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Abstract [Au: Just to note, that the abstract can use up to 150 words (currently it uses 115), so
there is space for a bit more text here.]
Clostridioides difficile infection (CDI) continues to be a notable burden worldwide, both in terms

of patient mortality and morbidity, and the economic costs associated with treatment, diagnosis

[Formatted: Not Superscript/ Subscript
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and management. The epidemiology of C. difficile has changed markedly over the decades, with
high CDI rates driven by clinical pressures exacerbated by the SARS-CoV2 pandemic, antibiotic
resistance and selective pressures caused by antimicrobial use [Au: The abstract should only
mention topics covered in the review and antibiotic availability in different parts of the world
is not discussed in the main text. As such, | suggest streamlining this sentence and instead
adding sentences into the abstract on key topics of this review, for example, pathogenic
mechanisms plus a bit more on the microbiota. | suggested some text but please feel free to
amend this as you see fit, OK?] . C. difficile is challenging to diagnose and treat as it forms spores
and can alse-persist_asymptomatically within the gut-witheut-ecausing-symptems.—ane- Some
strains express multiple virulence factors, including adhesins and toxins. The gut microbiota is

crucially important in CDI, as a healthy microbiota is resistant to colonization with C. difficile.

Dysbiosis, often caused by antimicrobial exposure, enables C. difficile spores to germinate and [Formatted: Font: Italic

produce toxin, causing symptoms which can range from mild diarrhoea to fulminant colitis and

death. This Review describes changes in epidemiology and effects on diagnosis, discusses recent
breakthroughs in the understanding of pathogenesis and antibiotic resistance, and explores the

role of microbiota dysbiosis in CDI and novel microbiota therapies in CDI treatment.

[H1] Introduction

Clostridioides difficile (reclassified from ‘Clostridium difficile’ in 2016 (ref.!) [Au: Ref
formatting adjusted for clarity as the citation follows a number.] ) is a Gram-positive,
obligately anaerobic, spore-forming bacillus. This microorganism is ubiquitous and
transmitted between hosts via the faecal-oral route. C. difficile produces toxins that can
cause clinical symptoms,? and a spectrum of disease that ranges from mild, self-limiting
diarrhoea through to fulminant disease, pseudomembranous colitis, sepsis, toxic megacolon

and death [Au: Edits for flow, OK?] J3,4. [Au: In the introduction, it could be helpful to

specify early that individuals can be asymptomatic carriers and perhaps the rate of

asymptomatic carriage, if this is known (or include information on carrier rates in

the epidemiology section)?] ‘ Commented [CC1]: Info and citation added further

down.

C. difficile was first identified in 1935 (ref.5) and was determined to be the causative
agent of pseudomembranous colitis in 1978 (ref.67). The incidence and epidemiology of C.
difficile infection (CDI) has changed dramatically since this time, but C. difficile continues to

cause notable [Au: Journal style uses ‘significant’ in the context of statistical



significance, so I have edited the text throughout to use alternative words in
appropriate places.] economic burden worldwide, which is exacerbated by high rates of
recurrent disease. Rates can vary, but approximately 30% of patients with CDI [Au: Please
note, we use patient-first language and the text has been edited accordingly
throughout.] are thought to go on to develop a recurrence [Au: after resolution of
symptoms or after treatment with antibiotics?] , with most recurrent disease occurring

within the first 8 (especially 4) weeks following resolution of symptoms [Au: Edits OK?

Please see previous comment.] .8 Approximately 50% of these patients [Au: patients
with a single occurrence of recurrent CDI? If so, we could say ‘Approximately 50% of
these patients...’ for clarity.]- then go on to develop multiple recurrent infections.?
Recurrent disease is associated with 33% higher all-cause mortality,10 2.5 times higher
hospital admission rate, 4 times longer hospital stay,!! and significantly higher costs than
the initial CDI episode (mean total costs £12,710 versus £31,121; P<0.002).12 C. difficile
strains can differ in their propensity to spread and cause disease, with PCR ribotyping being
the gold standard for identifying and tracking strains:13 (See Box 2 for details of typing

methods). Ribotype 027 (RT027) strains have been particularly epidemic, causing

substantial [Au:OK? Or we could use ‘large’ or ‘huge’ here. Nature Reviews style
prefers to avoid emotive language when considering healthcare.] problems in
healthcare facilities worldwide.14

The major risk factors for primary CDI are advanced age, duration of hospitalisation
and exposure to antibiotics.!> A 2024 [Au:0K?] study identified older age, chronic kidney
disease and recent hospitalisation, as independent risk factors for multiple recurrences of
CDL.% Whilst healthcare-associated [Au: To keep the text accessible, journal style avoids
most two letter abbreviations.] CDI drove many of the large outbreaks of the early
2000s,1* the burden of community-associated CDI seems to be increasing.16 This change
might [Au: Long sentence split for flow, OK?] be driven by a different range of strains,
latent reservoirs and transmission routes not yet fully understood.!? Of note, asymptomatic
carriers could be a reservoir of C. difficile in the nosocomial environment.18 Reported rates

of asymptomatic carriage vary hugely, from 3-21% of hospital admissions to as high at 50%

of long term care facility residents.19_Almost all antibiotics have been associated with

increased risk of CDI, owing to the effects of antibiotics on the gut microbiota, which disrupt

its resistance to (. difficile colonization2° [Au:OK? Please clarify, colonization by non- [Formatted: Font: Italic

commensal organisms, or pathogens, or specifically C. difficile?] . Exposure to third



generation cephalosporins and fluroquinolones has been particularly implicated and is
strongly associated with RT027 infection?!; however, CDI risk is notably linked to the
antibiotic resistance of infecting strains [Au: Edits OK? For clarity and flow.] .22.23
Cumulative antibiotic exposure is probably [Au: Please not, journal style prefers to
avoid use of ‘may’ as it can be a bit ambiguous in meaning. If more certainly should be
implied here, we could say ‘Cumulative antibiotic exposure is probably the greatest
contributor...’]- be the greatest contributor to CDI risk, with each day of additional
antibiotic exposure reported to increase the odds of CDI by 12.8% (odds ratio [OR], 1.128,
P <0.0001)24. The ‘CDI paradox’ is that although antibiotic exposure drives infection, first-
line treatment for CDI is antibiotic therapy. 325 This paradox [Au:0K? Journal style prefers
to avoid a hanging ‘This..’] has driven interest in microbiota restoration therapies as a
treatment or adjunct to treatment for CDI.26

This Review explores the recent [Au: Please could you be more specific here
regarding the timeline of epidemiology that is discussed in your review (e.g. explores

epidemiology of CDI from 2000s onwards)?] epidemiology of CDI from 2000s onwards

and how this is linked to changes in diagnostic guidelines. Whilst the disease-causing
mechanisms of C. difficile have been established for some time, we discuss breakthroughs in
certain aspects of C. difficile pathogenesis and crucially in the understanding of
antimicrobial resistance mechanisms. Detailed discussion of CDI treatment and the
development of novel treatment agents is outside the scope of this Review. Rather, we
outline some of the increasing evidence of the role of microbiota dysbiosis in CDI and the
emerging role of microbiota restoration in CDI treatment. We describe the two novel
microbiota restoration therapies that have recently been approved by the FDA, and touch
on other treatment strategies in development, which include anti-toxin antibodies and

vaccines [Au: Edits for flow, OK?]-.

[H1] Incidence and epidemiology

The epidemiology of C. difficile has changed substantially over the years. In the early 2000s,
incidence was dominated worldwide by outbreaks of the epidemic RT027 [Au: Ribotype is
now defined at first use above. For style reasons, we will use the RT abbreviation with
strain numbers but the full term when used alone.] strains. 14 The huge clinical burden of
these outbreaks drove research and guidelines to manage this dangerous pathogen.3152125 [n

England, mandatory reporting was introduced for CDI, as well as a national C. difficile



ribotyping-based surveillance programme, and both approaches were associated with
reduced prevalence of RT027, reduced CDI incidence and decreased CDI-related mortality
[Au: Edits OK?] .27 Worrying increases in incidence have occurred since the SARS-CoV-2
pandemic (Box 1), which highlights the importance of continued surveillance. Various factors
influence the transmission of CDI within the hospital setting, such as rates of antimicrobial
usage, sampling and testing rates, and community prevalence of CDIL.28 Community-
associated-CDI might have different transmission routes,!” potentially including food or
animal sources.2930 However, transmission sources of C. difficile fall outside the scope of this

Review. [Au: Edits for style and flow, OK?]

