National food production cannot address nutrient gap in African countries 1 2 Harold L. Feukam Nzudie¹, Xu Zhao¹, Peipei Tian¹, Pan He², Xinxin Zhang³, Amar A. Hamad⁴, 3 Martin R. Tillotson⁵, Innocent Onah⁶, Shuyi Chen¹, Honglin Zhong¹, Kuishuang Feng⁷, Ning 4 Zhang^{8, 1, 9} 5 6 7 ¹ Institute of Blue and Green Development, Shandong University, Weihai 264209, China ² School of Earth and Environmental Science, Cardiff University, Cardiff CF10 3AT, United 8 9 Kingdom 10 ³ Business School, Shandong University, Weihai 264209, China ⁴ College of Environment, Hohai University, Nanjing 210098, China 11 ⁵ water@leeds, School of Civil Engineering, University of Leeds, Leeds LS2 9JT, United 12 13 Kingdom 14 ⁶ Africa Natural Resource Mangement & Investment Centre, African Development Bank, 15 Abidjan 01 BP 1387, CoteD'voire ⁷ Department of Geographical Sciences, University of Maryland, College Park, 20742 MD, 16 17 **USA** ⁸ School of Economics, Yonsei University, Seoul, 03722, South Korea 18 ⁹ Department of Land Economy, University of Cambridge, Cambridge, CB2 1TN, UK 19 20 21 **Editor's summary** 22 Most studies assessing food self-sufficiency look at calories and neglect nutrient gaps. 23 24 Comparing food demand and potential food production under land and water constraints, this 25 study quantifies nine key nutrient gaps for each of African's 54 countries. 26 27 **Abstract** 28 This study quantifies nine key nutrient gaps by comparing national demand and domestic 29 production in each of Africa's 54 countries. While different countries exhibited varying degrees 30 of nutrient gaps for different nutrients, all countries were deficient in at least one nutrient, with

eight being deficient in all nutrients. Following current agricultural productivity, only 7 African

32 nations could satisfy their nutrient gaps through production expansion given water and land

33 constraints.

Main

34

Insufficient food supply and malnutrition affect one-third of the global population¹ and is 35 36 especially prevalent in Africa, with 24% of the population of sub-Saharan Africa being 37 undernourished in 2020². Food trade plays an important role in food and nutrient supply in the region³, enhancing food availability, access and diversity³. For example, 84% of wheat demand 38 39 is met through import in Eastern Africa⁴. However, countries that rely on food trade to meet 40 their needs are also more vulnerable to shocks, including pandemics, conflicts, and natural 41 disasters which impact food production and supply chains⁵. In 2022, for example, the price of 42 bread in Cameroon and Nigeria increased by 40% and 34.11% respectively as a result of the 43 Russia-Ukraine conflict⁶. 44 Improving food and nutrient self-sufficiency is therefore important for food security in Africa ⁷, but requires substantial resource input – particularly land and freshwater⁸. Over the past 45 decades, Africa's agricultural growth has largely relied on land expansion⁹, with limited 46 improvements in land and water productivity¹⁰. In this context, two critical questions emerge: 47 1) what is the exact magnitude of nutrient gaps currently faced by African countries given their 48 49 nutritional demand and domestic production; and 2) whether such nutrient gaps could be 50 reduced through domestic expansion of agricultural production given land and water 51 constraints. The existing literature focuses primarily on the gap between national consumption 52 and demand (defined in terms of physiological requirements) using an apparent consumption approach^{1,3}. A previous study on domestic supply potential focused on land-availability to 53 54 achieve EAT-Lancet diet targets without considering current actual production and nutrient 55 supply structures⁵. 56 Here, we quantify nutrient gaps between national demand and production for nine key nutrients 57 – namely proteins, carbohydrates, calcium, riboflavin, niacin, folate, iron, zinc, and Vitamin A 58 – across each of Africa's 54 countries, based on local production data for 162 food items. These 59 items were further categorized into 11 subgroups: cereals, oilseeds and pulses, meat, roots and 60 tubers, milk, fruits, vegetables, nuts, sugar crops, spice, and aquatic products. Since nutrients 61 could be lost during food preparation and household cooking activities¹¹, we focused on 62 nutrients ready for consumption (after all losses) rather than embodied in national production. 63 This enabled a direct link with local diet choices. Furthermore, we investigated the potential of

- 64 reducing nutrient gaps by expanding national production under local land and water constraints,
- 65 ultimately aiding policy design for improved nutrient supply.

