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Abstract—This paper proposes an Optimal Fast Frequency 

Containment (OFFC) approach during loss-of-generation (LoG) 

events, combining analytical derivation with an optimization 

framework for resource deployment. The system frequency 

response is modeled by a second-order power–frequency transfer 

function, enabling a closed-form characterization of the optimal 

power injection profile. This profile maximizes the frequency 

nadir for a given energy input. Building on this, a scalable 

optimization framework is established to realize the target 

injection using available generation resources, each represented 

by a trapezoidal power profile. A novel linear formulation is 

developed to model the trapezoidal ramping without bilinear 

terms. This ensures scalability and guarantees global optimality 

under operational constraints such as ramp limits, delays, and 

energy capacities. The proposed approach supports real-time 

deployment decisions while accounting for resource diversity, 

facilitating greater integration of renewable energy sources. 

Keywords—Laplace transform, optimal fast-acting frequency 

containment (OFFC), optimization, system frequency response 

(SFR). 

I. INTRODUCTION 

Fast-acting frequency containment (FFC) refers to the 
deliberate, rapid injection of active power into a power system 
to arrest frequency decline during the first critical seconds 
following a loss-of-generation (LoG) event, before the nadir is 
reached [1]. FFC has become a key mechanism for maintaining 
frequency stability in systems with high penetration of 
renewable energy sources (RESs), where synchronous inertia is 
low and variable [2], [3]. Contrary to ‘fast frequency response,’ 
a term that can also denote the natural post-disturbance 
frequency behavior of the system, FFC is the preferred 
terminology as it exclusively refers to a controlled intervention 
to mitigate frequency deviations. 

The importance of FFC has grown with the increasing 
variability of system inertia, driven by the displacement of 
synchronous generation by RESs [4, 5]. Inertia levels now 
fluctuate not only seasonally and diurnally but also in response 
to short-term weather patterns affecting wind and solar output. 
When system inertia is highly reduced, the rate of change of 
frequency following an LoG event is higher, the nadir is lower, 
and the available response time is shorter [6, 7]. The 2019 UK 
and 2025 Iberian blackouts demonstrate the vulnerability of 
modern power systems under such conditions, where a 
combination of reduced inertia and limited fast reserves can 
easily contribute to widespread disruptions. 

In operational practice, FFC can be delivered through a 
diverse portfolio of resources, each with distinct performance 
characteristics [3]. Synchronous machines contribute fast but 

transient inertial energy, turbine governors provide a sustained 
adjustment over several seconds. Wind turbines can temporarily 
increase output by extracting kinetic energy from rotor inertia, 
and power electronics–based resources such as batteries and 
solar PV can deliver near-instantaneous injections with high 
precision [8]. Effective deployment requires coordination of 
these heterogeneous resources across multiple time layers [8]: 

 Fast frequency containment (0.1–2 s): Batteries, 
synthetic inertia, and fast converter-based responses 
arrest the initial frequency decline. 

 Primary control (2–30 s): Turbine-governor systems 
provide sustained frequency support. 

 Secondary and tertiary control (>30 s): Slower 
adjustments restore frequency to nominal levels. 

The work presented in this paper focuses on Optimal Fast-
acting Frequency Containment (OFFC)—a targeted, short-
duration injection strategy designed to reduce or eliminate the 
transient frequency deviation while preserving or improving the 
final steady-state value. This concept builds on the 
decomposition of frequency response into transient and steady-
state components [1], and on the use of the inverse system 
frequency response (SFR) model to determine the exact 
magnitude, timing, and profile of corrective injections. The 
objective is to maximize the frequency nadir for a given 
available energy, thereby reducing the duration of low-
frequency operations and avoiding unnecessary wear on 
mechanical resources. 

