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In the late 1940s, the US Air Force recorded an unacceptable

number of crashes and emergency landings, prompting a formal

enquiry. It was resolved that neither the engine nor the pilot

was at fault. Attention turned instead to the design of the

cockpit, which was based on the ‘average’ airman from 1926.

Could it be that the body proportions of airmen 20 years on had

changed? A subsequent survey of over 4000 airmen collected

132 detailed measurements on each pilot [1]. From this list, 10

were chosen that seemed most relevant to cockpit design and

the number of airmen who fell into the middle 30% range for all

10 was calculated. The answer was 0. Even with three measures,

under 3.5% of airmen were ‘average′. The survey report con-

cluded that “The tendency to think in terms of the ‘average

man’ is a pitfall… it is virtually impossible to find an ‘average

man’ in the Air Force population” [2]. A contemporaneous

competition to find ‘Norma′, the average American woman,

based on average body proportions came to the same conclusion

for women; the ‘average woman’ is rare [3].

These stories are well known [4]. Yet we continue to rely on

average measurements in a variety of situations, including when

designing and interpreting the results from clinical trials. In drug

development, this may cause us to miss an efficacy signal that

exists in a subset of subjects in a study that fails to meet a pre‐

defined average endpoint: perhaps stopping a promising candidate

drug from progressing further. Or it might lead to pursuing a

higher dose than is necessary for ‘responders′, to achieve a pre‐

defined averaged measurement for the whole study group. More-

over, translation of the mean result from a randomized clinical trial

(RCT) to the clinic is frequently disappointing. Valid estimates are

difficult to come by and numbers will depend upon the indication

but less than a half and perhaps lower than a third of patients likely

respond to the licensed dose [5, 6]. Relying solely on average

patient data to inform a dose and dose regimen to treat an indi-

vidual patient is a pitfall analogous to that of designing a cockpit for

the average US Air Force pilot.

A common approach to addressing variation in drug response is

to conduct a subgroup analysis of a RCT and identify ‘responders’

(i.e. a subgroup that appears to derive benefit from the drug)

based on dichotomizing the outcome; using a threshold mea-

surement that is viewed as clinically meaningful. But this is

predicated on the assumption that the recorded response for each

patient is reliable and reproducible; if the response cannot be

replicated, then our identification of ‘responders’ is insecure [7].

N‐of‐1 studies are a subset of cross‐over trials designed to mea-

sure the variation in response of a patient to a certain treatment

given more than once and on separate occasions. The patient is

the unit of observation; they act as their own control and

reproduction of the response on reintroduction of the study drug

provides confidence that the patient is a responder to the drug.

This type of study has a long history, but it is under‐employed in

medical research [5, 8]. One reason is that certain criteria need to

be satisfied to allow a N‐of‐1 study design. These include a stable

background to provide a data set for meaningful comparison,

easily measurable endpoints that can be objectively repeated,

interventions with a relatively short half‐life to allow for washout
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and cross‐over of treatment and a protocol that provides careful

management of the changeover treatment periods.

The opportunity to evaluate a new treatment in a small number

of patients makes the N‐of‐1 study of particular interest to rare

conditions, such as pulmonary arterial hypertension (PAH).

PAH meets many of the criteria. It is a chronic condition where

new treatments are introduced to affected patients who are

stable on background licensed treatments. Established clinical

measures of response can be repeated [9]. But there is an ethical

concern around the safety of drug withdrawal in PAH. While

desirable in drug assessment from a regulatory standpoint, as a

return of clinical measures towards baseline provides added

information with respect to drug effect, clinicians are sensitised

to relatively rapid changes in cardiopulmonary haemodynamics

that follow reduced or missed doses of some short‐acting va-

sodilators (e.g. prostacyclins) [10].

Here the introduction of wireless devices to medicine is a

potential ‘game changer′. In addition to wearables, implanted

devices, such as pulmonary artery pressure monitors and heart‐

rate activity recorders, can be used to capture daily haemody-

namic information during changes in therapy [11, 12]. Im-

planted devices, unlike wearables, cannot be forgotten or

discarded, although patient adherence to data uploads is nec-

essary. Regular remote data acquisition is not subject to ter-

minal digit preference or seasonal variability [13, 14] and offers

a dual benefit: it allows for the establishment of a stable base-

line before a new drug is introduced, and it enables close,

continuous monitoring of patients as their therapy changes.

While the current number of PAH patients with implanted

sensors is small compared to patients with left heart failure,

patient acceptance has been high [15], there have been no safety

concerns around the devices and the emerging results showcase

their value [11, 12]. The attributes of digital technology per-

mitting the collection of precise high‐frequency longitudinal

data at the individual patient level augments what can be

achieved with traditional clinical outcomes, where multiple

repeated endpoints are expensive, time consuming and resource

intensive, and allows the implementation of high‐quality single‐

patient designs in PAH [16].