66

- 67 Our results show that nutrient gaps between national demand and production are prevalent in
- Africa. All studied countries were deficient in at least one key nutrient (Fig. 1), in stark contrast
- 69 to most developed countries' nutrient self-sufficiency rates found in previous research^{3,12,13}
- and here illustrated by France, the Netherlands, and the United States (Supplementary Figure
- 71 1). Iron deficiency was found in every African country, reaching > 80% (Fig. 1 and
- Supplementary Figure 2) in 26 of them and 67% at continent level (calculated as domestically
- 73 produced nutrients divided by nutrient demand).
- 74 Calcium and zinc deficiency was also widespread, affecting 53 and 52 countries respectively.
- 75 The deficiencies of protein, folate, and riboflavin were found in between 41 and 48 countries.
- Even though the deficiency rate of Vitamin A and niacin at continent level was estimated to be
- only 4%, it was present in 40 countries, reflecting the spatial concentration of nutrient
- 78 production. Carbohydrate was the only sufficiently produced nutrient at continental level, but
- 79 14 countries showed deficiency rates (ranging from 4% to 94%). Eight countries (Eritrea,
- 80 Botswana, Libya, Gambia, Lesotho, Somalia, Cape Verde, Djibouti) were deficient for all
- 81 nutrients. Lesotho and Djibouti were found to have the largest deficiency rate between nutrient
- 82 production and demand (Fig. 1).
- 83 At national level, deficiency rates for protein (a key macronutrient) and iron (a key
- 84 micronutrient) are largely explained by low production quantity rather than quality of nutrients,
- 85 therefore constituting a 'magnitude' rather than a 'structure' effect. The protein gap was mostly
- attributed to low food production in 38 out of 54 countries (Supplementary Figure 3a), whilst
- 87 this was the case for all 54 countries where an iron gap was identified (Supplementary Figure
- 88 3b).
- 89 We further investigated the potential of reducing key nutrient gaps through the expansion of
- 90 agricultural production under current yields, considering national land and water constraints
- 91 (here taken as the thresholds for sustainable agricultural land use and water consumption see
- 92 Methods). This represents the potential for increased nutrient supply without surpassing
- 93 sustainability thresholds under current production patterns and resource productivity (Fig. 2).
- We found that satisfying nutrient gaps in Africa would require expanding production by at least
- 95 287% of what was produced in 2020, based on current production patterns (Supplementary
- 96 Figure 4). This expansion would require considerable additional water resource and
- 97 agricultural land (Supplementary Figure 4). Such large nutrient gap and limited production
- 98 space under water and land constraints indicates that relying solely on production expansion
- 99 without productivity improvements could make it difficult to fill the nutrient gap in many

African countries. Specifically, we found that 22 countries have no operating space to reduce their nutrient gaps to any extent (Fig. 2). This was because their usage of water and land has already exceeded their water and land constraints, leaving no room for further sustainable production. Amongst these countries, Algeria, Cabo Verde, Egypt, Eswatini, Libya, Morocco and Tunisia already go beyond their land and water constraints. Meanwhile, 25 countries could reduce their nutrient gaps by 1.4% to 75.7% within their water and/or land constraints. Only 7 countries were found to possess sufficient water and land to fully meet their nutrient gap through domestic production without exceeding their land and water sustainable usage thresholds. However, their nutrient production needs to be expanded by > 50% based on current production and efficiency patterns. In addition, we found that, compared to water, the magnitude of available land was the main limiting factor to reducing nutrient gaps in most African nations (Fig. 2). A feasible solution for African countries to sustainably increase their production without exceeding current land and water constraints is to improve land and water productivity, given the considerable potential for productivity gains across the continent 9,14,15. Hence, we examined the potential for reducing key nutrient gaps by expanding production while improving land and water productivity to global average levels through three counterfactual scenarios (see Methods). We found that solely improving land productivity (Scenario 1) would enable 17 more countries to fill their current nutrient gaps, whereas solely improving water productivity (Scenario 2) would allow only one more country, Mali, to do so (Supplementary Table 1). When both national land and water productivity improve to the global average level (Scenario 3), 22 more African countries could meet their nutrient demand without exceeding current land and water constraints. These scenarios highlight the critical importance of improving both land and water productivity for African countries. Malnutrition is a persistent concern in Africa, where the shortage of staple food supply has been well documented¹⁰. Our study further shows an important gap of micronutrients in domestic supply; iron, calcium, and zinc are the three most deficient nutrients, contributing to widespread anaemia, malaria, and higher rates of infant and child mortality¹⁶. The rate of anaemia in western Africa, in particular, is close to 50% ¹⁷. To advance sustainable development in Africa, micronutrient deficiency must be addressed¹⁸. While enough carbohydrates are produced at continent level, greater intracontinental trade and better access across different social groups are key to alleviating the shortage of carbohydrates

