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In materio computing offers the potential for widespread embodied intelli-
gence by leveraging the intrinsic dynamics of complex systems for efficient
sensing, processing, and interaction. While individual devices offer basic data
processing capabilities, networks of interconnected devices can perform more
complex and varied tasks. However, designing such networks for dynamic
tasks is challenging in the absence of physical models and accurate char-
acterization of device noise. We introduce the Noise-Aware Dynamic Optimi-
zation (NADO) framework for training networks of dynamical devices, using
Neural Stochastic Differential Equations (Neural-SDEs) as differentiable digital
twins to capture both the dynamics and stochasticity of devices with intrinsic
memory. Our approach combines backpropagation through time with cascade
learning, enabling effective exploitation of the temporal properties of physical
devices. We validate this method on networks of spintronic devices across
both temporal classification and regression tasks. By decoupling device model
training from network connectivity optimization, our framework reduces data
requirements and enables robust, gradient-based programming of dynamical

devices without requiring analytical descriptions of their behaviour.

Before digital computation became widespread, analog dynamical sys-
tems were key in early computational platforms, with applications ran-
ging from solving differential equations' to controlling early anti-aircraft
guns’. These systems leveraged analogies between the inherent dynamic
properties of analog components and their target applications to repli-
cate behaviors with a high degree of control. They were particularly
valuable for real-time testing beyond the capabilities of early digital
computers, trading precision for speed®. However, as complementary
metal-oxide semiconductor (CMOS) technology rapidly developed®,
digital platforms became increasingly fast and powerful. The greater
accuracy and programmability of digital computers ultimately led to the
replacement of analog systems by their digital counterparts.

More recently, the rapid expansion of machine learning has been
propelled by the alignment between algorithms and hardware.
Graphical’® processing units (GPUs) and tensor® processing units
(TPUs) have enabled the massive parallelization of matrix operations,
leading to significant performance improvements by building large
models out of relatively simple computational units. However, the
increased reliance on large-scale models and extensive parallelization
has also led to a worrying trend of rising energy costs’.

In-materio computing, much like analog computing, harnesses
the natural properties of materials to perform computations, provid-
ing an efficient alternative to conventional methods for data
processing®. The principles of reservoir computing (RC)’, which
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originally involve fixed recurrent networks for computation, have been
adapted to physical systems. In these systems, the inherent dynamics
of the material serve as the computational resource'® ™, In RC, only the
output layer is trained, while the recurrent network-or, in the case of
physical RC, the material-functions as a fixed temporal kernel, thus
avoiding the complexities of optimizing dynamic processes. Reservoir
computing has been explored in neuromorphic applications for tem-
poral tasks like EMG classification in prosthetics, but its fixed
dynamics limit adaptability and performance in complex tasks, high-
lighting the need for trainable systems that optimize parameters while
accounting for noise and dynamics. Because the internal network
structure itself is not trained, achieving the desired dynamic trans-
formations often requires a high-dimensional network, as higher
dimensions increase the likelihood of finding a suitable solution.
Outputs from these systems can be obtained directly from the material
itself*, through multiplexing techniques', or by iteratively building
networks by interconnecting multiple devices based on metric
evaluations”. Despite these strategies, reservoir computing networks
often face performance challenges when compared to networks where
all parameters can be optimized using gradient-based methods. Fully
optimisable networks typically perform better because they can adjust
all their parameters to suit specific tasks',

To perform optimization on in-materio computers, general
methodologies have been developed that train the interconnectivity of
devices, leading to the concept of physical neural networks (PNNs)*2,
In PNNs, each node in a neural network corresponds to a physical
device. Unlike neuromorphic computing platforms designed to closely
emulate biological neural architectures or systems?2°, PNN frame-
works focus on optimizing the parameters that govern the interactions
between devices. This approach allows for a flexible selection of
material systems that offer a wide range of nonlinear responses,
varying in complexity and functionality, akin to activation functions in
artificial neural networks (ANNS).

Multiple approaches have emerged for optimizing PNNs. The
Physics Aware Training (PAT) method” involves measuring device
responses and estimating derivatives for backpropagation using a
digital twin-a faithful model of the device. More recently, methods
that avoid digital twins have been developed, using direct feedback
alignment"?” or forward-forward algorithms?>*® to optimize without
gradient backpropagation. These methods approximate gradient
descent with techniques directly applicable to the physical substrate,
where devices provide simple transfer functions on current inputs.
However, no existing approach can optimize PNNs in systems with
dynamic behaviors and intrinsic memory-memory due to the inherent
properties of the device materials-in general settings. Current meth-
ods assume devices are static and memoryless, and thus cannot opti-
mize or leverage dynamic processes. As a result, they are unable to
utilize functional memory sources, which are essential for temporally-
driven tasks and in-memory computation. To fully harness material
computational capabilities, a device-agnostic optimization method
that accounts for dynamic processes is needed.

An important initial step in this direction was made with the
proposal of using neural ordinary differential equations® (neural-
ODEs) to model dynamic devices, with their feasibility demonstrated
through simulations®. However, these models are not capable of
capturing the noise in the system, which we hypothesize is essential for
the robust transferability of parameters that control the interactions
among devices from simulation to physical dynamical devices.

In this paper, we present the Noise-Aware Dynamic Optimization
(NADO) framework, a universal framework for gradient-based opti-
mization in deep networks of interacting dynamical systems. Our
method does not require a mathematical description of the physical
system, is entirely data-driven, and can be applied to any device that
can be modeled as a differential equation, as long as sufficient sam-
pling of input-output relationships is possible. To achieve this, we

develop a generalized formulation of neural stochastic differential
equations (Neural-SDEs)* capable of capturing colored noise, where
different frequencies have varying power levels in the power spectral
density, representing realistic noise characteristics observed in phy-
sical devices.

We apply our methodology to experimental spintronic devices
previously used in neuromorphic computing applications'****, This
enabled performance in classification tasks beyond the capabilities of
physical reservoir computing implementations using these systems,
including in a gesture recognition task for generating motor com-
mands for neuroprosthetic devices from real patients’ surface elec-
tromyography signals. We demonstrate that noise modeling is crucial
for transferring performance from simulations to networks of devices,
allowing us to achieve high accuracy in regression tasks for the first
time in fully optimized dynamic PNNs. Additionally, by employing
cascade learning®***-building the network layer by layer-we illustrate
that, in principle, this methodology could be extended to arbitrarily
deep networks, requiring only limited experimental data for each
layer. This work marks a significant advancement in the application of
complex material systems to PNNs, enabling gradient-descent-based,
noise-aware optimization of the connectivity of arbitrary,
mathematically-agnostic devices with intrinsic memory.

