017; Barr & Spagnolo, 2015; Coleman et al., 2009; Evans, 1977).

Hollow 1 Hollow 2 Hollow 3 Hollow 4

Arcuate headwall X X X X
Obvious lateral spurs – X X X
Shallow, flat, or overdeepened floor – X X –
Reverse bed slope and threshold at downstream limit – – – –
End moraine(s) X X X –
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associated with the retreat of the ice sheet into an upland landscape, as is thought to have 
happened elsewhere in Britain (Clark et al., 2012). However, no other landforms associ
ated with ice margin retreat are identified outwith the hollows in the Ewes Valley. More
over, the relict channels on the spurs between Hollows 1–2 and Hollows 3–4 (Figure 2) 
may be indicative of ice sheet thinning in the Ewes Valley and ice sheet retreat down- 
valley (i.e. away from the hollows) during deglaciation. As such, the moraine ridges in 
Hollows 1, 2, and 3 appear to be the result of a single, separate glacial event after ice 
sheet deglaciation. Similar glacial re-inception is known to have occurred on The 

Figure 5. Distribution of potential snowblow areas and potential avalanche areas for the recon
structed glaciers in the Ewes Valley. The positions of the AABR 1.56 ELA and scaELA are marked as 
solid and broken red lines, respectively.
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Cheviot, the Moffat and Tweedsmuir Hills, and the Galloway Hills in response to climatic 
cooling c. 12.8–11.7 ka (Bickerdike et al., 2018; Golledge, 2010). Thus, it is possible that 
cirque glaciation also occurred in the Ewes Valley during climatic cooling events of the 
LGIT, including the Younger Dryas stadial.

Compared to reconstructed ELAs for other known cirque glaciers and icefields in 
southern Scotland (Bickerdike et al., 2018; Cornish, 1981; Golledge, 2010; Harrison 
et al., 2006; Pearce, 2014), the reconstructed scaELAs in the study area appear anoma
lously low (up to 100 m lower). Coupled with the regionally dry and cold climate that 
is considered to have existed during the stadials of the LGIT (Bickerdike et al., 2018; Gol
ledge, 2010; Pearce, 2014; Pennington, 1975), this might imply that glacial ice could not 
have formed in the Ewes Valley. However, the presence of a plateau above the hollows 
and high snowblow factor for each hollow suggests that the growth of glacial ice could 
have been considerably aided, and sustained, by the contribution of windblown snow. 
This is especially the case for Hollow 3: despite having the lowest reconstructed 
scaELA, Hollow 3 displays subtle evidence of glaciation that would have been supported 
by the largest snowblow contribution area in the study area (Table 2). Therefore, the 
redistribution of snow into the east and northeast facing hollows during the LGIT 
may have been sufficient to support the development of glacial ice. Similar snowblow 
dynamics are thought to have sustained marginal ice masses at the periphery of the 
West Highlands Glacier Complex during the Younger Dryas stadial (Chandler et al., 
2019; Kirkbride et al., 2013; Standell, 2014). Nevertheless, this area of southern Scotland 
was probably extremely marginal to glaciation given the inland location of the Ewes 
Valley, the low altitude of the hollows, and the supposedly arid regional climate 
during the LGIT. The former presence of very small glaciers at relatively low altitudes 
in the Ewes Valley suggests that other amphitheater-shaped hollows in southern Scotland 
– such as Wisp Hill, Comb Hill, Roan Fell, and Cauldcleuch Head (Figure 1) – may have 
also supported glacial ice development during the LGIT. We therefore recommend that 
future studies re-evaluate other landforms on the uplands of southern Scotland in terms 
of a potential glacial legacy in the landscape.

Conclusion

Geomorphological investigations in the Ewes Valley have demonstrated the presence of 
three former cirque basin glaciers. The morphostratigraphic position of the hollows 

Table 2. Table of glacier metrics and snowblow metrics for the reconstructed palaeo-glaciers in the 
Ewes Valley.

Hollow 1 Hollow 2 Hollow 3

Glacier metrics Glacier area (km2) 0.090 0.101 0.108
Glacier length (m) 330 444 402
Aspect (°) 57 77 62
Mean thickness (m) 23 30 28
Z min (m asl) 322 301 239
ELA (m asl) 401 399 329

Snowblow metrics Snowblow area (km2) 0.165 0.237 0.605
scaELA (m asl) 461 439 419
SBF 1.36 1.53 2.37
AF 0.58 0.64 0.58
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suggest that they were occupied by glacial ice after ice sheet deglaciation, possibly as late 
as the Younger Dryas stadial. While relatively low ELA values for the study area would 
seem to preclude the development of glacier ice during the Late Glacial, the development 
of cirque glaciers in the study area may have been facilitated by accumulation of wind
blown snow from the adjacent plateau.
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