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clinical coding fails to identify the impact of diabetes mellitus
on cancer survival

b=
K. Zucker®'%3*, C. Mclnerney4, A, Glaser?3, P. Baxter'? and G. Hall'?3

© The Author(s) 2025

BACKGROUND: Significant volumes of research rely on secondary care diagnostic coding to identify comorbidities however little is
known about its accuracy at a population level or if this influences subsequent analysis.

METHODS: Retrospective observational study utilising real world data for all cancers, prostate cancer and breast cancer patients
diagnosed at Leeds Cancer Centre from 2005 and 2018. Three different data definitions were used to identify patients with diabetes
in each cohort: (1) clinical coding alone, (2) HbA1c blood test alone (3) either clinical coding or abnormal HbA1c. Cohort
characteristics, diagnosis dates and Cox derived survival was compared across diabetes definitions.

RESULTS: 123,841 cancer patients were identified including 13,964 with diabetes. Clinical coding failed to identify 14.6% of diabetic
cancer patients with a temporal misclassification rate of 17.5%. Sole reliance on clinical coding overestimated the negative effect of
DM on median survival across all cancers and 3.17 years in breast cancer.

DISCUSSION: Clinical coding provides inaccurate diabetes diagnosis date and detection resulting in meaningful differences in
analytic outcomes. This supports the use of more detailed comorbidity data definitions. Results casts doubt over research reliant on

hospital clinical coding alone and the generalisability of some comorbidity and frailty scoring systems.
British Journal of Cancer (2025) 133:1137-1144; https://doi.org/10.1038/s41416-025-03136-9

INTRODUCTION

With an aging population globally, particularly in more economic-
ally developed countries, a greater percentage of the population
are living with significant health problems [1, 2]. As a result, the
issues of frailty, comorbidity and multi-morbidity are areas of not
only growing clinical importance, but the focus of intensive
research and scientific interest [3, 4]. Much work has focussed on
how specific comorbidities or constellations of comorbidities
impact health outcomes, with previous literature focussing on
disease specific outcomes or survival [5].

Research in this area is not possible via a randomised controlled
trial, as patients cannot be randomised to the pre-existing health
condition of interest. Hence, research frequently involves retro-
spective analyses of routinely collected data or prospective cohort
and case control studies. A challenge when conducting retro-
spective analyses is the identification of the conditions of interest
from a patients’ electronic health record without the need for
manual review. Within the United Kingdom (UK), many research-
ers make use of clinical coding for this task. Clinical coding is
administrative data that is generated every time a patient is
admitted to hospital [6]. Each admission is assigned an ICD-10
code [7] for the main cause of admission and further secondary

ICD-10 codes for each other condition relevant to the admission or
that the patient is known to have. This coding is performed by
specially-trained clinical coders, who review the clinical docu-
mentation and input the information. English hospitals submit
these data to NHS England [8], a national organisation aiming as
part of their remit to use digital technology to improve delivery of
health and social care in England, who combine all the results
from all of the English hospitals to form the Hospital Episode
Statistics Dataset (HES) [6]. Outpatient events are found in this
dataset, however these episodes do not have accompanying
diagnostic clinical coding data. HES coding data is therefore
perhaps better described by the phrase ‘post-discharge adminis-
trative coding’.

Hospital clinical coding and the HES datasets [6] are widely used
for research and the data is commonly included in or used
alongside other nationally collated datasets, such as the UK
national cancer registry [9]. As a country wide, centrally curated
dataset it potentially offers a simple approach to identify patients
with comorbidities of interest. Consequently significant volumes
of research have been published based on HES data: in many
cases attempts have been made to evaluate the impact of
comorbidity on outcomes in a number of settings including renal
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medicine [10], general surgery [11], urology [12] and oncology
[13, 14]. Despite its widespread use, including within the NHS
England Secure Development Environemt [15], the accuracy of
clinical coding has been called into question [16-21] with one
study highlighting diabetes mellitus as a particular problem area
[22].