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

in local settings¹⁹. When it comes to micronutrients, however, achieving self-sufficiency

134 to be optimized, more than half of all African countries would not be able to meet their own 135 demands due to land limitations⁵. 136 Based on the above, and in light of global uncertainties, a critical measure to enhance Africa's own nutrient supply would be to improve agricultural productivity, particularly in sub-Saharan 137 138 Africa. Over the past decades, agricultural growth in the region has primarily relied on cropland 139 expansion rather than productivity improvements, resulting in deforestation and environmental 140 degradation⁹. Low agricultural productivity has been linked to several factors in sub-Saharan Africa, such as ineffective farm management practices, insufficient soil moisture, soil infertility, 141 142 and soil degradation⁸. Integrated Soil Fertility and Water Management (ISFWM) has proven 143 effective in several sub-Saharan African countries. Designed to enhance soil fertility, water 144 retention, and overall crop productivity, this approach combines a range of conservation farming practices, the application of both organic and inorganic fertilizers, the use of improved 145 seeds, and the promotion of irrigation techniques.^{8,10,20}. Additionally, investments in 146 147 agricultural research and development are crucial for Africa to support productivity gains and adapt to a rapidly changing climate¹⁰. 148 149 A second critical measure to enhance Africa's nutrient supply concerns the reduction of food 150 loss and waste throughout the food supply chain, which reduce total nutrient availability 151 consumption by 9-15% (Supplementary Table 2). Improving infrastructure such as storage 152 facilities, transportation, refrigeration and packaging can reduce nutrient loss and waste in supply chains¹⁹. Since supply chain improvements may have limited effect on the scarcest 153 154 micronutrients in Africa in the absence of productivity improvements, promoting cheap 155 micronutrients supplements such as ferrous sulphate is a third, complementary measure that 156 could help narrowing Africa's micronutrients gap. 157 Our study has several uncertainties and limitations that must be acknowledged. First, people's 158 nutrient demands are based on some assumptions. For example, if nutrient bioavailability levels 159 were to be considered (particularly their absorption/digestion via normal pathways in the human body)²¹, the number of countries with gaps in zinc and iron would be greatly alleviated 160 161 (Supplementary Figure 5). Second, our nutrient gap estimates do not imply insufficient 162 nutritious food intake among all people; rather, they indicate national average situation. This 163 is because food intake also depends on several variables not investigated in this study, such as food distribution within country and social equality¹⁹. Third, national-scale research does not 164 account for regional variations in land and water availability. In many cases, effectively 165

through domestic food production may be more challenging; in fact, even if production were

utilizing water resources from African rivers is challenging due to inadequate water infrastructure²². Factors such as crop rotation and land suitability are not considered, which results in land use increasing in direct proportion to production. Additionally, climate change and the resulting heat and water stress, are not considered in this study²³. Given the anticipated population growth and worsening heat and water conditions in the future, ensuring an adequate nutrient supply in Africa may become increasingly difficult unless productivity improves significantly²⁰. Therefore, our results are conservative, and the actual challenge of bridging the nutritional gap may be even greater. Fourth, our results indicate that wild fisheries are an important source of nutrients for certain island and coastal countries, such as Seychelles, Mauritania, and Namibia (Supplementary Figures 6-8). However, due to data limitations, we were unable to include other wild food sources, such as foraged and hunted foods. While wild foods can play a significant role in nutritional supply for some countries²⁴, climate change and ecological degradation driven by overexploitation have rendered this approach increasingly unsustainable²⁵. Finally, FAO data are the most appropriate and updated data available at the time of this study, concerns have been raised about potential inaccuracy and missing values²⁶.

