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Abstract 

In this research, the Consigma25 Continuous Manufacturing (CM) Line is statistically 

analysed and modelled. First, the main effects plot is employed to examine the effects of 

different process parameters on the granules size and the tablet strength. Second, a modelling 

framework based on serial interconnected artificial neural networks is proposed to model the 

CM line by mapping these parameters to the granules size and the tablet strength. Then, 

Gaussian mixture models (GMMs) are adopted to characterize the error resulting from these 

networks in a way that helps in extracting more information and, as a result, improves the 

performance of the modelling framework. Validated on an experimental data set, the proposed 

interconnected framework can anticipate the characteristics of the granules and tablets 

produced using a specific blend of excipients with an absolute error percentage value of less 

than 12.3%. In addition, the GMMs have improved the predictive performance by 9.7%.  

Keywords 

Artificial neural network, Consigma25 continuous manufacturing line; Gaussian 

Mixture Model; Serial interconnected framework.  

1. Introduction  

The pharmaceutical industry has been adapting itself to the Fourth Industrial 

Revolution by more and more shifting to continuous manufacturing. Such a shift has several 
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advantages in terms of capital footprint, cost and time-to-market [1]. Shifting to continuous 

manufacturing means that the unit operations (e.g., mixing, granulation and tabletting) need to 

work in a continuous mode. Recently, continuous manufacturing has become a leading 

technology for solid oral dosage forms in the pharmaceutical industry [2]. Therefore, the 

Continuous Manufacturing (CM) Line has attracted a lot of interest. Various research papers 

have, for instance, focused on the processes included in the CM line [3,4]. Among the various 

processes included in CM, wet granulation, as a process that aggregates fine particles to obtain 

granules with enhanced properties, has been extensively investigated [2, 4]. Twin screw wet 

granulation is commonly utilized in the CM line, this being due to its design and short time [5]. 

Many research papers have focused on such a process and studied various related topics 

including (i) understanding the influence of different granulation parameters on the granule 

properties and the different granulation mechanisms to provide a comprehensive understanding 

of this process; and (ii) developing data and physical based models (e.g., a fuzzy logic system 

and population balance models) to represent such a process at the micro and macro levels and 

to predict the granules properties in terms of size, moisture content and porosity [3,4,5]. For 

instance, a fuzzy logic system, as a transparent and cost-effective model, was established to 

linguistically represent the twin screw granulation process and to accurately predict the 

granules size [5]. In addition to the twin screw granulation process, the drying process in the 

CM line which is required to obtain the appropriate moisture content has also been examined 

[6]. Different process designs (e.g., a continuous fluidized bed dryer) leading to different 

monitoring and control strategies of the drying process were examined [6,7]. The effects of 

these different strategies and their related parameters on the granule size were also analysed 

[6]. Furthermore, the drying performance of the fluidized bed chambers, as the drying unit of 

the Consigma25 line, was investigated during continuous production over time [8]. In addition, 

the effects of the drying variables on the moisture level were also analysed and modelled [9]. 
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Likewise, the breakage of granules during the drying process was studied [10]. The tabletting 

process has also been investigated in the related literature [3]. For instance, it was modelled by 

developing a data-driven modelling paradigm that was utilized in a reverse-engineering 

framework to predict the tablet properties as well as control the process [3].   

Many papers have focused on the development and control of the CM line [9,10,11]. 

Therefore, several algorithms have been presented for the acquisition of real data and online 

monitoring of tablet properties [11,12]. In addition, various process analytical technologies, 

which consist of interdisciplinary multivariate techniques for material and process analyses, 

were also utilized to verify whether the various CM line processes were in a control state or 

not [13]. Such technologies were implemented based on quality control concepts to test blend 

uniformity [14]. Likewise, multivariate statistical modelling tools based on chemometric 

approaches were employed to analyse the tabletting process during the drug development stage 

[15]. Likewise, a parameterized model was developed based on a limited number of 

experimental data points to work as a soft sensor for anticipating the granules moisture content 

[9]. In addition and based on feeder data and residence time based models, soft sensors were 

utilized to detect out-of-specification materials and manage their discharge [16]. Such models 

were validated on wet granulation with a  focus on the quality attributes of tablets in order to 

discharge the out-of-specification ones [16]. However, they could not maintain the process 

parameters close to the predefined values or manage the undesired events [1]. Therefore, 

advanced modelling and control strategies have been presented [17,18]. For instance, a robust 

manufacturing model was presented to predict, understand and control processes and products 

[17]. In addition, a model integrated with real-time tablet weight measurements was proposed 

to optimize tablet weight and hardness by controlling filling depth and compression height 

[18]. In general, the predictive modelling, control and understanding strategies presented in the 

related literature have their strengths and limitations. Thus, they have been employed according 
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to the challenges that need to be faced, and applied to the processes that need to be controlled. 