Previous research assessing the accuracy of clinical coding has
mainly been conducted in the area of surgery [16, 18, 20, 21] and
focussed on coding after a specific admission event. These studies
have universally identified issues with the accuracy of clinical
coding in particular issues around poor negative predictive value
[21]. A large scale audit of over 30,000 surgical patient records
found coding errors in 51% of patient admissions [18]. Given the
significant body of evidence questioning the accuracy of clinical
coding after a hospital admission we set out to assess how well
clinical coding affected the identification of diabetes mellitus in
the overall oncology population which includes both patients with
and without hospital admissions. Little is known about how well
clinical coding captures disease in the wider patient population
that includes patients who are managed and diagnosed wholly or
in part on an outpatient basis, and whether there is a greater issue
of missed coding in this group of patients. This is of particular
relevance to specialties that manage patients mainly on an
outpatient basis, where comorbidities may never be coded.
Patients with missing clinical coding might systematically differ
from both their coded counterparts and their truly-code free
counterparts. The results from comparative analyses of these
patient groups could differ depending on how the non-coded
patients are assigned. We aim to quantify the fidelity of clinical
coding for the identification of cancer patients with diabetes
mellitus by comparing these to different data definitions of
diabetes. We also quantify how this influences cohort size,
estimated date of diagnosis and survival estimates for cancer
patients with diabetes. This study is not intended or designed to
yield results to describe the true relationship between diabetes
and cancer outcomes, it instead uses this analysis as a means of
assessing and informing the validity and clinical utility of diabetes
defined by hospital administrative data alone for comorbidity and
risk score based research in the UK.

METHODS

Dataset

We studied the routinely-collected healthcare records of patients in the
Patient Pathway Manager (PPM) system used by the Leeds Teaching
Hospitals NHS Trust (LTHT). Only patients having a legitimate care
relationship with Leeds Cancer Centre who were diagnosed with cancer
between 2005-2018 were included. All data was analysed within secure
NHS infrastructure complying with ISO 27100 and NHS Data Security and
Protection Toolkit. The dataset was anonymised and underwent data
obfuscation, e.g. age presented in 5-year age bands prior to release for
analysis.

Identifying cancer diagnoses

We identified patient records with a definitive primary diagnosis of
malignancy by searching for ICD-10 ‘C’ codes. Where records showed more
than one primary cancer diagnosis, the earliest was selected and later
diagnosis excluded. Information relating to patients’ cancer diagnosis,
demographics, clinical coding and HbA1c blood results were extracted.
Separate populations for breast cancer and prostate cancer were extracted
based on cancer specific ICD-10 codes from the overall PPM population.
Where patients had multiple diagnoses with the same cancer the earliest
was selected and later diagnosis excluded. Breast and Prostate cancer were
chosen as exemplars due to their high incidence and relatively long
median survival as compared to other malignancies.

Identifying diabetes mellitus
Diabetes mellitus (hereon referred to as diabetes) can be indicated by
clinical coding or abnormal HbA1c results. All clinical coding events were

’ ) Diabetic
Diagnostic .
HbA1c clinical
coding
Uniquely Uniquely
identified by identified by
abnormal clinical
HbA1c coding
Universally

identified

Fig. 1 Graphical representation of the diabetic subgroups. Note
that the shape area of each subgroup is not scaled to the true
numbers in the dataset.

analysed to identify any instance of a diabetic ICD-10 code within their
coded events (see Supplementary File 1 for ICD-10 code diabetes data
definitions). The earliest date of coding was taken as the diagnosis date for
diabetes. Patients with HbA1c results of 48 mmol/mol or above were also
identified as diabetic, with the earliest abnormal HbA1c results taken as the
date of diagnosis. Older results recorded using percentage values had
previously been converted to mmol/mol prior to analysis. This threshold
was chosen to be in line with international diagnostic guidelines [23]. We
define three identification methods of diabetes: abnormal HbA1c, clinical
coding and a hybrid of either abnormal HbA1c or clinical coding. In the
case of the hybrid approach, if a patient had both abnormal bloods and
clinical coding, then the earlier of these two events was treated as the
diabetes diagnosis event.

Analysis of patient characteristics

Comparison of baseline characteristics was conducted to identify any
systematic differences between patients identified HbA1c but not clinical
coding (uniquely identified by HbA1c), patients identified by clinical
coding but not HbA1c (uniquely identified by clinical coding) and those
universally identified i.e. identified by clinical coding and HbA1c (Fig. 1).
Given strong violation of normality assumptions, Mann-Whitney U tests
were conducted between pairs of sub-groups to test for non-difference of
the distributions for age, sex (excluding prostate cancer group) and
deprivation levels. A 5% level of significance was applied for these
comparisons.

