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Abstract

In this research, the Consigma25 Continuous Manufacturing (CM) Line is statistically
analysed and modelled. First, the main effects plot is employed to examine the effects of
different process parameters on the granules size and the tablet strength. Second, a modelling
framework based on serial interconnected artificial neural networks is proposed to model the
CM line by mapping these parameters to the granules size and the tablet strength. Then,
Gaussian mixture models (GMMs) are adopted to characterize the error resulting from these
networks in a way that helps in extracting more information and, as a result, improves the
performance of the modelling framework. Validated on an experimental data set, the proposed
interconnected framework can anticipate the characteristics of the granules and tablets
produced using a specific blend of excipients with an absolute error percentage value of less

than 12.3%. In addition, the GMMs have improved the predictive performance by 9.7%.
Keywords

Artificial neural network, Consigma25 continuous manufacturing line; Gaussian

Mixture Model; Serial interconnected framework.
1. Introduction

The pharmaceutical industry has been adapting itself to the Fourth Industrial

Revolution by more and more shifting to continuous manufacturing. Such a shift has several



advantages in terms of capital footprint, cost and time-to-market [1]. Shifting to continuous
manufacturing means that the unit operations (e.g., mixing, granulation and tabletting) need to
work in a continuous mode. Recently, continuous manufacturing has become a leading
technology for solid oral dosage forms in the pharmaceutical industry [2]. Therefore, the
Continuous Manufacturing (CM) Line has attracted a lot of interest. Various research papers
have, for instance, focused on the processes included in the CM line [3,4]. Among the various
processes included in CM, wet granulation, as a process that aggregates fine particles to obtain
granules with enhanced properties, has been extensively investigated [2, 4]. Twin screw wet
granulation is commonly utilized in the CM line, this being due to its design and short time [5].
Many research papers have focused on such a process and studied various related topics
including (i) understanding the influence of different granulation parameters on the granule
properties and the different granulation mechanisms to provide a comprehensive understanding
of this process; and (ii) developing data and physical based models (e.g., a fuzzy logic system
and population balance models) to represent such a process at the micro and macro levels and
to predict the granules properties in terms of size, moisture content and porosity [3,4,5]. For
instance, a fuzzy logic system, as a transparent and cost-effective model, was established to
linguistically represent the twin screw granulation process and to accurately predict the
granules size [5]. In addition to the twin screw granulation process, the drying process in the
CM line which is required to obtain the appropriate moisture content has also been examined
[6]. Different process designs (e.g., a continuous fluidized bed dryer) leading to different
monitoring and control strategies of the drying process were examined [6,7]. The effects of
these different strategies and their related parameters on the granule size were also analysed
[6]. Furthermore, the drying performance of the fluidized bed chambers, as the drying unit of
the Consigma?25 line, was investigated during continuous production over time [8]. In addition,

the effects of the drying variables on the moisture level were also analysed and modelled [9].



Likewise, the breakage of granules during the drying process was studied [10]. The tabletting
process has also been investigated in the related literature [3]. For instance, it was modelled by
developing a data-driven modelling paradigm that was utilized in a reverse-engineering

framework to predict the tablet properties as well as control the process [3].

Many papers have focused on the development and control of the CM line [9,10,11].
Therefore, several algorithms have been presented for the acquisition of real data and online
monitoring of tablet properties [11,12]. In addition, various process analytical technologies,
which consist of interdisciplinary multivariate techniques for material and process analyses,
were also utilized to verify whether the various CM line processes were in a control state or
not [13]. Such technologies were implemented based on quality control concepts to test blend
uniformity [14]. Likewise, multivariate statistical modelling tools based on chemometric
approaches were employed to analyse the tabletting process during the drug development stage
[15]. Likewise, a parameterized model was developed based on a limited number of
experimental data points to work as a soft sensor for anticipating the granules moisture content
[9]. In addition and based on feeder data and residence time based models, soft sensors were
utilized to detect out-of-specification materials and manage their discharge [16]. Such models
were validated on wet granulation with a focus on the quality attributes of tablets in order to
discharge the out-of-specification ones [16]. However, they could not maintain the process
parameters close to the predefined values or manage the undesired events [1]. Therefore,
advanced modelling and control strategies have been presented [17,18]. For instance, a robust
manufacturing model was presented to predict, understand and control processes and products
[17]. In addition, a model integrated with real-time tablet weight measurements was proposed
to optimize tablet weight and hardness by controlling filling depth and compression height
[18]. In general, the predictive modelling, control and understanding strategies presented in the

