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Noise-aware training of neuromorphic
dynamic device networks

Luca Manneschi 1,5 , Ian T. Vidamour 1,5 , Kilian D. Stenning 2,

Charles Swindells1, Guru Venkat1, David Griffin3, Lai Gui2, Daanish Sonawala2,

Denis Donskikh2, Dana Hariga1, Elisa Donati 4, Susan Stepney 3,

Will R. Branford 2, Jack C. Gartside 2, Thomas J. Hayward 1,

Matthew O. A. Ellis 1 & Eleni Vasilaki 1

In materio computing offers the potential for widespread embodied intelli-

gence by leveraging the intrinsic dynamics of complex systems for efficient

sensing, processing, and interaction. While individual devices offer basic data

processing capabilities, networks of interconnecteddevices can performmore

complex and varied tasks. However, designing such networks for dynamic

tasks is challenging in the absence of physical models and accurate char-

acterization of device noise. We introduce the Noise-Aware Dynamic Optimi-

zation (NADO) framework for training networks of dynamical devices, using

Neural Stochastic Differential Equations (Neural-SDEs) as differentiable digital

twins to capture both the dynamics and stochasticity of devices with intrinsic

memory.Our approach combines backpropagation through timewith cascade

learning, enabling effective exploitation of the temporal properties of physical

devices. We validate this method on networks of spintronic devices across

both temporal classification and regression tasks. By decoupling devicemodel

training from network connectivity optimization, our framework reduces data

requirements and enables robust, gradient-based programming of dynamical

devices without requiring analytical descriptions of their behaviour.

Before digital computation became widespread, analog dynamical sys-

tems were key in early computational platforms, with applications ran-

ging from solving differential equations1 to controlling early anti-aircraft

guns2. These systems leveraged analogies between the inherent dynamic

properties of analog components and their target applications to repli-

cate behaviors with a high degree of control. They were particularly

valuable for real-time testing beyond the capabilities of early digital

computers, trading precision for speed3. However, as complementary

metal-oxide semiconductor (CMOS) technology rapidly developed4,

digital platforms became increasingly fast and powerful. The greater

accuracy and programmability of digital computers ultimately led to the

replacement of analog systems by their digital counterparts.

More recently, the rapid expansion of machine learning has been

propelled by the alignment between algorithms and hardware.

Graphical5 processing units (GPUs) and tensor6 processing units

(TPUs) have enabled the massive parallelization of matrix operations,

leading to significant performance improvements by building large

models out of relatively simple computational units. However, the

increased reliance on large-scale models and extensive parallelization

has also led to a worrying trend of rising energy costs7.

In-materio computing, much like analog computing, harnesses

the natural properties of materials to perform computations, provid-

ing an efficient alternative to conventional methods for data

processing8. The principles of reservoir computing (RC)9, which
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originally involvefixed recurrent networks for computation, have been

adapted to physical systems. In these systems, the inherent dynamics

of thematerial serve as the computational resource10–14. In RC, only the

output layer is trained, while the recurrent network–or, in the case of

physical RC, the material–functions as a fixed temporal kernel, thus

avoiding the complexities of optimizing dynamic processes. Reservoir

computing has been explored in neuromorphic applications for tem-

poral tasks like EMG classification in prosthetics15,16, but its fixed

dynamics limit adaptability and performance in complex tasks, high-

lighting the need for trainable systems that optimize parameters while

accounting for noise and dynamics. Because the internal network

structure itself is not trained, achieving the desired dynamic trans-

formations often requires a high-dimensional network, as higher

dimensions increase the likelihood of finding a suitable solution.

Outputs from these systems canbeobtaineddirectly from thematerial

itself14, through multiplexing techniques10, or by iteratively building

networks by interconnecting multiple devices based on metric

evaluations17. Despite these strategies, reservoir computing networks

often face performance challenges when compared to networks where

all parameters can be optimized using gradient-based methods. Fully

optimisable networks typically performbetter because they can adjust

all their parameters to suit specific tasks18.

To perform optimization on in-materio computers, general

methodologies have beendeveloped that train the interconnectivity of

devices, leading to the concept of physical neural networks (PNNs)19–21.

In PNNs, each node in a neural network corresponds to a physical

device. Unlike neuromorphic computing platformsdesigned to closely

emulate biological neural architectures or systems22–26, PNN frame-

works focus on optimizing the parameters that govern the interactions

between devices. This approach allows for a flexible selection of

material systems that offer a wide range of nonlinear responses,

varying in complexity and functionality, akin to activation functions in

artificial neural networks (ANNs).

Multiple approaches have emerged for optimizing PNNs. The

Physics Aware Training (PAT) method21 involves measuring device

responses and estimating derivatives for backpropagation using a

digital twin–a faithful model of the device. More recently, methods

that avoid digital twins have been developed, using direct feedback

alignment19,27 or forward-forward algorithms20,28 to optimize without

gradient backpropagation. These methods approximate gradient

descent with techniques directly applicable to the physical substrate,

where devices provide simple transfer functions on current inputs.

However, no existing approach can optimize PNNs in systems with

dynamic behaviors and intrinsicmemory–memory due to the inherent

properties of the device materials–in general settings. Current meth-

ods assume devices are static and memoryless, and thus cannot opti-

mize or leverage dynamic processes. As a result, they are unable to

utilize functional memory sources, which are essential for temporally-

driven tasks and in-memory computation. To fully harness material

computational capabilities, a device-agnostic optimization method

that accounts for dynamic processes is needed.

An important initial step in this direction was made with the

proposal of using neural ordinary differential equations29 (neural-

ODEs) to model dynamic devices, with their feasibility demonstrated

through simulations30. However, these models are not capable of

capturing the noise in the system,whichwehypothesize is essential for

the robust transferability of parameters that control the interactions

among devices from simulation to physical dynamical devices.

In this paper, we present the Noise-Aware Dynamic Optimization

(NADO) framework, a universal framework for gradient-based opti-

mization in deep networks of interacting dynamical systems. Our

method does not require a mathematical description of the physical

system, is entirely data-driven, and can be applied to any device that

can be modeled as a differential equation, as long as sufficient sam-

pling of input-output relationships is possible. To achieve this, we

develop a generalized formulation of neural stochastic differential

equations (Neural-SDEs)31–33 capable of capturing colored noise, where

different frequencies have varying power levels in the power spectral

density, representing realistic noise characteristics observed in phy-

sical devices.