This research work makes two key contributions. First, it 
provides an analytical derivation of optimal injection profiles by 
modelling the frequency deviation. Closed-form expressions are 
derived for the corrective power injection required to flatten the 
frequency trajectory over a specified time window. This helps 
maximize the frequency nadir for a fixed available energy. 
Second, it introduces a scalable deployment optimization 
framework for diverse generation resources. This is achieved 
through a linear, deterministic, and computationally efficient 
formulation for implementing OFFC. The optimization 
framework makes best use of available resources with different 
ramp rates, delays, and energy capacities. A novel technique is 
also set forth to represent trapezoidal injection profiles without 
introducing nonlinearities into the optimization framework. 

The remainder of the paper is organized as follows. Section 
II derives closed-form expressions for optimal injection based 
on the inverse SFR approach. Section III presents the resource 
deployment framework, including the linearized trapezoidal 
representation and optimization constraints. Section IV 



discusses implementation considerations and illustrates the 
approach through numerical studies. Section V concludes the 
paper. 

II. OPTIMAL POWER INJECTION 

The power system is modeled as a linear, time-invariant 
system when examining the relationship between power and 
frequency. This simplification makes it easier to express the 
differential equations that govern frequency dynamics. The 
average response of the center-of-inertia (CoI) frequency to 
changes in generation or load can be effectively captured using 
a second-order model, which balances the need to represent the 
key dynamic behavior with analytical simplicity [9]–[11]. 

The size of the LoG event is assumed to be detectable by the 
control center within sub-seconds of its occurrence [5]. Let ∆𝐹(𝑠) , ∆𝑃(𝑠)  and 𝐺𝑆𝐹𝑅(𝑠)  denote the frequency deviation, 
power disturbance, and SFR transfer function in the Laplace 
domain, respectively. With these, the frequency deviation 
following the power disturbance can be written as  ∆𝐹(𝑠) = ∆𝑃(𝑠) × 𝐺𝑆𝐹𝑅(𝑠) (1) 

where 𝐺𝑆𝐹𝑅(𝑠)  is a second-order minimum-phase transfer 
function in its simplified form approximated as [3, 30]: 

𝐺𝑆𝐹𝑅(𝑠) = ( 𝑅𝜔𝑛2𝐷𝑅 +𝐾𝑚)⏞        𝛾 ( 1 + 𝑇𝑅𝑠𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛2) (2) 

In this formula, the parameters 𝑅 , 𝐷 , 𝐾𝑚 , 𝑇𝑅 , 𝜁 , and 𝜔𝑛  
respectively represent the effects of the governor droop, 
frequency dependence of load, mechanical gain factor, reheat 
time constant, damping factor, and natural frequency of the 
system [30].  

Let us assume the power disturbance in the per unit form is 
a step function with magnitude P as below ∆𝑝(𝑡) = 𝑃𝑢(𝑡) (3) 

Given the SFR transfer function (2), the frequency deviation 
following this disturbance in the time domain is [9]: ∆𝑓(𝑡) = ∆𝑓𝑠𝑠[1 − csc𝜑 sin(𝜔𝑑𝑡 + 𝜑) 𝑒−𝜁𝜔𝑛𝑡]𝑢(𝑡) (4) 

where ∆𝑓𝑠𝑠 = 𝑃𝛾𝜔𝑛−2 , csc𝜑  represents the reciprocal 
of sin𝜑, and 𝜔𝑑  and 𝜑 are constants determined based on the 
SFR model parameters as detailed in [10]. The frequency 
response following an LoG event, opposite to (3), is equal to 
the pre-disturbance system frequency nominal frequency 𝑓0  
minus (4), as shown below: 𝑓(𝑡) = [𝑓0 − ∆𝑓(𝑡)]𝑢(𝑡) (5) 

It can be confirmed that ∆𝑓(𝑡) also represents the response 
required to eliminate the frequency deviation caused by the LoG 
event. By defining 𝜃 = acos 𝜁 (as shown in Fig. 1) and applying 
the inverse Laplace transform to (4), ∆𝐹(𝑠) is obtained in terms 
of the parameters already defined as ∆𝐹(𝑠) = ∆𝑓𝑠𝑠𝑠 + 𝐾 [sin𝜑 𝑠 + 𝜔𝑛 sin(𝜑 + 𝜃)(𝑠 + 𝜁𝜔𝑛)2 +𝜔𝑑2 ] (6) 

where 𝜁𝜔𝑛 sin𝜑 + 𝜔𝑑 cos𝜑  is replaced with sin(𝜑 + 𝜃) and 𝐾 is defined as 𝐾 = −∆𝑓𝑠𝑠 csc𝜑. 