Temporal analysis

To assess whether clinical coding defined diabetes provides an accurate
surrogate marker for diabetes diagnosis date, we calculated the time lag
between the estimated timing of diagnosis generated from clinical coding
and the estimate generated from HbA1c blood results in patients that had
been diagnoses by both clinical coding and HbA1c. Temporal misclassi-
fication error was calculated for patients identified as having post-cancer
diabetes by clinical coding. This was achieved by identifying the
percentage of patients that were identified as having post-cancer diabetes
by clinical coding that were identified as having pre-cancer diabetes by the
hybrid definition across the three cohorts.

Survival analysis

Survival analysis was conducted using Cox proportional hazard adjusting for
age, sex (excluding prostate cancer group) and Index of Multiple Deprivation
(IMD) quintile. Four Cox models were built per cancer cohort one for the full
population of patients including those with and without diabetes, and one
for each of the populations of patients identified as diabetic by the three
data definitions. The resultant survival trajectories were compared across the
dataset visually with survival curves, and comparisons of median survival for
clinical significance. Differences in estimated median survival between the 3
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diabetes definition models of over 6 months was deemed clinically
meaningful, which was based on local expert opinion. We did not test
whether the survival estimates for each group showed a statistically
significant difference between one another as the populations have
incomplete pairing. This is due to the partial overlap of cohorts identified
by each diabetic cohort with some patients appearing in multiple diabetic
cohorts and some in only one. All analyses were undertaken using R (version
4.2.1) and open-source packages available on CRAN.

Results were represented by hazard ratios attributable to diabetes
derived from the model coefficients, and the percentage change in median
overall survival between each of the diabetic subgroups and non-diabetic
groups. Those where the estimated hazard ratio and its associated 95%
confidence intervals did not include 1 were deemed to be meaningful
results because they have a high confidence that the hazard is
unidirectional.

Sensitivity analysis

To mitigate for a potential boundary effect introduced by blood lab
geographical boundaries, a sub-population of patients was created to
include only those patients living within the area for which LTHT's blood
lab analyses primary care blood samples, which we have termed the ‘LTHT
blood catchment area’. This area was defined by patients being registered
to a general practice that had provided over 10,000 previous blood
samples to LTHT. This cut off was chosen based on local expert opinion.
The date of diabetes diagnosis as per the three definitions was compared
to the date of cancer diagnosis. Those patients with a diabetic diagnosis
date on or before the date of cancer diagnosis were treated as patients
with pre-existing diabetes.

RESULTS

A total of 123,841 unique patients were identified, including 17,920
breast cancer patients and 15,856 prostate cancer patients. A total of
20,589 patients had more than one malignancy diagnosis represent-
ing 16.6% of the total patient population. Between 14.6 and 21.3% of

K. Zucker et al.

total diabetic patients identified by the hybrid definition were not
identified when only clinical coding was used across the cohorts. A
greater proportion were missed when HbA1c was used alone with
between 15.7 and 27.0% failing to be identified.

Baseline characteristics

Table 1 presents the comparison of baseline characteristics
between the three sub-groups that constitute the hybrid
definition of diabetes. Pairwise statistical significance shown in
Table 2 identifies that diabetic patients identified by abnormal
HbA1c and not clinical coding were younger in all cohorts.
Statistically significant differences seen in other parameters were
not consistent across cohorts.

Sensitivity analysis

Figure 2 shows the diabetic cohort as identified by the hybrid
definition, broken down by the data indications for diabetes
contained in patient’s records: coding only, abnormal HbA1c only,
both coding and abnormal HbA1c. Records for patients in both
the full and the LTHT-blood-catchment-area cohort predominantly
contained both indicators for a diabetic diagnosis. Of the
remaining patients with records of either coding or abnormal
HbA1c, the LTHT-blood-catchment-area cohort were indicated by
abnormal HbA1c markedly more often than in the full cohort. This
pattern was consistent across cancer sites.