We apply our methodology to experimental spintronic devices

previously used in neuromorphic computing applications14,17,34–37. This

enabled performance in classification tasks beyond the capabilities of

physical reservoir computing implementations using these systems,

including in a gesture recognition task for generating motor com-

mands for neuroprosthetic devices from real patients’ surface elec-

tromyography signals. We demonstrate that noise modeling is crucial

for transferring performance from simulations to networks of devices,

allowing us to achieve high accuracy in regression tasks for the first

time in fully optimized dynamic PNNs. Additionally, by employing

cascade learning38,39
–building the network layer by layer–we illustrate

that, in principle, this methodology could be extended to arbitrarily

deep networks, requiring only limited experimental data for each

layer. This work marks a significant advancement in the application of

complex material systems to PNNs, enabling gradient-descent-based,

noise-aware optimization of the connectivity of arbitrary,

mathematically-agnostic devices with intrinsic memory.

Results
The NADO process for training networks of arbitrary dynamical devi-

ces involves three distinct phases, as illustrated in Fig. 1. First, differ-

entiable digital twins–models that allow for the calculation of

derivatives using standard tools–are trained to replicate the input-

output responses of devices based on experimentally collected data

(Fig. 1a). Next, these digital twins are used in network simulations of

devices, where the interactions between the devices are optimized

(Fig. 1b). Finally, the optimized parameters from the simulations are

transferred directly to the physical network, where performance in

benchmark tasks is assessed (Fig. 1c). An overview of these stages is

provided below, with more detailed explanations available in the sup-

plementary information.

Neural-SDEs as differentiable digital twins
Previousworkon fully-optimizedPNNshas focusedondeviceswithout

intrinsic memory. In contrast, networks of devices with intrinsic

memory significantly increase training complexity because past inputs

and states directly influence current behavior. This is analogous to a

tennis player trying to hit a moving ball: any change in the position of

the ball or the player affects all subsequent actions and movements

(schematic in Fig. 2a). Similarly, in dynamical systems, adjustments

made at any point in time can propagate through the network,

affecting future states and complicating optimization. Algorithms that

account for dynamicbehaviors, suchas backpropagation through time

(BPTT)40 and more recent methods41,42, are crucial. These algorithms

capture the influence of past changes on future states, enabling opti-

mization over temporal sequences.

When computing gradients through numerical integration

schemes–such as those used for training models based on differential

equations–two methodological classes are typically considered:

optimize-then-discretize (indirect) and discretize-then-optimize

(direct). In direct methods, like backpropagation through time

(BPTT) applied to the integration scheme, the continuous system is

first discretized, and differentiation is performed on this explicit

sequence of operations. This approach provides mathematical preci-

sionby ensuring thatgradients are computed exactly for thenumerical

scheme being used, but requires storing all intermediate states,

resulting inmemory costs that scale asOðtÞwith the length of the input

signal t.In contrast, indirect methods such as the adjoint sensitivity

method43 take the continuous-time gradients first, then discretize,

which allows gradients to be computed with constant Oð1Þ memory

Article https://doi.org/10.1038/s41467-025-64232-1

Nature Communications |         (2025) 16:9192 2

www.nature.com/naturecommunications


cost with respect to signal length. However, this can sometimes

introduce additional numerical error or instability, depending on the

integration method and system dynamics.

In this work, we employ direct methods to maximize accuracy, as

they most faithfully represent the discretization performed, and it

matches the optimization performed on the discriminator network in

the GAN framework of the SDE (see Supplementary Fig. 2c). To manage

the associated memory demands, we truncate gradients beyond the

intrinsic memory length of the device, since contributions from longer

histories are negligible. For devices with much longer intrinsic memory,

the resource demands of direct methods may be impractical, making

indirect approaches more attractive despite their potential trade-offs.

However, when applying these methods in practice, mismatches

between the model and experimental data can accumulate over time,

especially in deeper networks, where errors compound with each

additional operation. Furthermore, physical systems rarely exhibit

perfectly deterministic responses. Noise in experimental data cannot

be captured by deterministic models alone, and optimization based

solely on noise-freemodels often leads to sub-optimal solutions in real

devices. By explicitly modeling noise in the simulation process, we

close the simulation-reality gap and enable the discovery of network

structures that are robust to noise, thereby improving the real-world

performance of transferred networks.

In thiswork, we study two spintronic systems: nano-magnetic ring

arrays (NRA)35–37,44 and artificial spin vortex ice (ASVI)14,17. As illustrated

in Fig. 2b for the NRA, device responses exhibit stochastic variation

across repeated presentations of the same input sequence, with the

response distribution shaped by both current and past inputs. This

variability originates from intrinsic physical dynamics and experi-

mental noise. To address the resulting simulation-reality gap, we

extend the Neural stochastic differential equations (Neural SDE) fra-

mework to capture signal-dependent noise with complex auto-

correlation. Compared to approaches such as long short-termmemory

networks (LSTMs), neural differential equations provide several

advantages: higher predictive accuracy, implicit access to partial

derivatives via numerical integration, and natural integration of sto-

chastic dynamics through SDEs. Supplementary Fig. 16 compares the

prediction accuracy and number of trainable parameters for Neural

ODE and LSTM models, and information on dataset construction and

hyperparameter selection are tabulated in Supplementary Fig. 17.

Figure 2c shows the architecture of the proposed Neural-SDE

model, comprising two neural networks: one for deterministic

dynamics and another for stochastic dynamics. These networks are

coupled via the numerical integration method, enabling the model to

represent explicitly how system output depends on device state and

external inputs, incorporating both deterministic and stochastic

components. This structure supports noise-aware gradient computa-

tion for backpropagation through time (BPTT). The Neural-SDE

architecture thus parameterizes the stochastic differential equations

that definehowdeviceoutput evolves as a function of the current state

and external input.

The deterministic network (upper) and the stochastic network

(lower) each receive external input signals and a sequence of past

device states. The history lengthmust be sufficient to approximate the

systemasMarkovian, ensuring that future states canbepredicted from

current inputs and recent device states. When this criterion ismet, the

method is applicable to any dynamical system. The stochastic network

also receives auxiliary variables to support noise modeling. Outputs

from both networks are integrated using a stochastic numerical

scheme to produce the device’s activity (readout) at the next timestep.

This value is recursively fed back as the most recent device state.

Orange arrows in Fig. 2c indicate error gradients with respect to device

activity and external input, as computed during BPTT.