related literature have their strengths and limitations. Thus, they have been employed according



to the challenges that need to be faced, and applied to the processes that need to be controlled.
Therefore, in this research work, the Consigma25 CM line has been statistically analysed and
modelled. The main effects plot has been employed to examine the effects of different process
parameters on the granules size and the tablet strength. Then, a data based modelling approach
based on serial artificial neural networks (ANNSs) has been presented for modelling the various
processes in the Consigma25 CM line. The ANN architecture was elicited in this paper because
of its abilities to (i) capture highly dimensional non-linear behaviours; (ii) deal with limited
number of data points; and (iii) take into account the unequal distribution of the data points in
the space examined. In such an approach, various ANN models have been developed based on
a limited experimental data set to represent the various processes in such a CM line. Such
models are connected together in a way that the outputs of one ANN model in addition to the
other process parameters of a process are considered as inputs for the next ANN model and so
on. Such a way of connecting these models emanates from the fact that the output of one
process in this line affects the downstream processes. Therefore, such a framework can better
simulate the nature of the Consigma25 CM line. In order to improve the predictive performance
of the serial ANNSs, Gaussian mixture models (GMMs) have been adopted to characterize the
error resulting from these networks in a way that extracts more information. In this paper,
Section 2 presents the experimental work and the parameters investigated. Background about
the ANN and the GMM is presented in Section 3, whereas Section 4 summarizes the
implementation of the framework that is based on the ANNs and the employment of the

GMMs, and the results obtained. Finally, conclusions are discussed in Section 5.

2. EXPERIMENTAL WORK

In this research work, the Consigma25 line (GEA Pharma systems, Collette,
Wommelgem, Belgium), as a CM line, was utilized to produce granules and tablets. Such a

CM line, which was installed at the Diamond Pilot Plant (DiPP) at The University of Sheffield,



mainly consists of several unit operations (i.e., equipment), namely, twin screw granulator,
fluidized bed dryer, milling, blending and tabletting, as shown in Figure 1. Lactose
(Pharmatose® 200M, DFE Pharma) was fed to a co-rotating twin screw granulator at different
feed rates (i.e., 9, 10 and 11 kg/h). Deionised water, as a liquid binder, was added at a constant
L/S ratio of 0.1. The twin screw granulator has 25mm diameter screws with a length-to-
diameter ratio of 20:1. The screw configuration that consists of kneading and conveying
elements was kept the same for all experiments. In addition to the powder feed rate, three levels

of screw speed (i.e., 250, 500 and 750rpm) were examined in this research work.

Figure 1. The Consigma25 continuous manufacturing line at The University of Sheffield.

Once the granulation process is completed, the wet granules were transferred to the
fluidized bed dryer that consists of six chambers, each one was filled in 5 minutes. The
temperature, airflow rate and drying time were all kept constant at values of 40°C, 360m*/h

and 12 minutes, respectively. The dried granules were then transferred to a conical mill



(Quadro comil) equipped with a 1575um smooth screen. Three levels of milling time (i.e., 1,
2 and 3 minutes) were also studied, whereas the mill speed was kept constant at 1200rpm. As
it is a common lubricant that has several advantages such as reducing friction and preventing
sticking, the milled granules were then blended with Magnesium Stearate (Acros Organics,
Netherlands) at 1% for 60 seconds. The granules blended with Magnesium Stearate were, then,
compressed to produce tablets using 12mm diameter die. All the parameters of the tabletting
machine were kept constant. For instance, the compression force was kept constant at SKN.

Table 1 summarizes all the parameters that kept constant.

Table 1. The fixed process parameters.