Methods

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

We investigated the nutrient gaps for nine key food nutrients derived from 162 food types (cereals, oilseeds and pulses, meat, roots and tubers, milk, fruits, vegetables, nuts, sugar crops, spice, aquatic products, Supplementary Table 3) between national demand and domestic production in 54 African countries in 2020. The nine key nutrients included two macronutrients (proteins and carbohydrates) and seven micronutrients (calcium, riboflavin, niacin, folate, iron, zinc, and Vitamin A)^{1,3}. Furthermore, we evaluated the potential of reducing nutrient gaps by expanding production under national land and water availability constraints.

Nutrient gaps between national demand and domestic production

The nutrient gap investigated here compares the magnitude of food 'ready to be consumed' after preparation and cooking processes, with that needed by a given population. The first step was to exclude (from primary production) all agricultural products that do not reach human consumption, such as animal feed, seeds, non-food uses (such as oil for making soap), losses, wastes, and cooking loss (Supplementary Methods 1.1). Some items may be processed prior to consumption, for example, groundnuts can be used raw or transformed into oil before consumption. We used food supply data (kcal/cap) from the FAO Food Balance Sheet to account for the fraction of food items available (supply) in raw or processed form (Supplementary Methods 1.2). The next step was to estimate the edible portion of all unprocessed (as processed products have already excluded inedible parts) items by applying the refuse factor of each food²¹. In third step, food preparation and cooking methods were considered to calculation the nutrient availability for human consumption¹¹. We included all possible cooking methods such as drying, steaming, roasting, boiling, and baking. Also 'fresh' is included as a preparation option for consumption. Any method that included other foods was not considered (e.g., frying with oil, fat, or butter) to avoid double counting of nutrients provided by both the main item being cooked and the item used for cooking. To obtain the nutrient content profile for each food type, we matched each food item obtained in the previous steps with the United States Department of Agriculture (USDA) Food Composition Database and the West African Food Composition Table. Finally, we multiplied the edible quantities produced by the average unit nutrient content, considering different subspecies and cooking methods, to yield the ready-to-eat nutrient production for each item and for each African country.

213 The nutrients demand was obtained by multiplying the Recommended Nutrient Intake (RNI), 214 relevant to age and sex, by the population relevant to each country. We used the RNI for all 215 nutrients, except protein, at a standard weight. We further considered the weight relevant to population age and sex when estimating the RNI for proteins. This was done as follows: for 216 people under 18 years, we used global reference weights considering age groups and gender²⁷. 217 For adults older than 18 years, we calculated the body weight relevant to sex using data from 218

the NCD Risk Factor Collaboration (NCD-RisC)²⁸. The recommended amount of protein per

unit of human body weight was then multiplied by the calculated body weight. 220

219

221

222

223

224

225

235

236

237

238

239

240

241

242

243

The nutrient gap was obtained after subtracting the nutrients demand by the population from those obtained at the household level, for each African country and nutrient. In addition, we also used the decomposition method to identify the contribution of food production quality and quantity to the nutrient gaps (Supplementary Methods 1.3).

Potential to fill nutrient gaps through increasing production under land and water 226 constraints

227 We introduce an indicator named the potential reduction rate (PRR) to assess the potential for filling the nutrient gaps by increasing production under the current water/land productivity and 228 229 water/land constraints, as follows:

$$PRR_r = \frac{RC_r - RU_r}{RD_r} = \frac{RC_r - P * URF_r}{M * URF_r}$$

231 where PRR_r is the potential reduction rate of nutrient gaps under the resource r constraints. r 232 here refers to water or land. The PRR_r of a given country is the lower value between the results 233 from PRRwater and PRRland. RCr, RUr, RDr refer to the resource constraints, resources used in 234 current production, and resources required to fill the nutrient gaps, respectively.

