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Abstract

As quantum computing progresses towards the early fault-tolerant regime, quantum error
correction will play a crucial role in protecting qubits and enabling logical Clifford operations.
However, the number of logical qubits will initially remain limited, posing challenges for
resource-intensive tasks like magic state distillation. It is therefore essential to develop efficient
methods for implementing non-Clifford operations, such as small-angle rotations, to maximise the
computational capabilities of devices within these constraints. In this work, we introduce mitigated
magic dilution (MMD) as an approach to synthesise small-angle rotations by employing quantum
error mitigation techniques to sample logical Clifford circuits given noisy encoded magic states. We
explore the utility of our approach for the simulation of the 2D Fermi—-Hubbard model. We
identify evolution time regimes where MMD outperforms state-of-the-art synthesis techniques in
the number of noisy encoded magic states required for square lattices up to size 8 x 8. Moreover,
we demonstrate that our method can provide a practical advantage that is quantified by a
better-than-quadratic improvement in the resource requirements for small-angle rotations over
classical simulators. This work paves the way for early fault-tolerant demonstrations on devices
supporting millions of quantum operations, the so-called MegaQuOp regime.

1. Introduction

Recent progress in experimental demonstrations of quantum error correction and logical computation [1-5]
has encouraged research towards practical applications of early fault-tolerant quantum computers [6-9]. The
Gottesman—Knill theorem [10] shows that universal quantum computation necessitates non-Clifford gates.
Implementing these gates typically requires the preparation of magic states or non-stabiliser states where
resource-intensive techniques such as magic state distillation [11] are used to improve their fidelity. Despite
ongoing research in reducing the associated overhead of these factories [12—14], resource analysis of
fault-tolerant implementations of large algorithms using magic state distillation require millions of physical
qubits [15-18]. In the anticipated early fault-tolerant era, where useful magic state distillation factories
cannot be accommodated due to physical qubit limitations, we investigate quantum error mitigation (QEM)
as a promising alternative.

QEM is generally considered in the context of estimating the expectation value of an observable using a
quantum circuit, for example in variational quantum eigensolvers [19] and statistical versions of phase
estimation [20-24]. QEM methods improve the accuracy of the estimated expectation value by reducing the
noise-induced bias in the circuit [25, 26]. This is done through post-processing of the measurement
outcomes from an ensemble of circuit implementations and so is distinct from quantum error correction
which reduces the logical error rate for each individual circuit run [26]. Consequently, most error mitigation

© 2025 The Author(s). Published by IOP Publishing Ltd
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techniques require additional sampling that increases with the noise in the circuit, resulting in asymptotically
unfavourable scaling [26, 27].

Despite this, QEM techniques could thrive in the early fault-tolerant regime when applied at the logical
level by focusing on their pre-asymptotic behaviour prior to the exponential scaling becoming impractical
[6, 28]. As per the standard magic state model [11], we assume that logical Clifford operations are ideal; these
may be implemented transversely depending on the error-correcting code and underlying hardware.
Meanwhile, non-Clifford operations are subject to noise due to imperfect encoded magic states. Given this
model, we leverage methods from QEM to simulate single-qubit Z-rotation gates in this work, which are an
integral part of many quantum algorithms.

QEM ideas have previously been proposed to simulate circuits containing T gates such as in [27]. A
single-qubit Z-rotation gate could then be realised by synthesising into error-corrected Clifford gates and
encoded noisy T gates, for example, using the Ross—Selinger method [29]. This leads to a T-count (total
number of T gates) that scales as O(log, (1/€gnn)) With accuracy egn of the resultant rotation. The
sampling overhead also increases dramatically with the inverse accuracy. This is counter-intuitive as magic
resource theory [30-34] shows that a small-angle Z-rotation gate is a less powerful resource than a T gate,
and yet they are more costly to implement. This perspective hints towards a much more efficient approach to
QEM where small-angle Z-rotation gates have a low gate and sampling overhead assuming error-corrected
Clifford gates with sufficiently low noise levels. This direction has been explored in the noisy-intermediate
scale quantum (NISQ) setting [35] but not in the context of early fault-tolerant quantum computing.

In this paper, we introduce a framework that applies the quasiprobability method [31, 36] to explore the
advantages of decomposing single-qubit Z-rotation gates into gates from the Clifford hierarchy [37]. A
conceptual starting point is to consider the following two-step process: first, use magic state dilution [38] to
convert a high magic resource into many low magic resources; and second, use QEM to reduce any inherent
noise or noise introduced in the dilution process. While each of these two steps could be cast as separate
convex optimisation problems, it is more elegant and optimal to compress them. Therefore, rather than
implementing these processes independently, our approach unifies them into a single optimisation problem,
which we introduce as mitigated magic dilution (MMD). Specifically, we use convex optimisation to find the
optimal sample complexity of performing small-angle single-qubit rotations from noisy encoded magic
states.

There has been significant progress in the preparation of encoded magic states. For example, in [39], it
was shown that encoded magic states can be prepared with a logical error rate of ~0.4 x 10~? under the
assumption of ideal single-qubit operations and depolarised two-qubit gates with 0.1% error rate using
post-selection. Moreover, there are several improvements to the state preparation of non-stabiliser states for
arbitrary small-angle rotations that could offer further advantages to the results presented in this paper,
which we examine in section 5.

We compare our framework against a baseline classical approach where small-angle single-qubit
rotations are decomposed into Clifford operations, similar to [30-34]. Notably, we demonstrate a
polynomial advantage, the magnitude of which depends on the quality of initial magic state preparation. We
quantify this advantage in terms of the polynomial degree of magic resource saving of our method. For
encoded magic states prepared with 1% dephasing noise, this saving is better than cubic, while for 0.1%
dephasing noise we find a saving of degree approximately 11.43. Moreover, we show that our method can
improve upon a state-of-the-art classical simulator, the sum-over-Cliffords stabiliser extent method [34],
offering a 2.37 degree of magic resource saving.