[H2] Epidemiology in Europe

The increase in C. difficile diversity across Europe is well described (Figure 1). A point-
prevalence study conducted in 12 European countries/regions [Au: Style edit] in 2018
identified more than 60 distinct ribotypes in hospitalised patients [Au: Only need one call-
out to the figure in this paragraph.] . The prevalence of hypervirulent RT027 and related
RT181 remained high, but was localised to countries/regions in Eastern Europe.3! A study
describing the implementation of a sentinel surveillance system in Germany (2019-2021)
captured high strain diversity (>50 ribotypes).32 Moreover, [Au: Long sentence split for
flow, OK?] hypervirulent RT027 prevalence across the study periods remained low (3.5%),
a significant decline from its high occurrence (21.7%) a decade ago.33 RT018 outbreaks were
noted in previous years (2015-2017)-[Au: Please is it possible to add more specific time
context here?]-_in France and Germany,3435 but prevalence was very low (<1%), whereas
epidemic RT078 emerged as the second most common ribotypes in Germany in 2021

(7.8%).32

In England, where surveillance of CDI is mandatory, the prevalence of individual ribotypes
reported in 2018-2023 have remained stable (Figure 1).36 Worryingly, outbreaks of a new
strain, RT955, which has RTO027-like characteristics (high levels of transmission and
mortality), was noted in two UK centres over the past 2 years and is currently being

investigated.3”

Epidemic RT027 and related strains remain stubbornly prevalent in certain regions.
A study conducted in Greece between 2016 and 2019 identified RT027-related RT181 as the
most prevalent (36%), followed by RT017 (10%) (Figure 1).38

{Formatted: Font: Bold




[H2] Epidemiology in the rest of the world

The most recent US Centre for Disease Control and Prevention [Au:0K?] annual report
estimates the incidence rate of CDI to be 110.2 cases per 100,000 persons in 2021, a 10%
increase compared with 2020, but still below the reported rate in 2019 (121.2 cases per
100,000 [Au: should this be 100,000 persons to be consistent with the 2021 rate?]
persons).39 A US national survey published in 2023 [Au:OK? US national survey?] reported
the most common circulating ribotypes in 2020-2021 to be similar to those in Europe;
RT014/-020 (14.0%), RT106 (10.3%), RT027 (10%), RT002 (8%) and RT078-126 (4.3%)
[Au: Edits OK?] 4 and to those reported in Canada#*!, where the prevalence of RT027
decreased since 2017 (15.4% versus 7.7%).

In Australia, RT014/-020 \[Au:OK? Above a hyphen is used to refer to RT14-020,
which I edited to an en rule for style reasons. Should we use a solidus above instead?
We should use one format consistently throughout. I won’t edit the other instances just
yet, until you let me know the preferred format.] L RT002 and RT056 were the most
common ribotypes in 2013-2018 (29.5%, 11.8% and 5.4%, respectively), while RT027 was
rarely found (<1%).4243 In other parts of the world, the burden of CDI is less documented due
to a lack of nationwide surveillance programmes. A 2024 [Au:0K?] review of studies
conducted in South-East Asia and the Western Pacific reported that RT017, RT014/020,
RT012 and RTO002 were widespread.#* RT017 is also the most prevalent type in
countries/regions in West and East Asiathe EarEast [Au: Although this is the term used in
the paper, please is it possible to use a different name for this region? lL.e. East Asia,
South-East Asia or Asia-Pacific (depending on the countries included in the study)? Far
Eastis an outdated term.] .45 In Latin America, two reviews published this decade described
historical data, with the most recent citing a small study published in 2018 showing that
RT027 was the most prevalent ribotype in Mexico [Au: Edits for clarity, OK?] .#647 In Japan,
RTO018-related, RT014, RT002, RT369 and RT017 were reported to be the most common

ribotypes, with little change in prevalence in the past two decades.*8

fHil-Laboratory diagnosis of CDI

Accurate diagnosis of CDI must take into consideration the clinical symptoms of the

patient, supported by laboratory diagnostic results. It is essential for understanding the

Commented [CC2]: [ think RT014/020 is most
appropriate. These two closely related ribotypes are
sometime indistinguishable.
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disease status of a patient, thereby ensuring optimal treatment and infection control
precautions.*® [Au: I suggest moving this paragraph up, as it introduces some crucially
important concepts and this initial paragraph is hard to follow without this
knowledge.] The use of different laboratory diagnostics for CDI remains contentious>® and
requires several considerations. First, no diagnostic test is infallible and CDI could be
present even when diagnostic test results are negative.5! Second, it is important to
remember that people can carry the organism asymptomatically, so detection of the
organism alone is not diagnostic of infection.>052 Key to detection of infection is the
detection of two toxins, TcdA and TcdB which are produced by C. difficile and are key factors
in toxin-mediated disease. 5354 [Au: Paragraphs combined.] BAccurate diagnosis can be

challenging owing to asymptomatic carriage, however, and all testing[[Au: Specifically for

these toxins? Or the presence of C. difficile itself? Please clarify testing in the context [ Formatted: Font: Italic

of this sentence. We could edit to ‘any testing’ to clarify if all tests are being referred

to.]Lshould be limited to those patients with true diarrhoea [Au: Edited for clarity, 0K?] .18 [Commented [CC3]: Edited to ‘all testing’

Current guidance does not support testing of children aged <2 years old. 31555 Indeed,
diagnosis in all children is particularly problematic, in addition to individuals [Au:0K? Or
did you specifically mean children with IBD?] with inflammatory bowel disease, as both
groups have a higher rate of carriage than the general population [Au:0K? Or ‘than

healthy adults’? The use of higher here requires a comparator.] .5657

While most national and international guidelines now include the use of two or
three-step testing algorithms,3155558 adherence to these guidelines and the diagnostic tests
used still varies.5? Selection of assays for use is further complicated by the fact that the
assays are designed to detect different things; C. difficile toxin, the microorganism itself or
its DNA.60 The following section describes the different tests available and their strengths

and limitations.

{H2}-Detection of toxin

The gold-standard method for detection of free TcdB toxin [Au:0K?] from diluted fecal
samples is the cell cytotoxicity neutralisation assay, although it is of limited use within a
routine diagnostic laboratory owing to the long incubation time required to confirm a

negative result [Au: Edits for clarity and flow, 0K?] .50 In addition, lack of consensus on



methodology, including how to dilute the fecal sample and which cell lines to use, lead to

differing reported sensitivities. 61

To reduce the time to diagnosis, rapid enzyme immunoassays (EIAs) were
developed for detection of TcdA,¢2 and subsequently for both TcdA and TcdB, after TcdA-
negative-TcdB-positive strains were discovered.t3 The performance of these ElAs is
variable and could be affected by strains with differential toxin genotypes.60.64-68 A weakness
of many studies assessing these EIAs [Au:OK? If not, please clarify.] is that they falsely
inflate the predictive value of assays by selectively testing populations with unrealistically
high prevalences.60 In a low prevalence setting, some EIAs might have sensitivities below
50%.60 New ultrasensitive C. difficile toxin assays have been developed, but are

disappointingly not currently available [Au:0K?] commerecially.69-71

[H2}-Detection of C. difficile

Culture of C. difficile alone cannot be diagnostic of CDI, as people can carry non-toxigenic
strains of C. difficile in their gut.72 Cytotoxigenic culture can identify those patients carrying
C. difficile with pathogenic potential in their faeces,’ but has several limitations. First, it can
only assess the toxin-producing ability of the strain within a laboratory, which does not
necessarily relate to in vivo production. Detection of free-toxin in the sample is associated
with mortality, rather than detection of an isolate with toxin producing ability. 50 Second,
the additional incubation steps required make the turn-around time longer for
cytotoxigenic culture than for cell cytotoxicity neutralisation assays. Third, cytotoxigenic
culture cannot differentiate between CDI and asymptomatic carriage, so it is also essential
that this assay is limited to those with diarrhoeal fecal samples [Au: All edits OK? For

clarity or journal style.]. 72

Commercial assays to detect the microorganism via the presence of a cell-surface
protein produced by C. difficile [Au:0K?] ¢ glutamate dehydrogenase, do not seem to have
the performance variability of toxin EIAs.”> However, GDH assays cannot differentiate

between toxigenic and non-toxigenic strains, so cannot be used alone to diagnose CDI.

Nucleic acid amplification test (NAAT) detection of toxigenic C. difficile is rapid and
can be high throughput, depending on platform. Similar to cytotoxigenic culture, the main
limitation of NAAT is its inability to detect free-toxin in the sample. In addition, NAAT can
potentially detect dead cells, without gene expression [Au: Edits for flow, OK?] .



Unfortunately, a test to determine if toxin genes are being expressed and therefore provide
detection of ‘live’ cells, such as a reverse transcriptase assay, is not currently available.
Standalone NAAT therefore has the potential to overdiagnose CDI.52 Patient samples that
are NAAT-positive and toxin-positive are significantly associated with greater antibiotic
exposure, higher bacterial load, more gut inflammation and presence of diarrhoea (all p
<0.001) compared with patients that had NAAT-positive and toxin-negative samples [Au: /
edited to and for clarity and long sentence split for flow, OK?] .52 In addition, CDI
attributable mortality is higher in patients with NAAT-positive and toxin-positive results
[Au: Please clarify, NAAT-positive and toxin positive? Or just toxin-positive alone?]
compared with those with NAAT-positive and toxin-negative results.50527677 Although a
2024 meta-analysis of 26 studies found that all-cause mortality was reduced if patients with
NAAT-positive and toxin—negative results were treated [Au: Long sentence split for flow,

OK?] .78- Diagnostic stewardship_(the practice of ensuring that the right diagnostic tests are

used for the right patients at the right time to improve patient care, optimize the use of

health care resources, and limit the spread of antimicrobial resistance) [Au: Please add a

brief explanation of diagnostic stewardship for our non-clinically focused readers.]
has been used by some centres to ameliorate false positives from standalone NAAT.7980 A US
study demonstrated a two-fold reduction in NAAT request rates following diagnostic
stewardship and education; reported CDI rates also reduced.8® However, with improved
testing criteria, diagnostic stewardship runs the risk of leading to selective testing, which
increases the chance of missing patients with CDI [Au:0K? Edited for clarity.] . This effect
has been seen in European studies, where 23% of patients with CDI within hospitals and
almost 50% of patients in the community, were undiagnosed, with younger patients most
likely to have undiagnosed CDI due to lack of testing.31.81.82 Thus, although increasing age is

a known risk factor for CDI,83 it should not be used as a criterion for testing.82

Some added value can be found with NAATS, in that those samples with a lower
cycle threshold (therefore higher bacterial burden) could indicate poorer patient outcome
[Au: Edits OK? For passive language.] .84 In addition, some commercially available tests
also include a presumptive identification of potential RT027, based on the presence of a
truncated tcdC gene that is linked with this ribotype.85 Of note, however, is that this test is
not definitive, as several ribotypes contain this truncated gene [Au: Edits for clarity, OK?]