Results

The NADO process for training networks of arbitrary dynamical devi-
ces involves three distinct phases, as illustrated in Fig. 1. First, differ-
entiable digital twins-models that allow for the calculation of
derivatives using standard tools-are trained to replicate the input-
output responses of devices based on experimentally collected data
(Fig. 1a). Next, these digital twins are used in network simulations of
devices, where the interactions between the devices are optimized
(Fig. 1b). Finally, the optimized parameters from the simulations are
transferred directly to the physical network, where performance in
benchmark tasks is assessed (Fig. 1c). An overview of these stages is
provided below, with more detailed explanations available in the sup-
plementary information.

Neural-SDEs as differentiable digital twins

Previous work on fully-optimized PNNs has focused on devices without
intrinsic memory. In contrast, networks of devices with intrinsic
memory significantly increase training complexity because past inputs
and states directly influence current behavior. This is analogous to a
tennis player trying to hit a moving ball: any change in the position of
the ball or the player affects all subsequent actions and movements
(schematic in Fig. 2a). Similarly, in dynamical systems, adjustments
made at any point in time can propagate through the network,
affecting future states and complicating optimization. Algorithms that
account for dynamic behaviors, such as backpropagation through time
(BPTT)** and more recent methods**?, are crucial. These algorithms
capture the influence of past changes on future states, enabling opti-
mization over temporal sequences.

When computing gradients through numerical integration
schemes-such as those used for training models based on differential
equations-two methodological classes are typically considered:
optimize-then-discretize (indirect) and discretize-then-optimize
(direct). In direct methods, like backpropagation through time
(BPTT) applied to the integration scheme, the continuous system is
first discretized, and differentiation is performed on this explicit
sequence of operations. This approach provides mathematical preci-
sion by ensuring that gradients are computed exactly for the numerical
scheme being used, but requires storing all intermediate states,
resulting in memory costs that scale as O(¢t) with the length of the input
signal t.In contrast, indirect methods such as the adjoint sensitivity
method" take the continuous-time gradients first, then discretize,
which allows gradients to be computed with constant O(1) memory
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Fig. 1| Overview of the Noise-Aware Dynamic Optimization framework. a Model
Generation: Experimental devices (green squares) are driven under random inputs,
their observable states are recorded, and these data are used to fit models of device
dynamics (shaded circles). b Network Simulation: A neural network is constructed
where each node replicates the dynamics of the original device, using the trained
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model. Parameters controlling device interactions (network weights) are optimized
for a task via backpropagation through time (BPTT) or truncated-BPTT on the
interacting digital twins. ¢ Experimental Transfer: The parameters optimized in
simulation are transferred like-for-like to experimental networks where each node
is a real device, and task performance evaluated.

cost with respect to signal length. However, this can sometimes
introduce additional numerical error or instability, depending on the
integration method and system dynamics.

In this work, we employ direct methods to maximize accuracy, as
they most faithfully represent the discretization performed, and it
matches the optimization performed on the discriminator network in
the GAN framework of the SDE (see Supplementary Fig. 2c). To manage
the associated memory demands, we truncate gradients beyond the
intrinsic memory length of the device, since contributions from longer
histories are negligible. For devices with much longer intrinsic memory,
the resource demands of direct methods may be impractical, making
indirect approaches more attractive despite their potential trade-offs.

However, when applying these methods in practice, mismatches
between the model and experimental data can accumulate over time,
especially in deeper networks, where errors compound with each
additional operation. Furthermore, physical systems rarely exhibit
perfectly deterministic responses. Noise in experimental data cannot
be captured by deterministic models alone, and optimization based
solely on noise-free models often leads to sub-optimal solutions in real
devices. By explicitly modeling noise in the simulation process, we
close the simulation-reality gap and enable the discovery of network
structures that are robust to noise, thereby improving the real-world
performance of transferred networks.

In this work, we study two spintronic systems: nano-magnetic ring
arrays (NRA)*”** and artificial spin vortex ice (ASVI)'*V. As illustrated
in Fig. 2b for the NRA, device responses exhibit stochastic variation
across repeated presentations of the same input sequence, with the
response distribution shaped by both current and past inputs. This
variability originates from intrinsic physical dynamics and experi-
mental noise. To address the resulting simulation-reality gap, we
extend the Neural stochastic differential equations (Neural SDE) fra-
mework to capture signal-dependent noise with complex auto-
correlation. Compared to approaches such as long short-term memory

networks (LSTMs), neural differential equations provide several
advantages: higher predictive accuracy, implicit access to partial
derivatives via numerical integration, and natural integration of sto-
chastic dynamics through SDEs. Supplementary Fig. 16 compares the
prediction accuracy and number of trainable parameters for Neural
ODE and LSTM models, and information on dataset construction and
hyperparameter selection are tabulated in Supplementary Fig. 17.

Figure 2c shows the architecture of the proposed Neural-SDE
model, comprising two neural networks: one for deterministic
dynamics and another for stochastic dynamics. These networks are
coupled via the numerical integration method, enabling the model to
represent explicitly how system output depends on device state and
external inputs, incorporating both deterministic and stochastic
components. This structure supports noise-aware gradient computa-
tion for backpropagation through time (BPTT). The Neural-SDE
architecture thus parameterizes the stochastic differential equations
that define how device output evolves as a function of the current state
and external input.

The deterministic network (upper) and the stochastic network
(lower) each receive external input signals and a sequence of past
device states. The history length must be sufficient to approximate the
system as Markovian, ensuring that future states can be predicted from
current inputs and recent device states. When this criterion is met, the
method is applicable to any dynamical system. The stochastic network
also receives auxiliary variables to support noise modeling. Outputs
from both networks are integrated using a stochastic numerical
scheme to produce the device’s activity (readout) at the next timestep.
This value is recursively fed back as the most recent device state.
Orange arrows in Fig. 2c indicate error gradients with respect to device
activity and external input, as computed during BPTT.