To evaluate the practical benefits of this approach, we study the resource requirements to simulate the
time evolution of the 2D Fermi—Hubbard model. The 2D Fermi—Hubbard model [40, 41] is of notable
interest in the early fault-tolerant regime [6, 42] due to its importance in condensed matter physics (e.g. to
understand high-temperature superconductivity [43] and the Mott metal—insulator transition [44]), as well
as its simplicity arising from its highly regular lattice structure. Our analysis in section 4 demonstrates that
MMD is a more resource-efficient method than direct gate synthesis, requiring fewer magic states in total.
Moreover, the expected number of magic states per sample is significantly smaller, and therefore MMD is
particularly amenable to early fault-tolerant devices.

Even when quantum computers have an asymptotic speedup over classical computing they can fail to
have an in-practice speedup for example problems of a relevant size [45], and so it is crucial to make such
comparison. Here, we consider the example problem of a Fermi—Hubbard model with a 6 x 6 square lattice
and evolution time t = 0.25 as a strong candidate for quantum advantage. We find that our MMD method
requires a circuit with only 1037 non-Clifford gate teleportations (on average) and 5.34 x 10° samples. Even
with error correction overheads, a sample per second is a conservative runtime estimate, taking a single
quantum computer 62 days for all samples. For the same calculation, the sum-over-Cliffords stabiliser extent
method would require a 5.18 x 107 seconds runtime, which would take 1.64 x 10* years to complete when
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assuming a million classical processors in parallel. Thereby, our MMD protocol facilitates a significant
reduction in runtime over the the sum-over-Cliffords classical simulator for conservative time evolution and
lattice sizes of interest. Combined with a Pauli-based model of computation [46], such an application would
require logical error rates of approximately 1 part in a million, the so-called MegaQuOp regime [9].

This paper is structured as follows. In section 2 we briefly summarise the quasiprobability method. In
section 3, we introduce our framework in two steps, working in the channel representation of all unitary gates
U throughout, which are denoted as () = U(-) UT. We first present the application of the quasiprobability
method to target Z rotation channels over diagonal Clifford + 7 channels in section 3.1 using a linear
combination of channels decomposition. We then generalise this to decompositions over diagonal Clifford +
T+ channels in section 3.2. Finally, in section 4, we demonstrate the practical applicability of our framework
for a second-order Trotter simulation of the Fermi—-Hubbard model with comparison to gate synthesis.

2. Quasiprobability method

The motivation behind the quasiprobability method is that an ideal quantum operation can be decomposed
into a basis set of noisy operations. Let U'(p) = UtpUtT be the ideal target unitary channel of a quantum
operation U* and let {U/"} be a set of channels corresponding to the noisy operations that can be performed
on a given quantum hardware. The noise on these operations would typically be characterised using a
tomography procedure [26, 47]. We can then write the following decomposition, hereafter referred to as the
linear combinations of channels (LCC) decomposition

Uu'=>"xuf (1)

where x; are real coefficients that can be positive or negative such that equation (1) is a quasiprobability
representation.

It follows that the expectation value of an observable O for the target operation can be written in terms of
the expectation value of the noisy operations as

Tr [OU' (p)] =Tr

OZ XU (p)
=Y xTr[ou (p)]. (2)

1

The expectation values Tr [OL{,-“( p)] associated with noisy channels 24" can be estimated using Monte
Carlo sampling. Each noisy operation U}", specified by index i, is applied with probability |x;[/> ", |xi|, and
the resulting expectation value is multiplied by sign(x;) >, |xi| [26, 31]. From this, an estimate of the ideal
expectation value can be calculated up to an accuracy € and probability greater than 1 — J, where

—Né?
0 =2exp () (3)
2(3 |=l)?

and the number of samples N is determined by Hoeffding’s inequality to be

N= 62—2 (Z |x,'|> In (;) . (4)

Thus, the number of samples scale as O (A\?/€?) up to logarithmic factors, with A = >°; [x;|. The quantity
A% is referred to as the sampling overhead of using this method over finding the expectation value of the ideal
target channel directly [26, 27].

3. Methodology

3.1. LCC decomposition
We first demonstrate how the quasiprobability method can be used to decompose target Z-rotation channels.
In the simplest case, we consider a diagonal Cliffords + 7 channel decomposition, forming an overcomplete
basis set to ensure that we can optimise this decomposition with respect to the sampling overhead.

Consider the action of a small-angle Z-rotation channel R? (p) = R,(#)p(R,(#))" acting on a state
represented by density matrix p in figure 1, where R,(0) = exp(—i(6/2)Z) is a gate representing a rotation

3
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Z$8(p) ZST(p)

Figure 1. Action of T* rotation channels (where 1 < k < 8) on a density matrix p. The eight operations (in red) form the initial
basis set G. The target rotation channel R?(p) is shown in blue.

about the Z-axis with angle 6. In this geometric picture, we label eight channels corresponding to the action
of a basis set of gates

G={T":1<k<8}
={I,T,S,ST,2,ZT,ZS,ZST} (5)

which forms a cyclic group (G, X ) generated by the T gate under multiplication. We represent these gates in
their channel representation to form a set G such that

g:{T"(p):(ﬂ)p(ﬂ)Tzlgkgs}. (6)
The LCC decomposition is given by

RI() =D xUU = xd (), (7)

UeG ueg

where RY(-) represents the single-qubit Z-rotation channel for the R,(6) gate. This is a quasiprobability
decomposition such that the coefficients xy are real and satisfy ) 3, xy = 1. The quantity A is defined as
the I;-norm of the coefficients in this decomposition, that is

A=l =" Ixul, (8)

veG

such that A\? is the sampling overhead of each decomposition from Hoeffding’s inequality [25, 27].