.36 One study reported that one such PCR assay (Cepheid GeneXpert C diff, USA) was more



sensitive than GDH EIAs for detecting certain PCR ribotypes, but sample numbers were

extremely small and this finding has not been replicated.65

{H2]}-The algorithmic approach

To improve performance of testing strategies, assays have been combined into
algorithms.3.1550.55,58 The first assay usually detects the presence of C. difficile (such as via
GDH EIA or NAAT), followed by detection of the clinically important toxin, although
multiple approaches have been used to combine these tests. The pivotal study of algorithms
also confirmed that mortality and severity of infection correlated with the presence of free-

toxin in a patient fecal sample over just detection of toxin genes.50

[H2}-Novel technologies
Development in CDI diagnostics has been limited, since the algorithms were put into
guidelines. Some promising ultrasensitive toxin tests were developed, with a limit of

detection below that of the cell cytotoxicity neutralisation assay €ENA-[Au: Please expand

this abbreviation.] , although none are now commercially available.”18¢ Studies using this

technology-these ultrasensitive toxin tests[Au: Please clarify, which technology?]- have
shown that patients with CDI have higher median fecal toxin concentrations [Au:0K?] than
asymptomatic carriers8” and that even low levels of toxin could differentiate patients with

CDI from those carrying the organism alone.3!

Molecular detection of C. difficile is included in many multiplex gastro-pathogen
panels, but as described earlier, detection of the microorganism alone is not sufficient to
determine true CDI. For example, one 2024 study found that only 38% of samples positive

by one panel also tested positive for toxin [Au:0K?] .88

[H2}-Adjunct tests
Laboratory tests measuring gut inflammation via markers released by polymorphonuclear
leukocytes, such as lactoferrin and calprotectin, could offer additional information on the

severity of infection in some patients.8% A case-control study found higher fecal levels [Au:

circulating levels or fecal levels? Please clarify.] of both calprotectin and lactoferrin in

patients with CDI and in those with free-toxin in their faecal samples, compared with

10



control individuals.® This study provides further evidence [Au: Edited for clarity and
flow, OK?] of the effect of toxin on the gut mucosa. Study data for the clinical utility of these

markers in CDI diagnosis has, however, been conflicting and further research is needed.?192

fH1-Antibiotic resistance in C. difficile

Antimicrobial options for the treatment of CDI have always been limited. Metronidazole and
vancomycin were the only available options until 2011-2012, when fidaxomicin was
introduced.58 However, the relationship between antimicrobials and C. difficile is complex,
involving not only antimicrobialsthese used to treat CDI but also those that carry an
increased risk of eliciting CDI, and antimierebials-that those that -C. difficile might also be
incidentally exposed to antimicrobials in the gutl[Au: Edits OK? The previous wording
needed clarification] . Resistance to both treatment and non-treatment antibiotics can

have implications for CDI transmission and control.

The emergence ofPG%RT027 and its association with fluoroquinolone resistance in
the early 2000s highlighted the need for regular surveillance of C. difficile strains in
circulation [Au:0K?] .93 Inrecentyears-Over the last decade [Au: Please is it possible to

add more specific time context here. E.g. Over the past X years/decade(s)], large-scale
surveillance studies have provided valuable insights on rates and spread of resistance and
emerging resistant ribotypes. A detailed examination of antimicrobial resistance
mechanisms (Table 1) is beyond the scope of this Review, but has been covered
elsewhere.* Evaluation of historical and contemporaneous UK isolates has shown that
antimicrobial resistance has been a feature of C. difficile for a long time, yet it has increased

in more recent isolates. 95

[H2] Resistance to C. difficile treatment agents

[H3] Metronidazole. Metronidazole is a nitroimidazole and was the mainstay of treatment
for CDI for many years. However, reports of decreased metronidazole efficacy and the advent
of fidaxomicin led to mMetronidazole no longer being endorsed as a first line treatment for
CDI in guidelines from North America (IDSA/SHEA), Europe (ESCMID) and the UK (NICE)
[Au: Edits OK?] 3259 A 2021 study showed that clinical failures were associated with

reduced C. difficile metronidazole susceptibility, despite previous evidence indicating no such
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Commented [CC4]: Felt that these edits had altered the
sense of the phrase... have tried to re edit and hope this is
clearer.

|

Commented [CC5]: Removed ‘PCR’ in line with other
sections.




association [Au:0K? Edited for clarity and to edit out the author name. Journal style is
to name colleagues only in a historical context.] .97 Nonetheless, anecdotal evidence
indicates metronidazole is still used to treat CDI despite not being recommended in national
guidance.

Rates of metronidazole resistance are generally low and were reported at 0.2% in a
longitudinal Pan-European study,8 with minimum inhibitory concentrations (MICs) [Au:
defined at first use.] being highest in PER RT027 and closely related ribotypes (for
example, RT198), often in particular geographic locations.31.98 Higher rates have been
reported,? but local epidemiology and susceptibility testing methodology could account for
variations. In 2024Reeently, the UK reported an outbreak of RT955, which is closely related
to RT02737 ‘[Au: Does ref 99 support this statement about the outbreak too? Please
add specific time context in place of 'recently’ﬂ . All isolates in the outbreak were
resistant to metronidazole (European Committee on Antimicrobial Susceptibility Testing
[Au:0K?] breakpoint R>2mg/1)100,

The mechanisms behind metronidazole resistance are varied, complex and still
emerging. As well as earlier observations of unstable metronidazole resistance,10! the
importance of media and conditions in detecting metronidazole resistance in some C.
difficile isolates102103 has been described [Au: Edit OK? The previous wording was a little
hard to follow.] . Two clear mechanisms have emerged to date: plasmid-mediated
resistance and haem-dependent metronidazole. [Au: Paragraphs merged to avoid the
appearance of a 4th Jevel of heading, which we cannot accommodate.] Plasmid-
mediated resistance was identified with the discovery of a high copy number plasmid (pCD-
METRO) that conferred resistance to metronidazole in C. difficile isolates from a patient who
had failed metronidazole treatment.19* However, this plasmid is fairly rare as only 15
strains in >10,000 publicly available genomes were subsequently identified [Au: Edits OK?
For clarity and names edited out for journal style.] 195 and the genetic mechanisms
remain unclear [Au: Paragraphs merged.] The demonstration that haem was necessary for
the reliable detection of metronidazole resistance in C. difficile provided evidence of haem-
dependent metronidazole resistance.106 Subsequent work described [Au: Edits for clarity
and style, OK?] the genetic validation of haem-dependent metronidazole resistance and its
association with fluoroquinolone-resistant epidemic C. difficile.1°7 The existence of haem-

dependent metronidazole resistance and the underlying mechanism explains the
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considerable variation in earlier estimates of metronidazole resistance and underlines the

need for a standardised media for C. difficile susceptibility testing.

[H3] Vancomycin. Vancomycin was first used as a treatment for CDI in the 1970s and
remains a first line option in current guidance.325 Rates of vancomycin resistance among C.
difficile have been very low, despite ~85% of clinical C. difficile isolates showing molecular
evidence of the inducible chromosomal operon, vanG.1%8 vanG [Au: Repetitive text omitted.]
produces D-ala-D-Ser rather than D-Ala-D-Ala, which results in decreased vancomycin
binding affinity.10° In laboratory-generated strains and in clinical isolates with elevated
vancomycin MICs (4-8mg/l), mutations in the two component VanSR system resulted in
constitutive vanG expression and decreased vancomycin killing.11? The underlying pathway
mechanisms following in vitro mutation generation have been described and are associated
with notable fitness costs, possibly explaining the lack of clinically isolated C. difficile with
high-level vancomycin resistance [Au: All edits OK? For clarity, flow and to edit out the
names.] .11

Dissemination of vancomycin resistance genes on plasmid Tn1549 has been
reported in several studies, yet, the relationship between phenotype and genotype is much
less clear.112-114 Vancomycin resistance in C. difficile has also been associated with van4,
vanB ,vanW and vanZ, but their true involvement is less well understood. A study of clinical
isolates from Brazil showed elevated MICs in the presence of one or more van genes in five
of seven isolates, but also demonstrated the presence of van genes in the two susceptible
isolates.115 More recently in 2024, [Au:0K?] associated reduced clinical outcomes (30 day
sustained clinical cure and 14 day initial clinical cure) with elevated vancomycin MICs.116
However, these isolates were largely RT027, which is itself associated with poorer

outcomes.

Whether elevated vancomycin MICs of 4-8mg/1 are clinically significant in the light
of intestinal drug concentrations that are several hundred-fold higher than the breakpoint
(S<2mg/1l: R>2mg/1) remains questionable. More work is clearly needed to understand the
scope of vancomycin resistance and the underlying mechanisms [Au: Edits for passive

language.] .