As demonstrated in [1], a flattened frequency response 
yields the highest nadir for a given amount of energy injection. 
Let 𝛿𝑓(𝑡) denote the required adjustment needed to flatten the 
frequency response described by (5) between 𝑡 = 𝑡1  and 𝑡 =𝑡2. For clarity and reuse, 𝛿𝑓(𝑡) is expressed in terms of two 
subfunctions as 𝛿𝑓(𝑡) = 𝑚𝑡1(𝑡) −𝑚𝑡2(𝑡) (7) 

where 𝑚𝜏(𝑡) = [∆𝑓(𝑡) − 𝑓𝜏] 𝑢(𝑡 − 𝜏) for any 𝜏 and 𝑓𝜏 = 𝑓(𝜏). 
It can be seen that 𝑚𝜏(𝑡) is essentially ∆𝑓(𝑡), zeroed before 𝑡 =𝜏 and offset by −𝑓𝜏  to ensure the function equals zero at that 
time.   Accordingly, expression (7) represents the portion of ∆𝑓(𝑡) that lies between 𝑡 = 𝑡1  and 𝑡 = 𝑡2 , with the boundary 
value ∆𝑓𝑡1=∆𝑓𝑡2 subtracted off to ensure the portion starts and 

ends at zero. 

The Laplace transform of 𝑚𝜏(𝑡) is denoted by 𝑀𝜏(𝑠) and 
the power injection needed to bring about this frequency 
response is denoted by 𝜋𝜏(𝑡). All of these functions, both in the 
time and Laplace domains, along with the closed-form solution 
for 𝜋𝜏(𝑡) are detailed in Appendix. Now, let 𝛿𝑃(𝑡) denote the 
power injection that flattens frequency response between  𝑡1 
and 𝑡2. Using the derivations put forward so far, one can write 𝛿𝑝(𝑡) = 𝜋𝑡1(𝑡) − 𝜋𝑡2(𝑡) (8) 

The stepped power disturbance ∆𝑝(𝑡)  produces a bell-
shaped frequency response. Injecting 𝛿𝑃(𝑡) between 𝑡1  and 𝑡2 
exactly flattens this response, yielding the optimal nadir for the 
available injected energy. 

III. RESOURCE DEPLOYMENT 

An optimization framework is required to deliver the OFFC 
response across multiple generation resources during an LoG 
event. In principle, the system should be capable of realizing 
any appropriate active power injection profile, represented 
using trapezoidal injections distributed among participating 
resources. The primary objective is to minimize the aggregate 
mismatch between the desired and actual power injections, 
subject to the operational constraints of each resource. 
Deployment should prioritize technical effectiveness of 

 

 

Fig. 1. Representation of pole positions for the SFR transfer function in the 
complex plane. 

     

 



frequency response rather than cost of provision [8]. The 
optimization explicitly accounts for heterogeneous response 
times, enabling efficient realization of the desired aggregate 
profile. The formulation presented in this section provides a 
tractable, deterministic, and scalable framework for real-time 
OFFC deployment, while respecting technical limits and 
resource diversity. 

A. Operational Context 

The dynamic frequency containment capability of a 
generation resource can be defined by a set of operational 
parameters that capture its behavior during an LoG event. This 
response is represented by a trapezoidal active power injection 
profile (Fig. 2), which describes the resource’s output 
throughout the event. The profile begins after a time delay, 
defined as the latency between the system trigger (or dispatch 
instruction) and the start of power injection. 

Following activation, the resource ramps up at a bounded 
ramp-up rate until reaching the required power level, up to its 
maximum capability. The sustained period at this level is 
constrained by the available energy, often determined by the 
state-of-charge. The withdrawal phase is governed by a bounded 
ramp-down rate to ensure a smooth reduction in output and 
avoid secondary system instabilities. 