Temporal analysis

Table 3 shows a breakdown of the number of diabetic patients
identified before and after cancer diagnosis in each cancer cohort.
Clinical coding demonstrated a temporal misclassification rate of
17.5% in the all cancer cohort 25.2% of the breast cancer cohort and
22.3% of prostate cancer cohort. The high rates of post-cancer diabetic
patients identified by clinical coding only is partly due to differences in

Table 1. Count of patients by each diabetes identification method.
Cohort Diabetes Definition
All Coding

HbA1c

Hybrid 8051
Breast Coding

HbA1c

Hybrid 689
Prostate Coding

HbA1c

Hybrid 872

Pre-Cancer
5849 (72.7%)
6149 (76.4%)

423 (61.4%)
577 (83.7%)

546 (62.6%)
715 (82.0%)

Post-Cancer Total

6080 (102.8%) 11,929 (85.4%)
4042 (68.4%) 10,191 (73.0%)
5913 13,964

600 (98.2%) 1023 (78.7%)
519 (84.9%) 1096 (84.3%)
611 1300

824 (98.7%) 1370 (80.3%)
627 (75.1%) 1342 (78.6%)
835 1707

Percentages are expressed relative to the total number of patients identified by the hybrid definition of diabetes.

Table 2. Baseline characteristics of diabetic patients.
Cohort Variable Uniquely Identified by HbA1c Uniquely Identified by Coding Universally Identified
All Median Age (Years) 70-74 70-74 70-74
Median IMD 3 2 2
Percentage Female 41.45% 37.79% 41.51%
Breast Median Age (Years) 65-69 75-79 70-74
Median IMD 2 2 2
Percentage Female 99.24% 98.21% 99.35%
Prostate Median Age (Years) 70-74 75-79 70-74
Median IMD 3 3 3

Comparison is made between the different manner in which they could be included in the hybrid diabetic defined cohort. Patients might be identified by
coding but not HbA1c, HbA1c but not coding or identified universally (by both). Note that average age is represented as a range as per the source data.

British Journal of Cancer (2025) 133:1137-1144
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All cancer patients

0 20 40 60

LTHT blood catchment

0 20 40 60

Method of identification

. Uniquely identified by clinical coding
. Uniquely identified by HbA1c
. Universally identified (identified by both HbA1c and clinical coding)

Fig. 2 Overlap of identification by HbA1c and clinical coding. Proportion of the diabetic cancer population that are identified by Clinical
coding but not HbA1c (Uniquely Identified by Clinical Coding), HbA1c and not clinical coding (Uniquely Identified by HbA1c), or identified by
both HbA1c and Clinical Coding (Universally Identified). The results are shown for all cancer patients and the population of cancer patients in

the LTHT blood catchment area.

Table 3. Results from Pairwise Comparison of Baseline Characteristics
using the Mann-Whitney U test—p values generated by comparing the
patients uniquely identified by HbA1c testing to those uniquely
identified by clinical coding and those universally identified.

Cohort Coding Universally Identified
All Age Coding p<0.01
HbA1c 0.01 p<0.01
Sex Coding 0.01
HbA1c 0.02 0.97
IMD Coding 0.2
HbA1c p<0.01 p<0.01
Breast Age Coding 0.57
HbA1c p<0.01 p<0.01
Sex Coding 0.93
HbA1c 0.95 0.97
IMD Coding 0.59
HbA1c 0.12 0.19
Prostate Age Coding 0.67
HbA1c p<0.01 p<0.01
IMD Coding 0.6
HbA1c 0.39 0.65

The uniquely identified by clinical coding group was also compared to the
universally identified group. The table presents the variable of interest in
the first column the first group in the pairwise comparison in the second
column, the results are presented in the third and fourth column and the
last column represents the cohort for analysis. The two labels above the
third and fourth column represent the second comparator group used in
the pairwise test.

timing of first evidence of a diabetic diagnosis when comparing
abnormal HbA1c results to clinical coding. Figure 3 highlights
differences between the clinical-coding and HbA1c-results approaches
to diabetes identification, some of which are greater than +15 years.