It can be noted that the decomposition in equation (7) is not unique over a chosen basis set and so it is
important to minimise the sampling overhead over different solutions. We define the optimal decomposition
for a given Z-rotation channel as the decomposition into elements of G with the minimum A, which we
denote as Ag(RY). This can be written as

Ag (RY(-)) = min {)\ = [lxulls

RI(-) = Zqu(-)}- (9)

ueg

By definition, Ag(RY) > 1 where Ag(RY) = 1if RY € G for some group G representing the basis set of
channels. The solution to equation (9) is equivalent to minimising the sampling overhead \? over the basis
set of channels, thus Ag(R?(-)) finds the optimal decomposition of RY(-) for the chosen group G. This can
be further expressed as a convex optimisation problem to solve a linear system given by

Ag (RY(-)) = min|[x||; subject to Ax = b. (10)

4
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Here, vector b represents m elements of the target channel R? expressed in a vectorised form, and A is an
m X n matrix, with n columns for the basis set of channels in the decomposition and m rows of elements that
specify each channel (see equations (A1) and (A2) as an example). The jth column of matrix A can be
generated by determining the vectorised form of the jth channel 24;(-) = Uj(-) U]T forU; € G and
j €{1,2,...,n}. Where possible, we also make a concerted effort to minimise the number of non-zero
elements in x whilst keeping the optimal sampling overhead constant.

For the ideal basis set of channels G defined in equation (6), we use CVXPY [48, 49] to solve
equation (10) and find that decompositions of the form

RY () =xZ()+xrT () +x2Z () (11)
are optimal, with
Ag (RE()) = (V2= 1) sin (0) +cos (6) (12)

for0 <0< T Additionally, considering subsets of G with only 2 elements, we find that a solution to the
optimisation problem cannot be found, and therefore 3 contributions are required (see appendix A).

As a classical baseline, we consider the subset of G that are Clifford operations, denoted as C. In that case,
the optimal decomposition consists of {Z,S, Z} channels and the corresponding /;-norm Ac is

Ac (RE(+)) =sin(0) + cos (6). (13)

We compare this baseline to our quantum protocol by considering (Ag)" = Ag, which implicitly defines
where
0

In(Ag (R?))
Consequently, we interpret v as the polynomial degree of magic resource saving of the optimal
decomposition over G compared to the optimal decomposition over C, for a specified target rotation
channel. As § — 0, y approaches v/2 + 1 = 2.41 > 2, indicating a slightly better-than-quadratic advantage of
decomposing a (very) small-angle rotation into a quasiprobability decomposition of {Z, 7, Z} channels
instead of {Z,S, Z} channels. From this, we can now proceed to generalise these findings to achieve a better
advantage for small-angle rotations by our choice of G from the Clifford hierarchy.

3.2. Climbing the Clifford hierarchy
From equations (12) and (13), it can be seen that the optimal channel decompositions over our choice of G
and C respectively are of the form {Z, R, Z}. Specifically, ¢ = 7/2 for RY =S and ¢ =7 /4for RS =T
with optimality valid within the range 0 < € < ¢. Therefore, for smaller target rotations, we can minimise
Ag(RE(-)) further by including R¢ channels with smaller ¢ in our choice of G.

First, welet i € Z>( and define n = 2i=1 ‘We then choose G to be

g:{Tﬁ(p):(T’Z)p<Tﬁ)T:1<k<8n}, (15)

where T+ is an nth-root T gate from the (i + 2)-th level of the Clifford hierarchy, and ¢ = 7 /4n. Therefore,
i=0 represents the S gate, i = 1 represents the T gate, and so on. These T gates can be implemented by a
generalised gate teleportation circuit as shown in figure 2.

We find that the LCC decomposition for equation (10) with G as equation (15) that minimises the
sampling overhead is given by

RE() =xZ () +x,T7 () +x2Z (), (16)

with corresponding Ag(RY(+)) as

in (0
g (R () =cos(6) + 505 (1= cos(4)). (17)
For small-angle rotations, Ag(RY(-)) can be approximated to be
0 N 1 —cos (o)
Ag (RY (1)) ~1+9(sin@5))’ (18)

5
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_____________

) S YT
] : 1
IT) = T|+) RNy
: L. !
VT) = VTI+) e él 5
VT = YT+) —D él

Figure 2. Generalised teleportation circuit to implement a v/T gate using i distinct magic states, where n = 2/, and Clifford
operations. Boxes and gates with a dashed line are classically controlled; they are only implemented if the measurement below
obtains an outcome with eigenvalue —1.

with a degree of resource saving compared to a Clifford decomposition of

v = % = cot (f) (19)

in the limit of small # (see appendix B.1). Therefore in the {Z, 7+, Z} decomposition, climbing the Clifford
hierarchy in terms of T channels results in a larger degree of saving compared to the {Z,S, Z} Clifford
decomposition.

We now consider the case where the non-Clifford channels in our basis set are subject to noise, as
originally motivated in the quasiprobability method. Non-Clifford operations (in our case 7 +) can be
implemented via encoded gate teleportation circuits using noisy encoded magic states and error-corrected
Clifford gates as shown in figure 2. The most relevant noise channel for these diagonal rotation gates in our
basis set is the dephasing noise channel (see appendix C), which is defined as

()

where p quantifies the amount of dephasing noise. The action of the dephasing noise channel on a unitary
channel in our basis set of unitary operations is given as

(1=p)()+pZ(")Z, (20)

udeph () —c (uideal ()) — (1 _p)uideal () —|—pZ Ouideal () ) (21)

As the number of iterations of the teleportation circuit increases for the implementation of gates from higher
levels of the Clifford hierarchy (figure 2), we find that the dephasing noise changes correspondingly. We
assume that each non-stabiliser state | T+ ) is prepared with uniform (independent of 6) fidelity. However, in
section 5, we discuss how #-dependent fidelities could lead to further performance improvements.

If the dephasing noise for a T gate implementation (requiring a | T) magic state) is p, the effective
dephasing noise for a T gate can be found by considering the errors on the non-stabiliser states that lead to
an error on the T gate. For example, the probability of a Z error acting on a T: gate is given by the
probability of an error occurring on either the |T) or | T2) state [50], that is

P) p 3 23
off = 1—= =(1— — ZP— AP 22
pa=p(1-2)+5(1—p)=3p—p" < 3p (22)
where we take into account that there is a 50% probability that a T gate correction needs to be applied (recall
figure 2). Therefore, the effective dephasing noise on a T gate is bounded by peg = (2 — n_l) p.