The resource constraints refer to the thresholds for sustainable agricultural land use and water consumption at the national level. The water constraint is defined as 20% of the nation's total runoff²⁹⁻³². The water constraint for agricultural water consumption is obtained by subtracting industrial and service water consumption from the total water constraint. The land constraint for agricultural land use is defined as the potentially available cropland³³. More details for the water and land constraints can be found in the Supplementary Methods S1.4. RU_r is calculated by multiplying the amount of current food production (P) by the unit resource footprint (URF_r) . The URF_r is the reciprocal of water/land productivity (ton/m3). Please see Supplementary Methods S1.5 for more details about the calculation of URF_r . RD_r is obtained by multiplying

- 244 the minimal amount of food to fill nutrient gaps (M) (Supplementary Methods S1.6) by the
- URF_r . Note that RU_r may exceed RC_r , indicating that the country has no room left to expand
- 246 production under current productivity levels and resource constraints. In such case, the PRR_r
- 247 is set to 0.
- 248 Furthermore, given the significant disparity between Africa's current land and water
- 249 productivity and its potential productivity, we developed three counterfactual scenarios to
- evaluate the land and water requirements for closing the nutrient gaps under improved land and
- water productivity. Scenario 1: Africa's land productivity is elevated to the global average level
- 252 (nearly double the current per-unit land productivity, with variations by country). Numerous
- studies have demonstrated that this can be achieved through effective field management
- practices^{8,10,15}. Scenario 2: Africa's water productivity (mass production per unit of water
- consumption) is raised to the global average level. According to previous studies, this can be
- achieved under current technological and climatic conditions¹⁴. Scenario 3: A combination of
- 257 Scenarios 1 and 2.

258 Data sources

- Food production data were obtained from the FAO and Agriculture Organization (FAOSTAT)
- 260 Statistics Division³⁴. These data indicate the magnitude of several food products consumed
- annually. We selected 162 food items for which African country production data were available.
- 262 Disaggregated data on food production was used instead of aggregated data from the food
- balance sheet because it was found to be more accurate²¹. Population data were obtained from
- 264 the UN-DESA³⁵. We used the United States Department of Agriculture (USDA) Food
- 265 Composition Database³⁶ and the West African Food Composition Table³⁷ to determine the
- 266 nutrient content of food commodities. The RNI estimates the daily nutrient intake needed to
- provide the requirements of 97.5% of healthy individuals in a particular population group and
- 268 is tailored for global assessments²¹. The RNI depends on population weight and age and was
- obtained from the FAO and WHO³⁸. Because the FAO and WHO do not include all nutrients,
- other sources were used^{39,40}. The reference year for all data, unless otherwise indicated, was
- 271 2020.

272

Data availability

- 273 Food production data is publicly available from FOASTAT
- 274 (https://www.fao.org/faostat/en/#data/QCL). Population data is available from
- 275 (https://population.un.org/wpp/downloads). The nutrient content of food is available from

- http://www.ars.usda.gov/ba/bhnrc/ndl and ref³⁶. The RNI is available from
- https://www.ncbi.nlm.nih.gov/pubmed/30844154 and refs^{38,39}.

278 Acknowledgements

- 279 This work was supported by the National Key R&D Program of China (2023YFE0113000),
- 280 the National Natural Science Foundation of China (72074136, 72522023, 72104129,
- 72033005), the Taishan Scholar Youth Expert Program of Shandong Province (tsqn202103020,
- tsqnz20221106), and Shandong Provincial Natural Science Foundation (ZR2024MG008,
- 283 ZR2023QG002).

284 Author Contributions Statement

- 285 X.Z. and P.T. designed this study. H.F.N., P.T. and S.C. performed the analysis and prepared
- the manuscript. X.Z., P.T. and N.Z. coordinated and supervised the project. All authors (H.F.N.,
- 287 X.Z., P.T., P.H., X.X.Z., A.H., M.R.T., I.O., S.C., H.Z., K.F., and N.Z.) contributed to writing
- and reviewing the manuscript. These authors contributed equally: H.F.N. and X.Z.
- 289 Correspondence to X.Z. (xuzhao@sdu.edu.cn); P.T. (tianpp@sdu.edu.cn); N.Z.
- 290 (nz293@cam.ac.uk).