Processes Parameters Values
e L/S ratio 0.1
R Screw configuration Conveying and kneading
granulation
Granulator temperature 25°C
Filling time 5 min
. Temperature 40°C
Fluidized bed
Hidizeahe Air flow 360m3/h
Drying time 12min
Mill d 1200
Milling — pm
Screen size 1575um
Blending Blen(-iing time 60 sec
Lubricant percentage 1%
Die diameter 12mm
Tabletting Weight target 0.7gm
Force SKN

The granules and tablets in this experimental work were characterized. After the
granulation process was completed, three samples of wet unmilled granules from the twin
screw granulator were collected in trays and left to dry at a room-temperature overnight. Each
sample was of approximately 20gm, which is considered as a representative sample collected
directly from the twin screw granulator. The three dried samples were then characterized using
CAMSIZER (Retsch Technology GmbH, Haan, Germany) to measure the granules size based
on a real-time dynamic image analysis. For this purpose, such samples were placed in the
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funnel of the CAMSIZER and were automatically fed to it through a feeder at a constant feed
rate. The automatic feeding process ensures a monolayer of well-dispersed granules in front of
two digital cameras. These granules pass in front of LED light sources. The resulting shadow
projections are usually captured with two digital cameras: a basic camera that captures the
images of relatively large granules; and a zoom camera that captures the images of small
granules. It is worth emphasising that such a dual-camera setup detects the shadow projections
of the granules at different positions and angles to take into account the different (perhaps non-
spherical) shapes of the granules. Likewise, it allows for capturing and analysing a wide range

of granules’ sizes.

The tablets strength was also measured using automated tablet hardness tester (P5
Series, Kraemer-Elektronik GmbH, Darmstadt, Germany). It is worth emphasizing that three
parameters, namely, feed rate, screw speed and milling time are investigated in this research
work, this being due to their effects on the granules size and tablet strength [9,10,11]. Table 2
shows the nine experiments conducted in this research work and their processes’ parameters.

It can be seen that these data points are not equally distributed in the space examined.

Table 2. The process parameters and the output of the nine experiments.

Powder Feed  Screw Speed Milling

Experiments rate (Kg/hr) (rpm) time (min)
1 10 250 1
D) 10 250 2
3 10 250 3
4 10 250 1
5 10 500 1
6 10 750 1
7 9 250 1
] 10 250 1
9 11 250 1




3. Models Development

3.1 Artificial Neural Networks (ANNSs)

The recent computational advancements have been the main reason behind the
extensive use of efficient data based models in many areas such as logistics, pharmaceutics,
diseases and manufacturing [19,20,21]. For instance, several data based models (e.g., radial
based functions and fuzzy logic systems) have been utilized to represent and simulate various
dry/wet batch/continuous granulation processes [3.,4,5]. For instance, an integrated network
based on radial functions was proposed to model the high shear process, as batch wet
granulation [21]. Likewise, a data-driven modelling paradigm based on an interval type-2 fuzzy
logic system was also suggested to model the twin screw granulation process [5]. Such
modelling paradigms in addition to other models presented in the related literature were able
to predict the granule properties for these processes [22]. However, these paradigms were
applied to a single process. Therefore, these paradigms cannot be transferable to the CM line
processes without careful consideration of the continuous nature of such a line. Therefore, in
this research paper, an interconnected framework based on serial data-driven paradigms is
proposed to model the Consigma25 CM line. Various data based models can be used. Among
them all, the ANN has been extensively used to replace or complement physical based models,

this being due to its ability to simulate the human cognitive process [23].

In general, an ANN multi-input single-output structure consists of three types of layers,
as shown in Figure 2. These layers are: (i) an input layer that represents the » inputs considered
(x=x1, x2,..., X»), Wwhere each input is schematically represented as an input neuron; (ii) a hidden
layer that consists of m hidden neurons representing transfer functions that are usually
employed to mathematically extract the input/output relationships; and (iii) an output layer that

represents a single output neuron (y) for such a structure. It is worth mentioning that different



numbers of hidden layers can be used depending on the complexity of the relationships and
behaviours that need to be captured. In this research work, a one hidden layer was used in all
the ANNs developed. Various types of transfer functions including, for instance, linear and
Gaussian functions can be used. The selection of the transfer function depends on the nature of
the input/output relationships and its complexity. Because of its continuity and easiness to

derive, the sigmoid function was utilized in this research paper for all the hidden neurons. The

sigmoid function (@, (X)) for the /™ hidden neuron can be mathematically expressed as

follows [24]:

1

(Dj (X) - —Zn:ﬂgw%j Equation (1)
l+e -

where J;; and A, stand for the weights connecting the i input neuron with the /" hidden neuron
and the bias, respectively. The predicted output ()) can usually be written as a linear function

of the outputs of the hidden neurons. Therefore, it can be expressed as follows [24]:
y=21,0,(x)+7, Equation (2)
J=1

where #; and 7, stand for the weights connecting the /™ hidden neuron with the output and the
bias, respectively. All the weights used in the network are initially defined randomly and, then,
optimized using one of the common optimization algorithms such as Levenberg-Marquardt and
Scaled Conjugate Gradient. Because of its proven efficiency and effectiveness and the limited
number of experimental data points, the Bayesian algorithm was utilized to optimize the
network parameters using two performance measures, namely, the root mean square error
(RMSE) and the coefficient of determination (R?) [24]. Such an algorithm was embedded with
the backpropagation structure to optimize the weights connecting the i input with the /™ hidden

neuron and the weights connecting the j™ hidden neuron with the output [20].



Input layer Hidden layer Output layer

Figure 2. The artificial neural network.

The numbers of neurons in the input and output layers are commonly determined from
the case under investigation. Although several outputs are investigated in this research work, a
multi-input single-output structure was selected in order to improve the predictive performance
of each output. It is also worth emphasising that the number of neurons in the hidden layer
plays a crucial role in determining the performance of the ANN. Several algorithms have been
proposed in the literature to determine the optimal number of hidden neurons that should be
used [25]. However, there is no universally accepted approach that can be used to identify the
best number of hidden neurons. Therefore, in this research paper, such a number was identified
according to the maximum performance obtained. In other words, it is the one that can lead to

the optimal performance and error [19].

3.2 Gaussian Mixture Model

In models development, information may sometimes not be fully extracted, this being
due to the error normality assumption. Therefore, extracting such information can significantly
enhance the predictive performance of a model [26-28]. Various paradigms have hitherto been
proposed in the literature to extract the possible hidden information by analysing errors [21].

Such paradigms include the GMM, time series error residuals and fuzzy clustering [27,28].
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Among the various paradigms, the GMM has been utilized in many research articles due to its
proven efficiency when it comes to error characterization [21]. This can also be attributed to
its capability to analyse the probability density with a satisfactory performance when a good
number of Gaussian functions is employed [21]. Due to complexity of the processes examined
in this paper and measurement uncertainties, it was, therefore, utilized to provide a
representative insight into the probability density function, which can be used refine the

predictive performance of the models developed.

In general, the GMM, as a probabilistic paradigm, can be expressed as a combination

of Gaussian components that have their own parameters in terms of mean (/£{;), mixing

coefficient () l) and covariance ( 71'1). Therefore, such a combination with L components can

simply be expressed as follows [24]:

p(xe) _ ZL:ﬂ,N(xe \,U,,Zl) Equation (3)

=
where x° stands for the inputs data that will be used in this model which includes process inputs
and errors obtained from the predictive model, and the letter e is employed to distinguish the
GMM inputs from the ANN ones. The best values of the /™ Gaussian’s parameters are
commonly identified by optimizing the log likelihood function leading to the following

equations [21]:
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ﬂzN(xZ | ﬂz,zl)

n(z,) = 17 ) Vi
Z?Z'IN()CZ | ,u,,Z,)
[
K
ZU(Zkl)xZ
M=+
Zn(zkl)
=1
LS T
ZU(Zkz)(xZ _:ul)(xlf _:ul)
z, =4 = , Vi
Zn(zkl) Equation (4)
. k=1
ZU(ZM)
7, =2
K

where 77(z,,) represents the probability associated with the belonging of the ™ data point to a

Gaussian component (/), where zy stands for a L-dimensional vector variable that has a value
of 1 when the k™ point belongs to the /™ Gaussian component and zero otherwise. Identifying
an analytical solution for Equations (4) is not as simple as it may seem. However, one of the
common algorithms that can be used to estimate a solution is the Expectation Maximization
(EM) one [29]. Initially, K-means clustering can be utilised to identify the Gaussian

components’ parameters. This is followed by estimating the value of 77(z,). Such a step is
referred to as E-step. The 77(z,,) is then used to re-estimate the Gaussian components’

parameters, the so-called M-Step. Then, the new values of the parameters are employed to re-

evaluate the 77(z,,) value. Such iterations are continued until one of the stopping criteria is met

[21].