[H3] Fidaxomicin. Fidaxomicin was introduced in 2011 and is now a first line option for the
treatment of CDI in both European and US guidelines, 325 but second line in the UK.%¢ It is a

macrolide antibiotic that interrupts transcription and protein synthesis by inhibiting
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bacterial RNA polymerase. Fidaxomicin has a particular potency for the RNA polymerase of
clostridia over other bacterial species, giving it a much narrower spectrum activity and lower
disruptive effects on the gut microbiota than other CDI treatment antibiotics [Au:OK? If not,
please clarify the comparator.] . Reported cases of fidaxomicin resistance in the literature
are very uncommon.117-119 120 Two groups have [Au:0K? Names edited out as per journal
style.] reported cases of resistance emerging following fidaxomicin treatment.119.120
However, no clinical failures were associated with fidaxomicin resistance in these reports,
probably due to extremely high intestinal levels of fidaxomicin (>1000mg/kg) that far exceed
the MICs observed in these studies (resistant isolate MICS = 0.25->64mg/1). More recently in
2025 [Au:0K?], C. difficile isolates with reduced fidaxomicin susceptibility (MICs 8-=32mg/1
‘[Au: should this equals sign instead be an en rule, to indicate a range?] D were described
in 6 of 108 fidaxomicin-treated patients (5.6%). This study included three patients with
initially sensitive C. difficile isolates who went on to experience clinical failure of fidaxomicin
treatment.12!

Fidaxomicin resistance in clinical C. difficile strains is associated with mutations in
rpoB or rpoC that lead to amino acid substitutions.118-120 Fidaxomicin-resistant C. difficile
isolates harbouring rpoB mutations have also been associated with fitness costs in toxin
production, growth and sporulation, 118119 and could explain why fidaxomicin resistance is
not more commonly noted. Given these reported fitness costs and high intestinal antibiotic
levels, the clinical significance of fidaxomicin resistance requires further investigation,

particularly in light of recent reports of clinical failures.121

[H2] Resistance to non-treatment antimicrobials

Prior antimicrobial treatment is a major risk factor for CDI, with broad spectrum antibiotics
in particular carrying the greatest [Au: Edited to remove the need for a comparator,
OK?] risk due to their profound effects on the gut microbiota. Moreover, resistance in C.
difficile could also have implications for transmission of antimicrobial resistance to other
bacteria that reside within the gut environment. In addition, resistance has profound effects
on C. difficile transmission and incidence rates; for example, the prevalence of
fluoroquinolone prescribing, combined with high levels of fluoroquinolone resistance, is
thought to have been a key factor in the selection and epidemic spread of PCR \RT027 [Au:

The highlighted sentence is quite convoluted and the meaning is not clear. I tried to
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split up and clarify, is this what you mean here?] \ While particularly known for this

association_ with RT027 epidemic spread [Au: Please clarify, the association of

fluoroquinolone resistance with RT027 epidemic spread?], fluoroquinolone resistance

is found in many C. difficile ribotypes across a wide geographical area.’8 Similarly, resistance
to clindamycin in C. difficile is widespread across many ribotypes®8 and geographical
locations.?8 This antibiotic is known for its high propensity to predispose to CDJ; and is

therefore subject to formulary restrictions in many places.

Third generation cephalosporins are also well known for their predisposition to CDI
and C. difficile isolates are often phenotypically resistant in studies. However, in contrast to
clindamycin and fluoroquinolones, relatively little research has been done on the
underlying mechanisms until fairly recently. [Au: Long sentence split for flow.] The C.
difficile genome has been reported to encode endogenous D-class -lactamases active
against various B-lactam antibiotics!22. [Au:0K? Additional clarity was required here.]
Furthermore, substitution mutations in the genes encoding penicillin binding protein have
been described that are associated with increased cephalosporin MICs in C. difficile [Au:0K?
For clarity.] 123, some of which coincided with fluoroquinolone resistance in epidemic
lineages and could be a further factor in outbreaks of these ribotypes.21.23 A new group of
Zn2+-binding penicillin binding proteins has also been described.12* These enzymes are
essential for mediating cell elongation and so are a likely driver of intrinsic cephalosporin

resistance.124

Rifampicin has been considered as a possible treatment for CDI but there is
widespread high level resistance among C. difficile strains, particularly among epidemic
ribotypes such as RT027 (ref.125) and related ribotypes, with some evidence of this
resistance arising during or after rifamycin treatment [Au: Edits OK?] .126 Like fidaxomicin,
rifamycins bind to RpoB but at a different site, with no overlap in resistance.12? Tigecycline
has also been suggested as a treatment for CDI and there is little evidence of resistance to
this agent, despite tetracyline resistance being well-described in C. difficile. However,
resistance to both chloramphenicol and tetracycline are carried on mobile elements128129
and present the possibility of transfer to other gut species. C. difficile is a spore forming
microorganism and so has additional capacity for survival outside the body and onward

transmission. Therefore, C. difficile has considerable potential as a reservoir for and
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purveyor of antimicrobial resistance. This risk [Au: Edits OK?] further highlights the need

for continued surveillance for antimicrobial resistance in this organism.

[H1] Pathogenicity and virulence factors

The ability of C. difficile to form spores helps to facilitate its survival in the environment and
transmission!30, In addition, C. difficile expresses multiple virulence factors, including cell
surface proteins (adhesins) that mediate adherence to host epithelial cells and enable gut
colonisation,13! and toxin production that damages the epithelial barrier, leading to
inflammation and diarrhoea.132 These have recently been extensively discussed in other
reviews132133 and will be summarised here. [Au: Edits OK? Numbered list edited out for
style reasons and text amended as spore formation in itself isn’t a virulence factor

that can be expressed.]

[H2] Sporulation and biofilm formation

The ability to produce endospores (spores) is critical for C. difficile transmission in the
aerobic environment (Figure 2, Figure 3). [Au: Paragraphs merged, as very short
paragraphs can look odd in the final layout.] Similar to other sporulating Firmicutes, C.
difficile sporulation is activated by phosphorylation of the conserved regulatory protein
Spo0A. Regulation of this gene in C. difficile is not yet fully understood130134135 and does not
seem to involve the conserved regulatory factors of other spore-formers.13¢ However, [Au:
Long sentence split for clarity and flow, OK?] both RstA and SpoOE orthologues have

been indicated to play regulatory roles.137.138

The structure and morphology of C. difficile spores is similar to other bacterial
species, particularly Bacillus subtills;139140 however, C. difficile spores show a more
heterogeneous outer layer, known as the exosporium.!4-142 [Au: Paragraphs merged.] C.
difficile spore resilience to adverse conditions increases the risk of host-to-host
transmission. Following their ingestion, spores can colonise the large intestine of
susceptible hosts (Figure 2). Spore germination in the gut occurs in response to specific
signals. The presence of critical germinants (for example, the bile acid taurocholate)43 and
co-germinants (amino acids such as glycine!43 and Ca2* ions144) are perceived by C. difficile
via the pseudoprotease receptors CspC (germinant receptor) and CspA (co germinant

receptor),143.145-147_ CspC and CspA [Au: Long sentence split for flow.] integrate both bile
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acid and glycine or Ca?* signals!48 in a ‘feedforward loop’ to activate germination of
neighboring spores.14° Germination initiates the cell active growth phase, leading to

multiplication of vegetative cells that can produce toxin and cause CDI. 145147

In vitro studies in a colorectal adenocarcinoma cell line (Caco-2 cells) [Au:0K?],
reported an increased adherence of spores to intestinal epithelial cells, where adherens
junctions were damaged by C. difficile toxins. Spore adherence to the intestinal epithelium
could contribute to the bacterium persistence in the colonic environment and recurrent
infection. 150 [Au: Paragraphs merged.] Similarly, in vitro studies using a model reflective
of human colonic conditions have shown that C. difficile spores can integrate in multi-
community intestinal biofilms, potentially enabling the bacterium to remain in the colon
and provide a reservoir for recurrent infections.!5! It has long been known that
monocultures of C. difficile can form self-encased biofilms,!52 but that C. difficile can also
contribute [Au:0K? For clarity.] towards multispecies biofilms at the mucosal layer.153 154
More recently in 2021 [Au:0K?] , mucosal dwelling C. difficile cells were shown to be
composed of both spores and vegetative cells.15! The interaction of C. difficile with other
microorganisms in a multispecies biofilm can be antagonistic (Lactobacillus rhamnosus,
Bifidobacterium longum and Bifidobacterium breve)15! or synergistic (Finegoldia magna,’53
Enterococcus faecalis'>s and C. paraputrificum?51). However, [Au: Long sentence split for
flow.] the relationship is not always clearcut and interactions can differ in biofilm and
sessile populations, or single and mixed species culture (Clostridium scindens56157). When
designing future therapies, this population of C. difficile cells encased in a self-produced

extracellular matrix needs to be specifically targeted.