292 Competing interests

291

294

300

308

293 The authors declare no competing interests.

295 Figure Legends

- Fig. 1 Nutrient deficiency rates (expressed in %) for African countries based on national
- 297 **food production and nutrient requirements.** Negative values (red) indicate a nutrient deficit,
- 298 whilst positive values (green) indicate surplus production. The maps are ranked in decreasing
- order of the number of countries found deficient.

Fig. 2 Potential reduction rate under national blue water and land constraints in African

- 302 **countries.** "Potential reduction rate" refers to the extent to which the nutrient gap can be
- reduced within national resource boundaries. Section A refers to countries where gaps can be fully filled with national blue water and land constraints. Section B refers to countries where
- 305 gaps can be partially filled with national blue water and land constraints. Section C refers to
- 306 countries whose current consumption of water or land already exceeds national constraints and
- 500 Countries whose current consumption of water of fand already executs national constraint
- have therefore no capacity to expand production on a sustainable basis.

309 **Reference**

- Wang, X. *et al.* Global food nutrients analysis reveals alarming gaps and daunting challenges. *Nature Food* **4**, 1007-1017 (2023).
- Beal, T. Achieving dietary micronutrient adequacy in a finite world. *One Earth* **4**, 1197-1200 (2021).
- Wood, S. A., Smith, M. R., Fanzo, J., Remans, R. & DeFries, R. S. Trade and the equitability of global food nutrient distribution. *Nature Sustainability* **1**, 34-37 (2018).
- 316 4 Akiwumi, P. Revitalizing African Agriculture: Time for Bold Actions, https://unctad.org/news/blog-revitalizing-african-agriculture-time-bold-action> (2022).
- Navarre, N., Schrama, M., de Vos, C. & Mogollón, J. M. Interventions for sourcing EAT-Lancet diets within national agricultural areas: A global analysis. *One Earth* **6**, 321 31-40 (2023).
- Lin, F. *et al.* The impact of Russia-Ukraine conflict on global food security. *Global Food Security* **36**, 100661 (2023).
- Amhamed, A. *et al.* Food security strategy to enhance food self-sufficiency and overcome international food supply chain crisis: the state of Qatar as a case study. *Green Technology, Resilience, and Sustainability* **3**, 3 (2023).
- Ndegwa, J. K., Gichimu, B. M., Mugwe, J. N., Mucheru-Muna, M. & Njiru, D. M. Integrated soil fertility and water management practices for enhanced agricultural productivity. *International Journal of Agronomy* **2023**, 8890794 (2023).
- Jayne, T. S. & Sanchez, P. A. Agricultural productivity must improve in sub-Saharan Africa. *Science* **372**, 1045-1047 (2021).
- Aramburu-Merlos, F. *et al.* Adopting yield-improving practices to meet maize demand in Sub-Saharan Africa without cropland expansion. *Nature communications* **15**, 4492 (2024).
- Fabbri, A. D. & Crosby, G. A. A review of the impact of preparation and cooking on the nutritional quality of vegetables and legumes. *International Journal of Gastronomy and Food Science* **3**, 2-11 (2016).
- Baer-Nawrocka, A. & Sadowski, A. Food security and food self-sufficiency around the world: A typology of countries. *PloS one* **14**, e0213448 (2019).
- 340 13 Beltran-Peña, A., Rosa, L. & D'Odorico, P. Global food self-sufficiency in the 21st century under sustainable intensification of agriculture. *Environmental Research Letters* **15**, 095004 (2020).
- Mekonnen, M. M. & Hoekstra, A. Y. Water footprint benchmarks for crop production: A first global assessment. *Ecological Indicators* **46**, 214-223 (2014).
- 345 15 Mueller, N. D. *et al.* Closing yield gaps through nutrient and water management. *Nature* **494**, 390-390 (2013).
- 347 16 Engelbert, B. L. *et al.* Malnutrition in Sub Saharan Africa: burden, causes and prospects. *Pan African Medical Journal* **15**, 120 (2013).
- Mwangi, M. N., Mzembe, G., Moya, E. & Verhoef, H. Iron deficiency anaemia in sub-Saharan Africa: a review of current evidence and primary care recommendations for high-risk groups. *The Lancet Haematology* **8**, e732-e743 (2021).
- Mugambiwa, S. S. & Tirivangasi, H. M. Climate change: A threat towards achieving 'Sustainable Development Goal number two'(end hunger, achieve food security and improved nutrition and promote sustainable agriculture) in South Africa. *Jàmbá: Journal of Disaster Risk Studies* **9**, 1-6 (2017).
- Janssens, C. *et al.* A sustainable future for Africa through continental free trade and agricultural development. *Nature Food* **3**, 608-618 (2022).