Figure 2d compares the outputs of the two models. The neural-

ODE model provides deterministic predictions that capture the main

trend for given inputs. In contrast, the neural-SDE model generates a
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Fig. 1 | Overviewof theNoise-AwareDynamicOptimization framework. aModel

Generation: Experimental devices (green squares) are driven under random inputs,

their observable states are recorded, and these data are used to fitmodels of device

dynamics (shaded circles). b Network Simulation: A neural network is constructed

where each node replicates the dynamics of the original device, using the trained

model. Parameters controlling device interactions (networkweights) are optimized

for a task via backpropagation through time (BPTT) or truncated-BPTT on the

interacting digital twins. c Experimental Transfer: The parameters optimized in

simulation are transferred like-for-like to experimental networks where each node

is a real device, and task performance evaluated.
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range of trajectories that approximate the observed distributions for

the same inputs. The reference dynamics (red lines) show noise-

induced bifurcations, which arenot capturedby the neural-ODEmodel

but are effectively modeled by the neural-SDE model.

Temporal classification benchmarks
Here, we use the NADO framework to optimize the connectivity in

networks of interacting devices. The physical devices represent each

hidden node in the network and are treated as fixed nonlinear tem-

poral kernels, with only theweights of the networkoptimized. First, we

perform a classification task on a modified version of the MNIST

dataset. To introduce a memory component, each MNIST digit image

was split into n separate images containing a random subset of the

original pixels. When combined, these images reconstruct the full

digit. The partial images were presented to the physical system

sequentially, requiring it to use memory to classify the original digit

from the sequence. Final predictions were based on the network’s

response at the end of the sequence.

To extendour study to amore challenging task, theNRAnetworks

were trained to recognize hand gestures for controlling a neuropros-

thetic device45. This task used real-world electromyography (EMG)

data collected from the forearms of patients performing seventeen

different hand and wrist movements. Predictions were based on the

class with the highest output within a window corresponding to data

acquired between 120-180 ms after the gesture onset (see Supple-

mentary Fig. 13). The integration of neuromorphic systems with EMG

data presents a promising avenue for addressing the challenges of real-

time temporal classification46,47, with the potential to leverage low-

energy computation to improve the efficiency of gesture recognition

for neuroprosthetic applications.

Figure 3a provides an illustration of the tasks. Figure 3b compares

the responses of the physical network of magnetic nanorings to their

simulated counterparts. The dynamics of four nodes from two differ-

ent layers are shown in red. Simulated activities are in black, with the

digital twins’ response distribution in gray. The horizontal bars

represent output activations of different physical devices for a given

Fig. 2 | Modeling and optimizing dynamic behaviors. a Schematic analogy of

temporal dependencies. Altering an action in the past has consequences for all

future actions. Similarly, for backpropagation through time (visualized by orange

arrows), changes to the final output caused by all past inputs and states must be

taken into consideration. In the framework, digital twins (shaded circles) are used

to estimate dependencies betweenoutput and input.b Schematic showing samples

from distributions of initial conditions, which subsequently affect the predicted

trajectory. Gray clouds show the distribution of all gathered data for a given ran-

dom input sequence, while red lines highlight specific trajectories. c Schematic

diagram of the Neural-SDE architecture. Inputs of device states (activities), external

driving stimuli, and auxiliary variables feed into a pair of distinct neural networks

that handle the deterministic (upper network) and stochastic (lower network)

behaviors. The output of these networks feeds into a numerical ODE solver, gen-

erating predictions of both activities and auxiliary variables for the next timestep.

The results are recursively fed back as inputs to the next timestep prediction,

generating predicted trajectories from initial conditions and external driving sig-

nals. Black arrows show forward propagation of activities; orange arrows show

backward propagation of gradients. d Comparison between predictions generated

via neural-ODE and neural-SDE models. The neural-ODE produces a single deter-

ministic outcome for a given set of initial conditions and input stimuli, shownby the

yellow line. The neural-SDE instead generates sampled trajectories from a dis-

tribution based on the learned noise characteristics. The black lines show 100

generations of a signal via the neural-SDE, while red lines show real experimental

data from repeated identical input sequences. As in (b), blue circles represent

selected initial conditions and the gray clouds represent the distributions observed

across all experiments. Further comparisons of experimental versus simulated

trajectories of both experimental devices can be found in ?
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input frame. Despite some mismatches, the simulated network’s

activities correlate well with the experiment, leading to the same

classification outcome. Figure 3c displays the predicted and experi-

mentally achieved accuracies for different task difficulties, measured

as the percentage of visible pixels, in networks with single and two

hidden layers. The task proved challenging for networks with a single

hidden layer due to the well-established non-linearity/memory trade-

off48, where a single hidden layer is taskedwith both remembering past

inputs and non-linearly combining the information simultaneously.

This challenge is also observed in analytical systems, where perfor-

mance significantly improves when the network architecture includes

more than one layer (see Supplementary Information).

To demonstrate the importance of noise awareness in network

optimization, we compare Neural-ODEs and Neural-SDEs as digital

twins (Fig. 3c). Neural-ODEs, which do not incorporate noise, fail to

provide information about noisy response regions that should be

avoided during optimization. This limitation results in inaccurate

predictions of the physical neural network’s performance, particularly

when additional hidden layers are added. In contrast, Neural-SDEs

account for noise, enabling the optimization process to identify

parameter values that remain robust under stochastic variations and

experimental conditions. These findings underscore the necessity of

incorporating noise into digital twins to achieve reliable network

optimization.

The baseline performance, shown as red dashed lines, corre-

sponds to physical neural networks with the same architecture but

randomized hidden-layer connectivity, following the reservoir com-

puting paradigm for both one-layer (left, orange) and two-layer (right,

green) networks. The hidden weights are randomly drawn from dis-

tributionsmatched to those of the Neural-SDE-optimized network (see

Supplementary Fig. 11b), while only the output weights are optimized.

This demonstrates that achieving high performance requires optimi-

zation of the entire network connectivity, not just the output layer.

Two-layer networks of nanorings optimized using interacting

neural-SDEs demonstrate accurate transfer to physical devices and

achieve performance exceeding that of static software-based MLPs

with identical architectures (two hidden layers of 200 nodes). These

networks also match the performance of dynamic MLPs incorporating

leaky integrators (transferred accuracies for NRAs: 96.8% at 25% visi-

bility and 96.0% at 20% visibility, versus 90.0% and 88.0% for static

MLPs, and 96.9% and 96.7% for leaky-integrator MLPs; see Supple-

mentary Fig. 10). These results show that the magnetic nanoring PNN

N-ODE net. N-SDE net. Transfer to physical net. 
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Fig. 3 | Partially-observable MNIST and Neuroprosthetic movement

classification tasks. a The MNIST data, presented as sequences of images, have

been adapted into a temporal problem by partially obscuring the images at each

time step, requiring the system to integrate information over time for accurate

classification. The neuroprosthetic gesture recognition task is characterized by

input channels that vary over time. b Example responses from the network’s phy-

sical nodes, showing experimentally measured responses (red) and digital twins'

responses (black) for different nodes across two layers. The gray areas represent

the distribution of responses from the digital twins, while the dashed arrows

illustrate the flow of information from the input through the layers to the output.