As a result of this, the I, -norm for the {Z,e(7#), Z} decomposition transforms from the ideal case in
equation (17) to the following:

1o () o () ]
S ETEN

6



10P Publishing

Quantum Sci. Technol. 10 (2025) 045066 S Luthra et al

— MMD with n = 0.5
1.084 MMD withn=1
—— MMD withn =2
—— MMD with n = 4
1061 __ MMDwithn=8
E\{
>1.04
1.021
1.00]

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Rotation Angle 6 (Multiple of i radians)

Figure 3. Ag(R?) as a function of target rotation angle 6 for different optimal decompositions of the form {Z, 6(7—:7 ), Z}
including the optimal Clifford decomposition of {Z,S, Z}. A dephasing error of 0.1% is assumed for non-Clifford state
preparation.

Y
N
N
5

MMD withn =1
| —— MMD withn =2
—— MMD withn =4
17 —— MMD withn =8
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[ A AR SR ——

= N
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Degree of magic resource saving
[ e
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v o u

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Rotation Angle 8 (Multiple of r radians)

Figure 4. Degree of magic resource saving -y as a function of target rotation angle 6 for different optimal decompositions of the

form {Z, E(T% ), Z} relative to the optimal Clifford decomposition of {Z,S, Z}. A dephasing error of 0.1% is assumed for
non-Clifford state preparation.

In figure 3 we present Ag(RY) as function of § for {Z,e(7 ), Z} decompositions with
n € {0.5,1,2,4,8} for p = 0.1% dephasing noise, where n = 0.5 corresponds to the S channel.

In particular, we are interested in the degree of magic resource saving v to benchmark against the classical
Clifford decomposition. As 8 — 0, y with respect to the {Z,S, Z} Clifford decomposition is approximated
by (see appendix B.2)

1 csc(9)

~

S T—pa) ) o4

From figure 4, we find that for p = 0.1% and in the limit of small 6, we can achieve at least a ~2.4 degree
of saving in the simplest case of a {Z,&(T ), Z} decomposition, and greater than ~11.4 degree of saving
relative to the Clifford decomposition by replacing 7 with a 7# channel.

We further note the dependence of Ag(R?) on the dephasing noise p. For p = 0.1%, increasing n in our
protocol results in a greater advantage up to n = 8, as shown in figure 4. However, for higher p, this is not
always the case. In fact, for 1% dephasing noise, going beyond n = 2 presents no further improvement in
resource saving as shown in table 1 (see appendix D for corresponding values of In(Ag(R?))). In other
words, the {Z,&(7?), Z} decomposition is optimal and provides a lower bound of ~3.6 degree of saving for
small 6. In general, the smallest value of n that provides the optimal saving can be found by maximising -y
with respect to n (indicated in bold in table 1).

A further useful metric to consider is the expected number of magic states required per sample for an
optimal decomposition of the form equation (16) which we derive from the proportion of |x,| relative to
Ag(R?), and the total number of magic states (per sample) required to implement a T gate using figure 2:

E:(2—1>|x’“| (25)
n) Ag(RY)

7
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Table 1. Degree of magic resource saving -y for a basis set of channels G with optimal channel decomposition {Z, E(T% ), Z} relative to
the {Z,S, Z} channel combination for increasing n up to the sixth level of the Clifford hierarchy, with non-Clifford gates subject to
dephasing noise with probability p. Values in bold indicate the decomposition that offers optimal -y for a given dephasing noise.

7 (Small 6)
n ¢ RY p=0.01% p=0.1% p=0.5% p=10%
1 z T 2.41 2.40 2.33 226
2 z VT 5.01 4.84 4.19 3.58
4 z VT 9.97 8.58 5.27 3.52
8 z VT 18.88 11.43 4.10 2.24

MMD withn =1
1 —— MMD withn =2
—— MMD withn =3
{ —— MMD withn =4

o
U

o©
IS

Expected Number of Magic States
o
-

o
o

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Rotation Angle 6 (Multiple of m radians)

Figure 5. Expected number of magic states E per sample as a function of target rotation angle 6 for different optimal

decompositions of the form {Z, 5(7-& ), Z} relative to the optimal Clifford decomposition of {Z,S, Z}. A dephasing error of
0.1% is assumed for non-Clifford state preparation.

In this expression, x, is the coefficient of the 7+ term in the LCC decomposition of the form {Z,&(7 ), Z},
and Ag is the I, -norm of the coefficients in this decomposition. As the target rotation angle 0 decreases, |x,|
also decreases, resulting in a smaller number of expected magic states. Thus, this method ‘dilutes’ magic
resource in simulating smaller rotations from 7# channels of higher magic resource. This dilution
phenomenon is evident in figure 5, which shows the expected number of magic states (per sample)
decreasing with the rotation angle 6.

We also present a comparison of our quantum protocol to the classical sum-over-Cliffords simulation
method [34]. The total runtime of this method scales as O(£/€*) where € is the stabiliser extent and € is the
precision of the simulation. Therefore, the sum-over-Cliffords method has a worse scaling w.r.t. the desired
precision than MMD where the scaling is proportional to 1/¢? as in equation (4). In the small 6 limit, the
stabiliser extent for a Z-rotation is given by

§(R(0)) = exp (tan (7/8)0). (26)

Therefore, we can define a resource saving degree ysg such that (Azg)’YSE = £ analogously to equation (24).
This results in

_ In(ER())
2In(Ag (RY))

z

vse (0) (27)

We present this with the caveat that MMD has an additional advantage with respect to precision e scaling,
which is not captured by vs.

As shown in table 2, the MMD method is able to achieve a better-than-quadratic advantage for p = 0.1%
dephasing noise with respect to the stabiliser extent. Meanwhile for higher dephasing noise, our method
provides comparable performance with a slight increase in magic resource for p = 1.0%.