Since the best number of components (L) is not known in advance, the EM algorithm
is also adopted in this research paper to identify such a best number. For this purpose, the

Bayesian information criterion (BIC) is used [29]. Upon the convergence of the EM algorithm,

12



the conditional mean and standard deviation are used to compensate for the bias (i.e., enhancing
the performance) and estimate the confidence level [21]. For this purpose, the estimated
conditional mean is then added to the predicted value in order to compensate for the bias. This
can enhance the model performance. The estimated conditional standard deviation is utilized

to identify the confidence level [21].

4. Implementation and Results
4.1 Experimental Results: Main Effects Analysis

To investigate the influence of the three parameters that were examined in this research
work, the main effects plots were employed to analyse the effects of these three parameters at
their different levels considered. In general, the main effects plot is a visual representation of
the mean output values at the different levels investigated for each parameter [30]. Such a plot
can be used to determine and, thus, compare the relative effects of various parameters in terms
of the nature of the relationships (i.e., direct or inverse relationships) and their relative strength.
Figure 3 presents the main effects plots of the three parameters (i.e., powder feed rate, screw
speed and milling time) on two outputs, namely, Dso (i.e., the size that 50% of the granules
have size that is below this value and 50% of the granules have size that is above this value)
which was used as an indicated example of the granules size, and the tablet strength. The results
shown in such a figure reveal that these three variables have significant however different
effects on Dso and the tablet strength. To illustrate, increasing the feed rate from 9 kg/h to
10kg/h led to a decrease in Dso. However, increasing it from 10kg/h to 11kg/h led to a
significant increase in Dso. This is an indication that the relationship between the feed rate and
Dso is a nonlinear one. Increasing the feed rate, however, led to an increase in the tablet
strength. It can be noticeable that the relationship between the feed rate and Dso is more
considerable than the relationship between the feed rate and the tablet strength. It is also

apparent in Figure 3 that the screw speed can significantly affect Dso and the tablet strength in
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different ways. To elucidate, increasing the screw speed from 250rpm to 500rpm led to a
significant increase in Dso and a decrease in the tablet strength. However, increasing the screw
speed from 500rpm to 750rpm led to a decrease in Dso and an increase the tablet strength.
Likewise, the change in the milling time effects can be clear, where increasing the milling time
from 1 minute to 2 minutes and from 2 minutes to 3 minutes increased the tablet strength.
Likewise, the increase in the tablet strength when the milling time increased from 1 minute to
2 minutes was much more than it when the milling time increased from 2 minutes to 3 minutes.
The effect of the milling time on Dsp was not considered in such statistical analyses as the
milling process was performed after characterising the granules size. In other words, the milling
time does not affect the granules size in the Consigma25 CM line. However, it affects the
downstream processes and their outputs. Based on the main effects analyses conducted in this
section, it was found that the three parameters investigated in this research paper have
significant effects on the granules size represented by Dso and the tablet strength. In addition,
the relationships between them may not be linear. Therefore, these parameters need to be

considered in the framework developed in this research work.
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Figure 3. The influences of the three parameters on Dso and the tablet strength.
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4.2 The Results of the Serial Artificial Neural Networks Framework

In order to develop a data-driven framework based on serial artificial neural networks,
the parameters that are investigated and their effects on the downstream processes need to be
carefully considered. Figure 4 shows the flowchart of the Consigma25 CM line with its
processes and parameters. Since the effects of feed rate, screw speed and milling time on dry
granules size and the tablet strength were investigated in this research, two ANN models were
established to represent the Consigma25 CM line with these parameters. Such models are also
presented in Figure 4. The first model was established to simulate the twin screw granulation
process and to predict the granules size which was mapped to the screw speed and the powder
feed rate, whereas the second model was developed to map the granules’ properties (i.e.,

granules size) obtained from the first model and the milling time to the tablets strength.
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Figure 4. A flowchart of the Consigma25 CM line with its processes and parameters and the models

developed to represent them.