A recent study re‐evaluating imatinib as a treatment for PAH

exemplifies the detail that can be obtained from the use of im-

planted devices in a single‐patient study setting [17]. This study

substantiated an exposure‐dependent improvement in cardio‐

pulmonary haemodynamics, namely total pulmonary resistance,

over a tolerated dose range, based not on a single reading aver-

age, as is the case in RCTs, but the 3‐day rolling average. By

elucidating the temporal relationship of response to exposure, the

study suggested an earlier haemodynamic effect than commonly

thought possible, an insight helpful in planning the timing of

endpoints in future studies, and one that could enable the design

of a shorter, more efficient future RCT. The study also provided

evidence of a gradual return of haemodynamic measurements to

baseline after drug withdrawal, an observation that assuages

concerns about the impact of occasional missed doses and could

inform dosing frequency in clinical practice.

The reproducibility of the hemodynamic response was shown

by repeated exposure in the same patient (Figure 1). The

optimum number of cycles of treatment required to reliably

assess within patient variation in response to a treatment

depends upon a number of factors, including the effect size, the

precision of the measurement, and the stability of the disease.

Another consideration is the length of time needed to produce

an effect and the length of the washout period. This time

commitment can place a burden on the patient as well as

having cost implications for funders. Of course, the N‐of‐1

cross‐over design is only feasible if the treatment effect wears

off within a reasonable timeframe after dosing is stopped; but

that is itself instructive, as if no return to baseline is observed on

drug withdrawal, this may go a long way towards answering

questions around whether a drug is disease modifying. Where

there is a reversal of response, a second challenge may be suf-

ficient to provide confidence in a patient′s responder status (i.e.

responder or nonresponder) in the context of daily recordings

from implanted devices.

Data from a series of N‐of‐1 studies of the same intervention can

be combined to understand the potential average treatment dif-

ference. The primary methods for accomplishing this are a Meta‐

Analysis of Individual Treatment Effects (where each N‐of‐1 trial

provides an individual‐level treatment effect estimate to yield

an average treatment effect for the studied population) and an

Individual Participant Data (IPD) Meta‐Analysis using Hierar-

chical or Mixed Models (where hierarchical models are then used

to simultaneously model within‐patient responses and between‐

patient variability). In the presence of large heterogeneous treat-

ment effects, a meta‐analysis of N‐of‐1 trials may offer efficiency

gains over a traditional RCT approach to learn about effects in the

population as opposed to the individual. By providing granular

data and leveraging within‐patient comparisons to precisely

quantify individual variability and overall effects, an N‐of‐1 series

can identify and support clustering patients into distinct response

subgroups.

But in considering N‐of‐1 studies with continuous monitor-

ing for PAH, the idea is to complement rather than replace

RCTs. Their optimal deployment is in early phase develop-

ment, recognising that animal models are poor predictors of

clinical efficacy and the best model organism is the human

[18]. The N‐of‐1 study provides an early opportunity to con-

duct a proof‐of‐concept study in a small number of patients

with a ‘fail early, fail fast’ strategy, the philosophy of re-

cognising early when a drug is not effective or may even be

harmful [19]; the drug can then be dropped before too many

patients are exposed and resources can be re‐directed towards

the next promising candidate, a priority for a rare condition.

It can address efficiently the need to be inclusive of diverse

populations; a positive response in just one patient from an

underrepresented population is very powerful. As illustrated

by the imatinib study, the N‐of‐1 design can accommodate

novel trial designs [20] as well as instruct key design ele-

ments for larger trials, such as dose and dosing interval, truly

meaningful effect sizes and optimal timeframes for treatment

onset. This approach aligns with Project Optimus, a FDA

initiative to reform and modernise dose selection and opti-

misation in oncology drug development by advocating for the

identification of an optimal biologic dose [21]. The insights

gained are invaluable for informing and refining the imple-

mentation of adaptive designs, allowing for more efficient
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mid‐trial adjustments and better resource allocation. Later on

in the drug life cycle, N‐of‐1 studies have a place post‐

marketing in that they provide the opportunity to monitor

patients closely and evaluate different treatment combina-

tions; rather than simply add new therapies to an ever‐

increasing number of background drugs, once patients are

stable, one or more drugs might be withdrawn and the impact

carefully measured.

The answer to the ‘cockpit problem’ of the 1940s was an

adjustable design that could be adapted to each individual air-

man. Ultimately, if wearables and/or implanted devices become

more commonplace for patients with PAH, more patients may

take part in their own N‐of‐1 study, allowing personalized

treatment to target decisions [22]. This would align the man-

agement of PAH with the direction of travel for other chronic

conditions, such as heart failure and diabetes. It parallels the

broader necessity in modern drug development to employ ex-

perimental designs that can efficiently and robustly learn about

population effects, while simultaneously facilitate the person-

alization of treatment.
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