4, Fermi—Hubbard model simulation

The Fermi—Hubbard model describes the behaviour of interacting electrons in 2D materials. The Hubbard
Hamiltonian is composed of hopping terms Hy, which represent the kinetic energy of electrons that can
tunnel between neighbouring lattice sites, and interaction terms H; which represent the potential energy due

8
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Table 2. Degree of magic resource saving 7ysg for a basis set of channels G with optimal channel decomposition {Z, 5(7—% ), Z} relative
to the stabiliser extent method for increasing # up to the sixth level of the Clifford hierarchy, with non-Clifford gates subject to

dephasing noise with probability p. Values in bold indicate the decomposition that offers optimal ysg for a given dephasing noise.

~se (Small 0)

n ) RS p=0.01% p=0.1% p=0.5% p=1.0%
1 z T 0.50 0.50 0.48 0.47
2 z VT 1.04 1.00 0.87 0.74
4 z VT 2.07 1.78 1.09 0.73
8 z VT 3.91 2.37 0.85 0.46

to the on-site repulsion of electrons. For this analysis, we consider H; subject to a chemical potential shift as
per [6]. The resulting Hamiltonian takes the form

u A A
H=H,+H; = E E A Ri,j“zT,a“LU + Z E Zi1Zi,| (28)
get, | i#j i

where a,a' are the creation and annihilation operators respectively, u is the repulsive interaction strength
between spin-up and spin-down electrons at each site, and 7 is related to the number operator 7i = aa by
z= (21— 1). The hopping strength is defined as R; j = 7 if i, j are nearest-neighbour lattice sites, allowing
electrons to tunnel between adjacent sites, and R; ; = 0 otherwise. We choose parameters that lie within the
regime widely considered to be classically challenging for simulation [6, 42]. As such, we set u =8, 7 =1 and
consider 2D square lattices of size L x L with L € {4,6,8}. The total number of spin orbitals is given by
N=2I"

To estimate the resource requirements for simulating the Fermi—Hubbard model using MMD, we employ
the Fermionic swap network Trotter step algorithm to implement a second-order Trotterisation of the
system, following [51]. We determine the number of rotations and corresponding angle of rotations required
for each second-order Trotter step. Specifically, for r Trotter steps, N, = 8Nr arbitrary rotations of angle
On = 7t/4r are needed to simulate the hopping terms, while N; = Nr/2 arbitrary rotations of angle
0; = ut/4r are required to simulate the interaction terms. This makes use of a slight improvement upon [51]
due to the shifted form of the interaction Hamiltonian [6].

From this, we calculate the number of magic states required per sample as

N, = Ny Ey 4+ NiE;, (29)

where the number of magic states Ej,(;) (per sample) for each rotation is given by

= (2= 1) bl (30)
h(i) = n) zg (th(o)

in analogy to equation (25).
The total number of samples (Ngmple) is calculated from Hoeffding’s inequality to be

Noample = M [(Ag (R2)™ (Ag (Rf‘))m} : (31)

6samp]e,EM

Here we take the probability of error mitigation failing, § to be 0.01 and the error bound for failure mitigation
€sample,EM t0 be 0.02. The total number of magic states over all samples then becomes

Niota = Ny X Nsample- (32)

Considering the exponential scaling of the sampling overhead, we first evaluate the total number of samples
for which our framework is practically feasible as a function of the evolution time ¢. We assume a dephasing
noise of p = 0.1% throughout the analysis in this section. In the limit of large Trotter steps for the MMD
method, the number of samples for a lattice size of L = 6 scales with ¢ as per figure 6.

We see that a purely classical implementation of our MMD method (for which n = 0.5) requires 107°
samples to simulate t = 0.35, whereas a quantum implementation of our method (so n > 1) requires from
10°! to 107 samples as n increases. We also overlay the upper-bounded runtime scaling of the stabiliser extent
method with precision e = 0.01 in figure 6.
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2D Fermi-Hubbard Model with L = 6

—— MMD withn = 0.5
10631 ;

MMD withn =1
10%7 4+ —— MMD with n =2
—— MMD withn =4
—— MMD withn =8
10%1 1 ---- Stabilizer Extent

1033 i

1073

1049 i

Nsample

1025 {
10174
109 4

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
t

Figure 6. Number of samples (Ngmple) required to perform MMD for the second-order Trotterised time evolution of the 2D
Fermi-Hubbard model in the limit of large (10°) Trotter steps.

2D Fermi-Hubbard Model with L = 4 2D Fermi-Hubbard Model with L = 6 2D Fermi-Hubbard Model with L = 8
1033 ---- Gate Synthesis 1033 { ---- Gate Synthesis 1033 ---- Gate Synthesis
MMD withn =1 MMD withn =1 MMD withn =1
1020 y 10%° . 102 .
—— MMD withn =2 —— MMD withn =2 —— MMD withn =2
1025/ — MMD withn =4 10251 — MMD withn =4 1025{ —— MMD withn=4

—— MMD withn =8 —— MMD withn =8 —— MMD withn =8

0.0 0.2 0.4 0.6 0.8 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.00 0.05 0.10 0.15 0.20
t t t

Figure 7. Number of magic states over all samples (Nyoa1) to perform MMD for the second-order Trotterised time evolution of
the 2D Fermi—Hubbard model compared to gate synthesis. Results are shown for an L X L lattice with L € {4,6,8}.

We finally present a representative comparison of this framework with direct gate synthesis methods.
Asymptotically optimal unitary synthesis is possible using the Ross—Selinger method [29] with
improvements possible by employing random compiling as shown in [52]. Adding an ancillary qubit, mixed
fallback techniques [53, 54] obtain the best T-count known to date:

Nr

Teynth = 0.53log, ( ) + 4.86, (33)

€synth

where Ny = Nj, + N; is the total number of rotations.