1000

500

Number of patients

-10 0 10 20

Difference between date of diabetes diagnosis by
clinical coding and abnormal HbA1c in years

Fig. 3 Difference in first diabetic diagnosis flag from clinical
records comparing clinical coding and abnormal HbA1c. m=
patients defined by both an abnormal HbA1c and diabetic clinical
coding. m = patients defined by clinical coding as post-cancer
diabetics but with abnormal HbA1c pre-cancer. Left of — =abnor-
mal HbA1c earlier than clinical coding. Right of — = clinical coding
earlier than abnormal HbA1c.

Survival analysis

Assessment of the survival difference for all cancer patients
demonstrates clinically meaningful differences in the survival
estimates obtained via each of the methods for identifying
diabetes (Fig. 4, Table 4). In all three diabetic data definitions, the
overall survival outcome for diabetic patients is worse than that of
the overall survival trajectory for all patients. Patients identified by
abnormal HbA1c as the sole definition demonstrate the most
optimistic diabetic survival trajectory, while patients identified by
clinical coding as the sole definition demonstrated the most
pessimistic. The survival curve for patients identified by the hybrid
definition lies in between the others. This pattern of difference
was consistent across all three cancer cohorts analysed (Fig. 5).

British Journal of Cancer (2025) 133:1137-1144



Survival probability
o
[
o

Number at risk

5398 3445 2532
5719 3973 3019
Hybrid definition diabetics | 7451 5014 3780

1932
2330
2918

Total cancer population 115,272 79,814 61,949 49,616 40,162 32,344 24,917 19,473 15,005 11,298
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4 5 6 7 8 9 10
Time (years)

1460 1084 768 546 374 242 161
1789 1343 982 732 526 351 227
2252 1704 1240 925 660 448 296

8240

Fig. 4 Survival trajectories for each diabetic data definition and the overall survival for all patients in the all cancer cohort. Survival
curves have been plotted for cox models generated using only all patients, coded diabetic patients, abnormal HbA1c patients and diabetic
patients identified by the hybrid method. In all cases estimates were adjusted for potential age, sex and deprivation confounding.

DISCUSSION

In this study, we assessed the fidelity of clinical coding at a
population level and how clinical coding omissions affect the
results of analysis. We found that survival estimates for cancer
patients with diabetes mellitus are more pessimistic when
diabetes mellitus is informed by hospital clinical coding alone
compared to HbA1c levels and a hybrid approach. This finding is
of particular relevance to clinical decision making based on
automated risk-scoring algorithms and to specialties that manage
patients mainly on an outpatient basis.

Our data identifies a meaningful proportion of diabetic patients
in the all-cancer cohort whose date of diabetes diagnosis is
incorrectly indicated temporally by clinical coding or completely
absent. Clinical Coding failed to identify 18.4% of all diabetic
cancer patients, which is similar to the 14% error rate for diabetic
clinical coding identified in the literature [20]. The LTHT blood
catchment area cohort identifies a larger 26.9% with missing
diabetic coding. This may suggest that in the full LTHT dataset we
are still failing to identify a cohort of diabetic patients who may
have been identified on blood testing where the results are held
by other hospitals across the region and thus are not included
within the hospitals blood dataset. If these patients could be
identified, then the results of subsequent analyses may show even
greater levels of outcome discrepancy than seen in our results.

Through the use of HbA1c blood tests, we were able to create a
second check for a diabetes diagnosis in a patient’s clinical record.
This enabled us to assess the fidelity of clinical coding and identify
whether the wider data definition and resulting populations
impacted upon survival analysis outcomes. The missed diabetic
patients that are identified by abnormal HbA1c values differ
significantly in baseline characteristics from the identified cohort.

A large minority of those patients identified by both blood test
results and clinical coding are identified at a much later date than
their first diagnostic blood test result. Whilst the raw numbers
identified by clinical coding as having diabetes which developed after
their cancer diagnosis look largely comparable to the hybrid
definition (Table 2), this is a function of the high rates of temporal
misclassification error. Of the 6080 patients identified in the all-cancer
cohort, 1138 in fact had evidence of diabetes on blood results which
predated their cancer diagnosis. This accounts for why the number of
patients in the post-cancer period identified by clinical coding exceed
the number identified by the hybrid definition.

For an analysis based on the presence or absence of diabetes at
an index date - in our case cancer diagnosis - the discrepancy due
to the choice of diabetic data definition could have a profound

British Journal of Cancer (2025) 133:1137-1144

impact on the correct identification of the comorbid cohort.
Identifying cohorts of patients with diabetes using hospital clinical
coding as the sole method of identification has a high risk of
misclassifying patients as non-diabetic at the index date.