In order to develop the first model, the experimental data were split into a training set
(70%), which is employed to determine the relationships and tune the network parameters (i.e.,
the wights connecting neurons from different layers and bias); and a testing set (30%), whose
performance is utilized as a stopping criterion to terminate the training when the network
generalization capabilities stop improving [4]. Different numbers of the hidden neurons in the
range of 1 to 7 were employed, where the number that led to the best network performance in
terms of the performance measures and minimum error was chosen. It is worth emphasizing
that the values of the network parameters were randomly assigned and they, then, were
optimized using the Bayesian algorithm which was embedded with the backpropagation
network. Such an optimization algorithm was selected because of its proven ability to deal with
small and, perhaps, noisy data sets [23,24]. By using 5 hidden neurons, Figure 5 shows a sample
of the predictive performance of the first ANN model developed for the twin screw granulation
to predict Dso, where the target values represent the experimental values and the predicted
values represent the values obtained by the model. The R? values for the training and testing
sets are 0.86 and 0.82, respectively. The RMSE values for these sets are 98.59 and 111.49um,
respectively. It is apparent that the R? for the testing set was around 4% lower compared to the
one for the training set. This can be attributed to the relatively low number of data points in the
testing set. In addition, it is also apparent that the testing RMSE is approximately 12% higher
than the training RMSE. This is not an indication of overtraining, as such a value can be
attributed to the actual Dso values that are in the testing set, where all of them are greater than
1100pum. This can be proved by determining the error percentage values of the data points in
the testing set, where it was found that the absolute error percentage values for these data points
are in the range of 7.2% to 9.6%, and, thus, they are within the 90% confidence interval.

Similarly, two ANN models were developed to predict the Dio and Doo values, as granule

16



properties representing the size. All the predicted points in these two models fit nicely around

the best fit line with absolute error percentage values in the range of 5.4% to 10.9%.
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Figure 5. The ANN performance for Dso (um): (a) Training set and (b) Testing set.

Since Dso does not represent the volume fractions of the granules obtained, various
models should be developed to predict the volume fractions of the granules in the various size
classes. Therefore, by using these models, the granules size distribution can be predicted. For
this purpose, different ANNs were developed for the different size classes in a way that is
similar to the abovementioned procedure. Based on the predictive performance, the optimal
numbers of hidden neurons for these ANNs were in the range of 3 to 7. Figure 6 presents an
example of the predicted and the actual size distribution of one experiment which was
conducted at a powder feed rate of 10kg/h and screw speed of 750rpm. For this experiment,
the average error percentage value was 7.93%, where three size classes out of 33 had error
percentage values of more than 10%. For all the ANNs developed at this stage, it was noticeable
that the predicted value for each class was close to the actual one, where the overall R? values
for these models were in the range of 0.83 to 0.91. Likewise, the error percentage values for all

the models and size classes were in the range of -12.3% to 11.11%.
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Figure 6. The predicted (o) and the experimental (*) volume fractions (feed rate= 10kg/h and
screw speed=750rpm).

Another ANN model was also established to map the granules size, as a granule
property, and other process parameters (i.e., milling time) to the tablet strength in order to
predict it. In order to avoid the curse of dimensionality that can happen when including the
whole size distribution (i.e., 33 classes), the three predicted granules’ diameters (i.e., Dio, Dso
and Dog) were considered as inputs to this model in addition to the milling time. By using 6
neurons in the hidden layer, Figure 7 shows the predictive performance of the ANN used to
predict the tablets strength, where all the predictive points fit nicely around the best fit line.
The training and testing R? values are 0.92 and 0.90, respectively. It is apparent from Figures
5 and 7 and the predictive performance measures that the predictive performance of the ANN
developed to predict the tablet strength is better when compared to the predictive performance
values of the ANNSs developed to predict the three granules’ diameters and the volume fractions
of the granules produced by the twin screw granulation process. Such a behaviour can be
attributed to (i) the limited number of data points (i.e., experiments) used in this research work;

and (i1) the complicated granulation process and its nonlinear input/output relationships [21].
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Figure 7. The ANN performance for tablet strength (N/mm?): (a) Training set and (b) Testing set.