The horizontal bars indicate the output activations of experimental networks (dark

blue) compared to themodel output (light blue), with the correct class highlighted

in red. c Transferred performance of nanoring array networks using Neural-ODEs

(green bars) and Neural-SDEs (orange bars) as digital twins in the MNIST bench-

mark. The deterministic Neural-ODE models exhibit unrealistically high perfor-

mance in simulation (no border), which significantly deteriorates in experiments

(black border). In contrast, the noise-aware training provided by Neural-SDEs

maintains high performance on physical devices, demonstrating effective exploi-

tation of node dynamics and robustness during device transfer. d Performance of

the Neural-SDEmodels on neuroprosthetic gesture recognition, demonstrating the

framework’s potential in addressing real-world tasks. The black line represents the

error as a percentage across iterations. The inset shows the final performance,

comparing simulation results with those after transfer to the physical device.

Details on hyperparameter selection can be found in 17.
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effectively exploits the intrinsic device dynamics as a memory

resource, underscoring the capability of the proposed framework to

leverage physical dynamics for in-memory computing. However, the

limitedmemory of NRAs results in a relative decline in performance at

lower visibility compared to software leaky integrator networks.

To demonstrate applicability to real-world problems, we applied

theNADOapproach to a neuroprosthetics task45, where the goalwas to

classify humangestures using surfaceelectromyographydata from ten

forearm electrodes. This task is substantially more challenging than

the partially observable MNIST benchmark due to longer input

sequences accumulating more experimental noise, and the need for

generalization across both gestures and different subjects.

Figure 3d shows the measured performance of a network whose

connectivity was optimized in simulation using digital twins and then

transferred to the physical system. As a baseline, we used a randomly

connected network with a single hidden layer and trained only the

output weights, following the standard reservoir computing (RC)

approach, with the number of nodes matched to the PNN. This

adjustment from previous baselines avoids the performance degra-

dation seen with random connections in deeper networks while

maintaining the same node count. The optimized network achieves an

error rate approximately 30% lower than the baseline, demonstrating

the advantages of optimized connectivity over conventional in-

materio RC and highlighting the improved capability made possible

by connectivity optimization.

Regression benchmark
Classificationproblems are generallymore forgivingwhen transferring

parameters, as their winner-takes-all algorithm only requires the

highest activation in the correct class for accurate prediction. In con-

trast, regression problems demand specific, continuous output values

from the network, presenting a more challenging task when trans-

ferred to physical networks. To test the limits of our methodology, we

applied the network to predict theMackey-Glass system operating in a

regime characterized by quasi-periodic, chaotic behaviors. This net-

work comprised a mixture of NRA and ASVI nodes. The network

structure was designed to leverage the distinct characteristics of each

physical system: the first layer featured ASVIs, which exploited their

high output dimensionality to project the low-dimensional Mackey-

Glass signal into a higher-dimensional space, while the subsequent

layers consisted of NRAs to provide nonlinearity and memory for

learning the underlying dynamics.

To mitigate error accumulation with an increasing number of

layers, which is more pronounced in regression problems, we

employed the cascade-correlation algorithm38, adapted for experi-

mental settings. A schematic of this process is shown in Fig. 4a. In this

approach, hidden layers were trained sequentially, with previously

trained parameters remaining fixed. As a result, the learning process

treats the responses of earlier layers as fixed inputs for the layer cur-

rently undergoing optimization. Once a layer was optimized, experi-

mental node activities were gathered using the learned parameters,

generating ‘ground-truth’ data with zeromismatch in the forward pass

for the subsequent layer to be trained. This strategy helped to correct

the digital twin’s simulation-reality gap, which might otherwise be

amplified throughout the network depth. Cascade-correlation, there-

fore, limits thepropagationof errors to a single layer, facilitatingbetter

transfer. In this respect, the methodology is similar to Physics-Aware

Training21, but requires only one epoch of data per device in the phy-

sical neural network structure, rather than continuous samplingduring

each iteration (For further proofs on error bounding and potential

limitations of the approach, see Supplementary Information ’Analysis

of Cascade Learning Approach’).

Figure 4b shows the mean squared errors (MSE) between the

ground truth dynamical equations and the predictions as a function of

prediction steps into the future, for transferred networks with two

(red) and three (blue) hidden layers. Cascade learning achieves the

lowest MSE, indicating excellent alignment between target and pre-

diction, as illustrated in Fig. 4c. For reference, previous implementa-

tions of these experimental systems on this task reported a peak MSE

of 3.86 × 10−2 at t+5 using the reservoir computing paradigm14, and

approximately 1 × 10−2 with multilayer PNNs trained without gradient-

based optimization17.

Without the corrective dataset, performance deteriorates as the

network depth increases. However, retraining with the corrective

dataset between layers reduces overall error, and adding more layers

improves performance. This outcome highlights the scalability of the

methodology, enabling the construction of deeper networks while

minimizing additional data collection. By confining mismatch error to

a single layer, this approach can be extended to create arbitrarily deep

dynamic PPNs. However, as in any machine learning network, an

improvement in performance is not guaranteed by adding additional

hidden layers, and the configurations learned via cascade learningmay

be sub-optimal when compared to full optimization in the absence of

simulation-reality mismatch, with techniques such as PAT21 serving as

useful methodologies for minimizing this gap where experimental

throughput allows reasonable training times (see Supplementary

Figs. 8 and 9).

When compared to digitally implemented, noiseless dynamical

neural networks (see Supplementary Fig. 8), the hybrid physical neural

networks incur additional error. When predicting 5 steps ahead for the

Mackey-Glass future prediction tasks, three hidden-layer networks of

simulated leaky integrators achieve mean MSEs 1 × 10−3 compared to

2.2 × 10−3 for physical networks trained via the same cascade-learning

approach. However, this is likely due to the effect of experimental

noise impacting prediction of noiseless,mathematically-defined target

signals. In spite of this, the significant improvement compared to

previous implementation of this task using the same devices as high-

lighted earlier highlights the promise of the NADO approach.

Discussion
Deviceswith complexdynamical responses are powerful substrates for

thephysical implementation of neural networks designed for temporal

processing. While individual devices may possess limited computa-

tional capacity, learned connectivity within device networks brings

them closer to the performance of deep artificial neural networks. This

work highlights the critical role of the Noise-Aware Dynamic Optimi-

zation (NADO) framework in optimizing connectivity within dynamical

physical neural networks. Central to this framework is the develop-

ment of stochastic digital twins based on the neural SDE approach.