Therefore, in this research work, the Consigma25 CM line has been statistically analysed and 

modelled. The main effects plot has been employed to examine the effects of different process 

parameters on the granules size and the tablet strength. Then, a data based modelling approach 

based on serial artificial neural networks (ANNs) has been presented for modelling the various 

processes in the Consigma25 CM line. The ANN architecture was elicited in this paper because 

of its abilities to (i) capture highly dimensional non-linear behaviours; (ii) deal with limited 

number of data points; and (iii) take into account the unequal distribution of the data points in 

the space examined. In such an approach, various ANN models have been developed based on 

a limited experimental data set to represent the various processes in such a CM line. Such 

models are connected together in a way that the outputs of one ANN model in addition to the 

other process parameters of a process are considered as inputs for the next ANN model and so 

on. Such a way of connecting these models emanates from the fact that the output of one 

process in this line affects the downstream processes. Therefore, such a framework can better 

simulate the nature of the Consigma25 CM line. In order to improve the predictive performance 

of the serial ANNs, Gaussian mixture models (GMMs) have been adopted to characterize the 

error resulting from these networks in a way that extracts more information. In this paper, 

Section 2 presents the experimental work and the parameters investigated. Background about 

the ANN and the GMM is presented in Section 3, whereas Section 4 summarizes the 

implementation of the framework that is based on the ANNs and the employment of the 

GMMs, and the results obtained. Finally, conclusions are discussed in Section 5.  

2. EXPERIMENTAL WORK 

In this research work, the Consigma25 line (GEA Pharma systems, Collette, 

Wommelgem, Belgium), as a CM line, was utilized to produce granules and tablets. Such a 

CM line, which was installed at the Diamond Pilot Plant (DiPP) at The University of Sheffield, 
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mainly consists of several unit operations (i.e., equipment), namely, twin screw granulator, 

fluidized bed dryer, milling, blending and tabletting, as shown in Figure 1. Lactose 

(Pharmatose® 200M, DFE Pharma) was fed to a co-rotating twin screw granulator at different 

feed rates (i.e., 9, 10 and 11 kg/h). Deionised water, as a liquid binder, was added at a constant 

L/S ratio of 0.1. The twin screw granulator has 25mm diameter screws with a length-to-

diameter ratio of 20:1. The screw configuration that consists of kneading and conveying 

elements was kept the same for all experiments. In addition to the powder feed rate, three levels 

of screw speed (i.e., 250, 500 and 750rpm) were examined in this research work. 

 

Figure 1. The Consigma25 continuous manufacturing line at The University of Sheffield. 

 

Once the granulation process is completed, the wet granules were transferred to the 

fluidized bed dryer that consists of six chambers, each one was filled in 5 minutes. The 

temperature, airflow rate and drying time were all kept constant at values of 40°C, 360m3/h 

and 12 minutes, respectively. The dried granules were then transferred to a conical mill 
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(Quadro comil) equipped with a 1575µm smooth screen. Three levels of milling time (i.e., 1, 

2 and 3 minutes) were also studied, whereas the mill speed was kept constant at 1200rpm. As 

it is a common lubricant that has several advantages such as reducing friction and preventing 

sticking, the milled granules were then blended with Magnesium Stearate (Acros Organics, 

Netherlands) at 1% for 60 seconds. The granules blended with Magnesium Stearate were, then, 

compressed to produce tablets using 12mm diameter die. All the parameters of the tabletting 

machine were kept constant. For instance, the compression force was kept constant at 5KN. 

Table 1 summarizes all the parameters that kept constant.  

Table 1. The fixed process parameters. 