4.3 The Results of the Gaussian Mixture Model

To enhance the performance of the serial ANNs developed in Section 4.2, the error
values resulting from these networks were characterized by two GMMs, one for each model.
Since the number of inputs is limited in the first model, the feed rate and screw speed in addition
to the error resulting from the first ANN were considered in the development of the first GMM.
For such a model, the training set was used to train the GMM and identify its best parameters,
whereas the testing set was kept hidden. By using 5 components, Figure 8 shows the predictive
performance after analysing the error and extracting the hidden information. The R? values for
the training and testing sets are 0.94 and 0.93, respectively. The RMSE values for these sets
are 67.54 and 78.03um, respectively. It is apparent that the difference in the R? value between
the training and the testing sets was reduced after the error characterization by the GMM when
compared to the same difference between these sets for the ANN. It is also noticeable that a
significant improvement of 9.3% in the R? values was obtained. In addition, a significant
overall improvement in the RMSE values of 31.6% was also noticeable. Likewise, Figure 8
shows that the data points are, in general, closer to the best fit line when compared to those
shown in Figure 5. This can be attributed to the unrepresented information, where such
information were successfully extracted by using the GMM. Similarly, the GMM was also
employed to characterize the ANNs used to predict the fractions of the granules. By using
different optimal numbers of Gaussian components in the range of 2 to 6, the overall

improvement in the R? was in the range of 5.3% to 21.4%.
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Figure 8. The ANN performance for Dso (um) after the error analyses using the GMM: (a)
Training set and (b) Testing set.

Similarly, another GMM was developed to analyse the error resulting from the second
ANN established to predict the tablet strength. Since the main parameters’ effects were
considered in the second ANN, the milling time, the three predicted granules’ diameters (i.e.,
D10, Dso and Dgg) and the error resulting from the second ANN were used as inputs for this
model. By using 5 Gaussian components, the predictive performance measures in terms of the
R? and the RMSE values were improved by 3.3% and 2.4%, respectively. As it was expected
the improvement obtained for the first model is more than three times the improvement
obtained for the second model. This can be attributed to that the predictive performance of the
second ANN model was already better when compared to the first. Likewise, the complexity
of the granulation process in addition to the limited number of data points need more

complicated (perhaps stochastic) paradigms to be modelled successfully.

In summary, the proposed framework, which is based on serial ANNs characterized by
GMMs successfully predicted the granules size and tablet strength produced using the
Consigma25 CM line. Such a framework can be considered as a promising development in the
pharmaceutical industry. In the future, such a framework can be a roadmap for the development

of dynamic as well as continuous modelling paradigms that are based on the wealth of data to
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represent all the processes in the CM line, where they can also be utilized to control these
processes by exploiting them in a reverse-engineering structure that is embedded with

deterministic and stochastic optimization algorithms.
5. Conclusions

In this research project, the Consigma25 Continuous Manufacturing (CM) line was
analysed and modelled. The main effects plot was utilized first to examine the nature and the
strength of the relationship between various process parameters and the granules size and the
tablet strength. A modelling framework based on serial interconnected artificial neural
networks (ANNs) was, then, presented to model the unit operations of the Consigma25 CM
line. Such interconnected networks were employed to predict the granules size and the tablet
strength with an absolute error percentage value of less than 12.3%. In order to improve their
performance, Gaussian mixture models (GMMs) were developed to characterize the error
resulting from these models by extracting the hidden information. The integration of the GMMs
led to an average improvement of 9.7%. Therefore, the modelling framework proposed in this
paper can be advantageous to the pharmaceutical industry as it can be used not only to predict
the granule and tablet properties but also to systematically control the CM line, in particular
when the interpretability of the model is improved. In the future, such a framework can be
adapted to be a continuous and dynamic modelling paradigm based on the data available. It can
also be incorporated with physical based models and fuzzy logic in order to model the related
processes at the micro and macro levels, and to enhance the interpretability and handle process

as well as measurement uncertainties.
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