To ensure a fair comparison, we allow an error budget of €gyneh + Etrotter = 0.01, a favourable sampling
error €gumple,rs = 0.01, and Ngmple is a constant. Here, €orer = Wrst /s* is the Trotter error for the Fermionic
swap network algorithm, taking Wgg values from [51]. From this, we optimise the number of required
Trotter steps s that minimise Ny Teyne for gate synthesis.

In figure 7, we see that the MMD method provides a significant reduction in the magic state count for
very small ¢, for all cases of n. Smaller lattice sizes see up to a few orders of magnitude saving and could
provide an advantage for longer t compared to direct gate synthesis. To achieve the same advantage as the
lattice size and evolution time increases, MMD requires gates from higher levels (larger n) of the Clifford
hierarchy as shown. In particular, for L = 4,6 and 8, MMD presents at least an order of magnitude resource
saving for time evolution up to 0.8, 0.35 and 0.2 respectively.

5. Discussion and conclusions

In this paper, we have presented our MMD framework for implementing small-angle single-qubit
Z-rotations, making use of error mitigation to provide an advantage in terms of the sampling overhead when
benchmarked against a classical approach.

We have further identified a use-case of MMD for simulating time evolution of the Fermi—-Hubbard
Hamiltonian using Trotterisation. Through this, we have demonstrated a resource benefit of implementing
MMD over conventional direct synthesis when taking into account the number of magic states and sampling
overhead. Thus, our framework is suitable for early fault-tolerant quantum computers. Broadly speaking,

10
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our approach is more advantageous for algorithms containing a large number of very small angle rotations,
such as Trotterised simulations. Our work hints towards a wide variety of directions for future work when
larger angle rotations are encountered, including hybrid approaches with MMD used for small angles and
synthesis used for larger angles, and hybrid approaches where the gate set G used in MMD includes partially
synthesised rotations.

A key assumption we have made in our MMD method is that all magic states are prepared with the same
fidelity. Consequently, we observed optimal performance at some finite level of the Clifford hierarchy, fixed
by the fidelity. However, recent literature indicates that this can be improved such that magic states of smaller
rotations—and therefore gates higher in the Clifford hierarchy—can be prepared with a lower logical error
rate 8, 55]. This is particularly relevant for this work as it suggests that the optimal performance will be at
even higher Clifford hierarchy levels, leading to higher degrees of magic resource saving and hence speedup.
Recent methods including magic state cultivation [56] to construct high fidelity | T) magic states also
complement the methods we present in this paper, however further research is needed to determine the
feasibility and effectiveness of applying similar techniques to other magic states such as |T%> for higher levels
of the Clifford hierarchy.

It would be interesting to further analyse the resource requirements when compiling down to lattice
surgery operations for particular algorithms. Since our scheme uses repeated teleportation circuits (recall
figure 2), these can be realised with logical ZZ measurements without using Hadamard gates or patch
rotations. In contrast, when using the gate synthesis approach, we require either Hadamard gates that take a
long time to execute [57, 58], or a fast data block structure that comes with an additional qubit overhead
compared to compact layouts [46].

The Trotterised time evolution studied in this paper lends itself well into statistical phase estimation for
future work. Furthermore, we have studied the effect of single-qubit dephasing noise channels, however for
specific quantum hardware, it may be worthwhile to explore other noise models. Finally, further
advancements in better logical magic states as discussed earlier will improve the advantages presented in this
paper.

We have compared our approach against two families of near-Clifford simulators. Clearly, there are a
range of other simulators to consider, including tensor network simulators that are suited to shallow local
circuits on 2D arrays of qubits [59]. However, our techniques are directly applicable to simulating systems
with long-range interactions or in higher-dimensional geometries, and in such settings tensor-network
methods perform poorly. Conversely, we envisage further improvements to MMD by extending to a dyadic
decomposition approach similar to that used in some classical simulators [32].
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Appendix A. Minimum requirement of three channels

In the general case, A and b in equation (10) can be written in matrix form as

cos? (7‘ cos® (% cos? (%)
A= |cos (%) sin (%) cos (%) sin (%) cos (%) sin (%) e (A1)
sin? (% sin? (% sin’ (%

11


https://doi.org/10.5281/zenodo.15427988
https://doi.org/10.5281/zenodo.15427988

10P Publishing

Quantum Sci. Technol. 10 (2025) 045066 S Luthra et al

and
b= cos(g)sin(g) . (A2)

Specifically for the two channel case, we have
cos? (& cos? (¢2)
1\ qin [ 21 b2\ o 2 x| _ 0 cin (0
cos (% )sin (%) cos (%) sin (%) | [22] = |eos(£)sin (9 (43)
sin” (ﬁ‘) sin” (%) ’

from which we write three simultaneous equations:

x; cos’ <q;1> + x, cos’ <q;2> = cos’ (2), (A4a)
X1 COS (?) sin (?) —+ X, cos (?) sin (d;z) = cos (Z) sin (Z), (A4Db)
x; sin? (?) + x, sin? (iz) = sin? (2) (Adc)

Upon solving equations (A4a) and (A4c), we obtain
X1 +X2 = 17 (A5)

which arises due to the unitarity of the channels. From this, we can find two solutions for x; by substituting
this into equations (A4a) and (A4b) respectively, resulting in

cos((0+¢1) /2)sin(
cos((qbl +¢2) /2)sin((¢1 + ¢2) /2)
)

_ sin((6+¢1)/2)sin((0 +¢») /2)
sin ((¢1 + ¢2) /2)sin ((¢1 + ¢2) /2)°

Therefore all three equations in this overdetermined system are only satisfied when

0+ 2)/2)

N

(A6)

N

¢1:0+2kﬂ' :>X1:1,X2:0 (A7)
or
¢2:9+2k7{' =x1 =0, =1, (AS)

where k € Z, i.e. the trivial case of only a single channel in the decomposition. So, for multiple channels in
the decomposition, at least three channels are required.

Appendix B. LCC decomposition for {Z, 7+, Z} channels

In the main text, we showed that the optimal decompositions found using convex optimisation were of the
form {Z,T#,Z} for both ideal and noisy 7 channels. In the following sections, we derive the /;-norm and
v corresponding to these optimal decompositions.