[H2] Cell surface proteins
C. difficile expresses several cell surface proteins that facilitate cell adhesion to host cells.
These include the bacterial surface layer (S-layer), flagellals8, pillil59 and 28 accessory cell
wall proteins (CWPs).; aAll-eftThese proteins enable C. difficilehave [Au: Long sentence
split for flow.]- adhesion preperties 131160-162 and have been shown in animal models to
support effective C. difficile colonisation of the colonic environment.159.163

The role of C. difficile S-layer in virulence is suggested by in vitro and ex vivo
evidence of its adhesion to epithelium and Caco-2 cells.164165 Roles have also been proposed

for S-layer protein A (SslpA) in sporulation, resistance to innate immunity effectors; and
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toxin production.1¢6 Compared with wild-type strains, S-layer mutants show altered
susceptibility to lysozyme1¢7 (a large molecule with antimicrobial properties) and
avidocins?66, which indicates that these proteins might also be relevant in antibiotic
resistance and highlights the potential of SslpA as drug target.164166.167 S-layer importance is
underlined by the high metabolic cost required for its production and the poor growth of C.
difficile isogenic mutants of sIpA (the S-layer precursor gene) [Au:OK? For clarity.] .161.162 A
study in 2024 reported a [Au: Edited for journal style, OK?] slpA gene deletion mutant
with impaired growth, toxin production, sporulation, motility and adhesion to human
cells.168

CWPs make up approximately 5-20% of S-layer composition; and are responsible

for additional functions, such as phase variation and biofilm formationpartieularhyadhesion

\[Au: The S-layer was first mentioned at the top of this paragraph in the context of
adhesion, but the text here says CWPs are responsible for additional functions,
particularly adhesion. lLe., it reads as if the CWPs are responsible for additional
functions to adhesion, particularly adhesion. Please double check the wording and
amend as necessary.] \.160169 The expression of CWPs and their involvement in
pathogenesis is suggested by the detection of antibodies to Cwp84 and Cwp66) in serum
from patients with CDI [Au:O0K? If not, please clarify the patient group.] .170 171 [n 2022
[Au:0K?], a Cwp66 deletion mutant was characterised,’2 demonstrating an association
with increased tolerance to stresses including hydrogen peroxide, low pH and to certain
antimicrobials, namely vancomycin. These observations suggest that CWPs could have a
comprehensive role in C. difficile pathogenesis, regulating metabolism and supporting cell

persistence via multiple pathways.

[H2] Toxin production

CDI symptoms result from the action of two cytotoxins, TcdA and TcdB, encoded within the
well conserved pathogenicity locus (PaLoc, 19.6 kb) of toxigenic strains. TcdA and TcdB are
glucosyltransferases that inactivate Rho guanosine triphosphatases via glucosylation,

thereby affecting the cellular cytoskeleton and impairing the intestinal barrier.

Internalisation by intestinal epithelial lcells [Au: Are these toxins taken up by all host
cells or are they specific for a cell type; e.g. intestinal epithelial cells?]—_bnd the model
of action of these toxins has recently been reviewed in detail.132 Although these toxins share

63% homology, they bind to different host cell receptors?32 and have independent virulence
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potential. Glycoprotein 96 and members of the low-density lipoprotein receptor family
[Au:0K?], such as low-density lipoprotein receptor-related protein-1, have been suggested
as TcdA receptors.173174 TcdB has been proposed to bind to a number of protein receptors
including chondroitin sulfate proteoglycan 4 (CSGP4),175 poliovirus receptor-like 3,176
Frizzled receptors 1, 2, and 7, 175 174176 and tissue factor pathway inhibitor (TFPI).177
Frizzled receptors and CSPG4 have been linked to TcdB-induced secretion of pro-
inflammatory peptides and cytokines from neurons and pericytes.178

Hamster and mice studies have looked at the activity of each toxin and established
that both TcdA and TcdB alone are able to cause symptomatic CDI, characterised by weight
loss and diarrhoei. [Au: Long sentence split for flow. Please add more specific time

context than recent.] E&eeeﬂt—Fe&ea—Feh—has—lﬂ-g—hh-gh&ed—t—h&t—However TcdB-only producing

isogenic mutants cause higher virulence thaneempared-te those expressing only

TcdA.2179.180 [Au: Paragraphs merged.] Further studies using organoids from mouse
colonic tissue informed that TcdB-mediated damage can alter colonic stem cell function,
inducing deep damage to the intestinal mucosa at a faster rate than normal cellular
regeneration, and suggesting a correlation between high TcdB expression and disease
severity.180 Thus, TcdB neutralisation has long been seen as a potential therapeutic target.

Advances have been made [Au: Long sentence split for flow, OK?] using de novo-designed

mini-proteins in mice that are effective at neutralizing the major TcdB subtypes in vivo.181

Additionally, approximately 17-23 % of strains produce a C. difficile toxin (CDT),

also called binary toxin.186 CDT is an ADP-ribosyltransferase encoded by two genes, cdtA
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and cdtB, that are located on the binary toxin locus (CdtLoc, 6.2 kb). The positive response
regulator gene, cdtR, located upstream of cdtA and cdtB,187 has been associated with
regulating TcdA and TcdB toxin production in RT027 strains, but not in RT078 strains,
which suggests a strain-dependent genetic link between PaLoc and CdtLoc.188 This link
[Au:0K?] is further supported by reports that natural and lab-generated cdtR genetic
variants with a 69-bp sequence deletion, can downregulate the expression of PaLoc genes
and binary toxin genes, resulting in an avirulent phenotype.18% As well as confirming the
enteropathogenic effects of CDT alone, mutant studies have also indicated that the presence
of CDT could increase the virulence of strains producing only TcdA.2 Furthermore, purified
CDT toxin has been shown in vitro to induce the formation of C. difficile microcolonies with a
biofilm-like structure characterized by increased resistance to vancomycin, which could

contribute to bacterial survival in the intestinal mucosal layer.190

[Au: New paragraph. The previous paragraph on CDT was too long and
needed a break.] These results, together with the fact that CDT is often found in
hypervirulent C. difficile strains, such as RT027 and RT078, support the role of this toxin in
C. difficile pathogenesis. Nonetheless, the complexity of CDT [Au: Edited for consistency,
OK?.] action is not yet fully elucidated. A 2024 study comparing a cdtB- mutant with the
wild-type strain, suggested that CDT contributes to weight loss in mice, but that this effect is
independent of activation of the inflammasome.191 This mechanism requires further study,
as it differs from the authors own in vitro observations. It also is at odd with [Au: Long
sentence split for flow, OK?] previous reports192 of a C. difficile mutant with restored cdtB
function causing infection in a hamster model but not in a mouse model. These studies

underline the effect of the host immune responses in CDI outcome.

[Au: I suggest moving this small paragraph to the end of this subsection, so
that the different toxins (TcdA, TcdB and CDT) are discussed first, before phase

reversible changes in gene expression) [Au:0K? Term defined to keep the text

accessible.] to generate heterogenicity in both flagella and toxin gene expression.182

Inversion of a flagellar switch sequence by the tyrosine recombinase RecV affects the

expression of the sigma factor SigD, which induces the expression of both flagella and toxin

genes, a process mediated by the transcription termination factor Rho.183184 Crucially, this

heterogeneity has been shown to impact colonisation and virulence in animal models.182185
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[H2] Host response and clinical symptoms

Immune responses to C. difficile virulence factors are implicated in disease severity and
clinical presentation of CDI. Asymptomatic carriers of the bacterium produce higher levels
of serum IgG anti-TcdA and anti-TcdB [Au: Antitoxin-A = anti-TcdA and antitoxin-B =
anti-TcdB? The same terms should be used consistently throughout.] relative to
patients that developed symptomatic disease. Higher levels of anti-TcdA IgG antibodies and
anti-TcdA and anti-TcdB IgM antibodies were also associated with a lower risk of recurrent
CDI.193194 However, anti-TcdB immunity seems to be limited to short periods, with studies
reporting 14 (ref.194) to 90-days!95 protection windows after the primary infection. These
findings suggest that individuals with a stronger immune response to C. difficile toxins are
less likely to develop symptomatic disease or multiple episodes of infection, but this
protection might be limited in time.193-195 However, when immunity is compromised the risk
of bacterial exposure increases. C. difficile adhesion to the epithelium cells is then mediated
by toxin activity and cell wall proteins, damaging the epithelium barrier and disrupting the
tissue tight junction. The damaged epithelial layer allows red blood cells into the intestinal
lumen, and permits [Au:0K?] microbial cells to disseminate extra-intestinally. These
concerted actions promote an acute inflammatory response, accompanied by release of
proinflammatory cytokines (such as IL-1, TNF and IL-8) from epithelial cells and an
infiltration of neutrophils that further damages the host tissue.132193196 As a result, patients
develop CDI, with symptoms varying from mild diarrhea to severe colitis with

pseudomembrane, which can be fatal in some cases.347.197

_[Au: Paragraph break. The previous paragraph was too long and needed splitting.]
The chain inflammatory response occurring in CDI can aggravate pathogen-induced damage
in the intestine, thereby resulting in higher disease severity. Thus, strengthening innate
pathways of host defense can reduce acute CDI symptoms and promote better outcomes.
Innate lymphoid cells (ILCs) that reside in the intestine-ard can restore the integrity of the
intestinal barrier [Au:0K?] following infection.198199 Transferring ILC1s and IFN-y (aided by
ILC3s and IL-22) into highly susceptible mice helped to preserve the integrity of the lumen
and reduce mortality associated with CDI [Au:0K?] . Other animal studies have also
supported the concept that innate immune responses mediated by ILCs (particularly IL-22)

[Au:0K?] can help restrict the infiltration of microbial cells in the epithelium, which leads to
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a faster recovery of weight and resolution of diarrhoea.198 Importantly, C. difficile can also
exploit the host inflammatory response. For example, C. difficile toxin in a mouse model
mediates inflammation [Au: Edits for flow, OK?], upregulating immune cell expression of
aldose reductase enzymes. C. difficile can then utilise the host-derived sorbitol produced by
these enzymes. 200 Storage of non-crystalline iron in membrane bound ferrosomes enables

C. difficile to overcome nutritional deficits in a inflamed gut, where host-derived

calprotectin mediates iron sequestration. 201, Formatted: Font: (Default) +Body (Cambria), Font
colour: Auto, Pattern: Clear (White)

Understanding the mechanisms by which we can strengthen the host immune
response to CDI can offer new treatment options. For instance, eosinophils have been
shown to have a protective role against CDT activity. Two CDT+ PCR RT027 strains induced
host inflammation in mice by recruiting Toll-like receptor 2, which suppressed the
protective activity of host eosinophils by indirectly inducing eosinophil apoptosis. This
finding added clarity to the mechanism used by CDT [Au:OK? For consistency.] to enhance
C. difficile virulence and evade host immune responses, and can offer a potential therapeutic

target. 202

[H1] The role of the gut microbiota [Au: H1 headings should use 41 characters or
less including spaces. Heading edited for length, OK? Please feel free to amend
my suggestion but stick to the character count.]