The exact ramp-up/down rates and start/finish times for each 
resource are not known a priori. Since delivered energy is the 
product of power and duration, uncertainty in both parameters 
introduces potential nonlinearities. To preserve analytical 
tractability, the trapezoidal injection is reformulated here using 
auxiliary variables and constraints, avoiding direct 
multiplication of decision variables. This approach is necessary 
to ensure computational efficiency, deterministic convergence, 
and global optimality within predefined tolerances, which are 
essential for real-time applications. 

B. Optimization Formulation 

Performing optimization for resource deployment on a 
discretized spectrum is much easier than on a continuous one. 
Therefore, we discretize the period of interest into 100 intervals 
(without loss of generality), with the 𝑖 −th time instant referring 

to 𝑡 = (𝑖 − 1)∆𝑡  (for 𝑖 = 1,…, 100). Let us assume 𝛿𝑝𝑖𝑡𝑟𝑔𝑡  
refers to the target power we aim to deliver at 𝑖 −th time slot. 
This can be obtained based on (8) or its simplified triangular 

approximations introduced in [1]. Let 𝑝𝑖𝑖𝑛𝑗  signify the collective 
response of resources (in terms of active power injection) across 
the system at the 𝑖 −th instant. Ideally, we would prefer that 𝛿𝑝𝑖𝑡𝑟𝑔𝑡 = 𝑝𝑖𝑖𝑛𝑗  for ∀𝑖. However, this assumption may be overly 

optimistic given the operational constraints of the available 
resources. Consequently, the optimization must seek to 
minimize the cumulative least absolute deviation between the 
actual and target injections over the discretized time horizon. 

To establish the optimization formulation, first, let us 
assume we have 𝑚 providers that can be instructed to participate 
in frequency containment upon need. In this context, let  𝑝𝑔(𝑘, 𝑖) 
refer to the injection of the 𝑘 −th resource at the 𝑖 −th time 
instant. Therefore,  𝑝𝑖𝑖𝑛𝑗 =∑𝑝𝑔(𝑘, 𝑖)𝑚

𝑘=1  (9) 

Now, an optimization framework is needed to achieve the 
following objective 

min ∑| 𝛿𝑝𝑖𝑡𝑟𝑔𝑡 − 𝑝𝑖𝑖𝑛𝑗|𝑁
𝑖=1  (10) 

A key innovation of this work is the linear representation of 
trapezoidal injections without multiplying decision variables, 
using a neighbor-average property: in a trapezoid, the average 
of two non-neighboring points on opposite slopes cannot equal 
either edge value. In the discretized domain, each trapezoid 
spans at least four instants—three in the limiting triangular case 
where maximum output occurs at only one instant. Thus, if two 
non-neighboring points are separated by two instants, they must 
lie on opposite slopes. Exploiting this property preserves 
linearity, enabling tractable optimization. 

We define four sets of binary auxiliary variables 𝑎(𝑘, 𝑖), 𝑏(𝑘, 𝑖), 𝑐(𝑘, 𝑖), 𝑑(𝑘, 𝑖) to represent the positions of the four 
edges of a trapezoidal power profile for unit 𝑘. For the first set, 
the constraint ∑ 𝑎(𝑘, 𝑖)𝑁𝑖=1 = 1,        ∀𝑘 (11) 

and analogously for the three other sets ensures that exactly one 
position is selected, thereby uniquely identifying each trapezoid 
edge in time. To facilitate sequencing, we introduce cumulative 
binary variables. 𝐴(𝑘, 𝑖), 𝐵(𝑘, 𝑖), 𝐶(𝑘, 𝑖), 𝐷(𝑘, 𝑖), defined such 
that ∑ 𝑎(𝑘, 𝑗)𝑖𝑗=1 ≤ 𝐴(𝑘, 𝑖),        ∀𝑘, 𝑖 (12) 