B.1.Ideal case
A T+ channel can be written as a Z-rotation channel with rotation angle ¢,

RY (p) = e 157pelt?

= cos’ <(§)p+sin2 (f)ZpZ—&—icos <(§) sin <¢> [pZ—Zp], (B1)

where ¢ = . Recall that n = 2'~! where i € Z3 such thati=0is the S channel, i =1 is the 7 channel, etc.
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For an LCC decomposition in terms of {Z, R, Z} channels, we obtain

R (p) = x0T (p) + xRS (p) + %22 (p

= Xxop + x1 (cos ( >p+1cos< )sin <(§) [pZ — Zp] + sin® (f)ZpZ) +x,ZpZ
= <x0 + cos? ( ) ) p+icos ( ) sin (f)xl [0Z—Zp| + <sin2 (f)xl +x2) ZpZ
= cos? (i)p—i—l cos <2> sin (Z) [pZ — Zp] + sin’ <2)ZpZ.

The coefficients x; can be determined by solving three simultaneous equations:

Xo + cos’ (f)xl = cos’ <Z), (B2a)

cos (¢> sin (¢>x1 = cos (9) sin <0), (B2b)
2 2 2 2

sin? <i))x1 +x, = sin’ (Z), (B2¢)

ames(3)- (29 (9)

sin (6)
sin(¢)’ (B3b)

i (5) = (i) (3)
The I;-norm of this decomposition for target rotation angles 0 < 0 < ¢ is
Ag (RY) = |xo| + x| + ||
oot (5) = (Sm05 ) o (5) |+ st o (5) - (i) (3)
o (3) = (5o (3) -3y - (5) + (s o (4)

= COS sin (9) — COS
—cos(0) + 510 (1-cos(e) ). (B4

N\@

with solutions given by

X1 =

+

noting that x, < 0 while xo,x; > 0 for this range of 4.
For small rotation angles 6, we approximate

Ag (RY) = cos (6) +sin (6) (1—605(‘75)>

sin(¢)
1§ e((5n)
~1+6 (W) . (B5)

Thus 7 in equation (14) is obtained as follows

In(Ac(RY)) In(146) 0 sin (@) )
9 = = ~ = = —).
,Y( ) ln(Ag('Rg)) ln(1+9(1;§o(sq§;b))) (lzhclo(sdggzﬁ))a 1 7COS(¢) COt(z) (B6)
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B.2. Dephased 7+ case
We consider a dephasing noise channel as given by equation (21). In the main text, we define an effective
dephasing noise pefr, which we use in the following derivation.

The dephasing noise channel can applied to R as follows:

e(R? (p)) =(1=perr) (RY (p)) + peisZ (RY (p)) Z

= {cosz (f) — Peff COS (qb)] p+ (1 —2pefr) {i cos <(§> sin <(§>} [pZ — Zp]

+ [sin2 (;b) +peffCOS(¢):| ZpZ. (B7)

The LCC decomposition of the RY(p) channel in terms of {Z,e(RY), £} is given by

ot (1— 2pea) [i cos @) sin <¢)

ZpZ| +xZpZ (B8a)

R (p) = %I (p) +x1¢ (RS (9)) + %2 (p)

cos? <(§> — petrcos (P)

sin’ (f) + pettcos (o)

= (xo+ cos< ) — pefrcos (@)

( sin ( >+peffCOS ®)
= cos ( >p+1cos<§)sm<6>[p2 Zp] + sin® (i)ZpZ (B8b)

The coefficients x; can be determined by solving three simultaneous equations:

= Xop+x1 [pZ — Zp]

+

x1)p +1(1 — 2pefr) cos (f) sin <(§)x1 [pZ — Zp)

X1 + XZ> ZpZ

X0+ {cos2 (?) — DeffCOS (¢)} x; = cos? (g), (B9a)
(1 — 2pefr) cos (f) sin (f)xl = cos <Z> sin (g), (B9b)
{Sin2 (f) + Pefr COS (d))] X1 + x, = sin® (2) (B9c¢)
with solutions given by

_ oot 2 (9 sin (9)

X9 = €Os (2> - [cos <2> peffCOS(¢):| 0= 2pm)sin(d) (B10a)
_ sin (6)

T = 2pa)sin(9) (107

_ a2t .o (¢ sin (6)
X; = sin (2> — [sm <2) +peffCOS(¢):| m (B10c¢)

The I;-norm of this decomposition is

Ag (RY) = xo| + 1| + |x2] , ,
= |cos® (Z) - |:C052 (f) - prcos (gb)} (1—- ;;I:fffgm (¢) ‘ - ’ (1- ;;I:fﬁ)es)m (9)
sin? (2) - [sin2 (i) -I-PeffCOS(fb)} (lzs;r:ff)es)mw’

— cos? (Z) —~ {«:os2 (i) — Pef COS (‘f’)} a- ;;I:fi)gs)in(@ = 252;)63111(@

_|_
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(e[ (3)-

sin(6)

S Luthra et al

sin(6)
Dt cos (éf’)} (1 —2pesr) sin(¢)

= cos (0) — 0= 2pa) sin(d) ((1 — 2pefr) cOs () — 1>
. 1
—cos(0)+sm(0)((1_2peff) csc(9) —cot(qﬁ)). (B11)
for target rotation angles 0 < 6 < ¢. For small 0, we can approximate
Ag (RY) = cos(0) +sin (0) <(112peff) csc(¢) — cot (¢))
~1 6? 0 1
Rl-= + <(1 ) csc (o) — cot(qﬁ))
~1+6 ((1—2,4?eff) csc(9) cot(d))) . (B12)
Therefore, 7 becomes
_In(Ac(R?))
1) = (he (RD))
_ In(1+6)
In <1 +0 (m csc(¢p) — cot (¢))>
N 0
0 ((1_1% csc(¢) — cot (¢))
- (B13)
ey — ot (@)

Appendix C. Noise in generalised gate t

eleportation circuit

We can show that the generalised gate teleportation circuit in figure 2 results in a rotation that differs from

the target rotation 6 by either dephasing noise, o
handled through calibration, and accurate calibr:
estimation of the level of dephasing noise presen

r coherent errors. We note that coherent errors can be
ation is an underlying assumption required for the
t.