Figure 2d compares the outputs of the two models. The neural-
ODE model provides deterministic predictions that capture the main
trend for given inputs. In contrast, the neural-SDE model generates a
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Fig. 2 | Modeling and optimizing dynamic behaviors. a Schematic analogy of
temporal dependencies. Altering an action in the past has consequences for all
future actions. Similarly, for backpropagation through time (visualized by orange
arrows), changes to the final output caused by all past inputs and states must be
taken into consideration. In the framework, digital twins (shaded circles) are used
to estimate dependencies between output and input. b Schematic showing samples
from distributions of initial conditions, which subsequently affect the predicted
trajectory. Gray clouds show the distribution of all gathered data for a given ran-
dom input sequence, while red lines highlight specific trajectories. ¢ Schematic
diagram of the Neural-SDE architecture. Inputs of device states (activities), external
driving stimuli, and auxiliary variables feed into a pair of distinct neural networks
that handle the deterministic (upper network) and stochastic (lower network)
behaviors. The output of these networks feeds into a numerical ODE solver, gen-
erating predictions of both activities and auxiliary variables for the next timestep.

The results are recursively fed back as inputs to the next timestep prediction,
generating predicted trajectories from initial conditions and external driving sig-
nals. Black arrows show forward propagation of activities; orange arrows show
backward propagation of gradients. d Comparison between predictions generated
via neural-ODE and neural-SDE models. The neural-ODE produces a single deter-
ministic outcome for a given set of initial conditions and input stimuli, shown by the
yellow line. The neural-SDE instead generates sampled trajectories from a dis-
tribution based on the learned noise characteristics. The black lines show 100
generations of a signal via the neural-SDE, while red lines show real experimental
data from repeated identical input sequences. As in (b), blue circles represent
selected initial conditions and the gray clouds represent the distributions observed
across all experiments. Further comparisons of experimental versus simulated
trajectories of both experimental devices can be found in ?

range of trajectories that approximate the observed distributions for
the same inputs. The reference dynamics (red lines) show noise-
induced bifurcations, which are not captured by the neural-ODE model
but are effectively modeled by the neural-SDE model.

Temporal classification benchmarks

Here, we use the NADO framework to optimize the connectivity in
networks of interacting devices. The physical devices represent each
hidden node in the network and are treated as fixed nonlinear tem-
poral kernels, with only the weights of the network optimized. First, we
perform a classification task on a modified version of the MNIST
dataset. To introduce a memory component, each MNIST digit image
was split into n separate images containing a random subset of the
original pixels. When combined, these images reconstruct the full
digit. The partial images were presented to the physical system
sequentially, requiring it to use memory to classify the original digit
from the sequence. Final predictions were based on the network’s
response at the end of the sequence.

To extend our study to a more challenging task, the NRA networks
were trained to recognize hand gestures for controlling a neuropros-
thetic device®. This task used real-world electromyography (EMG)
data collected from the forearms of patients performing seventeen
different hand and wrist movements. Predictions were based on the
class with the highest output within a window corresponding to data
acquired between 120-180 ms after the gesture onset (see Supple-
mentary Fig. 13). The integration of neuromorphic systems with EMG
data presents a promising avenue for addressing the challenges of real-
time temporal classification’®*’, with the potential to leverage low-
energy computation to improve the efficiency of gesture recognition
for neuroprosthetic applications.

Figure 3a provides an illustration of the tasks. Figure 3b compares
the responses of the physical network of magnetic nanorings to their
simulated counterparts. The dynamics of four nodes from two differ-
ent layers are shown in red. Simulated activities are in black, with the
digital twins’ response distribution in gray. The horizontal bars
represent output activations of different physical devices for a given
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Fig. 3 | Partially-observable MNIST and Neuroprosthetic movement
classification tasks. a The MNIST data, presented as sequences of images, have
been adapted into a temporal problem by partially obscuring the images at each
time step, requiring the system to integrate information over time for accurate
classification. The neuroprosthetic gesture recognition task is characterized by
input channels that vary over time. b Example responses from the network’s phy-
sical nodes, showing experimentally measured responses (red) and digital twins'
responses (black) for different nodes across two layers. The gray areas represent
the distribution of responses from the digital twins, while the dashed arrows
illustrate the flow of information from the input through the layers to the output.
The horizontal bars indicate the output activations of experimental networks (dark
blue) compared to the model output (light blue), with the correct class highlighted

in red. ¢ Transferred performance of nanoring array networks using Neural-ODEs
(green bars) and Neural-SDEs (orange bars) as digital twins in the MNIST bench-
mark. The deterministic Neural-ODE models exhibit unrealistically high perfor-
mance in simulation (no border), which significantly deteriorates in experiments
(black border). In contrast, the noise-aware training provided by Neural-SDEs
maintains high performance on physical devices, demonstrating effective exploi-
tation of node dynamics and robustness during device transfer. d Performance of
the Neural-SDE models on neuroprosthetic gesture recognition, demonstrating the
framework’s potential in addressing real-world tasks. The black line represents the
error as a percentage across iterations. The inset shows the final performance,
comparing simulation results with those after transfer to the physical device.
Details on hyperparameter selection can be found in 17.

input frame. Despite some mismatches, the simulated network’s
activities correlate well with the experiment, leading to the same
classification outcome. Figure 3c displays the predicted and experi-
mentally achieved accuracies for different task difficulties, measured
as the percentage of visible pixels, in networks with single and two
hidden layers. The task proved challenging for networks with a single
hidden layer due to the well-established non-linearity/memory trade-
off*®, where a single hidden layer is tasked with both remembering past
inputs and non-linearly combining the information simultaneously.
This challenge is also observed in analytical systems, where perfor-
mance significantly improves when the network architecture includes
more than one layer (see Supplementary Information).

To demonstrate the importance of noise awareness in network
optimization, we compare Neural-ODEs and Neural-SDEs as digital
twins (Fig. 3c). Neural-ODEs, which do not incorporate noise, fail to
provide information about noisy response regions that should be
avoided during optimization. This limitation results in inaccurate
predictions of the physical neural network’s performance, particularly
when additional hidden layers are added. In contrast, Neural-SDEs
account for noise, enabling the optimization process to identify
parameter values that remain robust under stochastic variations and

experimental conditions. These findings underscore the necessity of
incorporating noise into digital twins to achieve reliable network
optimization.