These models are differentiable and provide surrogate gradients

for task-specific, gradient-based network optimization. Notably, the

NADO framework requires no prior knowledge of the underlying sys-

tem andminimizes physical device usage during training–accelerating

the optimization process in cases where data acquisition is slow (see

Supplementary Fig. 9). We demonstrate the effectiveness of this fra-

mework by successfully training networks of complex physical neu-

rons to solve a range of temporal tasks: partially observable MNIST

classification, forward prediction of the Mackey-Glass sequence, and

gesture recognition for a neuroprosthetic device.

Previous methods for training physical networks, such as Physics-

Aware Training (PAT)21 and Physical Local Learning (PhyLL)20, have been

limited to static devices. In contrast, our framework embraces the

dynamical nature of physical systems, treating this complexity not as a

hindrancebut asa computational asset. Toourknowledge, this is thefirst

demonstration that interconnected physical devices can be optimized

using backpropagation through time (BPTT), the foundational learning

algorithm for recurrent neural networks and dynamical systems.

Our use of digital twins shares conceptual parallels with PAT but

extends to dynamically driven, noise-aware models. Whereas PAT

relies on experimental measurements to correct a model’s internal
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activity and reduce the simulation-reality gap during training, our

neural SDE framework enables effective optimization without requir-

ing real-world data for optimization in classification tasks.

Extending PAT to the dynamical setting involves correcting the

system’s computational graph through time (see Supplementary

Information - Generalizing PAT to Dynamical Settings). This requires

sampling device states across temporal trajectories and adjusting

estimates of both system state evolution and input-output depen-

dencies. In the Supplementary Information, we detail this general-

ization and evaluate performance as a function of the adopted

sampling strategy. Notably, sampling every device at every time step

for each input signal during training is experimentally demanding, and

practically infeasible with the hardware considered here, due to rela-

tively slow experimental throughput. This limitation is compounded

by the inability to parallelize across batch sizes in hardware.

Nevertheless, PAT-inspired sampling strategies remain valuable

for refining model behavior. Our neural SDE framework should not be

seen as a replacement, but as a complementary alternative. There is no

intrinsic barrier to applying experimental corrections to neural SDE

models to further reduce this gap. For the regression task investigated,

we employed a cascade learning approach–interpretable as a sparse

variant of PAT–to incrementally correct neural SDE activity layer by

layer. This enabled us to balance theoretical performance with

experimental feasibility. As observed in regression tasks, some degree

of sampling was necessary; however, satisfactory performance was

achieved without continuous correction through time or at every

parameter update.

Adopting neural SDEs as the underlying physicalmodel provides a

robustmechanism for generating noisy samples during digital training

and yields a differentiable representation of device stochasticity. This

enables gradients to be backpropagated through the stochastic com-

ponent itself–a critical feature for systems whose responses depend

non-trivially on specific noise realizations, which PAT alone cannot

account for (see Supplementary Fig. 10).

While the dynamical systems studied here are promising candi-

dates for neuromorphic computing, current approaches to signal
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Fig. 4 | Cascade learning andMackey–Glass future prediction task. a Schematic

overview of the methodology employed for sequentially training network layers

with intermediate data gathering. The boxes represent steps performed in simu-

lations, with red shading indicating ASVI twins/experiments in the first layer (L1)

and blue shading representing NRAs in the second layer (L2). Initially, a single ASVI

layer is connected to a simulated output neuron and trained for the regression task.

Once trained, the connectivity from the input to the ASVI layer is transferred to the

physical device. Experimental data is then collected to serve as input for training

the connectivity to the subsequent layer, consisting of NRAs. This process can, in

principle, be extended to accommodate any number of layers. Retraining the

digital twin is not required; intermediate data are used solely to adjust the con-

nectivity between the new and the previous layer. b Mean-squared error between

ground truth and experimental network predictions for the Mackey-Glass future

prediction task as the number of future steps increases. red circles/ blue squares

represent networks with two/three hidden layers, while dark/light colors compare

direct training of the entire network to networks trained using cascade learning, as

presented in (a). Error bars show standard deviations of error over 10 different

subsections of 4000 test samples. Comparison between model prediction and

ground-truth data for the five-timestep future prediction of the Mackey-Glass

equation in (c) two-layer and (d) three-layer networks. White circles represent the

ground truth data, red lines show the transferred PNNprediction, and pink shading

indicates the difference between the ground truth and the network prediction.

Details on hyperparameter selection can be found in 17.
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input and state readout present practical challenges for large-scale

implementation. For example, artificial spin-vortex ice requires high-

precision, low-throughput measurement equipment, and applying

magnetic fields is both slow and energy-intensive. Similarly, nanoring

devices rely on electromagnets that consumemuchmore energy than

the underlying physical computation, and bridging electrical and

magnetic domains adds further complexity. Nonetheless, the metho-

dology described here is broadly applicable to any dynamical system

modeled by differential equations. This flexibility enables the optimi-

zation of networks based on alternative device platforms, where

integration with existing CMOS technology may be more

straightforward.

Additionally, the physical neural networks used here are con-

structed by serially sampling the same device of each class. Although

the ensemble nature of the magnetic devices here leads to limited

device-to-device variability when manufatured with nominally iden-

tical design processes, the additional complexity of device-to-device

variability is not directly considered here. For limited device variablity,

the inherent noise-awareness of the optimization approach will miti-

gate noise from device variability, provided that a representative

number of devices are used to train aggregate neural-SDE models that

reproduce both the mean behavior and predicted variance across

devices. However, the increased variance in behavior may result in

lower peak performances.

For thefirst time,wedemonstrate the effectivenessof neural SDEs

with an extension to include colored noise on experimental data from

neuromorphic systems. Our framework generalizes across device

types, requiring only that both deterministic and stochastic dynamics

can be sampled. While prior work has explored neural ODEs in spin-

tronic simulations30, we apply this approach to two distinct experi-

mental platforms: nanomagnetic ring arrays and artificial spin vortex

ice, with particular emphasis on capturing their intrinsic stochasticity.

This work introduces a unified optimization framework that

enables joint training over input signals and device parameters,

allowing precise control over the operational regimeof physical neural

networks. Although developed in a neuromorphic context, the

method is broadly applicable to systems where learning directly from

real-world dynamical processes is critical.

Methods
Sampling device behaviors
For each of the device classes, a single device was repeatedly sampled.