with analogous definitions for 𝐵(𝑘, 𝑖) , 𝐶(𝑘, 𝑖) , 𝐷(𝑘, 𝑖) . The 
ordering constraints 𝐴(𝑘, 𝑖) < 𝐵(𝑘, 𝑖) ≤ 𝐶(𝑘, 𝑖) < 𝐷(𝑘, 𝑖)        ∀𝑘, 𝑖 (13) 

along with (12) guarantee that the first and only “1” in each of 
the arrays 𝑎(𝑘, . ) , 𝑏(𝑘, . ) , 𝑐(𝑘, . )  and 𝑑(𝑘, . )  appears in the 
correct chronological order. This is to preserve the intended 
sequencing of trapezoid edge positions. 

Let 𝑅𝑘𝑢𝑝,𝑚𝑎𝑥  and 𝑅𝑘𝑑𝑜𝑤𝑛,𝑚𝑎𝑥  denote the maximum ramp-up 
and ramp-down rates of unit 𝑘, respectively. Variables 𝐻𝑎(𝑘, 𝑖), 𝐻𝑏(𝑘, 𝑖), 𝐻𝑐(𝑘, 𝑖) and 𝐻𝑑(𝑘, 𝑖) are introduced to represent the 
incremental change between each trapezoidal edge and its 
neighboring points, corresponding to the first, second, third, and 
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Fig. 2. Typical power characteristic of a generating resource providing FFC 
services. 

 



fourth edges, respectively. For ∀𝑘 and 𝑖 , these variables are 
constrained as 

{   
  
   0 ≤ 𝐻𝑎(𝑘, 𝑖) ≤ 𝑎(𝑘, 𝑖)𝑅𝑘𝑢𝑝,𝑚𝑎𝑥2−𝑏(𝑘, 𝑖)𝑅𝑘𝑢𝑝,𝑚𝑎𝑥2 ≤ 𝐻𝑏(𝑘, 𝑖) ≤ 0−𝑐(𝑘, 𝑖)𝑅𝑘𝑑𝑜𝑤𝑛,𝑚𝑎𝑥2 ≤ 𝐻𝑐(𝑘, 𝑖) ≤ 00 ≤ 𝐻𝑑(𝑘, 𝑖) ≤ 𝑑(𝑘, 𝑖)𝑅𝑘𝑑𝑜𝑤𝑛,𝑚𝑎𝑥2

 

 

(14) 

to ensure that slope changes occur only at the designated edges 
and remain within the specified ramp limits. To enforce zero 
slope when the unit reaches its peak power, the following 
equality constraints are imposed: 

{  
  ∑𝐻𝑎(𝑘, 𝑖) = −∑𝐻𝑏(𝑘, 𝑖),        ∀𝑘 𝑖=𝑁

𝑖=1
𝑖=𝑁
𝑖=1∑𝐻𝑐(𝑘, 𝑖) = −∑𝐻𝑑(𝑘, 𝑖),        ∀𝑘 𝑖=𝑁

𝑖=1
𝑖=𝑁
𝑖=1

 (15) 

The absolute value of the two sides of the first equality 
represents half of the unit’s ramp-up rate 𝑅𝑘𝑢𝑝, while the second 

equality similarly represents half of the ramp-down rate 𝑅𝑘𝑑𝑜𝑤𝑛. 
The resulting trapezoidal profile has a maximum of three 

segments with zero slope, one ramp-up segment at 𝑅𝑘𝑢𝑝 and one 

ramp-down segment at 𝑅𝑘𝑑𝑜𝑤𝑛. The auxiliary variable 𝑠(𝑘, 𝑖) is 
used here to mark not only the four edge points where slope 
changes occur for unit 𝑘  but also quantify the magnitude of 
these changes. In this context, 𝑠(𝑘, 𝑖) is defined as 𝑠(𝑘, 𝑖) = 2[𝐻𝑎(𝑘, 𝑖) + 𝐻𝑏(𝑘, 𝑖) + 𝐻𝑐(𝑘, 𝑖) + 𝐻𝑑(𝑘, 𝑖)] (16) 

Now, one can easily use this variable to recursively calculate 
the unit’s power output  for ∀𝑘 from 𝑝𝑔(𝑘, 𝑖)= 2𝑝𝑔(𝑘, 𝑖 − 1) − 𝑝𝑔(𝑘, 𝑖 − 2) + 𝑠(𝑘, 𝑖 − 1) (17) 

For the initial time steps, the fictitious values  𝑝𝑔(𝑘,−1), 𝑝𝑔(𝑘, 0) and 𝑠(𝑘, 0) are arbitrarily defined and set to zero, to 

ensure that the recursion is well-defined. 