The baseline performance, shown as red dashed lines, corre-
sponds to physical neural networks with the same architecture but
randomized hidden-layer connectivity, following the reservoir com-
puting paradigm for both one-layer (left, orange) and two-layer (right,
green) networks. The hidden weights are randomly drawn from dis-
tributions matched to those of the Neural-SDE-optimized network (see
Supplementary Fig. 11b), while only the output weights are optimized.
This demonstrates that achieving high performance requires optimi-
zation of the entire network connectivity, not just the output layer.

Two-layer networks of nanorings optimized using interacting
neural-SDEs demonstrate accurate transfer to physical devices and
achieve performance exceeding that of static software-based MLPs
with identical architectures (two hidden layers of 200 nodes). These
networks also match the performance of dynamic MLPs incorporating
leaky integrators (transferred accuracies for NRAs: 96.8% at 25% visi-
bility and 96.0% at 20% visibility, versus 90.0% and 88.0% for static
MLPs, and 96.9% and 96.7% for leaky-integrator MLPs; see Supple-
mentary Fig. 10). These results show that the magnetic nanoring PNN
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effectively exploits the intrinsic device dynamics as a memory
resource, underscoring the capability of the proposed framework to
leverage physical dynamics for in-memory computing. However, the
limited memory of NRAs results in a relative decline in performance at
lower visibility compared to software leaky integrator networks.

To demonstrate applicability to real-world problems, we applied
the NADO approach to a neuroprosthetics task®, where the goal was to
classify human gestures using surface electromyography data from ten
forearm electrodes. This task is substantially more challenging than
the partially observable MNIST benchmark due to longer input
sequences accumulating more experimental noise, and the need for
generalization across both gestures and different subjects.

Figure 3d shows the measured performance of a network whose
connectivity was optimized in simulation using digital twins and then
transferred to the physical system. As a baseline, we used a randomly
connected network with a single hidden layer and trained only the
output weights, following the standard reservoir computing (RC)
approach, with the number of nodes matched to the PNN. This
adjustment from previous baselines avoids the performance degra-
dation seen with random connections in deeper networks while
maintaining the same node count. The optimized network achieves an
error rate approximately 30% lower than the baseline, demonstrating
the advantages of optimized connectivity over conventional in-
materio RC and highlighting the improved capability made possible
by connectivity optimization.

Regression benchmark

Classification problems are generally more forgiving when transferring
parameters, as their winner-takes-all algorithm only requires the
highest activation in the correct class for accurate prediction. In con-
trast, regression problems demand specific, continuous output values
from the network, presenting a more challenging task when trans-
ferred to physical networks. To test the limits of our methodology, we
applied the network to predict the Mackey-Glass system operating in a
regime characterized by quasi-periodic, chaotic behaviors. This net-
work comprised a mixture of NRA and ASVI nodes. The network
structure was designed to leverage the distinct characteristics of each
physical system: the first layer featured ASVIs, which exploited their
high output dimensionality to project the low-dimensional Mackey-
Glass signal into a higher-dimensional space, while the subsequent
layers consisted of NRAs to provide nonlinearity and memory for
learning the underlying dynamics.

To mitigate error accumulation with an increasing number of
layers, which is more pronounced in regression problems, we
employed the cascade-correlation algorithm®, adapted for experi-
mental settings. A schematic of this process is shown in Fig. 4a. In this
approach, hidden layers were trained sequentially, with previously
trained parameters remaining fixed. As a result, the learning process
treats the responses of earlier layers as fixed inputs for the layer cur-
rently undergoing optimization. Once a layer was optimized, experi-
mental node activities were gathered using the learned parameters,
generating ‘ground-truth’ data with zero mismatch in the forward pass
for the subsequent layer to be trained. This strategy helped to correct
the digital twin’s simulation-reality gap, which might otherwise be
amplified throughout the network depth. Cascade-correlation, there-
fore, limits the propagation of errors to a single layer, facilitating better
transfer. In this respect, the methodology is similar to Physics-Aware
Training”, but requires only one epoch of data per device in the phy-
sical neural network structure, rather than continuous sampling during
each iteration (For further proofs on error bounding and potential
limitations of the approach, see Supplementary Information 'Analysis
of Cascade Learning Approach’).

Figure 4b shows the mean squared errors (MSE) between the
ground truth dynamical equations and the predictions as a function of
prediction steps into the future, for transferred networks with two

(red) and three (blue) hidden layers. Cascade learning achieves the
lowest MSE, indicating excellent alignment between target and pre-
diction, as illustrated in Fig. 4c. For reference, previous implementa-
tions of these experimental systems on this task reported a peak MSE
of 3.86 x1072 at t+5 using the reservoir computing paradigm', and
approximately 1x 1072 with multilayer PNNs trained without gradient-
based optimization”.

Without the corrective dataset, performance deteriorates as the
network depth increases. However, retraining with the corrective
dataset between layers reduces overall error, and adding more layers
improves performance. This outcome highlights the scalability of the
methodology, enabling the construction of deeper networks while
minimizing additional data collection. By confining mismatch error to
a single layer, this approach can be extended to create arbitrarily deep
dynamic PPNs. However, as in any machine learning network, an
improvement in performance is not guaranteed by adding additional
hidden layers, and the configurations learned via cascade learning may
be sub-optimal when compared to full optimization in the absence of
simulation-reality mismatch, with techniques such as PAT* serving as
useful methodologies for minimizing this gap where experimental
throughput allows reasonable training times (see Supplementary
Figs. 8 and 9).

When compared to digitally implemented, noiseless dynamical
neural networks (see Supplementary Fig. 8), the hybrid physical neural
networks incur additional error. When predicting 5 steps ahead for the
Mackey-Glass future prediction tasks, three hidden-layer networks of
simulated leaky integrators achieve mean MSEs 1x 107 compared to
2.2 x1072 for physical networks trained via the same cascade-learning
approach. However, this is likely due to the effect of experimental
noise impacting prediction of noiseless, mathematically-defined target
signals. In spite of this, the significant improvement compared to
previous implementation of this task using the same devices as high-
lighted earlier highlights the promise of the NADO approach.

Discussion

Devices with complex dynamical responses are powerful substrates for
the physical implementation of neural networks designed for temporal
processing. While individual devices may possess limited computa-
tional capacity, learned connectivity within device networks brings
them closer to the performance of deep artificial neural networks. This
work highlights the critical role of the Noise-Aware Dynamic Optimi-
zation (NADO) framework in optimizing connectivity within dynamical
physical neural networks. Central to this framework is the develop-
ment of stochastic digital twins based on the neural SDE approach.