First, the range of inputs at which the devices are dynamically active was

established by sweeping input stimuli and observing changes in mea-

sured output. Data used for training the models of dynamic behaviors

were sampled randomly from the determined input range. Different

datasets were constructed for training the deterministic model and

stochasticmodelbehaviors. Inbothcases, the systemsare initializedbya

strong pulse of magnetic field, saturating the devices. A single input

corresponding to the maximum allowed input value is then applied,

generating a trajectory to be used for initial conditions of themodel. For

the Neural-ODE, devices were then driven by many uncorrelated, ran-

domly generated input sequences sampled from a uniform distribution

spanning the range of activity, with the measured state of the devices

recorded alongside the external input at each time. To gather a valida-

tion set for the optimization of the neural-SDE, the devices were driven

by 100 repetitions of each sequence from a smaller set of randomly

sampled sequences,with similar recordingsof input andmeasured state.

Neural-ODE modeling
The Neural-ODE models used here emulate the observable state of a

dynamical system x(t), which is an Nx-dimensional vector gathered

experimentally. This is done by parameterizing the instantaneous gra-

dient of the dynamical systems with respect to its current hidden state

y(t) and external input s(t) via a neural network f, before integrating to

find the next state. This process is described in further detail below,with

a didactic tutorial provided in the Supplementary Information.

As in ref. 30, the unknown internal state of the system con-

sidered is embedded by concatenating a set of delayed observables

x(t) to x(t − Ndelayδt), where Ndelay is the number of delays adopted.

We define this augmented Nx Ndelay + 1
� �

-dimensional state as

yðtÞ= xðtÞ, . . . ,xðt � NdelayδtÞ
� �

. Assuming this representation ren-

ders the system Markovian for a given s(t) and y(t) so that a dataset

device dynamics, D= fðsð0Þ, yð0Þ, yð1ÞÞ, . . . , ðsðtÞ, yðtÞ,yðt + δtÞÞ, . . .g

can be sampled for training the model to predict the next step.

To predict trajectories, the Neural-ODE is provided with initial

conditions y(t0) sampled from a random starting time t0. Then, driven

by external signals ðsðt0Þ, , . . . , sðt0 +TδtÞÞ, the model is asked to pre-

dict the evolution yðt0 + δtÞ, . . . ,yðt0 +TδtÞ
� �

of the system forT steps.

We will denote the predicted activities generated by the model as ~yðtÞ

to differentiate them from the target y(t). The neural-ODE activities are

defined through the integration of

d~yðtÞ= f ~yðtÞ, sðtÞ, tjϕf
� �

dt ð1Þ

with ~yðt0Þ=yðt0Þ, and the neural network f ð�jϕf Þ : RNxðNdelay + 1Þ+Ns !

R
NxðNdelay + 1Þ, parameterized by weights ϕf, estimates the instantaneous

gradient of the system from ~yðtÞ and s(t). Integration via numerical

methods leads to the prediction of x(t + δt) as the most recent state in
~yðt + δtÞ. This iterative, recursive process continues for all steps con-

sidered t 2 t0, t0 +Tδt
� �

. The network is trained by minimizing the

mean squared error between model generated states ŷ and experi-

mentally gathered statesy.We refer to the Supplementary Information

for further details and training hyper-parameters.

Neural-SDE modeling
The Neural-SDE model proposed captures both the stochastic49 and

deterministic behaviors of dynamical systems, as well as noise in

experimental measurements. The model features an additional net-

workg to theNeural-ODEmodel introduced in theprevious section. To

account for various experimental settings, the neural-SDE has been

designed to accommodate external signals, delayed observations of

systems activities, and the presence of colored noise. The incorpora-

tion of colored noise involves the introductionofNa auxiliary variables

a(t) operating over multiple timescales. The proposed neural-SDE

model is defined as

d~yðtÞ

daðtÞ

� 	

=
f ð~yðtÞ, aðtÞ, sðtÞ, tjϕf Þ

�τ�1aðtÞ

 !

dt +gð~yðtÞ, aðtÞ, sðtÞ, tjϕg ÞdW ð2Þ

with ~yðt0Þ=yðt0Þ and a(t0) = 0 as initial conditionas and dW is a NW-

dimensional derivative of the Wiener process50 that during simulation

is given by Gaussian random numbers. The functions f( ⋅ ∣ϕf) and

g( ⋅ ∣ϕg) are neural networks defined by the trainable weights ϕf and ϕg

respectively which are learned during training. τ is a diagonal matrix

defining the timescales of the auxiliary variables are also learned dur-

ing training.

Wegenerally found that it is important to restrict the functiong to

generate stochasticity only on the most recent prediction of ~x. By

expanding out the augmented y(t) vector and introducing the

restriction on the g function leads to redefinition of Eq. (2) as

d~xðtÞ

d~xðt � δtÞ

.

.

.
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where the dimensionality of the function f ð�jϕf Þ : RNxðNdelay + 1Þ+Ns !

R
NxðNdelay + 1Þ is analogous to the neural-ODE settings, while the

non-zero elements of the function g( ⋅ ∣ϕg) constitute a map

R
NxðNdelay + 1Þ+Ns ! R

ðNx +NaÞ×NW . A is introduced as a Nx × NW dimen-

sional matrix linking the auxiliary variables to the last state of

the system. We highlight that a single neural network

mappingRNxðNdelay + 1Þ+Ns ! R
ðNx +NaÞ×NW was used to jointly parame-

trize the two terms g1 and ga as depicted in the schemes of the neural-

SDE architecture reported in Fig. 2. The training of the neural-SDE

follows the generative adversarial network paradigm introduced in

previousworks49 and furtherdetails areprovided in theSupplementary

Information.

Noise-aware dynamic optimization of physical neural networks
Wenowconsider of a specific network architecture, formedof physical

nodes modeled as Neural-SDEs. Here, we assume a multilayer per-

ceptron (MLP) structure composed of hidden layers indexed by

l = 1,…, L with the i − th node in each layer having an augmented state

yl,i(t). This augmented state was defined to describe the device as a

Markovian system and consequently to capture the systembehavior in

a neural-ODE/SDE framework. As a consequence, it is a modeling

abstraction and does not correspond to the information exchanged

between devices when embedded in a physical neural network.

Therefore, we assume device-to-device interactions to occur via the

variable yπ
i ðtÞ=π yiðtÞ

� �

where π is a post-processing function provid-

ing amapping of the device dynamics to the quantities that dictate the

exchange of information. Importantly, this function needs to be dif-

ferentiable to permit backpropagation through the networkdynamics.