Processes Parameters  Values  

Twin screw 

granulation  

L/S ratio 0.1 

Screw configuration Conveying and kneading  

Granulator temperature 25℃ 

Fluidized bed 

Filling time 5 min 

Temperature 40℃ 

Air flow  360m3/h 

Drying time 12min 

Milling 
Mill speed 1200rpm 

Screen size 1575µm 

Blending  
Blending time 60 sec 

Lubricant percentage 1% 

Tabletting  

Die diameter 12mm 

Weight target 0.7gm 

Force 5KN 

 

The granules and tablets in this experimental work were characterized. After the 

granulation process was completed, three samples of wet unmilled granules from the twin 

screw granulator were collected in trays and left to dry at a room-temperature overnight. Each 

sample was of  approximately 20gm, which is considered as a representative sample collected 

directly from the twin screw granulator. The three dried samples were then characterized using 

CAMSIZER (Retsch Technology GmbH, Haan, Germany) to measure the granules size based 

on a real-time dynamic image analysis. For this purpose, such samples were placed in the 
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funnel of the CAMSIZER and were automatically fed to it through a feeder at a constant feed 

rate. The automatic feeding process ensures a monolayer of well-dispersed granules in front of 

two digital cameras. These granules pass in front of LED light sources. The resulting shadow 

projections are usually captured with two digital cameras: a basic camera that captures the 

images of relatively large granules; and a zoom camera that captures the images of small 

granules. It is worth emphasising that such a dual-camera setup detects the shadow projections 

of the granules at different positions and angles to take into account the different (perhaps non-

spherical) shapes of the granules. Likewise, it allows for capturing and analysing a wide range 

of granules’ sizes.  

The tablets strength was also measured using automated tablet hardness tester (P5 

Series, Kraemer-Elektronik GmbH, Darmstadt, Germany). It is worth emphasizing that three 

parameters, namely, feed rate, screw speed and milling time are investigated in this research 

work, this being due to their effects on the granules size and tablet strength [9,10,11]. Table 2 

shows the nine experiments conducted in this research work and their processes’ parameters. 

It can be seen that these data points are not equally distributed in the space examined.  

Table 2. The process parameters and the output of the nine experiments. 

Experiments 
Powder Feed 

rate (Kg/hr) 

Screw Speed 

(rpm) 

Milling 

time (min) 

1 10 250 1 

2 10 250 2 

3 10 250 3 

4 10 250 1 

5 10 500 1 

6 10 750 1 

7 9 250 1 

8 10 250 1 

9 11 250 1 
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3. Models Development 

3.1 Artificial Neural Networks (ANNs)  

The recent computational advancements have been the main reason behind the 

extensive use of efficient data based models in many areas such as logistics, pharmaceutics, 

diseases and manufacturing [19,20,21]. For instance, several data based models (e.g., radial 

based functions and fuzzy logic systems) have been utilized to represent and simulate various 

dry/wet batch/continuous granulation processes [3,4,5]. For instance, an integrated network 

based on radial functions was proposed to model the high shear process, as batch wet 

granulation [21]. Likewise, a data-driven modelling paradigm based on an interval type-2 fuzzy 

logic system was also suggested to model the twin screw granulation process [5]. Such 

modelling paradigms in addition to other models presented in the related literature were able 

to predict the granule properties for these processes [22]. However, these paradigms were 

applied to a single process. Therefore, these paradigms cannot be transferable to the CM line 

processes without careful consideration of the continuous nature of such a line. Therefore, in 

this research paper, an interconnected framework based on serial data-driven paradigms is 

proposed to model the Consigma25 CM line. Various data based models can be used. Among 

them all, the ANN has been extensively used to replace or complement physical based models, 

this being due to its ability to simulate the human cognitive process [23].  

In general, an ANN multi-input single-output structure consists of three types of layers, 

as shown in Figure 2. These layers are: (i) an input layer that represents the n inputs considered 

(x=x1, x2,…, xn), where each input is schematically represented as an input neuron; (ii) a hidden 

layer that consists of m hidden neurons representing transfer functions that are usually 

employed to mathematically extract the input/output relationships; and (iii) an output layer that 

represents a single output neuron (y) for such a structure. It is worth mentioning that different 
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numbers of hidden layers can be used depending on the complexity of the relationships and 

behaviours that need to be captured. In this research work, a one hidden layer was used in all 

the ANNs developed. Various types of transfer functions including, for instance, linear and 