These models are differentiable and provide surrogate gradients
for task-specific, gradient-based network optimization. Notably, the
NADO framework requires no prior knowledge of the underlying sys-
tem and minimizes physical device usage during training-accelerating
the optimization process in cases where data acquisition is slow (see
Supplementary Fig. 9). We demonstrate the effectiveness of this fra-
mework by successfully training networks of complex physical neu-
rons to solve a range of temporal tasks: partially observable MNIST
classification, forward prediction of the Mackey-Glass sequence, and
gesture recognition for a neuroprosthetic device.

Previous methods for training physical networks, such as Physics-
Aware Training (PAT)* and Physical Local Learning (PhyLL)*, have been
limited to static devices. In contrast, our framework embraces the
dynamical nature of physical systems, treating this complexity not as a
hindrance but as a computational asset. To our knowledge, this is the first
demonstration that interconnected physical devices can be optimized
using backpropagation through time (BPTT), the foundational learning
algorithm for recurrent neural networks and dynamical systems.

Our use of digital twins shares conceptual parallels with PAT but
extends to dynamically driven, noise-aware models. Whereas PAT
relies on experimental measurements to correct a model’s internal
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Fig. 4 | Cascade learning and Mackey-Glass future prediction task. a Schematic
overview of the methodology employed for sequentially training network layers
with intermediate data gathering. The boxes represent steps performed in simu-
lations, with red shading indicating ASVI twins/experiments in the first layer (L1)
and blue shading representing NRAs in the second layer (L2). Initially, a single ASVI
layer is connected to a simulated output neuron and trained for the regression task.
Once trained, the connectivity from the input to the ASVI layer is transferred to the
physical device. Experimental data is then collected to serve as input for training
the connectivity to the subsequent layer, consisting of NRAs. This process can, in
principle, be extended to accommodate any number of layers. Retraining the
digital twin is not required; intermediate data are used solely to adjust the con-
nectivity between the new and the previous layer. b Mean-squared error between

Time (arb. units)

ground truth and experimental network predictions for the Mackey-Glass future
prediction task as the number of future steps increases. red circles/ blue squares
represent networks with two/three hidden layers, while dark/light colors compare
direct training of the entire network to networks trained using cascade learning, as
presented in (a). Error bars show standard deviations of error over 10 different
subsections of 4000 test samples. Comparison between model prediction and
ground-truth data for the five-timestep future prediction of the Mackey-Glass
equation in (c) two-layer and (d) three-layer networks. White circles represent the
ground truth data, red lines show the transferred PNN prediction, and pink shading
indicates the difference between the ground truth and the network prediction.
Details on hyperparameter selection can be found in 17.

activity and reduce the simulation-reality gap during training, our
neural SDE framework enables effective optimization without requir-
ing real-world data for optimization in classification tasks.

Extending PAT to the dynamical setting involves correcting the
system’s computational graph through time (see Supplementary
Information - Generalizing PAT to Dynamical Settings). This requires
sampling device states across temporal trajectories and adjusting
estimates of both system state evolution and input-output depen-
dencies. In the Supplementary Information, we detail this general-
ization and evaluate performance as a function of the adopted
sampling strategy. Notably, sampling every device at every time step
for each input signal during training is experimentally demanding, and
practically infeasible with the hardware considered here, due to rela-
tively slow experimental throughput. This limitation is compounded
by the inability to parallelize across batch sizes in hardware.

Nevertheless, PAT-inspired sampling strategies remain valuable
for refining model behavior. Our neural SDE framework should not be
seen as a replacement, but as a complementary alternative. There is no

intrinsic barrier to applying experimental corrections to neural SDE
models to further reduce this gap. For the regression task investigated,
we employed a cascade learning approach-interpretable as a sparse
variant of PAT-to incrementally correct neural SDE activity layer by
layer. This enabled us to balance theoretical performance with
experimental feasibility. As observed in regression tasks, some degree
of sampling was necessary; however, satisfactory performance was
achieved without continuous correction through time or at every
parameter update.

Adopting neural SDEs as the underlying physical model provides a
robust mechanism for generating noisy samples during digital training
and yields a differentiable representation of device stochasticity. This
enables gradients to be backpropagated through the stochastic com-
ponent itself-a critical feature for systems whose responses depend
non-trivially on specific noise realizations, which PAT alone cannot
account for (see Supplementary Fig. 10).

While the dynamical systems studied here are promising candi-
dates for neuromorphic computing, current approaches to signal
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input and state readout present practical challenges for large-scale
implementation. For example, artificial spin-vortex ice requires high-
precision, low-throughput measurement equipment, and applying
magnetic fields is both slow and energy-intensive. Similarly, nanoring
devices rely on electromagnets that consume much more energy than
the underlying physical computation, and bridging electrical and
magnetic domains adds further complexity. Nonetheless, the metho-
dology described here is broadly applicable to any dynamical system
modeled by differential equations. This flexibility enables the optimi-
zation of networks based on alternative device platforms, where
integration with existing CMOS technology may be more
straightforward.

Additionally, the physical neural networks used here are con-
structed by serially sampling the same device of each class. Although
the ensemble nature of the magnetic devices here leads to limited
device-to-device variability when manufatured with nominally iden-
tical design processes, the additional complexity of device-to-device
variability is not directly considered here. For limited device variablity,
the inherent noise-awareness of the optimization approach will miti-
gate noise from device variability, provided that a representative
number of devices are used to train aggregate neural-SDE models that
reproduce both the mean behavior and predicted variance across
devices. However, the increased variance in behavior may result in
lower peak performances.

For the first time, we demonstrate the effectiveness of neural SDEs
with an extension to include colored noise on experimental data from
neuromorphic systems. Our framework generalizes across device
types, requiring only that both deterministic and stochastic dynamics
can be sampled. While prior work has explored neural ODEs in spin-
tronic simulations®, we apply this approach to two distinct experi-
mental platforms: nanomagnetic ring arrays and artificial spin vortex
ice, with particular emphasis on capturing their intrinsic stochasticity.

This work introduces a unified optimization framework that
enables joint training over input signals and device parameters,
allowing precise control over the operational regime of physical neural
networks. Although developed in a neuromorphic context, the
method is broadly applicable to systems where learning directly from
real-world dynamical processes is critical.