We proceed by considering a single step of generalised teleportation with noisy states as shown in

figure 8.

p—————4

o~ [VT) (VT4

L T —E(p) ~ VTP VT

B

Figure 8. A single step of generalised teleportation when the magic state used is an arbitrary mixed state o,. The outcome of the
measurement is denoted m such that the correction is applied if m =1 (eigenvalue is —1).

The state o, will have an eigenvalue decomposition

T = |po){Po| + |p1) (1]

where |¢;) are not individually normalised, but (

(C1)

®oldo) + (P1]#1) = 1. It is a common assumption to take

|po) = /T —p|V/T T) and |¢;) as its orthogonal partner. However, the purpose of this appendix is to allow for

a fully general o,,.

After measurement outcome 1, p gets mapped to

Em(p) =k

15

O,mp/{/(];’m +/€1,mP/€J{,m, (CZ)
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where k; ,, is the Kraus operator corresponding to teleportation using a pure state |¢;) after measurement
outcome m. Denoting |¢;) = A;|0) + B;|1), calculating the action of the teleportation circuit one finds

k0,0 = Ao|0) (0] + Bo[1) (1] = (AOJZFB(’)H (A‘);BO)z, (C3a)
ko1 = Ag|1) (1] + Bo|0) (0] = <A°JZFB°> I+ <_A°2+B°> Z, (C3b)
10 = A4[0)(0] + By [1)(1] = <A1 j31>1+ (Al ;BI>Z, (C30)
o =AQ|+Bjoyo = (52 ) 1+ (FREE) 2 3

and so every relevant Kraus operator is diagonal in the Z-basis. Therefore, expanding out the channel we find
that

En(p) = ngop + E(r)rflpz+ ETZOZP + E%ZPZ (C4)

where Ek"f(g are numbers depending on Ay, A1, By, A, that in turn depend on o .

We are not quite done because in the case where m = 1, we need to apply a correction (i.e. using a magic
state from one level lower in the Clifford hierarchy o, /2). Nonetheless, this correction process will also
perform diagonal Kraus operators, and since the group of diagonal operators is closed in multiplication, we
conclude that generalised teleportation will result in some channel £ that is a sum of diagonal Kraus
operators. Expanding these out in the Pauli basis, we will again have an expression of the form

E(p) = Eo,op+ Eo1pZ+ Ey 0Zp+ E11ZpZ, (C5)

where E; ; depend on the density matrices of all magic states {0, 0,/2,0,/4,...,01} in the generalised
teleportation circuit. This means a large number of parameters are involved, but fortunately we can proceed
with our proof using only the form of equation (C5) and the following observation: once all corrections are
completed (we mix over all measurement outcomes) the full channel £ must be CPTP. Note that, in contrast,
each component &,, will be completely positive (CP) but not necessarily trace preserving (TP). Therefore,
under the Choi-Jamiotkowski isomorphism, the Choi state for this channel must be a physical density matrix
(Hermitian, positive semi-definite and trace normalised to unity). Furthermore, due to the form of

equation (C5), the Choi state has the form

ao 0 0 ag,
0 0 0 0
@ =(Een(o)e)=| o 00 (o)
a0 0 0 ap,
where for instance a; ; = (Eg .o — Eo,1 — E1,0 + E1,1)/2. In particular, the Choi state has at most 2 non-zero

eigenvalues, and by the CPTP property we can denote these as p and 1 — p (with 1 < p < 0), so they can be
interpreted as probabilities. Therefore,

Qg = p|Ko) (Kol + (1 —p) [Ki)(Ki| (C7)

where |Kj) are a pair of orthogonal pure states supported on the non-trivial 2 x 2 submatrix of
equation (C6). We may now reverse the Choi—Jamiotkowski isomorphism, so that

€ (p) = pKopK} + (1 - p) KipK] (C8)

where K; is the single Kraus operator isomorphic to the state |K;) (Kj|. Since the state representation is
restricted to a specific submatrix, we can conclude that K; are unitary operators diagonal in the Z basis and
we are free to choose the global phase. Therefore, there exists angles ¢; such that K; = R,(¢j). Finally, since

|K;) are orthogonal to each other, we can conclude that Tr[K}LKO] = 0. This orthogonality entails that ¢, is
such that K; = KyZ upto a global phase. This brings us to the final form

E(p) =pRE (p)+ (1 =p)ZRI (p) Z (C9)

which has the claimed form of dephasing noise and potentially a coherent error which deviates from the ideal
angle ¢ by a phase of 6 = o — ¢.
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We have assumed throughout that physical noise is well characterised. The impact of changes in the
magic states o, affects the form of the resulting channel £. If there is a undesired coherent error, we can
adjust the angle of the prepared magic state o, to eliminate this, thereby leaving only dephasing error as
assumed throughout the main text.

Appendix D. Supplementary Data

Table 3. In(Ag(R?)) as a function of target rotation angle @ for different optimal decompositions of the form {Z, 5(7—%1 ), 2} including
the optimal Clifford decomposition of {Z,S, Z}. The values presented here correspond to the relative values used to calculate ~ in
table 1.

In(Ag(R?Y)) (Small §)

n ¢ RY p=0.01% p=0.1% p=0.5% p=1.0%

0 z S 1.00 x 10~ 1.00 x 107 1.00 x 107 1.00 x 10~
1 z T 4.14x107% 417 x107% 4.28x 107" 443x 107"
2 z VT 2.00 x 107% 2.07x 107% 2.39%x107% 240 x 107%
4 z VT 1.00 x 107 1.16 x 107 1.90 x 107% 2.84x107%
8 z VT 530 x 107 8.75x 107" 2.44x107% 4.47 x 107%
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