IV. PERFORMANCE ANALYSIS 

This section evaluates the performance of the proposed 
OFFC method using a simplified SFR model for a system with 
7500 MW of load. Simulations are carried out in MATLAB, and 
optimization is performed using GAMS. The test system 
represented by this second order SFR model is used to illustrate 
the general behavior of the proposed approach. The SFR model 
parameters are listed in Table I. 

A. Sensitivity Analysis 

First, flattened system frequency response and required 
power injections are shown for different values of β in the 
system. As can be seen, for 𝛽 > 1, the steady-state frequency is 
different from that of the original frequency response. This 

explains the presence of non-decaying components in the 
injection profile. This in agreement with (8) where the second 
term is omitted. Now, a general sensitivity study is conducted to 
assess the impact of a range of factors on OFFC power profiles. 
Variations include changes in system inertia, load damping, and 
governor response speed. Results shown in Figs 3-5 confirm that 
the proposed method can provide effective nadir improvement 
across all tested scenarios with some short-lived power 
injections.  

The capability of power injections to maximize frequency 
nadir is investigated under different pre-disturbance system 
conditions. It is observed that inertia plays a key role in the time 
of injection, but the energy needed for completely removing the 
transient deviation remains almost the same. The impact of load 
damping factor is very insignificant. This is contrary to the 
noticeable impact of the recovery time constant of the turbine 
governor (𝑇r) on system frequency response and injections 
needed to remove the frequency dynamic deviations.  

B. Optimization Results  

In this subsection, the optimization framework is evaluated 
following the loss of 0.1 pu of generation capacity (750 MW) at 𝑡 = 1 sec. This leads to a frequency nadir of 49.45 Hz. A total 
of 80 generation resources are available, distributed across four 
types of technology as shown in Table II. The ramp-up and 

 

TABLE I  
SFR MODEL PARAMETERS 

Parameter Value Parameter Value 

R 0.05 Km 0.95 𝑇r 8 s D 1 𝐹𝐻  0.3 H 4 s 

 

 

 
Fig. 3. Flattened system frequency response and corresponding power 
injections for different values of β. 

 



ramp-down rates are assumed equal for each type, and the delay 
time (𝑇𝑑𝑒𝑙𝑎𝑦) accounts for detection and activation latency. The 
aggregate maximum power injection capability of the fleet is 
1000 MW, with total energy of approximately 185 MWh. 

Let us focus on a window of 20 seconds following the 
disturbance. If we are to halve the transient frequency deviation 
and maintain the frequency above 49.5 Hz during this period, a 
sustained injection of 450 MW for 20 seconds from the 
disturbance onset would be necessary, based on the traditional 
step-response concept. This would require an energy 
expenditure of 2.5 MWh. To the same end, however, the optimal 
frequency containment detailed in this paper suggests allocating 
short-term injections from diverse fast-acting resources to 
flatten the frequency response (with 𝛽 = 1).  