Methods

Sampling device behaviors

For each of the device classes, a single device was repeatedly sampled.
First, the range of inputs at which the devices are dynamically active was
established by sweeping input stimuli and observing changes in mea-
sured output. Data used for training the models of dynamic behaviors
were sampled randomly from the determined input range. Different
datasets were constructed for training the deterministic model and
stochastic model behaviors. In both cases, the systems are initialized by a
strong pulse of magnetic field, saturating the devices. A single input
corresponding to the maximum allowed input value is then applied,
generating a trajectory to be used for initial conditions of the model. For
the Neural-ODE, devices were then driven by many uncorrelated, ran-
domly generated input sequences sampled from a uniform distribution
spanning the range of activity, with the measured state of the devices
recorded alongside the external input at each time. To gather a valida-
tion set for the optimization of the neural-SDE, the devices were driven
by 100 repetitions of each sequence from a smaller set of randomly
sampled sequences, with similar recordings of input and measured state.

Neural-ODE modeling

The Neural-ODE models used here emulate the observable state of a
dynamical system x(¢), which is an N,-dimensional vector gathered
experimentally. This is done by parameterizing the instantaneous gra-
dient of the dynamical systems with respect to its current hidden state
y(8) and external input s(¢) via a neural network f, before integrating to

find the next state. This process is described in further detail below, with
a didactic tutorial provided in the Supplementary Information.

As in ref. 30, the unknown internal state of the system con-
sidered is embedded by concatenating a set of delayed observables
X() t0 X(t = Ngeiay6t), Where Ngeiqy is the number of delays adopted.
We define this augmented N, (Ngeq, + 1)-dimensional state as
y(t)= (x(t), o X(E - Nde,ayét)). Assuming this representation ren-
ders the system Markovian for a given s(¢) and y(¢) so that a dataset
device dynamics, D={(s(0),y(0),y(Q)), ..., (s(t),y(t), y(t+6¢)), ...}
can be sampled for training the model to predict the next step.

To predict trajectories, the Neural-ODE is provided with initial
conditions y(to) sampled from a random starting time ¢,. Then, driven
by external signals (s(¢y),, ..., S(ty + T6¢)), the model is asked to pre-
dict the evolution (y(¢, +6¢), ..., y(to + T6t)) of the system for T steps.
We will denote the predicted activities generated by the model as y(¢)
to differentiate them from the target y(¢). The neural-ODE activities are
defined through the integration of

dy(© =f (y(0),s(0), 119/ ) e o

with ¥(to)=Y(t,), and the neural network f(-|@) : RNxMNaetwy *D*Ns _,
RNMNaeiwy *D  parameterized by weights ¢, estimates the instantaneous
gradient of the system from y(¢) and s(¢). Integration via numerical
methods leads to the prediction of x(¢ + 6t) as the most recent state in
y(t +6¢). This iterative, recursive process continues for all steps con-
sidered ¢t € [ty, £ty +T6t]. The network is trained by minimizing the
mean squared error between model generated states y and experi-
mentally gathered states y. We refer to the Supplementary Information
for further details and training hyper-parameters.

Neural-SDE modeling

The Neural-SDE model proposed captures both the stochastic*’ and
deterministic behaviors of dynamical systems, as well as noise in
experimental measurements. The model features an additional net-
work g to the Neural-ODE model introduced in the previous section. To
account for various experimental settings, the neural-SDE has been
designed to accommodate external signals, delayed observations of
systems activities, and the presence of colored noise. The incorpora-
tion of colored noise involves the introduction of N, auxiliary variables
a(t) operating over multiple timescales. The proposed neural-SDE
model is defined as

(:ZEQ) - (f‘“”"fi?;;[g"""”” >dt+g(9(t). a(0), s(@), (P )dW ()
with y(t,) =y(t,) and a(tp) = 0 as initial conditionas and dW is a Ny~
dimensional derivative of the Wiener process®® that during simulation
is given by Gaussian random numbers. The functions f( - |¢/) and
g( - |¢®) are neural networks defined by the trainable weights ¢ and ¢*
respectively which are learned during training. T is a diagonal matrix
defining the timescales of the auxiliary variables are also learned dur-
ing training.

We generally found that it is important to restrict the function g to
generate stochasticity only on the most recent prediction of X. By
expanding out the augmented y(f) vector and introducing the
restriction on the g function leads to redefinition of Eq. (2) as

dx(t) £,(5(0),s(0), t1¢) + Aa(r) 2,(5(t), s(0), t19%)
dx(t — 6t) £,3(0), s(0), t1¢)) 0
: = : de+ : dw
dX(¢ — Nyerqy6t) PNy 1130, S(0), 1) Y

da(t) —tla(r) 8,(Y(2),s(2), t19°)

©)
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where the dimensionality of the function f(-|¢/) : RN®Maew *D+Ns _,
RMNMNaewy*D s analogous to the neural-ODE settings, while the
non-zero elements of the function g( - |@%) constitute a map
RNx(Naetay *D+Ns _, 2(Nx*Na)*Nw A s introduced as a N, x Ny, dimen-
sional matrix linking the auxiliary variables to the last state of
the system. We highlight that a single neural network
mappingRNNaeay *D+Ns _ N+ Na) Ny wag ysed to jointly parame-
trize the two terms g; and g, as depicted in the schemes of the neural-
SDE architecture reported in Fig. 2. The training of the neural-SDE
follows the generative adversarial network paradigm introduced in
previous works*’ and further details are provided in the Supplementary
Information.

Noise-aware dynamic optimization of physical neural networks
We now consider of a specific network architecture, formed of physical
nodes modeled as Neural-SDEs. Here, we assume a multilayer per-
ceptron (MLP) structure composed of hidden layers indexed by
[=1, ..., L with the i - th node in each layer having an augmented state
y.(t). This augmented state was defined to describe the device as a
Markovian system and consequently to capture the system behavior in
a neural-ODE/SDE framework. As a consequence, it is a modeling
abstraction and does not correspond to the information exchanged
between devices when embedded in a physical neural network.
Therefore, we assume device-to-device interactions to occur via the
variable y7(¢)=m (y,(t)) where m is a post-processing function provid-
ing a mapping of the device dynamics to the quantities that dictate the
exchange of information. Importantly, this function needs to be dif-
ferentiable to permit backpropagation through the network dynamics.