It has long been understood that the normal flora of the colon has an important role in

providing colonization resistance against CDI, and that microbial dysbiosis is a key factor in

susceptibility to the disease.

[H2] The gut microbiota in health and CDI [Au:0K? Edited to make it a bit more

descriptive. H2 headings can use up to 48 characters, including spaces.]

The microbiome of the lower intestinal tract comprises a diverse community of
microorganisms,203 which have a crucial role in host immune regulation,204-206 maintaining
colonocyte homeostasis and epithelial barrier support,207.208 metabolic regulation2%® and
colonisation resistance against pathogen invasion.2? The specific composition of the gut
microbiota varies within and between individuals, with over 2,000 intestinal microbial

species identified, of which over 90% belong to the phyla Firmicutes, Bacteroidota (formally
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Bacteroidetes), Pseudomonadota (formally Proteobacteria) and Actinobacteria.210 A healthy
gut is generally considered to be dominated by the Firmicutes and Bacteroidetes phyla, with
functional redundancy ensuring stability of metabolic pathways.2!1 The Firmicutes phyla is
predominantly composed of genera such as Clostridium, Lactobacillus, Bacillus,
Ruminicococcus and Enterococcus, and the Bacteroidetes phylum is mainly represented by

Bacteroidaceae, Prevotellaceae, Rikenellaceae and Porphyromonoadaceae.?12

A healthy microbiome is able to protect the host from pathogen invasion and
expansion through a process known as colonisation resistance. Mechanisms of colonization
resistance [Au:0K? For clarity.] can include competing with exogenous microorganisms
for nutrients and space, metabolic mechanisms such as bile acid and short chain fatty acid

metabolism, and active antagonism through antimicrobial proteins and bacteriocins.213-215

Animal studies have demonstrated that the human commensal Clostridium scindens directly
inhibited CDI through the conversion of primary bile acids to secondary bile acids, which
inhibit spore germination and vegetative cell outgrowth.215> Commensal Paraclostridium

bifermentans_[Au: Is this microorganism a commensal or a pathogen? Also please clarify

the same for C. sardiniense and C. scindens.]- co-infection reduced CDI disease severity

(compared with C. difficile mono-colonised mice), whereas co-infection with the commensal
butyrate-producer, Clostridium sardiniense, resulted in a more severe disease phenotype,-216
likely due to differential arginine deiminase fermentation pathways of these species.— Gut
microbiota mediated arginine and ornithine metabolism has also been implicated in the
asymptomatic colonisation of C. difficile.217 216 The continuing development of tools, such as
predictive models for systems analysis of C. difficile transcriptomic data, enables systems-
level studies of virulence mechanisms;2!8- and mechanistic aspects of colonisation

resistance.216

The loss of colonisation resistance is most commonly caused by antibiotic use, and is
associated with disruptions to beneficial microorganisms, accompanied by a shift in
dominant phyla to that of Proteobacteria.2!9 This disruption to the symbiotic balance
between the host and the microbiota is known as dysbiosis and is typically characterised by
an overall reduction in diversity and abundance, accompanied by alterations in metabolic
function.220 Intestinal dysbiosis has been linked to a number of different disease states,
including; inflammatory bowel disease and metabolic disorders,?2! and facilitates C. difficile

colonisation of the intestinal tract, thereby leading to proliferation and disease.— Dietary

changes_such as severe calorie restriction [Au: Please could an example of such a dietary
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change be specified for context?]- have also been shown to affect the structure and

function of the microbiota, affecting colonization resistance against C. difficile.222.223

Humanization of the gut microbiota of germ-free mice with the microbiota from severe

calorie restricted individuals was associated with the enrichment of endogenous C. difficile

222 while diet-derived modulation of the microbiota was seen in mice fed two different diet

formulations that altered the severity of C. difficile induced colitis. 223 Treatment of CDI with

antibiotics further exacerbates this dysbiosis and can leave a patient at risk of disease
recurrence. The restoration of homeostatic microbiota and their associated metabolites is
essential for recovery and the prevention of recurrences (Figure 4). Understanding the
critical components of the gut microbiome that prevent C. difficile expansion affords the

potential to block C. difficile proliferation using bacteria--based biotherapeutics.220

{H2}Fecal microbiota transplantation

The efficacy of microbiota restoration was first demonstrated using a fecal microbiota
transplantation (FMT) for the treatment of recurrent CDI. FMT involves the transplant of
minimally manipulated feces from a healthy donor to the colon of a recipient with recurrent
CDI, which has been demonstrated to restore intestinal microbiota and metabolome
homeostasis.224225 Stool preparations can be administered through colonoscopy,
nasogastric delivery, enema or through an oral capsule.226 FMT is recommended in the
treatment of recurrent CDI following treatment with either fidaxomicin or vancomycin32s,
but notable variation in efficacy rates has been reported [Au:0K?] .227 The efficacy of FMT is
dependent on the transplanted microbiota, as well as host-specific factors. These include
the impact of diet on disease severity?23 and the role of host immunity on FMT success, with
inflammatory environments promoting the survival of pathogens whilst inhibiting FMT
engraftment.228 A deeper understanding of the underlying mechanisms of FMT is needed to

elucidate FMT efficacy.

Despite the success of FMT treatments, clear challenges have arisen with regards to
standardised procedures for harvesting, screening and preparing donor stool. The need to
screen and reject FMT donors adds considerable cost to this procedure.229 Safety concerns
have been raised regarding the potential transmission of pathogens, following the transfer
of Shiga toxin-producing Escherichia coli?3° (an extended-spectrum beta-lactamase

producing E. coli) [Au:OK? Single use abbreviations edited out.] that resulted in FMT
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recipient fatalities.231 With increasing evidence for the role of the gut microbiota in other
disease states, the use of undefined microbial consortia could have unknown long-term
health implications; thus, a shift has occurred [Au:0K?] towards more standardised,
defined and well characterised microbial interventions. The recent US FDA regulatory
approvals of fecal-derived RBX2660 (trade name Rebyota) and SER-109 (trade name
Vowst) biotherapeutics (discussed in the next section) [Au: Edits OK?] for the prevention
of CDI recurrence are therefore welcome advances to address the challenge of recurrent

CDIs.

{H2} Microbiota-derived therapeutics

Given the risks associated with the use of undefined bacterial communities such as FMT,
much recent work has focused on standardized alternatives. These can be individual species
(such as C. scindens, identified to be directly antagonistic to C. difficile germination2!5 and
vegetative cell growth?32), or groups of microorganisms able to restore colonization
resistance and gut diversity more widely. The most clinically promising biotherapeutics,
such as the recently approved RBX2660 and SER-109 [Au: The trade names were
introduced in the previous section.] have used complex groups of microorganisms
derived from human gut microbial communities.

RBX2660 aims to deliver the effectiveness of FMT but instead using a standardized
and regulated product, for the treatment for recurrent CDI. A Bayesian model was used to
demonstrate a clinically meaningful treatment effect by RBX26602560 [Au: Is this a
previous formulation or a typo? FYI, company names edited out for editorial
reasons.] across a randomized, double-blind, placebo-controlled, Phase III study, 2017-01
and from a Phase IIb study, 2014-01.233.23¢ Adults who had one or more CDI recurrences
with a positive stool assay for C. difficile (that is, either for a toxigenic strain or for toxin)
and who were previously treated with standard-of-care antibiotics were randomly assigned
2:1 to a blinded, single-dose enema of RBX2660 (n=180) or placebo (n=87). The primary
endpoint was treatment success, defined as the absence of CDI diarrhea within 8 weeks of
study treatment. Treatment success rate was modelled to be 70.6% with RBX2660 versus
57.5% with placebo. The majority (>90%) of successfully treated patients in both study
arms at 8 weeks had a sustained response up until 6 months. The size of the improvement
in treatment success for RBX2660 versus placebo was 13.1% (95% CI: 2.3, 24.0).234

RBX2660 was generally well tolerated. The incidence of treatment-emergent adverse events
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was higher in RBX2660 recipients versus placebo recipients and was mostly driven by a
higher incidence of mild gastrointestinal events (abdominal pain and diarrhea). No serious
treatment-related adverse effects were reported. Of note, RBX2660 was evaluated in only a

limited number of immunocompromised patients.233

SER-109 [Au: Company name edited out for editorial reasons.] is a live
biotheraputic comprising an encapsulated mixture of purified Firmicutes spores, obtained
from the feces of healthy humans. Thus, this biotherapeutic contains considerably fewer
different bacteria than those present in RBX2660. The resilience of spores means they
survive a purification process, including ethanol treatment, to reduce the risk that
transmissible infectious microorganisms could contaminate SER-109. ECOSPOR III (SERES-
012, NCT03183128) was a phase IIl multicentre, randomized, placebo-controlled study that
enrolled 182 adults with 23 episodes of CDI within the previous 12 months (inclusive of the
study entry episode).235 All participants received standard of care oral antibiotic treatment
(either vancomycin or fidaxomicin) and were stratified according to age (aged <65 or 265
years) and CDI antibiotic received, before randomization to SER-109 (~3x107 spore colony-
forming units) or placebo, administered as four matching oral capsules once daily over 3
consecutive days. Given that both vancomycin or fidaxomicin can persist in feces after
cessation of oral administration, 10 ounces of magnesium citrate was administered the
night before SER-109 receipt to limit inactivation of the bacteria in this therapy. Notably,
toxin testing was required at study entry and at suspected recurrence to ensure enrollment
of patients with active CDI and accurate assessment of the endpoint. At 8 weeks post-
treatment, 88% of SER-109 recipients were free from C. difficile recurrence compared with
60% in the placebo group (relative risk of recurrent CDI in SER-109 recipients, 0.32, 95%
confidence interval [CI], 0.18 to 0.58; P<0.001). Notably, this reduction in risk of recurrence
was maintained at 24 weeks, with the respective proportions of patients without recurrent
CDI recurrence being 79% versus 53%.236 Efficacy was confirmed across the stratified
subgroups. SER-109 was generally well tolerated with no drug-related serious adverse

events.