- 358 20 Van Ittersum, M. K. *et al.* Can sub-Saharan Africa feed itself? *Proc Natl Acad Sci U S* 359 A **113**, 14964-14969 (2016).
- Geyik, O., Hadjikakou, M. & Bryan, B. A. Spatiotemporal trends in adequacy of dietary nutrient production and food sources. *Global Food Security* **24**, 100355 (2020).
- Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell'Angelo, J. & D'Odorico, P. Global agricultural economic water scarcity. *Science Advances* **6**, eaaz6031 (2020).
- Kompas, T., Che, T. N. & Grafton, R. Q. Global impacts of heat and water stress on food production and severe food insecurity. *Scientific Reports* **14**, 1-9 (2024).
- Byenura, C. & Sivakumar, D. The role of wild fruits and vegetables in delivering a balanced and healthy diet. *Food Research International* **99**, 15-30 (2017).
- Wessels, C., Merow, C. & Trisos, C. H. Climate change risk to southern African wild food plants. *Regional Environmental Change* **21**, 1-14 (2021).
- 370 26 Nzudie, H. L. F. *et al.* Driving force analysis for food loss changes in Cameroon. 371 *Journal of Cleaner Production* **278**, 123892 (2021).
- Chen, C., Chaudhary, A. & Mathys, A. Nutrient Adequacy of Global Food Production.
 Frontiers in nutrition 8, 739755 (2021).
- Risk, N. & Collaboration, F. A century of trends in adult human height. *Elife* **5**, e13410 (2016).
- Richter, B. D., Davis, M., Apse, C. & Konrad, C. A presumptive standard for environmental flow protection. *River Research and Applications* **28**, 1312-1321 (2012).
- Mekonnen, M. M. & Hoekstra, A. Y. Blue water footprint linked to national consumption and international trade is unsustainable. *Nature Food* **1**, 792-800 (2020).
- Hogeboom, R. J., De Bruin, D., Schyns, J. F., Krol, M. S. & Hoekstra, A. Y. Capping human water footprints in the world's river basins. *Earth's Future* **8**, e2019EF001363 (2020).
- Hou, S. *et al.* Tracking grid-level freshwater boundary exceedance along global supply chains from consumption to impact. *Nature Water*, 1-10 (2025).
- Schneider, J. M., Zabel, F. & Mauser, W. Global inventory of suitable, cultivable and available cropland under different scenarios and policies. *Scientific Data* **9**, 527 (2022).
- 387 34 FAOSTAT. *Crops and livestock products*, < https://www.fao.org/faostat/en/#data/QCL> 388 (2022).
- 389 35 UN Department of Economic and Social Affairs, P. D. *World population prospects:* 390 *The 2022 Revision*, https://population.un.org/wpp/Download/Standard/Interpolated.> 391 (2022).
- 392 36 USDA. *USDA national nutrient database for standard reference*, 393 http://www.ars.usda.gov/ba/bhnrc/ndl (2022).
- 394 37 Stadlmayr, B., Thiam, I., Charrondiere, U. R. & Burlingame, B. West African Food Composition Table. *Science* (2010).
- 396 38 Joint, F. Human vitamin and mineral requirements. (2002).

- 39 Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, 398 iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. (National 399 Academies Press, 2002).
- 400 40 Oria, M., Harrison, M. & Stallings, V. A. Dietary Reference Intakes for sodium and potassium. (2019).