Our results show that the differences in the cohort identification
does not merely alter the comorbid cohort size and precision, but
additionally affects the analysis results. The difference seen in
projected hazard and median survival are substantial and clinically
meaningful. The results show that the incorporation of blood
results into defining a diabetic population increases the number of
patients identified, improves temporal accuracy and alters the
analysis output. Further survival analyses and commentary on this
can be found within Supplementary File 2. It additionally
highlights that the clinical coding-only diabetic cohort differs
from the wider diabetic cohort as defined by the hybrid data
definition. This suggests that the assumption that comorbidity
scores, developed and validated on administrative data, will be
equally valid when applied to the general population may not
hold. Although large meaningful error rates have been identified
in previous research, the impact on analysis outcome has never
previously been assessed.

Research attempting to assess how comorbidity impacts on
outcomes and risks have commonly relied on hospital clinical
coding and similar administrative datasets. Several ubiquitous
comorbidity scores such as Charlson Score [24] and the Elixhauser
[25] have been developed on administrative data and are
subsequently being used in clinical practice based on comorbidity
data obtained from referral letters, clinical records and the patient
directly. In such cases, clinicians are working on the assumption
that administrative comorbidity data is representative of the true
comorbid population. Our results suggest that this assumption in
the case of diabetes is incorrect and using risk scores in this
manner may result in incorrect risk being ascribed to patients. This
may explain the variability in the estimated utility of these tools
across the literature particularly in the cancer population, where
identifying superiority of one scoring system over others has
remained elusive [26-28].

Within our analysis the hybrid definition is used as the reference
standard against which fidelity was assessed. This however is not
the true gold standard which would require manual curation and
review of patient records from all healthcare settings. In most
instances however doing this at scale is not practicable due to
cost, time and data privacy constraints. As such alternatives
making best use of available data will continue to be used in real
world evidence studies.
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Table 4. Comparison of Median Survival Estimates for Each Diabetes.

Cohort Diabetic Data Definition

All Clinical Coding 2.61
Abnormal HbA1c 3.92
Hybrid 342

Breast Clinical Coding 5.51
Abnormal HbA1c 9.03
Hybrid 8.14

Prostate Clinical Coding 5.49
Abnormal HbA1c 7.57
Hybrid 6.89

Median Survival (Years)

Survival Difference from baseline (Years)
—3.48
—2.17
—2.67
—7.06
—3.54
—443
—4.80
—2.73
—3.40

Definition—Median survival estimates were extracted from each of the Cox models. The difference from baseline overall median survival for both diabetic and

non-diabetic patients in each cancer cohort is also calculated and presented.

Previous literature has identified a large number of conditions
beyond diabetes that demonstrate coding inaccuracy [21] and
thus diabetes might not be the only condition to demonstrate
differences between hospital administrative data and the true
generally comorbid population. Our results demonstrate the
benefit of defining comorbidity in a more comprehensive manner
than relying purely on hospital clinical coding. The results
comparing the fidelity of coding for patients inside and outside
the ‘LTHT blood catchment area’ highlight the issue that data
fragmentation and siloing causes. Even where data definitions
may be enhanced through more diverse data items, ensuring
robust and consistent capture and coverage of this data including
across geographies is essential to avoid introducing other sources
of bias which may also limit the generalisability of the resulting
analytical outputs.

In this study, we have focussed on blood results because there
is a clear and reliable diagnostic test-based definition for diabetes;
but similar diagnostic tests are not available for many other
conditions. In such cases, hospital electronic health records could
be enhanced with other indicative data such as primary-care
coding [29], prescribing data and natural language processing of
free text clinical narrative. As demonstrated with the addition of
the HBA1C data which highlighted significant geographical
variation in its utility, these further data sources cannot be added
blindly and requires significant thought and investigation so as to
consider, and where possible, take into account the additional
biases they may introduce.