Within our proposed NADO framework, the key goal is to opti-
mize the weights connecting each of these physical nodes and we fix
the parameters governing the neural-ODE/SDE mdoels. To simplify
the notation we define zj(¢) as the concatenated activities of all
nodes within layer [ such that zj(¢)= (y;fl(t), yiL (), 2 and
Si(&)= (s;,1(t), 8, 5(t), ...) is the concatenated input to layer L. As before,
a tilde (0) is adopted to distinguish the experimental from the simu-
lated quantities and so we define Z]'(¢) as the simulated analog of
concatenated S'Z i(t) digital twin dynamics. During a forward pass of the
simulated network, we initialize each digital twin’s internal state y(t,)
using a distribution over initial conditions, which captures the inherent
stochasticity of the inital device states p(y(ty)). As described in
the Supplementary Information, this distribution is empirically mea-
sured rather than learned, in order to reduce discrepancies between
simulation and real-world behavior. Under this setup the input to layer
[ +1 can be written as

S;:1(0=h(0,.,2] (1)) @)

where 6., represents the weight matrix connecting layer /to [+ 1and h
is a device pre-processing function that maps the raw inputs into a
physical input for each device in the layer, for example converting into
an appropriate magnetic field value. Further details and extension are
provided in the Supplementary Material. For the first hidden layer,
there is no preceeding layer activity and is instead the given task input
s“(¢). Importantly, when estimating the forward pass of the network
through the digital twins this same equation is used but for zj(¢)
resulting in S,(¢) as the simulated input.

The output of the simulated network can be defined as a linear
combination of the final layer activities, o(¢)=0,,,z](¢), and, thus,
optimization can follow the minimization of

=Y"E (6(t), o“’s“(t)) ®)
t=ty

where E( - ) is an appropriately chosen loss function operating on the
simulated network output 6(¢) and target task output 0(¢).

Thus, in a forward pass of the simulated network, we integrate the
stochastic differential equations (3) through time and calculate the
output o(t). We highlight that in a feedforward structure, even with
dynamical node, each can be ran layer by layer. That is, we can simulate
the dynamics z(¢t), V ¢ before passing to layer [ + 1. This process is
outlined in the pseudo-code presented in Algorithm 1.

In the backward pass, the connectivity parameters 0 are trained
via backpropagation through time (BPTT) on the simulated network.
The task-dependent optimal parameters are extracted like-for-like for
use in experiments, where the resulting connectivity is validated on
physically defined devices. The supplementary information provides
more details on the use of BPTT and truncated-BPTT for the simulated
system.

This optimization is performed using PyTorch’s automatic dif-
ferentiation and the Adam optimizer. In both the MNIST and neuro-
prosthetics tasks, we were able apply BPTT across the entire sequence.
For the Mackey-Glass regression task, which involves forecasting a
sequence of arbitrary-length, we employed truncated BPTT, training
on temporal segments with starting points randomly sampled from the
dataset. Additionally, a burn-in phase was used at the start of each
segment, during which the system was evolved without gradient
tracking. This allows the dynamic system to settle into a representative
regime before the learning process.

Performing this optimization process assumes that generated sys-
tem responses, y(¢), are approximately equivalent to physical device

dy;(9)

activities, y(¢), and that the unknown devices dependencies ;7 can be

35’[([)
s; (1)
sidered. BPTT, or truncated BPTT, will then decompose such total deri-

e i ay,(t) W) gy ; ;
vatives into the terms 655 and ayc—sp VL I the considered interval.

approximated through

vt and ¢’ <t in the temporal interval con-

Although our discussion centers on an MLP architecture, the
approach generalizes naturally to any feedforward network. The only
modification required is to replace the linear transformation in Eq. (4)
with the appropriate operation for the chosen architecture.

Nanomagnetic Ring Arrays (NRA)

Fabrication of ring arrays. Wafers of Si (001) with a thermally oxidized
surface were spin-coated with 200nm of positive resist, with the
nanoring array geometries and electrical contacts patterned via
electron-beam lithography using a RAITH Voyager system. The mag-
netic nanoring arrays were patterned, then metallized to nominal
thicknesses of 10nm via thermal evaporation of NiggFe,o powder using
a custom-built (Wordentec Ltd) evaporator (typical base pressures of
below 107 mBar), before removal of the initial resist. Electrical con-
tacts were patterned via a second lithography stage and were metal-
lized via two-stage thermal evaporation of a 20nm Ti seed layer
followed by a 100nm layer of Au.

Electrical transport measurements of ring arrays. Rotating magnetic
fields were generated at 64 Hz via two pairs of air-coil electromagnets
each with a voltage-controlled Kepco BOP 36-6D power supply. A
sinusoidal voltage wave of 13,523 Hz was generated via an Aim-TTI
instruments TG1000 signal generator and an SRS C5580 current
source to generate 2 mA current, which was then injected to the
nanoring arrays via the electrical contact pads. A National Instruments
NI DAQ card measured the resulting potential difference across the
device (modulated via anisotropic magnetoresistance (AMR) effects),
sampling at 2 MHz. Lock-in amplification was performed digitally by
multiplying the measured voltage signal with a digitally generated
reference wave matching the input current frequency, before filtering
via a digital low-pass filter with a cut-off frequency of 320 Hz to remove
the kHz component and leave the AMR dependent signal. The filtered
waveform was then downsampled to a rate of 3.2kHz (50 samples per
rotation of applied field) to reduce data size. Further images of the
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experimental setup and an overview of the signal path can be found in
Supplementary Fig. 14.

Neural-SDE models of NRAs. Training data for the deterministic
component of the neural-SDE (parameterized by f) was generated by
driving the NRAs under 20,000 randomly generated sequences of 20
inputs, with the applied rotating magnetic fields spanning the
responsive range of the devices, and recording the resulting AMR sig-
nals. The external signal s(¢) represented the magnitude of the applied
field at time t. Five delays were used here to define the hidden state,
y()=(x(¢), ..., x(t — 5)), where the x(t) represented the measured
AMR signal. The data used to generated the stochastic component
(parameterized by g) was generated by driving the system with 1000
randomly generated input sequences of length 20 for 100 repetitions
to generate example distributions of the noisy measurements, with 10
auxilliary variables used to generate different timescales of noise.

Artificial Spin Vortex Ices (ASVIs)
Part of the description of the experimental methodologies for the
ASVis is reproduced from earlier works of several of the authors™.