The superiority of SER-109 compared with placebo at preventing CDI recurrence
was associated with clear changes in microbiome composition and concentrations of
secondary bile acids in particular.235 Engraftment of SER-109 bacteria was observed by

week 1 and persisted through week 8. Numbers of engrafting SER-109 bacterial species
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were higher among SER-109 versus placebo recipients through week 8. Following dosing
with SER-109, declines were observed in proinflammatory Enterobacteriaceae and
increases in Firmicutes (that can promote the synthesis of secondary bile acids). Greater
increases in secondary bile acids from baseline occurred in SER-109 recipients compared

with placebo recipients [Au:0K?] at all time-points through week 8.

Such regulated biotherapeutics, with clearly defined efficacy and safety parameters,
will provide more certainty than is currently associated with FMT, and competitor products
will likely become available for CDI treatment. However, the fairly high acquisition costs of
biotherapeutics mean that cost-effectiveness data are needed to establish their respective

uses in CDI treatment pathways.

[H2] Antitoxin antibodies

Bezlotoxumab was the first approved therapeutic C. difficile anti-Tcdtexin-B monoclonal

antibody [Au: anti-TcdB monoclonal antibody?] , intended-shown to successfully reduce

the risk of CDI recurrence when used with standard of care antibiotics.237 However, less
than 10 years following its launch, production has been discontinued, which appears to be a
commercial decision following only modest use \[Au: Is Bezlotoxumab effective? The text
doesn’t actually specify this.] L A further novel monoclonal anti-Tcdtexin-B antibody[Au:
anti-TcdB monoclonal antibody?] is now under development.238 Animal studies support a
possible role for C. difficile-specific colostrum-derived antibodies [Au:0K?] as an

immunotherapeutic for the prevention or treatment of CDI.239

[H2] Non-toxigenic C. difficile

Clinical proof of concept has been demonstrated for the use of a non-toxigenic C. difficile
strain to block pathogenic strains and so reduce the rate of CDI recurrence when used as an
adjunct to standard of care antibiotics.240 However, despite this successful phase II clinical
trial, there has been no further clinical development of this approach in the past decade.
This lack of development [Au:0K?] possibly reflects the high cost of investigating new
agents and noting multiple clinical development failures of novel CDI therapeutics,

including tolevamer,24! surotomycin,?42 cadazolid243 and ridinilizole.244
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[H2] Phage therapy

C. difficile-specific phages have been investigated for the possible development of new
therapies for CDI, and indeed many C. difficile-specific phages have been identified.245
However, clinical trials of phage-based therapy for CDI have not commenced and so its

potential remains unknown.

[H2] Vaccines

Attempts to date to develop an efficacious vaccine to prevent CDI have not been successful,
partly reflecting the low attack rate in the general public and so a need to target higher risk
individuals, with very large clinical trials.246.247 Achieving vaccine immunogenicity in older
adults and immunocompromised individuals adds to the challenges here. In 2024 [Au:0K?]
, a multivalent mRNA vaccine approach targeting the combined repetitive oligopeptide and
receptor binding domains of TcdA and TcdB, and the metalloprotease virulence factor Pro-
Pro endopeptidase 1 was shown to protect mice from lethal CDI,248 but this vaccine remains

to be progressed to human trials.

fH1}-Conclusions [Au: Heading edited to fit with journal style.]

Whilst careful antibiotic stewardship and optimal diagnosis and patient management has
drastically reduced large CDI outbreaks in healthcare facilities, C. difficile continues to cause
considerable mortality and morbidity worldwide. The epidemiology of CDI still varies
considerably across countries/regions, which seems to be only partially explained by
ascertainment bias. As such, we need to understand better what drives these geographical
variances. Although our knowledge of C. difficile pathogenicity and mechanisms of antibiotic
resistance has vastly improved in recent years, continued surveillance (including phenotypic
susceptibility testing) is crucial in preventing outbreaks of novel epidemic and resistant
ribotypes. A key aim is to understand the beneficial and harmful effects of diet on key
components of the microbiome and so on colonization resistance and health outcomes,

including CDI.
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Although understanding of the mechanisms of microbiota-mediated colonization
resistance is in its infancy, targeted microbiota restoration therapies and adjuncts to therapy
show promise in improving patient outcomes. The recent advances in live biotherapeutic
products, which are derived from the human gut microbiome, are welcome and represent
laudable examples of therapeutics that have been designed to address the pathogenesis of CDI.
Hitherto, the reliance on antibiotics to treat an often antibiotic-induced infection has been
poignant. The relative effectiveness of antibiotic therapies is closely aligned with the extent of
microbiome derangement they induce and so the risk of CDI recurrence. Ideally, new antibiotics
to treat CDI should have very narrow spectra of activity, with long residual activity after dosing
has ceased. Such attributes would limit microbiome derangement and provide a window of

protection for when non-eradicated spores might germinate.

Our reliance on combinations of tests to identify who has CDI is imperfect. Better diagnostic
options that have optimal sensitivity to detect C. difficile, but notably also with improved
specificity for CDI itself, are needed. Such diagnostics need to be priced at a level where they are
truly accessible and so will be used widely. Also, being able to identify who is at increased risk of
CDI and/or CDI recurrence would allow both targeted use of prophylactic options and measures

to reduce the risk of re-inducing CDI.

Lastly, the efforts to develop effective CDI vaccines need to be redoubled. A key
challenge here is the size and cost of the clinical trials required to demonstrate that
investigational vaccines are effective. The CDI attack rate is still fairly low among individuals
deemed to be at increased risk of the infection. Thus, very large trials have been needed. Being
able to identify who is at markedly increased risk of CDI would offer the chance of smaller trials
to determine proof of concept and ultimate clinical effectiveness. The proportion of the
populations of almost all developed countries/regions that are aged >65 years [Au:OK? Journal
style avoids the term elderly, preferring to use specific age thresholds or to use the term
‘older adults’.] are expected to increase markedly during the 21 century. So, CDI is likely to
become a greater threat, emphasizing the potential healthcare and societal value of cost-

effective CDI vaccines.

significant-mortality-and-meorbidity-werldwide [Au: The highlighted sentences in this paragraph
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are the same as ones near the start of the conclusions; please rephrase this paragraph or

delete.] .
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Table 1. A summary of antibiotic resistance characteristics of C. difficile to CDI treatment and
non-CDI treatment agents. [Au: For later formatting reasons, display items and their associated
reference citations must go in the following order after the reference list: Tables, figure legends,

boxes. | moved up this table accordingly. Please use your reference management software to

update the order of the reference list. Thanks!]