Within our proposed NADO framework, the key goal is to opti-

mize the weights connecting each of these physical nodes and we fix

the parameters governing the neural-ODE/SDE mdoels. To simplify

the notation we define zπ
l
ðtÞ as the concatenated activities of all

nodes within layer l, such that zπ
l
ðtÞ= yπ

l, 1ðtÞ,y
π
l, 2ðtÞ, . . .

� �

and

SlðtÞ= sl, 1ðtÞ, sl, 2ðtÞ, . . .
� �

is the concatenated input to layer l. As before,

a tilde (~:) is adopted to distinguish the experimental from the simu-

lated quantities and so we define ~z
π
l ðtÞ as the simulated analog of

concatenated ~y
π
l, iðtÞ digital twindynamics.During a forwardpassof the

simulated network, we initialize each digital twin’s internal state ~yðt0Þ

using adistributionover initial conditions,which captures the inherent

stochasticity of the inital device states p yðt0Þ
� �

. As described in

the Supplementary Information, this distribution is empirically mea-

sured rather than learned, in order to reduce discrepancies between

simulation and real-world behavior. Under this setup the input to layer

l + 1 can be written as

Sl + 1ðtÞ=h θl + 1z
π
l ðtÞ

� �

ð4Þ

whereθl+1 represents theweightmatrix connecting layer l to l + 1 andh

is a device pre-processing function that maps the raw inputs into a

physical input for each device in the layer, for example converting into

an appropriate magnetic field value. Further details and extension are

provided in the Supplementary Material. For the first hidden layer,

there is no preceeding layer activity and is instead the given task input

stask(t). Importantly, when estimating the forward pass of the network

through the digital twins this same equation is used but for ~z
π
l ðtÞ

resulting in ~SlðtÞ as the simulated input.

The output of the simulated network can be defined as a linear

combination of the final layer activities, oðtÞ=θL+ 1z
π
L ðtÞ, and, thus,

optimization can follow the minimization of

L=
X

t = t0

E ~oðtÞ, otaskðtÞ
� �

ð5Þ

where E( ⋅ ) is an appropriately chosen loss function operating on the

simulated network output ~oðtÞ and target task output otask(t).

Thus, in a forward pass of the simulated network, we integrate the

stochastic differential equations (3) through time and calculate the

output ~oðtÞ. We highlight that in a feedforward structure, even with

dynamical node, each canbe ran layer by layer. That is,we can simulate

the dynamics zl(t), ∀ t before passing to layer l + 1. This process is

outlined in the pseudo-code presented in Algorithm 1.

In the backward pass, the connectivity parameters θ are trained

via backpropagation through time (BPTT) on the simulated network.

The task-dependent optimal parameters are extracted like-for-like for

use in experiments, where the resulting connectivity is validated on

physically defined devices. The supplementary information provides

more details on the use of BPTT and truncated-BPTT for the simulated

system.

This optimization is performed using PyTorch’s automatic dif-

ferentiation and the Adam optimizer. In both the MNIST and neuro-

prosthetics tasks, wewere able apply BPTT across the entire sequence.

For the Mackey-Glass regression task, which involves forecasting a

sequence of arbitrary-length, we employed truncated BPTT, training

on temporal segmentswith startingpoints randomly sampled fromthe

dataset. Additionally, a burn-in phase was used at the start of each

segment, during which the system was evolved without gradient

tracking. This allows the dynamic system to settle into a representative

regime before the learning process.

Performing this optimization process assumes that generated sys-

tem responses, ~yðtÞ, are approximately equivalent to physical device

activities, y(t), and that the unknown devices dependencies dyiðtÞ
dsiðt

0Þ
can be

approximated through d~yiðtÞ
d~siðt

0Þ
8t and t0 < t in the temporal interval con-

sidered. BPTT, or truncated BPTT, will then decompose such total deri-

vatives into the terms ∂~yiðt
0Þ

∂~siðt
0�δtÞ

and ∂~yiðt
0Þ

∂~yiðt
0�δtÞ

8t0 in the considered interval.

Although our discussion centers on an MLP architecture, the

approach generalizes naturally to any feedforward network. The only

modification required is to replace the linear transformation in Eq. (4)

with the appropriate operation for the chosen architecture.

Nanomagnetic Ring Arrays (NRA)
Fabrication of ring arrays. Wafers of Si (001)with a thermally oxidized

surface were spin-coated with 200nm of positive resist, with the

nanoring array geometries and electrical contacts patterned via

electron-beam lithography using a RAITH Voyager system. The mag-

netic nanoring arrays were patterned, then metallized to nominal

thicknesses of 10nm via thermal evaporation of Ni80Fe20 powder using

a custom-built (Wordentec Ltd) evaporator (typical base pressures of

below 10−7 mBar), before removal of the initial resist. Electrical con-

tacts were patterned via a second lithography stage and were metal-

lized via two-stage thermal evaporation of a 20nm Ti seed layer

followed by a 100nm layer of Au.

Electrical transportmeasurements of ring arrays. Rotatingmagnetic

fields were generated at 64 Hz via two pairs of air-coil electromagnets

each with a voltage-controlled Kepco BOP 36-6D power supply. A

sinusoidal voltage wave of 13,523 Hz was generated via an Aim-TTI

instruments TG1000 signal generator and an SRS C5580 current

source to generate 2 mA current, which was then injected to the

nanoring arrays via the electrical contact pads. A National Instruments

NI DAQ card measured the resulting potential difference across the

device (modulated via anisotropic magnetoresistance (AMR) effects),

sampling at 2 MHz. Lock-in amplification was performed digitally by

multiplying the measured voltage signal with a digitally generated

reference wave matching the input current frequency, before filtering

via a digital low-passfilterwith a cut-off frequencyof 320Hz to remove

the kHz component and leave the AMR dependent signal. The filtered

waveform was then downsampled to a rate of 3.2kHz (50 samples per

rotation of applied field) to reduce data size. Further images of the
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experimental setup and an overview of the signal path can be found in

Supplementary Fig. 14.

Neural-SDE models of NRAs. Training data for the deterministic

component of the neural-SDE (parameterized by f) was generated by

driving the NRAs under 20,000 randomly generated sequences of 20

inputs, with the applied rotating magnetic fields spanning the

responsive range of the devices, and recording the resulting AMR sig-

nals. The external signal s(t) represented the magnitude of the applied

field at time t. Five delays were used here to define the hidden state,

yðtÞ= xðtÞ, . . . , xðt � 5Þð Þ, where the x(t) represented the measured

AMR signal. The data used to generated the stochastic component

(parameterized by g) was generated by driving the system with 1000

randomly generated input sequences of length 20 for 100 repetitions

to generate example distributions of the noisy measurements, with 10

auxilliary variables used to generate different timescales of noise.