Gaussian functions can be used. The selection of the transfer function depends on the nature of 

the input/output relationships and its complexity. Because of its continuity and easiness to 

derive, the sigmoid function was utilized in this research paper for all the hidden neurons. The 

sigmoid function ( ( )1 x ) for the jth hidden neuron can be mathematically expressed as 

follows [24]: 

( )
1

1

1

n

ij i oj

i

j
x

e
 

=

− +
 =


+

x                                                                                          Equation (1)                                                                    

where λij and λoj stand for the weights connecting the ith input neuron with the jth hidden neuron 

and the bias, respectively. The predicted output (y) can usually be written as a linear function 

of the outputs of the hidden neurons. Therefore, it can be expressed as follows [24]:     

( )
1

m

j j o

j

y  
=

=  + x                                                                                                 Equation (2)               

where ηj and ηo stand for the weights connecting the jth hidden neuron with the output and the 

bias, respectively. All the weights used in the network are initially defined randomly and, then, 

optimized using one of the common optimization algorithms such as Levenberg-Marquardt and 

Scaled Conjugate Gradient. Because of its proven efficiency and effectiveness and the limited 

number of experimental data points, the Bayesian algorithm was utilized to optimize the 

network parameters using two performance measures, namely, the root mean square error 

(RMSE) and the coefficient of determination (R2) [24]. Such an algorithm was embedded with 

the backpropagation structure to optimize the weights connecting the ith input with the jth hidden 

neuron and the weights connecting the jth hidden neuron with the output [20].   
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Figure 2. The artificial neural network. 

The numbers of neurons in the input and output layers are commonly determined from 

the case under investigation. Although several outputs are investigated in this research work, a 

multi-input single-output structure was selected in order to improve the predictive performance 

of each output. It is also worth emphasising that the number of neurons in the hidden layer 

plays a crucial role in determining the performance of the ANN. Several algorithms have been 

proposed in the literature to determine the optimal number of hidden neurons that should be 

used [25]. However, there is no universally accepted approach that can be used to identify the 

best number of hidden neurons. Therefore, in this research paper, such a number was identified 

according to the maximum performance obtained. In other words, it is the one that can lead to 

the optimal performance and error [19]. 

3.2 Gaussian Mixture Model 

In models development, information may sometimes not be fully extracted, this being 

due to the error normality assumption. Therefore, extracting such information can significantly 

enhance the predictive performance of a model [26-28]. Various paradigms have hitherto been 

proposed in the literature to extract the possible hidden information by analysing errors [21]. 

Such paradigms include the GMM, time series error residuals and fuzzy clustering [27,28]. 
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Among the various paradigms, the GMM has been utilized in many research articles due to its 

proven efficiency when it comes to error characterization [21]. This can also be attributed to 

its capability to analyse the probability density with a satisfactory performance when a good 

number of Gaussian functions is employed [21]. Due to complexity of the processes examined 

in this paper and measurement uncertainties, it was,  therefore, utilized to provide a 

representative insight into the probability density function, which can be used refine the 

predictive performance of the models developed.  

In general, the GMM, as a probabilistic paradigm, can be expressed as a combination 

of Gaussian components that have their own parameters in terms of mean ( l ), mixing 

coefficient (
l ) and covariance (

l ). Therefore, such a combination with L components can 

simply be expressed as follows [24]: 

( ) ( )
1

\ ,
L

e e

l l l

l

p x x 
=
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                                                                                     Equation (3) 

where xe stands for the inputs data that will be used in this model which includes process inputs 

and errors obtained from the predictive model, and the letter e is employed to distinguish the 

GMM inputs from the ANN ones. The best values of the lth Gaussian’s parameters are 

commonly identified by optimizing the log likelihood function leading to the following 

equations [21]: 
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where ( )klz  represents the probability associated with the belonging of the kth data point to a 

Gaussian component (l), where zkl stands for a L-dimensional vector variable that has a value 

of 1 when the kth point belongs to the lth Gaussian component and zero otherwise. Identifying 

an analytical solution for Equations (4) is not as simple as it may seem. However, one of the 

common algorithms that can be used to estimate a solution is the Expectation Maximization 

(EM) one [29]. Initially, K-means clustering can be utilised to identify the Gaussian 

components’ parameters. This is followed by estimating the value of ( )klz . Such a step is 

referred to as E-step. The ( )klz  is then used to re-estimate the Gaussian components’ 

parameters, the so-called M-Step. Then, the new values of the parameters are employed to re-

evaluate the ( )klz  value. Such iterations are continued until one of the stopping criteria is met 

[21].   