Antibiotic [Class] | Mode of Resistance | Genes involved spread
action mechanism
CDI treatment antimicrobials
Metronidazole Nucleicacid | Plasmid pCD-METRO 104 Uncommon
[nitromidazole] synthesis mediated
[Au: Please
note, table cells
cannotbe left Haem- PnimB¢ promotor Uncommon,
empty. Please - .
. dependent | variantleading to however,
merge this cell o c
- constitutive variation in
with the one L -
. transcription of susceptibility
above if . . -
. nimB: production of | testing methods
appropriate, or s
- a haem binding may have led to
if not, add . .
- flavoenzye that underestimatio
something
. degrades n.
(evenlfNAll\ o
nitroimidazoles
106,107
Vancomycin Bacterial cell | Not well Possible Uncommon,
[glycopeptide] wall understood | VanSR some recent
synthesis vanG, vanA, vanB, reports of
vanWvanZ elevated MICs
involvement
possibly plasmid
mediated (Tn1549)
Fidaxomicin RNA Mutations al1143Leu/Gly /Asp | Very
[macrolide] polymerase | in RpoB and | in RpoB,118-120 uncommon
RpoC GIn1149Pro and in
RpoC leading to
Arg89Gly. 120
Antimicrobials known to predispose to CDI
Clindamycin Disruption Methylation | erm(B) on mobile widespread
[lincosamide] of bacterial | of ribosome | elements such as across many
protein to prevent | Tn5398 or Tn6194249 | ribotypes and
synthesis antibiotic geographical
indi ions%8
binding o (B), r(C) and locations
¢fr(E) (a new cfr-like
gene)2so
Moxifloxacin Inhibition of | mutations | gyrd and/or particularly
Ciprofloxacin bacterial in the gyrB51.252 associated with
[fluroquinolones] | DNA gyrase, | quinolone RT027, but
preventing resistance- found in many
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replication determinin | Thr82Ile is the most | ribotypes
and g regions widely studied across a wide
transcription | (QRDR) mutation geographical
area.”s
[Third interfere Mutations Endogenous D-class | co-incided with
generation with in binding b-lactamases have fluoroquinolone
cephalosporins] | bacterial cell | proteins or | been reported, 122253 | resistance in
wall acquisition epidemic
synthesis of b- lineages?3
lactamases. | substitutions in
Penicillin Binding
Protein 1 and 323
Other antimicrobials
[Tetracyclines] bind to the ribosomal tet(M) on mobile [Au: Empty
30S protectant | element Tn96164 cell. Add ‘NA’ or
ribosomal proteins tet(44) on mobile ‘None’?] NA
subunit, element Tn6164
inhibiting
bacterial
protein
synthesis
Rifampicin bind to RpoB | Mutations most common widespread
[rifamycins] (different occur in the | mutation described | high level
site of action | rifamycin is Arg505Lys resistance,
to resistance particularly
fidaxomicin) | determinin among
g region epidemic
(RRDR). ribotypes such
as RT02798 125
some
association
with rifamycin
treatment.126
Chloramphenicol | inhibits chloramphe | the catD gene on
bacterial nicol Tn4453a and seen across
protein acetyltransf | Tn4453b many C. difficile
synthesis by | erase ribotypes.254
binding to enzyme
the 50S
ribosomal
subunit
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Figure 1: Most common C. difficile ribotypes reported according to published data. Stacked bar
charts show the percentage prevalence of indicated ribotypes. Epidemic ribotypes, such as
ribotype 027 (RT027), RT181 [Au:0OK?], RT001, RTO78 and RT014/020 continued to circulate in
Europe, RT014/20 and RT027 in the USA and Canada, and RT014/20 in Australia. RT027 was rarely
found in Australia (<1%). While recent epidemiological data in other parts of the world are lacking,
some historical data are shown, highlighting circulation of RTO17 in Asia and South Africa. The
range in years shown indicates the collection period of C. difficile isolates for each of the data
sources. Data sources are as follows; Europe (n=198) 2018 point prevalence study across 12
European countries/regions,®! Greece (n=221) the most recent surveillance information that
included at least the year 2019 %, Denmark (n=2692) the most recent surveillance information
that included at least the year 2019,%°° The Netherlands (n=1082) a report from the European
Centre for Disease Prevention and Control,?*® Ireland (n=581) a report from the European Centre
for Disease Prevention and Control,?*® Germany (n=876), England (n=31,435) report from The
UK Health Security Agency,*® United States (n=300) a US-based national surveillance study
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[currently ref 32], Canada (n=392) report from the Canadian Nosocomial Infection
Surveillance Program 4! Australia (n=1,523) surveillance report,42 Iran (n=366) 14-year-long
cross-sectional study257 Due to the lack of surveillance programs in other parts of the world,
historical data (pre-2018) were retrieved from published reviews, including a study in Japan
(n=177),%8 China (n=319) and Indonesia (n=340),4> Chile (n=81) and Brazil (n=38),46 Ghana
(n=15) and South Africa (n=269).%8
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Figure 2: The C. difficile infection cycle. C. difficile spores are ingested from the
environment. In a susceptible host (e.g., following antibiotic mediated disruption), spores are
able to germinate and a proliferating vegetative population produces the toxins that mediate
CDI. CDI treatment antimicrobials can further exacerbate dysbiosis, and both recrudescent
spores within the gut, or a re-infection of spores from the environment can result in recurrent
disease. Each incident of recurrence increases the chances of further recurrent disease,
prolonging the recurrence cycle. Restoration of a healthy microbiota can restore colonization
resistance, breaking the recurrence cycle and leading to recovery.
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Figure 3: Summary of pathogenicity factors during CDI and recurrent disease. During
the initial phase of disease, metabolically inactive spores survive the harsh digestive
environment, where they germinate into metabolically active vegetative cells. Both spores
and vegetative C. difficile cells can integrate into the mucosal biofilm to form a reservoir for
recurrent infection. The C. difficile cell surface, characterised by the S-layer and cell wall
\proteins [Au: Please can you add labels for the key cell surface components on the
figure set?], ﬂlave a crucial role in adhesion on host cells, biofilm formation, resistance to
host antimicrobial factors and environmental sensing. The main factor that causes most of
the symptoms associated with CDI is the production of cytotoxins, TcdA and TcdB. This
cytotoxicity causes damage to the epithelial layer, which induces an inflammatory innate
immune response that can enhance the damage, but innate lymphoid cells can limit this
damage by helping to strengthen the epithelial layer. During the final phase of pathogenesis,
spores can be expelled from the body to contaminate the environment and infect others,
thus starting the infection cycle again. All these factors can give rise to a spectrum of disease
outcomes experienced by patients with CDI.
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Figure 4: The microbiota in CDIL \[Au: I couldn’t find a call-out for figure 4 in the main
text. Please can you add one in an appropriate place?] lA healthy, diverse gut microbial
community confers colonization resistance against CDI. Disruption to microbial communities
(e.g. by antibiotic exposure) alters the structure and function of the microbial communities,
allowing C. difficile germination and proliferation, leading to toxin production and resulting
damage. Restoration of microbiota can be facilitated by FMT or microbiota derived therapies.
Restoration of the metabolic and functional potential of the microbial communities can
prevent further C. difficile growth and restore colonization resistance.

Box 1 | Impact of the SARS CoV-2 pandemic on CDI incidence and epidemiology

A worrying increase in CDI incidence has been noted since the SARS-CoV2 pandemic and the
emergence of novel ribotypes is potentially problematic.25? In England, a 25% increase was
reported in CDI incidence during [Au:0K? If not, please clarify the 25% increase.] 2021-
2023 compared with pre-pandemic level. 36260 Similar increases have been reported in
Canada, Greece, Spain and Australia.261-264 This picture is not universal, however. In Germany,
a 50% decrease in the number of CDI cases was observed in 2021 compared with 2015,
potentially associated with implementation of antimicrobial stewardship and hospital
hygiene programmes.265 Increased infection control measures might also have decreased CDI
incidence in a Belgium hospital from 2020 to 2022. 266 In Spain, some studies reported an
increase, whereas others noted a decrease or no change. 267 As resources were redirected to
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deal with the pandemic, decreases in CDI could also be explained by lack of clinical suspicion
and testing, leading to underdiagnosis.

The ECDC 2022-2023 survey of healthcare-associated infections in European hospitals
reports a 10% increase in healthcare-associated CDI incidence compared with 2016-2017
(ref.268). An increase in healthcare-associated CDIin 2020 compared with 2019 and 2018 was
also described (2.05 versus 1.50 and versus 1.70 cases per 10,000 patient-days,
respectively).256 However, the effect of the pandemic in the EU-EEA is not yet conclusive.
Comparison between years should be made with caution, as few countries/regions reported
surveillance data to the European Centre for Disease Prevention and Control [Au:0K?] in
2020; no formal data call were issued in 2020 and 2021 due to the changing national
priorities in response to the SARS-CoV2 pandemic. 256 [Au: Paragraph merged.] Similarly,
the impact of the SARS-CoV2 pandemic on CDI incidence in the USA is not yet fully conclusive,
as some studies reported an increase, while others showed a stable or decreased incidence.269
[Au: Paragraphs merged.] Continued surveillance of CDI is encouraged to further elucidate
changes in CDI incidence.

Box 2 | Overview of typing methods used for C. difficile [[Au: | can’t see a call-out to box 2
anywhere in the main text. Please can you add one in an appropriate location? Thanks!] l
Molecular characterisation of C. difficile strains is an important component of surveillance
programmes, which enables tracking of epidemic spread caused by virulent types. PCR-ribotyping
is widely used as the gold standard method for providing epidemiological data. This method is
based on the amplification of the intergenic region between the 16S and 23S ribosomal RNA gene,
generating a distinct banding pattern unique to a specific PCR ribotype.’® Pulse-field gel
electrophoresis (PFGE) and variable-number tandem-repeat analysis (MLVA) are alternative
typing methods, but these are labour-intensive and not as widely used as PCR-ribotyping;
however, PFGE is still used in North America.?’® While having lower resolution than other typing
methods, toxinotyping provides clear information on the toxigenic status of C. difficile strains. This
method relies on PCR amplification and restriction enzyme digestion of regions in the
pathogenicity locus and correlates well with PCR-ribotyping. 27°

Multi locus sequence typing (MLST) schemes have also been developed to enable assignment of
a sequence type based on the genetic variation of seven housekeeping genes and are useful tool
for evolutionary studies.?’* While MLST correlates often, but not always, with PCR-ribotyping,
none of those typing methods can ascertain transmission events. Whole genome sequencing
(WGS) provides a higher level of resolution for identification of genetically related strains and for
understanding taxonomic relationships. 2>?’* Therefore, integration of WGS in surveillance
programmes is currently being sought and has the potential to facilitate outbreak investigations
and further understanding of transmission networks, as demonstrated by recent studies in
healthcare settings?’>?7®

ToC blurb I[Au: Is our summary text for the table of contents blurb OK? Please note, we can’t
make this text any longer.] ‘

Clostridioides difficile infection (CDI) is challenging to diagnose and treat, and is associated with
considerable mortality, morbidity and economic costs worldwide. In this Review, Chilton et al.
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discuss changes in global epidemiology, breakthroughs in pathogenesis and antibiotic resistance,
the role of microbiota dysbiosis and the potential for microbiota-based therapeutics for CDI.
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