Artificial Spin Vortex Ices (ASVIs)
Part of the description of the experimental methodologies for the

ASVIs is reproduced from earlier works of several of the authors14.

Fabrication of artificial spin vortex ices. Artificial spin-ice arrays were

fabricated via electron-beam lithography liftoff method on a Raith

eLine system with PMMA resist. 25 nm Ni81Fe19 (permalloy) was ther-

mally evaporated and capped with 5 nm Al2O3. The flip-chip FMR

measurements require mm-scale nanostructure arrays. Each sample

has dimensions of roughly ~ 3 × 2mm. As such, the distribution of

nanofabrication imperfections termed ‘quenched disorder’ is of

greater magnitude here than typically observed in studies on smaller

artificial spin systems, typically employing 10–100micron-scale arrays.

The chief consequence of this is that the Gaussian spread of coercive

fields is over a few mT for each bar subset. Smaller artificial spin

reservoir arrays have narrower coercive field distributions, with the

only consequence being that optimal applied field ranges for reservoir

computation input will be scaled across a corresponding narrower

field range, not an issue for typical 0.1 mT or better field resolution of

modern magnet systems.

Spectral fingerprinting of artificial spin-vortex ices. Ferromagnetic

resonance spectra were measured using a NanOsc Instruments

CryoFMR in a Quantum Design Physical Properties Measurement

System. Broadband FMRmeasurements were carried out on large area

samples (~3 × 2mm2) mounted flip-chip style on a coplanarwaveguide.

The waveguide was connected to a microwave generator, coupling RF

magnetic fields to the sample. The output from waveguide was recti-

fied using an RF-diode detector. Measurements were done in fixed in-

plane field while the RF frequency was swept in 10 MHz steps. The DC

field was then modulated at 490 Hz with a 0.48 mT RMS field and the

diode voltage response measured via lock-in. The experimental spec-

tra show the derivative output of themicrowave signal as a function of

field and frequency14.

Neural-SDE models of ASVIs. Training data for the deterministic

component of the neural-SDE was gathered for a sequence of 13,000

inputs, with saturation pulses provided sporadically to reset the

device. Data for the stochastic component was generated via 100

repetitions of 100 different input sequences of length 20. The ASVI

response x(t) corresponds to the measured FMR spectra driven by an

external field of amplitude s(t). The dimensionality of x was sufficient

to capture the system’s dynamics and augmentation of the N-DE input

variables was not necessary, setting y(t) = yπ(t) = x(t).

Physical Neural Networks
Physical systemsasdynamicnodes. TheNRAdeviceswere initialized

via a single rotation of magnetic field at 80 Oe, with a sample from the

distribution of the final AMR states of the initialization procedure used

as initial conditions for the neural-SDE model. The ASVI devices were

initialized via a linearly applied field of 235 Oe, with similar selection of

initial conditions for the model. The feed-forward networks were

constructed by repeated measurements of a single physical device of

each class (one NRA device, one ASVI), mimicking the flow of infor-

mation through the network by serially sampling the same device.

Input data were combined with the transferred weights, then encoded

into the strength of the applied magnetic fields and provided to the

devices node-by-node within a given layer. The outputs of each layer

were then combined with their respective weights and passed to the

next layer in the network where the process was repeated. This hybrid

between digitally stored network weights and physical nodes is due to

current experimental limitations rather than limitations of the

framework.

Partially Observable MNIST. The data for this task converts the ori-

ginal 784 dimensional input of the MNIST digits into a sequence of

length N with 784 input features per step. At each timestep, the

information from 784/N pixels is given via random sampling, and

removed from the samplepool for subsequent images in the sequence.

Hence, all of the information from the digit is provided by the end of

the sequence. There is no correlation between the sampling process

across multiple digits, resembling different permutations of informa-

tion for every digit. Classification occurs from activities at the end of

the sequence only. Training was performed via backpropagation

through time in simulation, with hyperparameters tuned against a

small validation set also in simulation. Testing was performed on

networks of real devices on 1000 samples of unseen data, with

reported accuracies averaged over three experimental runs with dif-

ferent masking of data.

Movement classification of a neuroprosthetic device. For the neu-

roprosthetic task, we adopted the second classification task (exercise

B) from the Ninapro database45, where sEMG activities have been

recorded for 27 subjects. In these settings, the physical neural network

is asked to perform gesture recognition from the sEMG recordings for

all subjects. The sEMG temporal data has been preprocessed through a

low-pass filter and sub-sampled at 100Hz, leading to input sequences

of 30 time steps for each gesture. The data was split into training,

validation and testing sets, where the validation set was used to tune

the hyperparameters. For optimization, we adopted truncated back-

propagation through time to reduce simulation time and memory

requirements. Particularly, wefixed the number of temporal steps over

whichdependencies are considered andBPTT is carried out to ten. The

seventeen classes were represented via one-hot encoding of output

neurons, with the target signal of the same length as the input data.

Training was performed by optimizing the model output over a

reduced window of the original signal, corresponding to the most

meaningful information on the gesture (timestep 12 to 18). This meant

that parts of the signal which are not informative for classification do

not disrupt the learning process. This produced a single model which

was able to perform decently over many time steps of prediction,

shown in Supplementary Fig. 13.

Mackey–Glass future prediction and cascade learning. The signals

used for prediction were generated via the following delay-differential

equations17,51: dx
dt

= αxðt�τÞ
1 + xðt�τÞn

� βxðtÞ, with α = 0.2, β = 0.1, τ = 17, n = 10,

and x0 = 1.2, solved numerically with a fourth-order Runge–Kutta sol-

ver and a timestep dt = 2, producing quasi-periodic behavior on the

order of 25 samples. 5100 samples were generated, with the first

100 samples discarded as a wash-out of initial conditions. The next

1000 samples were used for training, and the same 1000 samples were

used to gather the corrective datasets for the cascade learning

approach. Model performance was evaluated in experiments over the
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remaining 4000 samples in 10 subsections of 400 points, with the

resulting error bars reflecting performance over the 10 sections.

Data availability
The processed data presented figures in this manuscript can be found

on ORDA at https://orda.shef.ac.uk/articles/dataset/Research_data_

for_Noise-Aware_Training_of_Neuromorphic_Dynamic_Device_

Networks_/29835680, under the following https://doi.org/10.15131/

shef.data.29835680. For raw experimental data, contact

i.vidamour@sheffield.ac.uk.

Code availability
The code used in this manuscript can be accessed at https://github.

com/LucaManneschi/NoiseAwareTwins_Project.
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