The optimization problem is solved in GAMS using a 
simplified triangular target profile for the injection power 𝛿𝑝𝑖𝑡𝑟𝑔𝑡 , derived based upon the analytical formulations 
presented earlier. The triangle has a peak of 450 MW and starts 

at 𝑡 = 2  sec and lasts for almost 12 seconds. The resulting 

dispatch 𝛿𝑝𝑖𝑖𝑛𝑗  is shown in Fig. 6 alongside the target profile, 
with magnified injection profiles of individual resources also 
illustrated. While some deviation exists between the target and 
the achievable injection, both yield significant improvements in 
system frequency stability. Specifically, the maximum 
frequency deviation is reduced from around 0.6 Hz (no control) 
to around 0.3 Hz (triangular injection). This improvement is 
achieved using only short-lived injections, with most resources 
ramping to full power in under two seconds and sustaining for 
durations proportional to their energy ratings. While all BESS 
and PV-BESS resources are used, only three of flywheels and 
none the wind resources are instructed to inject power for 
frequency containment. These results demonstrate that the 
proposed method can effectively coordinate diverse fast-acting 
resources to deliver rapid, targeted support following large 
disturbances, even with practical constraints such as ramp limits 
and activation delays. 

CONCLUSIONS 

This work develops an integrated analytical–optimization 
framework for delivering optimal fast frequency containment 
following loss-of-generation events. This paper derives the 
precise power injection required to flatten the system’s 
frequency response, ensuring maximum nadir improvement for 
a given injected energy. This theoretical optimum is directly 
linked to a real-time deployable target profile, enabling its 
practical realization. The proposed resource deployment 
formulation introduces a novel linear trapezoidal representation, 
allowing for accurate modeling of ramping constraints, 
activation delays, and energy limits without sacrificing 
computational tractability. By explicitly accommodating 
heterogeneous resource characteristics, the framework ensures 
that the aggregate system response closely follows the optimal 
injection profile. The results provide a scalable and deterministic 
approach that can be embedded in control center operations, 

 

 
Fig. 4. The impact of system inertia on system frequency response and the 
power injections corresponding to β=1. 

 

 
Fig. 5. The impact of turbine governor time constant on system frequency 
response and the power injections corresponding to β=1. 

 

TABLE II  
 FAST-ACTING GENERATION RESOURCES 

Technology 
𝑃𝑔𝑚𝑎𝑥 

(MW) 

𝑅𝑘𝑢𝑝,𝑚𝑎𝑥 

(MW/s) 

𝑇𝑑𝑒𝑙𝑎𝑦 

(s) 

𝐸𝑔𝑚𝑎𝑥 

(MWh) 

No. 
of 

Units 

BESS 10 20 0.5 2.5 50 

PV-BESS 20 10 0.5 4 15 

Flywheel 5 5 1 0.02 10 

Wind 30 15 2 0.07 5 

 

 
Fig. 6. Target and accomplished power injection profiles. 

 



offering a pathway to enhanced stability in power systems with 
high penetration of renewables. 

 

APPENDIX 

To derive a closed-form solution for 𝜋𝜏(𝑡) , we start by 
defining 𝑛𝜏(𝑡) as below 𝑛𝜏(𝑡) = ∆𝑓(𝑡 + 𝜏)𝑢(𝑡) = [∆𝑓𝑠𝑠 +𝐾𝜏 sin(𝜔𝑑𝑡 + 𝜑𝜏) 𝑒−𝜁𝜔𝑛𝑡]𝑢(𝑡) (A-1) 

where 𝜑𝜏 = 𝜔𝑑𝜏 + 𝜑 , 𝐾𝜏 = 𝐾𝑒−𝜁𝜔𝑛𝜏  and 𝑢(𝑡) is the unit 
step function. The Laplace transform of 𝑛𝜏(𝑡) is 

𝑁𝜏(𝑠) = ∆𝑓𝑠𝑠𝑠 + 𝐾𝜏 [sin𝜑𝜏 𝑠 + 𝜔𝑛 sin(𝜑𝜏 + 𝜃)(𝑠 + 𝜁𝜔𝑛)2 + 𝜔𝑑2 ] (A-2) 

As described earlier, 𝑚𝜏(𝑡) represents a time-shifted and 
downward-translated version of 𝑛𝜏(𝑡), given by  

𝑚𝜏(𝑡) = [𝑛𝜏(𝑡 − 𝜏)⏞      ∆𝑓(𝑡) − 𝑓𝜏]  𝑢(𝑡 − 𝜏) (A-3) 

where ∆𝑓𝜏 = ∆𝑓(𝜏). The Laplace transform of 𝑚𝜏(𝑡) is  𝑀𝜏(𝑠) = 𝑁𝜏(𝑠)𝑒−𝑠𝜏 − ∆𝑓𝜏𝑠 𝑒−𝑠𝜏 (A-4) 

Here, the term 𝑒−𝑠𝜏 corresponds to a rightward time shift by 𝜏 in the time domain.  