Since the best number of components (L) is not known in advance, the EM algorithm 

is also adopted in this research paper to identify such a best number. For this purpose, the 

Bayesian information criterion (BIC) is used [29]. Upon the convergence of the EM algorithm, 
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the conditional mean and standard deviation are used to compensate for the bias (i.e., enhancing 

the performance) and estimate the confidence level [21]. For this purpose, the estimated 

conditional mean is then added to the predicted value in order to compensate for the bias. This 

can enhance the model performance. The estimated conditional standard deviation is utilized 

to identify the confidence level [21]. 

4. Implementation and Results 

4.1 Experimental Results: Main Effects Analysis 

To investigate the influence of the three parameters that were examined in this research 

work, the main effects plots were employed to analyse the effects of these three parameters at 

their different levels considered. In general, the main effects plot is a visual representation of 

the mean output values at the different levels investigated for each parameter [30]. Such a plot 

can be used to determine and, thus, compare the relative effects of various parameters in terms 

of the nature of the relationships (i.e., direct or inverse relationships) and their relative strength. 

Figure 3 presents the main effects plots of the three parameters (i.e., powder feed rate, screw 

speed and milling time) on two outputs, namely, D50 (i.e., the size that 50% of the granules 

have size that is below this value and 50% of the granules have size that is above this value) 

which was used as an indicated example of the granules size, and the tablet strength. The results 

shown in such a figure reveal that these three variables have significant however different 

effects on D50 and the tablet strength. To illustrate, increasing the feed rate from 9 kg/h to 

10kg/h led to a decrease in D50. However, increasing it from 10kg/h to 11kg/h led to a 

significant increase in D50. This is an indication that the relationship between the feed rate and 

D50 is a nonlinear one. Increasing the feed rate, however, led to an increase in the tablet 

strength. It can be noticeable that the relationship between the feed rate and D50 is more 

considerable than the relationship between the feed rate and the tablet strength. It is also 

apparent in Figure 3 that the screw speed can significantly affect D50 and the tablet strength in 
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different ways. To elucidate, increasing the screw speed from 250rpm to 500rpm led to a 

significant increase in D50 and a decrease in the tablet strength. However, increasing the screw 

speed from 500rpm to 750rpm led to a decrease in D50 and an increase the tablet strength. 

Likewise, the change in the milling time effects can be clear, where increasing the milling time 

from 1 minute to 2 minutes and from 2 minutes to 3 minutes increased the tablet strength. 

Likewise, the increase in the tablet strength when the milling time increased from 1 minute to 

2 minutes was much more than it when the milling time increased from 2 minutes to 3 minutes. 

The effect of the milling time on D50 was not considered in such statistical analyses as the 

milling process was performed after characterising the granules size. In other words, the milling 

time does not affect the granules size in the Consigma25 CM line. However, it affects the 

downstream processes and their outputs. Based on the main effects analyses conducted in this 

section, it was found that the three parameters investigated in this research paper have 

significant effects on the granules size represented by D50 and the tablet strength. In addition, 

the relationships between them may not be linear. Therefore, these parameters need to be 

considered in the framework developed in this research work.  

 

Figure 3. The influences of the three parameters on D50 and the tablet strength. 
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4.2 The Results of the Serial Artificial Neural Networks Framework  

In order to develop a data-driven framework based on serial artificial neural networks, 

the parameters that are investigated and their effects on the downstream processes need to be 

carefully considered. Figure 4 shows the flowchart of the Consigma25 CM line with its 

processes and parameters. Since the effects of feed rate, screw speed and milling time on dry 

granules size and the tablet strength were investigated in this research, two ANN models were 

established to represent the Consigma25 CM line with these parameters. Such models are also 

presented in Figure 4. The first model was established to simulate the twin screw granulation 

process and to predict the granules size which was mapped to the screw speed and the powder 

feed rate, whereas the second model was developed to map the granules’ properties (i.e., 

granules size) obtained from the first model and the milling time to the tablets strength.  