Fabrication of artificial spin vortex ices. Artificial spin-ice arrays were
fabricated via electron-beam lithography liftoff method on a Raith
eLine system with PMMA resist. 25 nm Nig;Fe;o (permalloy) was ther-
mally evaporated and capped with 5 nm Al,Os;. The flip-chip FMR
measurements require mm-scale nanostructure arrays. Each sample
has dimensions of roughly ~ 3x2mm. As such, the distribution of
nanofabrication imperfections termed ‘quenched disorder is of
greater magnitude here than typically observed in studies on smaller
artificial spin systems, typically employing 10-100 micron-scale arrays.
The chief consequence of this is that the Gaussian spread of coercive
fields is over a few mT for each bar subset. Smaller artificial spin
reservoir arrays have narrower coercive field distributions, with the
only consequence being that optimal applied field ranges for reservoir
computation input will be scaled across a corresponding narrower
field range, not an issue for typical 0.1 mT or better field resolution of
modern magnet systems.

Spectral fingerprinting of artificial spin-vortex ices. Ferromagnetic
resonance spectra were measured using a NanOsc Instruments
CryoFMR in a Quantum Design Physical Properties Measurement
System. Broadband FMR measurements were carried out on large area
samples (-3 x 2 mm?) mounted flip-chip style on a coplanar waveguide.
The waveguide was connected to a microwave generator, coupling RF
magnetic fields to the sample. The output from waveguide was recti-
fied using an RF-diode detector. Measurements were done in fixed in-
plane field while the RF frequency was swept in 10 MHz steps. The DC
field was then modulated at 490 Hz with a 0.48 mT RMS field and the
diode voltage response measured via lock-in. The experimental spec-
tra show the derivative output of the microwave signal as a function of
field and frequency™.

Neural-SDE models of ASVIs. Training data for the deterministic
component of the neural-SDE was gathered for a sequence of 13,000
inputs, with saturation pulses provided sporadically to reset the
device. Data for the stochastic component was generated via 100
repetitions of 100 different input sequences of length 20. The ASVI
response X(t) corresponds to the measured FMR spectra driven by an
external field of amplitude s(¢). The dimensionality of x was sufficient
to capture the system’s dynamics and augmentation of the N-DE input
variables was not necessary, setting y(¢) = y"(t) = x(t).

Physical Neural Networks
Physical systems as dynamic nodes. The NRA devices were initialized
via a single rotation of magnetic field at 80 Oe, with a sample from the

distribution of the final AMR states of the initialization procedure used
as initial conditions for the neural-SDE model. The ASVI devices were
initialized via a linearly applied field of 235 Oe, with similar selection of
initial conditions for the model. The feed-forward networks were
constructed by repeated measurements of a single physical device of
each class (one NRA device, one ASVI), mimicking the flow of infor-
mation through the network by serially sampling the same device.
Input data were combined with the transferred weights, then encoded
into the strength of the applied magnetic fields and provided to the
devices node-by-node within a given layer. The outputs of each layer
were then combined with their respective weights and passed to the
next layer in the network where the process was repeated. This hybrid
between digitally stored network weights and physical nodes is due to
current experimental limitations rather than limitations of the
framework.

Partially Observable MNIST. The data for this task converts the ori-
ginal 784 dimensional input of the MNIST digits into a sequence of
length N with 784 input features per step. At each timestep, the
information from 784/N pixels is given via random sampling, and
removed from the sample pool for subsequent images in the sequence.
Hence, all of the information from the digit is provided by the end of
the sequence. There is no correlation between the sampling process
across multiple digits, resembling different permutations of informa-
tion for every digit. Classification occurs from activities at the end of
the sequence only. Training was performed via backpropagation
through time in simulation, with hyperparameters tuned against a
small validation set also in simulation. Testing was performed on
networks of real devices on 1000 samples of unseen data, with
reported accuracies averaged over three experimental runs with dif-
ferent masking of data.

Movement classification of a neuroprosthetic device. For the neu-
roprosthetic task, we adopted the second classification task (exercise
B) from the Ninapro database, where sEMG activities have been
recorded for 27 subjects. In these settings, the physical neural network
is asked to perform gesture recognition from the sEMG recordings for
all subjects. The sSEMG temporal data has been preprocessed through a
low-pass filter and sub-sampled at 100 Hz, leading to input sequences
of 30 time steps for each gesture. The data was split into training,
validation and testing sets, where the validation set was used to tune
the hyperparameters. For optimization, we adopted truncated back-
propagation through time to reduce simulation time and memory
requirements. Particularly, we fixed the number of temporal steps over
which dependencies are considered and BPTT is carried out to ten. The
seventeen classes were represented via one-hot encoding of output
neurons, with the target signal of the same length as the input data.
Training was performed by optimizing the model output over a
reduced window of the original signal, corresponding to the most
meaningful information on the gesture (timestep 12 to 18). This meant
that parts of the signal which are not informative for classification do
not disrupt the learning process. This produced a single model which
was able to perform decently over many time steps of prediction,
shown in Supplementary Fig. 13.

Mackey-Glass future prediction and cascade learning. The signals
used for prediction were generated via the following delay-differential
equations”': 4¥ = {20, — Bx(r), with @ = 0.2, =0.1, 7=17,n =10,
and xo = 1.2, solved numerically with a fourth-order Runge-Kutta sol-
ver and a timestep dt = 2, producing quasi-periodic behavior on the
order of 25 samples. 5100 samples were generated, with the first
100 samples discarded as a wash-out of initial conditions. The next
1000 samples were used for training, and the same 1000 samples were
used to gather the corrective datasets for the cascade learning
approach. Model performance was evaluated in experiments over the
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remaining 4000 samples in 10 subsections of 400 points, with the
resulting error bars reflecting performance over the 10 sections.

Data availability

The processed data presented figures in this manuscript can be found
on ORDA at https://orda.shef.ac.uk/articles/dataset/Research_data_
for_Noise-Aware_Training_of Neuromorphic_Dynamic_Device_
Networks_/29835680, under the following https://doi.org/10.15131/
shef.data.29835680. For raw experimental data, contact
i.vidamour@sheffield.ac.uk.

Code availability
The code used in this manuscript can be accessed at https://github.
com/LucaManneschi/NoiseAwareTwins_Project.
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