The signal 𝜋𝜏(𝑡) represents the power injection input to the 
SFR model that produces the frequency deviation 𝑚𝜏(𝑡)  as 
output. Given the output, the corresponding input can be 
determined by applying the reciprocal of the SFR transfer 
function as below 

𝜋𝜏(𝑡) = ℒ−1{𝑀𝜏𝐺𝑆𝐹𝑅−1 }(𝑡) (A-5) 

where ℒ−1{. }(𝑡) denote the inverse Laplace transform and 𝐺𝑆𝐹𝑅−1 (𝑠)  represents the reciprocal of the SFR model. 
Substituting and rearranging, we have Π𝜏(𝑠) = 𝑀𝜏𝐺𝑆𝐹𝑅−1 = ∆𝑓𝑠𝑠 − ∆𝑓𝜏𝑠 [(𝑠 + 𝜁𝜔𝑛)2 +𝜔𝑑2𝛾𝑠(𝑇𝑅𝑠 + 1) ] 𝑒−𝑠𝜏  

    +𝐾𝜏 [sin𝜑𝜏 𝑠 + 𝜔𝑛 sin(𝜑𝜏 + 𝜃)𝛾(𝑇𝑅𝑠 + 1) ] 𝑒−𝑠𝜏 (A-6) 

After bringing Π𝜏(𝑠)  to a common denominator, the 
coefficient of 𝑠2 in the numerator becomes zero. This is because 
as per (A-1), it can be seen that 𝑛𝜏(0) = ∆𝑓𝜏 = ∆𝑓𝑠𝑠+𝐾𝜏 sin𝜑𝜏  (A-7) 

This implies that Π𝜏(𝑠) has a first-order numerator and a 
second-order denominator. To apply partial fraction 
decomposition, the exponential term 𝑒−𝑠𝜏  (which corresponds 
to a time delay) is temporarily set aside. This intermediate step 

facilitates the direct application of the initial and final value 
theorems to determine the coefficients. Therefore, Π𝜏(𝑠)𝑒𝑠𝜏 can 
be expressed as below Π𝜏(𝑠)𝑒𝑠𝜏  = 𝐴𝜏𝑠 + 𝐵𝜏𝑠 + 1𝑇𝑅  (A-8) 

The coefficient 𝐴𝜏  and 𝐵𝜏  can now be obtained by 
evaluating the limits implied by the initial and final value 
theorems: 

{𝜋𝜏(𝜏+) = lim𝑠→+∞ sΠ𝜏(𝑠)𝑒𝑠𝜏 = 𝐴𝜏 + 𝐵𝜏𝜋𝜏(+∞) = lim𝑠→0+ sΠ𝜏(𝑠)𝑒𝑠𝜏 = 𝐴𝜏            (A-9) 

Evaluating these limits using (A-6), we obtain: 𝐴𝜏 = (∆𝑓𝑠𝑠 − ∆𝑓𝜏)𝛾−1𝜔𝑛2 (A-10) 

𝐵𝜏 = 𝐾𝜏𝜔𝑛 sin(𝜑𝜏 + 𝜃) + 2𝜁𝜔𝑛(∆𝑓𝑠𝑠 − ∆𝑓𝜏)𝛾𝑇𝑅 −𝐴𝜏 (A-11) 

Hence, the closed form solution for the input signal 𝜋𝜏(𝑡) is 𝜋𝜏(𝑡) = 𝐴𝜏  𝑢(𝑡 − 𝜏) + 𝐵𝜏𝑒−(𝑡−𝜏)𝑇𝑅 𝑢(𝑡 − 𝜏) 
 

(A-12) 
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