 

Figure 4. A flowchart of the Consigma25 CM line with its processes and parameters and the models 

developed to represent them. 
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In order to develop the first model, the experimental data were split into a training set 

(70%), which is employed to determine the relationships and tune the network parameters (i.e., 

the wights connecting neurons from different layers and bias); and a testing  set (30%), whose 

performance is utilized as a stopping criterion to terminate the training when the network 

generalization capabilities stop improving [4]. Different numbers of the hidden neurons in the 

range of 1 to 7 were employed, where the number that led to the best network performance in 

terms of the performance measures and minimum error was chosen. It is worth emphasizing 

that the values of the network parameters were randomly assigned and they, then, were 

optimized using the Bayesian algorithm which was embedded with the backpropagation 

network. Such an optimization algorithm was selected because of its proven ability to deal with 

small and, perhaps, noisy data sets [23,24]. By using 5 hidden neurons, Figure 5 shows a sample 

of the predictive performance of the first ANN model developed for the twin screw granulation 

to predict D50, where the target values represent the experimental values and the predicted 

values represent the values obtained by the model. The R2 values for the training and testing 

sets are 0.86 and 0.82, respectively. The RMSE values for these sets are 98.59 and 111.49µm, 

respectively. It is apparent that the R2 for the testing set was around 4% lower compared to the 

one for the training set. This can be attributed to the relatively low number of data points in the 

testing set. In addition, it is also apparent that the testing RMSE is approximately 12% higher 

than the training RMSE. This is not an indication of overtraining, as such a value can be 

attributed to the actual D50 values that are in the testing set, where all of them are greater than 

1100µm. This can be proved by determining the error percentage values of the data points in 

the testing set, where it was found that the absolute error percentage values for these data points 

are in the range of 7.2% to 9.6%, and, thus, they are within the 90% confidence interval. 

Similarly, two ANN models were developed to predict the D10 and D90 values, as granule 
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properties representing the size. All the predicted points in these two models fit nicely around 

the best fit line with absolute error percentage values in the range of 5.4% to 10.9%.    

 

Figure 5. The ANN performance for D50 (µm): (a) Training set and (b) Testing set. 

Since D50 does not represent the volume fractions of the granules obtained, various 

models should be developed to predict the volume fractions of the granules in the various size 

classes. Therefore, by using these models, the granules size distribution can be predicted. For 

this purpose, different ANNs were developed for the different size classes in a way that is 

similar to the abovementioned procedure. Based on the predictive performance, the optimal 

numbers of hidden neurons for these ANNs were in the range of 3 to 7. Figure 6 presents an 

example of the predicted and the actual size distribution of one experiment which was 

conducted at a powder feed rate of 10kg/h and screw speed of 750rpm. For this experiment, 

the average error percentage value was 7.93%, where three size classes out of 33 had error 

percentage values of more than 10%. For all the ANNs developed at this stage, it was noticeable 

that the predicted value for each class was close to the actual one, where the overall R2 values 

for these models were in the range of 0.83 to 0.91. Likewise, the error percentage values for all 

the models and size classes were in the range of -12.3% to 11.11%.   
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Figure 6. The predicted (o) and the experimental (*) volume fractions (feed rate= 10kg/h and 

screw speed=750rpm). 

Another ANN model was also established to map the granules size, as a granule 

property, and other process parameters (i.e., milling time) to the tablet strength in order to 

predict it. In order to avoid the curse of dimensionality that can happen when including the 

whole size distribution (i.e., 33 classes), the three predicted granules’ diameters (i.e., D10, D50 

and D90) were considered as inputs to this model in addition to the milling time. By using 6 

neurons in the hidden layer, Figure 7 shows the predictive performance of the ANN used to 

predict the tablets strength, where all the predictive points fit nicely around the best fit line. 

The training and testing R2 values are 0.92 and 0.90, respectively. It is apparent from Figures 

5 and 7 and the predictive performance measures that the predictive performance of the ANN 

developed to predict the tablet strength is better when compared to the predictive performance 

values of the ANNs developed to predict the three granules’ diameters and the volume fractions 

of the granules produced by the twin screw granulation process. Such a behaviour can be 

attributed to (i) the limited number of data points (i.e., experiments) used in this research work; 

and (ii) the complicated granulation process and its nonlinear input/output relationships [21].    
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Figure 7. The ANN performance for tablet strength (N/mm2): (a) Training set and (b) Testing set. 