Our study data is derived from a single NHS trust and the
quality and accuracy of clinical coding might differ between
hospitals around the country. This data was derived from
diagnostic codes entered by clinical coders which occurs after
an admission event. Some centres may have more advanced
record keeping systems which allow for the clinical professionals
to directly enter diagnostic codes. These datasets may therefore
be more accurate in both the number of patients and the timing
of diagnosis. Clinical coder derived data however forms the basis
of HES which remains a significant and often solitary data source
in the literature for the identification comorbidity on English
national data. Many of the risk scores highlighted above have
been developed on US data, which might differ in other ways, too.
Further research is needed to identify whether the same cohort
identification and outcome differences are seen elsewhere in the
UK and abroad. Incorporating data from primary care may alter
the data accuracy and further study using linked data is therefore
required to assess this. The difficulty with this is that blood test
results are not always available alongside the administrative data,
particularly in registry or claims-based datasets. We hypothesise
that records of diabetic patients without clinical coding occurs
due to patients who do not have hospital admissions since their

diabetic diagnosis. If this is the case, then the results we have
identified are likely to be widespread rather than local.

Whilst the results presented focus on diabetes in a cancer
population as an exemplar, this was not the focus of our analysis,
which has been designed to assess the fidelity hospital derived
clinical coding as a source for comorbidity data. It does not
therefore represent a comprehensive assessment of the impact of
diabetes on cancer outcomes. Further research focussing on this
question using net survival, cause specific hazards and other
analytics techniques would be required to robustly estimate this
complex outcome question.

Our analysis makes adjustment for confounding based on age,
sex (where relevant) and deprivation; however further sources of
confounding may be present. It might therefore be possible that
further appropriate controlling of confounders could account for
divergence of projected hazards among the different diabetic
cohorts. Within our dataset, additional adjustment for grade, stage
and histology resulted in the same pattern of outcomes being
identified. These were not included in the main results as both
grade and stage definitions differ both over time and between
cancer sites and data completeness was inconsistent. Our study
only includes patients diagnosed up until the end of 2018. This
was designed to ensure that patients would have had a sustained
period of follow up prior to the COVID-19 pandemic. This does
raise the possibility of changes in practice and clinical coding since
then which will not be captured by our analysis.

Overall, our results add to the body of literature highlighting
significant omissions in clinical coding data. To the best of our
knowledge, we demonstrate for the first time the scale of
limitations of clinical coding at a population level where accuracy
is not only assessed on patients with an admission, but also
patients without a recent admission or no admission at all.
Furthermore, our work highlights that the coding inaccuracy leads
to meaningful differences in analysis results.

CONCLUSION

Serious questions are raised about hospital clinical coding and its
utility in diabetic comorbidity research given the substantial
differences demonstrated in projected hazard from the inclusion
of a more comprehensive data definition. If the pattern of
identification of other comorbidities via hospital clinical coding is
similar to that of diabetes, then it is possible that clinical coding
and derived datasets significantly underrepresents health pro-
blems. Furthermore, clinical coding might include patients with
worse outcomes when compared to the non-coded comorbid
population, as is the case in patients with diabetes. Consequently,
it is likely that results generated utilising hospital clinical coding
will be different from those found in the wider general population
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Fig. 5 Cox derived hazard ratios for the impact of diabetes. Comparison between the estimated hazard across all three cohorts using each
of the diabetes definitions. Horizontal dashed line indicates a hazard ratio of 1.0, which is the threshold at which the estimated hazard is equal

with and without diabetes

and should not be used in routine clinical decision making unless
specifically validated for this use case. More research is required to
assess the reproducibility of HES and clinical coding derived
results in the general population and to identify whether current
and future tools based upon these are being applied safely and
appropriately.

This research lends weight to argument for a move from a
reliance solely on hospital clinical coding for defining comorbidity
and the use of more detailed datasets that include a greater ability
to identify diagnoses of interest via multiple routes such as from
primary care coding, investigation results and analysis of free text.

DATA AVAILABILITY

This analysis was undertaken within LTHT systems. In view of the patient level data
used it will not be released for general use. LTHT does have a formal mechanism for
applying for data access and release, the details of which can be found at:
www.leedsth.nhs.uk/research/our-research/#:~:text=Prior%20t0%20any%20release%
200f for%20details%200f%20these%20courses.

CODE AVAILABILITY

R code for the analysis can be found online at: https://github.com/kieranzu/HbA1c.
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