4.3 The Results of the Gaussian Mixture Model 

To enhance the performance of the serial ANNs developed in Section 4.2, the error 

values resulting from these networks were characterized by two GMMs, one for each model. 

Since the number of inputs is limited in the first model, the feed rate and screw speed in addition 

to the error resulting from the first ANN were considered in the development of the first GMM. 

For such a model, the training set was used to train the GMM and identify its best parameters, 

whereas the testing set was kept hidden. By using 5 components, Figure 8 shows the predictive 

performance after analysing the error and extracting the hidden information. The R2 values for 

the training and testing sets are 0.94 and 0.93, respectively. The RMSE values for these sets 

are 67.54 and 78.03µm, respectively. It is apparent that the difference in the R2 value between 

the training and the testing sets was reduced after the error characterization by the GMM when 

compared to the same difference between these sets for the ANN. It is also noticeable that a 

significant improvement of 9.3% in the R2 values was obtained. In addition, a significant 

overall improvement in the RMSE values of 31.6% was also noticeable. Likewise, Figure 8 

shows that the data points are, in general, closer to the best fit line when compared to those 

shown in Figure 5. This can be attributed to the unrepresented information, where such 

information were successfully extracted by using the GMM. Similarly, the GMM was also 

employed to characterize the ANNs used to predict the fractions of the granules. By using 

different optimal numbers of Gaussian components in the range of 2 to 6, the overall 

improvement in the R2 was in the range of 5.3% to 21.4%.     
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Figure 8. The ANN performance for D50 (µm) after the error analyses using the GMM: (a) 

Training set and (b) Testing set. 

Similarly, another GMM was developed to analyse the error resulting from the second 

ANN established to predict the tablet strength. Since the main parameters’ effects were 

considered in the second ANN, the milling time, the three predicted granules’ diameters (i.e., 

D10, D50 and D90) and the error resulting from the second ANN were used as inputs for this 

model. By using 5 Gaussian components, the predictive performance measures in terms of the 

R2 and the RMSE values were improved by 3.3% and 2.4%, respectively. As it was expected 

the improvement obtained for the first model is more than three times the improvement 

obtained for the second model. This can be attributed to that the predictive performance of the 

second ANN model was already better when compared to the first. Likewise, the complexity 

of the granulation process in addition to the limited number of data points need more 

complicated (perhaps stochastic) paradigms to be modelled successfully.  

In summary, the proposed framework, which is based on serial ANNs characterized by 

GMMs successfully predicted the granules size and tablet strength produced using the 

Consigma25 CM line. Such a framework can be considered as a promising development in the 

pharmaceutical industry. In the future, such a framework can be a roadmap for the development 

of dynamic as well as continuous modelling paradigms that are based on the wealth of data to 
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represent all the processes in the CM line, where they can also be utilized to control these 

processes by exploiting them in a reverse-engineering structure that is embedded with 

deterministic and stochastic optimization algorithms.   

5. Conclusions 

In this research project, the Consigma25 Continuous Manufacturing (CM) line was 

analysed and modelled. The main effects plot was utilized first to examine the nature and the 

strength of the relationship between various process parameters and the granules size and the 

tablet strength. A modelling framework based on serial interconnected artificial neural 

networks (ANNs) was, then, presented to model the unit operations of the Consigma25 CM 

line. Such interconnected networks were employed to predict the granules size and the tablet 

strength with an absolute error percentage value of less than 12.3%. In order to improve their 

performance, Gaussian mixture models (GMMs) were developed to characterize the error 

resulting from these models by extracting the hidden information. The integration of the GMMs 

led to an average improvement of 9.7%. Therefore, the modelling framework proposed in this 

paper can be advantageous to the pharmaceutical industry as it can be used not only to predict 

the granule and tablet properties but also to systematically control the CM line, in particular 

when the interpretability of the model is improved. In the future, such a framework can be 

adapted to be a continuous and dynamic modelling paradigm based on the data available. It can 

also be incorporated with physical based models and fuzzy logic in order to model the related 

processes at the micro and macro levels, and to enhance the interpretability and handle process 

as well as measurement uncertainties.    
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